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Abstract

In this paper, we study a multi-dimensional backward stochastic differential equa-

tion (BSDE) with oblique reflection, which is a BSDE reflected on the boundary of a

special unbounded convex domain along an oblique direction, and which arises natu-

rally in the study of optimal switching problem. The existence of the adapted solution

is obtained by the penalization method, the monotone convergence, and the a priori

estimations. The uniqueness is obtained by a verification method (the first component

of any adapted solution is shown to be the vector value of a switching problem for

BSDEs). As applications, we apply the above results to solve the optimal switching

problem for stochastic differential equations of functional type, and we give also a prob-

abilistic interpretation of the viscosity solution to a system of variational inequalities.
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1 Introduction

In this paper, we are concerned with the following reflected backward stochastic dif-

ferential equation (RBSDE for short) with oblique reflection: for i ∈ Λ := {1, · · · ,m},





Yi(t) = ξi +

∫ T

t
ψ(s, Yi(s), Zi(s), i) ds −

∫ T

t
dKi(s) −

∫ T

t
Zi(s) dW (s), t ∈ [0, T ],

Yi(t) ≤ min
j 6=i

{Yj(t) + k(i, j)},
∫ T

0

(
Yi(s) − min

j 6=i
{Yj(s) + k(i, j)}

)
dKi(s) = 0.

(1.1)

Here, W is a standard Brownian motion on a complete probability space (Ω,F , P ) and

ξ is an m-dimensional random variable measurable with respect to the past of W up

to time T . ξ is the terminal condition and ψ the coefficient (also called the generator).

k is a real function defined on Λ × Λ. The unknowns are the processes {Y (t)}t∈[0,T ],

{Z(t)}t∈[0,T ], and {K(t)}t∈[0,T ], which are required to be adapted with respect to the

natural completed filtration of the Brownian motion W . Moreover, K is an increasing

process. The third relation in (1.1) is called the minimal boundary condition.

RBSDE (1.1) evolves in the closure Q̄ of domain Q:

Q := {(y1, · · · , ym)T ∈ Rm : yi < yj + k(i, j) for any i, j ∈ Λ such that j 6= i},

which is convex and unbounded. The boundary ∂Q of domain Q consists of the bound-

aries ∂L−
i , i ∈ Λ, with

L−
i := {(y1, · · · , ym)T ∈ Rm : yi < yj + k(i, j), for any j ∈ Λ such that j 6= i}, i ∈ Λ.

That is,

∂Q =
m
∪

i=1
∂L−

i .

In the interior of Q̄, each equation in (1.1) is independent of others. On the boundary,

say ∂L−
i , the i-th equation is switched to another one, and the solution is reflected

along the oblique direction −ei (which is the opposite direction of the i-th coordinate

axis).

RBSDE was first studied by El Karoui et al. [9] for the one-dimensional case. Mul-

tidimensional RBSDE was studied by Gegout-Petit and Pardoux [10], but their BSDE

is reflected on the boundary of a convex domain along the inward normal direction,

and their method depends heavily on the properties of this inward normal reflection

(see (1)-(3) in [10]). We note that in a very special case (e.g., ψ is independent of z),

Ramasubramanian [16] studied a BSDE in an orthant with oblique reflection. Note

also that there are some papers dealing with SDEs with oblique reflection (see, e.g.

[13] and [7]).

An incomplete and less general form of RBSDE (1.1) (where the minimal condition

of (1.1) is missing and the generator ψ does not depend on (y, z)) is suggested by [3].
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But they did not discuss the existence and uniqueness of solution, which is considered

to be difficult. See Remark 3.1 in [3].

Besides the theoretic interest, RBSDE (1.1) arises naturally from the following

optimal switching problem.

Consider the switched equation

Xa(·)(t) = x0 +

∫ t

0
σ(s,Xa(·))[dW (s) + b(s,Xa(·), a(s))ds], t ∈ [0, T ] (1.2)

and the cost functional

J(a(·)) = E[

∫ T

0
l(s,Xa(·), a(s))ds] + E[

∞∑

i=1

k(αi−1, αi)]. (1.3)

The optimal switching problem is to minimize the cost J(a(·)) with respect to a(·),

subject to the state equation (1.2).

In the above, x0 is a fixed point in Rd. σ, b and l are defined on [0, T ]×C([0, T ];Rd),

[0, T ] × C([0, T ];Rd) × Λ and [0, T ] × C([0, T ];Rd) × Λ, respectively, with appropriate

dimensions.

a(·) = α0χ{θ0}(·) +

∞∑

i=1

αi−1χ(θi−1,θi](·)

is called an admissible switching strategy if for any i, θi is a stopping time, and αi is

an Fθi
-measurable random variable with values in Λ. Here, χ is the indicator function.

k is called the switching cost.

Optimal switching is a special case of impulse control. The classical method of

quasi-variational inequalities to solve impulse control problems driven by Markov pro-

cesses is referred to the book of Bensoussan and Lions [2]. See [18] and the references

therein for the theory of variational inequalities and the dynamic programming for op-

timal stochastic switching. But these works are restricted within the Markovian case.

Recently, using the method of Snell envelope (see, e.g. El Karoui [8]) combined with

the theory of scalar valued RBSDEs, Hamadene and Jeanblanc [11] studied the switch-

ing problem with two modes (i.e., m = 2) in the non-Markovian context. Djehiche,

Hamadene and Popier [6] generalized their result to the above switching problem with

multi modes. We note that in both [11] and [6], the drift term b does not depend on

the switching strategy a.

The main contribution of this paper is to establish the existence and uniqueness

of solution for RBSDE (1.1). We prove the existence by the penalization method, the

monotone convergence, and the a priori estimation whose proof is rather technical. The

proof of uniqueness is quite different: the classical method to estimate the difference

of two solutions appears difficult to be applied to our present case of the oblique

reflection. We obtain the uniqueness by a verification method: first we introduce an

optimal switching problem for BSDEs, then we prove that the first component Y of

any adapted solution (Y,Z,K) of RBSDE (1.1) is the (vector) value for the switching

problem. As applications, we solve the optimal switching problem (1.2) and (1.3),
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and we establish the Feynman-Kac formula for the viscosity solution to a system of

variational inequalities.

The paper is organized as follows: in Section 2, we prove the existence of solution,

whereas Section 3 is devoted to the uniqueness. We solve the optimal switching problem

in Section 4. Finally, in Section 5, we give a probabilistic interpretation of the viscosity

solution to a system of variational inequalities.

2 Existence

2.1 Notations

Let us fix a nonnegative real number T > 0. First of all, W = {Wt}t≥0 is a stan-

dard Brownian motion with values in Rd defined on some complete probability space

(Ω,F , P ). {Ft, t ≥ 0} is the natural filtration of the Brownian motion W augmented

by the P -null sets of F . All the measurability notions will refer to this filtration. In

particular, the sigma-field of predictable subsets of [0, T ] × Ω is denoted by P.

Let us consider now the RBSDE (1.1). The generator ψ is a random function

ψ : [0, T ]×Ω×R×Rd ×Λ → R whose component ψ(·, i) is measurable with respect to

P ⊗B(R)⊗B(Rd) and the terminal condition ξ is simply a Rm-valued FT -measurable

random variable. k is defined on Λ × Λ and scalar valued.

By a solution to RBSDE (1.1) we mean a triple (Y,Z,K) = {Y (t), Z(t),K(t)}t∈[0,T ]

of predictable processes with values in Rm × Rm×d × Rm such that P -a.s., t → Y (t)

and t → K(t) are continuous, t → Z(t) belongs to L2(0, T ), t → ψ(t, Yi(t), Zi(t), i)

belongs to L1(0, T ) and P -a.s., RBSDE (1.1) holds.

S2(Rm) or simply S2 denotes the set of Rm-valued, adapted and càdlàg processes

{Y (t)}t∈[0,T ] such that

||Y ||S2 := E[ sup
t∈[0,T ]

|Y (t)|2]1/2 < +∞.

(S2, || · ||S2) is a Banach space.

M2(Rm×d) or simply M2 denotes the set of (equivalent classes of) predictable

processes {Z(t)}t∈[0,T ] with values in Rm×d such that

||Z||M2 := E[

∫ T

0
|Z(s)|2ds]1/2 < +∞.

M2 is a Banach space endowed with this norm.

N2(Rm) : = {K = (K1, · · · ,Km)T ∈ S2 : for any i ∈ Λ,Ki(0) = 0,

and t→ Ki(t) is increasing },

where T means transpose. (N2, || · ||S2) is a Banach space.
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2.2 Existence

In this subsection, we prove the existence result for RBSDE (1.1). We assume the

following Lipschiz condition on the generator.

Hypothesis 2.1. (i) ψ(·, 0, 0) := (ψ(·, 0, 0, 1), · · · , ψ(·, 0, 0,m))T belongs to M2.

(ii) There exists a constant C > 0, such that, P -a.s. for each (t, y, y′, z, z′, i) ∈

[0, T ] ×R×R×Rd ×Rd × Λ,

|ψ(t, y, z, i) − ψ(t, y′, z′, i)| ≤ C(|y − y′| + |z − z′|).

We make the following assumption on k which is standard in the literature of

optimal switching.

Hypothesis 2.2. (i) For any (i, j) ∈ Λ × Λ, k(i, j) ≥ 0.

(ii) For any (i, j, l) ∈ Λ × Λ × Λ,

k(i, j) + k(j, l) ≥ k(i, l).

We are now in position to state the existence result.

Theorem 2.1. Let the Hypotheses 2.1 and 2.2 hold. Assume that ξ ∈ L2(Ω,FT , P ;Rm)

takes values in Q̄. Then RBSDE (1.1) has a solution (Y,Z,K) in S2 ×M2 ×N2.

We first sketch our proof.

Sketch of the Proof: The proof is divided to four steps. In Step 1, we introduce

the penalized BSDEs whose existence and uniqueness follows from the classical result.

In Step 2, we state some (uniform) a priori estimates for the solutions of penalized

BSDEs, whose proof will be given in the next subsection. In Step 3, we prove the

(monotone) convergence of these solutions. Finally, in Step 4, we check out the minimal

boundary condition.

Proof of Theorem 2.1 : Step 1. The penalized BSDEs.

For any nonnegative integer n, let us introduce the following penalized BSDE:

Y n
i (t) = ξi +

∫ T

t
ψ(s, Y n

i (s), Zn
i (s), i) ds

−n
m∑

l=1

∫ T

t
(Y n

i (s) − Y n
l (s) − k(i, l))+ ds

−

∫ T

t
Zn

i (s) dW (s), t ∈ [0, T ], i ∈ Λ.

(2.1)

Note that when l = i, we have, in view of Hypothesis 2.2 (i),

(Y n
i (s) − Y n

l (s) − k(i, l))+ = 0. (2.2)

From the classical result of Pardoux and Peng [14], for any n, BSDE (2.1) has a

unique solution (Y n, Zn) in the space S2 ×M2.

Step 2. A priori estimates.

The following lemma will play a crucial rule in the proof of Theorem 2.1.
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Lemma 2.1. Let the Hypotheses 2.1 and 2.2 hold. Let us also assume that ξ ∈

L2(Ω,FT , P ;Rm) takes values in Q̄. Then there exists a constant C > 0 (indepen-

dent of n), such that

||Y n||S2 + ||Zn||M2 ≤ C (2.3)

and

n2E

∫ T

0

(
(Y n

i (s) − Y n
j (s) − k(i, j))+

)2
ds ≤ C. (2.4)

However, the proof of this lemma is quite lengthy and delicate. We relegate it to

the next subsection.

Step 3. Convergence of solutions {Y n, Zn} of penalized BSDEs.

First, for each n, we introduce a function ψn as follows:

ψn(t, y, z, i) := ψ(t, yi, zi, i)−n
m∑

l=1

(yi−yl−k(i, l))
+, (t, y, z, i) ∈ [0, T ]×Rm×Rm×d×Λ.

Since ψn(·, z, i) depends only on zi and

ψn(t, y + y′, zi, i) ≥ ψn(t, y′, zi, i)

for any y ∈ Rm such that y ≥ 0 and the i− th component yi = 0, it is easy to check

−4〈y−, ψn(t, y+ + y′, z) − ψn+1(t, y′, z′)〉 ≤ 2

m∑

i=1

χyi<0|zi − z′i|
2 + C|y′|2, P − a.s.,

for a constant C > 0. We note that this is the inequality (5) in [12]. Applying the

comparison theorem for multi-dimensional BSDEs (see Hu and Peng [12, Theorem

2.1]), we deduce that for any nonnegative integer n,

Y n
i (t) ≥ Y n+1

i (t),∀i ∈ Λ, t ∈ [0, T ]. (2.5)

For a.e. t and P -a.s. ω, {Y n(t, ω)}n admits a limit, denoted by Y (t, ω). Moreover

from the a priori estimate (2.3) and Fatou’s lemma, we have

sup
t∈[0,T ]

E|Y (t)|2 ≤ C. (2.6)

In view of the fact that Yi(t) ≤ Y n
i (t) ≤ Y 0

i (t) with i ∈ Λ, applying Lebesgue’s

dominated convergence theorem, we have

lim
n→∞

E

∫ T

0
|Y n(s) − Y (s)|2 ds = 0. (2.7)

Now we prove that {(Y n, Zn)}n is a Cauchy sequence in the space S2 ×M2. For

this purpose, we apply Itô’s formula to |Y n
i (t) − Y p

i (t)|2 to obtain
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|Y n
i (t) − Y p

i (t)|2 +

∫ T

t
|Zn

i (s) − Zp
i (s)|2 ds

= 2

∫ T

t
(Y n

i (s) − Y p
i (s))(ψ(s, Y n

i (s), Zn
i (s), i) − ψ(s, Y p

i (s), Zp
i (s), i)) ds

−2

∫ T

t
(Y n

i (s) − Y p
i (s))n(Y n

i (s) − Y n
j (s) − k(i, j))+ ds

+2

∫ T

t
(Y n

i (s) − Y p
i (s))p(Y p

i (s) − Y p
j (s) − k(i, j))+ ds

−2

∫ T

t
(Y n

i (s) − Y p
i (s))(Zn

i (s) − Zp
i (s)) dW (s), i ∈ Λ. (2.8)

Putting t = 0 and taking expectation in the last equality, we get for i ∈ Λ,

E|Y n
i (0) − Y p

i (0)|2 + E

∫ T

0
|Zn

i (s) − Zp
i (s)|2ds

= 2E

∫ T

0
(Y n

i (s) − Y p
i (s))(ψ(s, Y n

i (s), Zn
i (s), i) − ψ(s, Y p

i (s), Zp
i (s), i))ds

−2E

∫ T

0
(Y n

i (s) − Y p
i (s))n(Y n

i (s) − Y n
j (s) − k(i, j))+ds

+2E

∫ T

0
(Y n

i (s) − Y p
i (s))p(Y p

i (s) − Y p
j (s) − k(i, j))+ds

≤ CE

∫ T

0
(Y n

i (s) − Y p
i (s))2ds+

1

2
E

∫ T

0
|Zn

i (s) − Zp
i (s)|2ds

+

(
E

∫ T

0
|Y n

i (s) − Y p
i (s)|2 ds

)1

2
(
E

∫ T

0
n2
(
(Y n

i (s) − Y n
j (s) − k(i, j))+

)2
ds

) 1

2

+

(
E

∫ T

0
|Y n

i (s) − Y p
i (s)|2 ds

)1

2
(
E

∫ T

0
p2
(
(Y p

i (s) − Y p
j (s) − k(i, j))+

)2
ds

) 1

2

.

From (2.4) and (2.7), we have

lim
n,p→∞

E

∫ T

0
|Zn

i (s) − Zp
i (s)|2 ds = 0, i ∈ Λ. (2.9)

Now, we define the increasing process Kn
i as follows:

Kn
i (t) := n

∫ t

0

m∑

l=1

(Y n
i (s) − Y n

l (s) − k(i, l))+ ds, t ∈ [0, T ], i ∈ Λ. (2.10)

From the penalized BSDE (2.1), we have

Kn
i (t) = Y n

i (t) − Y n
i (0) +

∫ t

0
ψ(s, Y n

i (s), Zn
i (s), i)ds −

∫ t

0
Zn

i (s)dW (s), i ∈ Λ. (2.11)

We denote by Z the limit of Zn in M2. Set

Ki(t) := Yi(t) − Yi(0) +

∫ t

0
ψ(s, Yi(s), Zi(s), i)ds −

∫ t

0
Zi(s)dW (s), i ∈ Λ. (2.12)
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We have

lim
n→∞

||Zn − Z||M2 = 0.

Going back again to (2.8), we deduce that for i ∈ Λ,

E sup
0≤t≤T

|Y n
i (t) − Y p

i (t)|2

≤ 2E

∫ T

0
|Y n

i (s) − Y p
i (s)||ψ(s, Y n

i (s), Zn
i (s), i) − ψ(s, Y p

i (s), Zp
i (s), i)| ds

+2E

∫ T

0
|Y n

i (s) − Y p
i (s)|n(Y n

i (s) − Y n
j (s) − k(i, j))+ ds

+2E

∫ T

0
|Y n

i (s) − Y p
i (s)|p(Y p

i (s) − Y p
j (s) − k(i, j))+ ds

+2E sup
0≤t≤T

|

∫ T

t
(Y n

i (s) − Y p
i (s))(Zn

i (s) − Zp
i (s)) dW (s)|. (2.13)

The last term of the right hand side of the last inequality is less than or equal to

the following quantity:

CE

(∫ T

0
|(Y n

i (s) − Y p
i (s))(Zn

i (s) − Zp
i (s))|2 ds

) 1

2

≤ CE

(
sup

0≤t≤T
|Y n

i (t) − Y p
i (t)|

∫ T

0
|Zn

i (s) − Zp
i (s)|2 ds

) 1

2

≤
1

2
E sup

0≤t≤T
|Y n

i (t) − Y p
i (t)|2 + CE

∫ T

0
|Zn

i (s) − Zp
i (s)|2 ds. (2.14)

Combining (2.13) and (2.14) and taking into consideration (2.7) and (2.9), we de-

duce that {Y n}n is a Cauchy sequence in S2, which means in particular that

lim
n→∞

||Y n − Y ||S2 = 0.

Consequently, Y is a continuous process.

From (2.11), (2.12), and the following fact that

||Y n − Y ||S2 + ||Zn − Z||M2 → 0, as n→ ∞,

we deduce immediately that

lim
n→∞

||Kn −K||S2 = 0.

Hence, K ∈ N2, and (Y,Z,K) satisfies the first relation in RBSDE (1.1).

Finally, from the a priori estimate (2.4), we have

E

∫ T

0

(
(Y n

i (s) − Y n
j (s) − k(i, j))+

)2
ds ≤

C

n2
, i, j ∈ Λ.
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Letting n→ ∞, we deduce

E

∫ T

0

(
(Yi(s) − Yj(s) − k(i, j))+

)2
ds = 0, i, j ∈ Λ.

Hence,

Yi(s) ≤ Yj(s) + k(i, j), s ∈ [0, T ], i, j ∈ Λ, (2.15)

which are equivalent to the following:

P − a.s. Y (s) ∈ Q̄, ∀s ∈ [0, T ].

Step 4. The minimal boundary condition.

Let us first state the following lemma whose proof is at the end of this subsection.

Lemma 2.2. Let the Hypotheses 2.1 and 2.2 hold. Let us also assume that ξ ∈

L2(Ω,FT , P ;Rm) takes values in Q̄. We have, for any integer n,

∫ T

0

(
Y n

i (s) − min
j 6=i

[Y n
j (s) + k(i, j)]

)−

dKn
i (s) = 0, i ∈ Λ. (2.16)

Now, we can take the limit in (2.16) by letting n tend to +∞ and applying Lemma

5.8 in [10] to get the following

∫ T

0

(
Yi(s) − min

j 6=i
[Yj(s) + k(i, j)]

)−

dKi(s) = 0, i ∈ Λ, (2.17)

which, together with (2.15), yields the minimal boundary conditions.

The proof of Theorem 2.1 is now complete.

Proof of Lemma 2.2 For i ∈ Λ, the left hand side of the last equality is equal to

the following sum

n

m∑

l=1

∫ T

0
min
j 6=i

{(
Y n

i (s) − Y n
j (s) − k(i, j)

)−
(Y n

i (s) − Y n
l (s) − k(i, l))+

}
ds. (2.18)

We claim that the integrand of the l-th integral is equal to zero for l ∈ Λ.

In fact, it is immediate for the case of l = i. For the case of l 6= i, the integrand is

the minimum of the following m− 1 nonnegative quantities:

(
Y n

i (s) − Y n
j (s) − k(i, j)

)−
(Y n

i (s) − Y n
l (s) − k(i, l))+ , j ∈ Λ and j 6= i, (2.19)

whose l-th term is zero due to the fact that

(Y n
i (s) − Y n

l (s) − k(i, l))− (Y n
i (s) − Y n

l (s) − k(i, l))+ = 0, (2.20)

and therefore, it is zero. The desired result then follows.
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2.3 Proof of Lemma 2.1

In this subsection, we prove Lemma 2.1.

For i, j ∈ Λ, applying Tanaka’s formula (see, e.g. [17]) to (Y n
i (t)−Y n

j (t)−k(i, j))+ ,

we have

(Y n
i (t) − Y n

j (t) − k(i, j))+ + n

m∑

l=1

∫ T

t
χL+

ij,n
(s)(Y n

i (s) − Y n
l (s) − k(i, l))+ ds

−n
m∑

l=1

∫ T

t
χL+

ij,n
(s)(Y n

j (s) − Y n
l (s) − k(j, l))+ ds+

1

2

∫ T

t
dLn

ij(s)

=

∫ T

t
χL+

ij,n
(s)(ψ(s, Y n

i (s), Zn
i (s), i) − ψ(s, Y n

j (s), Zn
j (s), j)) ds

−

∫ T

t
χL+

ij,n
(s)(Zn

i (s) − Zn
j (s)) dW (s),

(2.21)

where for i, j ∈ Λ,

L+
ij,n := {(s, ω) : Y n

i (s) > Y n
j (s) + k(i, j)}, (2.22)

and Ln
ij is the local time of the process Y n

i − Y n
j − k(i, j) at 0.

Applying Itô’s formula to
(
(Y n

i (t) − Y n
j (t) − k(i, j))+

)2
and taking into consider-

ation ∫ T

t
(Y n

i (s) − Y n
j (s) − k(i, j))+ dLn

ij(s) = 0,∀t ∈ [0, T ], (2.23)

we have
(
(Y n

i (t) − Y n
j (t) − k(i, j))+

)2

+2n

∫ T

t

(
(Y n

i (s) − Y n
j (s) − k(i, j))+

)2
ds

+

∫ T

t
χL+

ij,n
(s)|Zn

i (s) − Zn
j (s)|2 ds

= 2

∫ T

t
(Y n

i (s) − Y n
j (s) − k(i, j))+

[
ψ(s, Y n

i (s), Zn
i (s), i) − ψ(s, Y n

j (s), Zn
j (s), j)

]
ds

−2

∫ T

t
(Y n

i (s) − Y n
j (s) − k(i, j))+(Zn

i (s) − Zn
j (s)) dW (s)

+2n

∫ T

t
(Y n

i (s) − Y n
j (s) − k(i, j))+(Y n

j (s) − Y n
i (s) − k(j, i))+ ds

+2n
∑

l 6=i,l 6=j

∫ T

t
(Y n

i (s) − Y n
j (s) − k(i, j))+

×[(Y n
j (s) − Y n

l (s) − k(j, l))+ − (Y n
i (s) − Y n

l (s) − k(i, l))+] ds.

(2.24)

We claim that the integrands of the integrals in the last two terms of (2.24) are all

less than or equal to zero. In fact, since

{(y1, · · · , ym)T ∈ Rm : yi − yj − k(i, j) > 0, yj − yi − k(j, i) > 0} = ∅
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due to the fact that

k(i, j) + k(j, i) ≥ 0,

we have

(Y n
i (s) − Y n

j (s) − k(i, j))+(Y n
j (s) − Y n

i (s) − k(j, i))+ = 0, i, j ∈ Λ. (2.25)

On the other hand, for l, i, j ∈ Λ, taking into consideration both Hypothesis 2.2

(ii), i.e.,

k(i, j) + k(j, l) ≥ k(i, l),

and the elementary inequality that x+
1 − x+

2 ≤ (x1 − x2)
+ for any two real numbers x1

and x2, we have

(Y n
i (s) − Y n

j (s) − k(i, j))+[(Y n
j (s) − Y n

l (s) − k(j, l))+ − (Y n
i (s) − Y n

l (s) − k(i, l))+]

≤ (Y n
i (s) − Y n

j (s) − k(i, j))+(Y n
j (s) − Y n

i (s) − k(j, l) + k(i, l))+

≤ (Y n
i (s) − Y n

j (s) − k(i, l) + k(j, l))+(Y n
j (s) − Y n

i (s) − k(j, l) + k(i, l))+.

(2.26)

The last term of the last inequality is zero, since

{(y1, · · · , ym)T ∈ Rm : yi − yj − k(i, l) + k(j, l) > 0, yj − yi − k(j, l) + k(i, l) > 0} = ∅.

Concluding the above, we have

E
(
(Y n

i (t) − Y n
j (t) − k(i, j))+

)2

+2nE

∫ T

t

(
(Y n

i (s) − Y n
j (s) − k(i, j))+

)2
ds

+E

∫ T

t
χL+

ij,n
(s)|Zn

i (s) − Zn
j (s)|2 ds

≤ 2E

∫ T

t
(Y n

i (s) − Y n
j (s) − k(i, j))+|ψ(s, Y n

i (s), Zn
i (s), i) − ψ(s, Y n

j (s), Zn
j (s), j)| ds.

(2.27)

In view of Hypothesis 2.1 on the function ψ, we have

|ψ(s, Y n
i (s), Zn

i (s), i) − ψ(s, Y n
j (s), Zn

j (s), j)|

≤ |ψ(s, Y n
i (s), Zn

i (s), i) − ψ(s, Y n
i (s), Zn

i (s), j)|

+|ψ(s, Y n
i (s), Zn

i (s), j) − ψ(s, Y n
j (s), Zn

j (s), j)|

≤ C(|ψ(s, 0, 0)| + |Y n
i (s)| + |Zn

i (s)| + |Y n
i (s) − Y n

j (s)| + |Zn
i (s) − Zn

j (s)|)

≤ C(1 + |ψ(s, 0, 0)| + |Y n
i (s)| + |Zn

i (s)|

+|Y n
i (s) − Y n

j (s) − k(i, j)| + |Zn
i (s) − Zn

j (s)|).
(2.28)
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Consequently, we have

E
(
(Y n

i (t) − Y n
j (t) − k(i, j))+

)2

+2nE

∫ T

t

(
(Y n

i (s) − Y n
j (s) − k(i, j))+

)2
ds

+E

∫ T

t
χL+

ij,n
(s)|Zn

i (s) − Zn
j (s)|2 ds

≤ CE

∫ T

t
|(Y n

i (s) − Y n
j (s) − k(i, j))+|2 ds

+
1

2
E

∫ T

t
χL+

ij,n
(s)(1 + |ψ(s, 0, 0)|2 + |Y n

i (s)|2 + |Zn
i (s)|2

+|(Y n
i (s) − Y n

j (s) − k(i, j))+|2 + |Zn
i (s) − Zn

j (s)|2) ds.

(2.29)

Applying Gronwall’s inequality, we deduce easily that

E
(
(Y n

i (t) − Y n
j (t) − k(i, j))+

)2
≤ C

(
1 + E

∫ T

0
χL+

ij,n
(s)
(
|Y n

i (s)|2 + |Zn
i (s)|2

)
ds

)
,

nE

∫ T

0

(
(Y n

i (s) − Y n
j (s) − k(i, j))+

)2
ds +E

∫ T

0
χL+

ij,n
(s)|Zn

i (s) − Zn
j (s)|2 ds

≤ C

(
1 + E

∫ T

0
χL+

ij,n
(s)[|Y n

i (s)|2 + |Zn
i (s)|2] ds

)
.

(2.30)

Going back to (2.24) and applying Burkholder-Davis-Gundy’s inequality, we obtain

E[ sup
0≤t≤T

(
(Y n

i (t) − Y n
j (t) − k(i, j))+

)2
] ≤ C

(
1 + E

∫ T

0
χL+

ij,n
(s)[|Y n

i (s)|2 + |Zn
i (s)|2] ds

)
.

(2.31)

On the other hand, from (2.27), we deduce that,

E
(
(Y n

i (t) − Y n
j (t) − k(i, j))+

)2
+ 2nE

∫ T

t

(
(Y n

i (s) − Y n
j (s) − k(i, j))+

)2
ds

+E

∫ T

t
χL+

ij,n
(s)|Zn

i (s) − Zn
j (s)|2 ds

≤ (n+ C)E

∫ T

t

(
(Y n

i (s) − Y n
j (s) − k(i, j))+

)2
ds

+
C

n
E

∫ T

t
χL+

ij,n
(s)(1 + |ψ(s, 0, 0)|2 + |Y n

i (s)|2 + |Zn
i (s))|2 + |Zn

i (s) − Zn
j (s)|2) ds.

This shows that, for sufficiently large n,

n2E

∫ T

0

(
(Y n

i (s) − Y n
j (s) − k(i, j))+

)2
ds ≤ C

(
1 + E

∫ T

0
[|Y n

i (s)|2 + |Zn
i (s)|2] ds

)
.

(2.32)
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Finally, applying Itô’s formula to |Y n
i (t)|2, we obtain:

|Y n
i (t)|2 +

∫ T

t
|Zn

i (s)|2 ds

= |ξi|
2 + 2

∫ T

t
Y n

i (s) ·

[
ψ(s, Y n

i (s), Zn
i (s), i) −

m∑

l=1

n(Y n
i (s) − Y n

l (s) − k(i, l))+

]
ds

−2

∫ T

t
Zi(s)dW (s). (2.33)

By taking expectation and using the elementary inequality:

2ab ≤
1

ǫ
a2 + ǫb2, ∀ǫ > 0,

we deduce that, for any ǫ > 0,

E|Y n
i (t)|2 + E

∫ T

t
|Zn

i (s)|2 ds

≤ E|ξi|
2 + 2E

∫ T

t
|Y n

i (s)|·
[
|ψ(s, Y n

i (s), Zn
i (s), i)|

+
m∑

l=1

n(Y n
i (s) − Y n

l (s) − k(i, l))+
]
ds

≤ C + 2E

∫ T

t
|Y n

i (s)|·
[
C(|ψ(s, 0, 0)| + |Y n

i (s)| + |Zn
i (s)|)

+

m∑

l=1

n(Y n
i (s) − Y n

l (s) − k(i, l))+
]
ds

≤ C + CǫE

∫ T

t
|Y n

i (s)|2 ds + ǫE

∫ T

t
|Zn

i (s)|2 ds

+ǫE

∫ T

t
n2

m∑

l=1

(
(Y n

i (s) − Y n
l (s) − k(i, l))+

)2
ds

≤ Cǫ + CǫE

∫ T

t
|Y n

i (s)|2 ds+ CǫE

∫ T

t
|Zn

i (s)|2 ds.

Here, Cǫ > 0 denotes a constant which depends on ǫ and may vary from line to line.

Therefore,

E|Y n
i (t)|2 + E

∫ T

t
|Zn

i (s)|2 ds ≤ C. (2.34)

From (2.32), we obtain (2.4), and from (2.33), we deduce

||Y n||S2 ≤ C. (2.35)

The proof of Lemma 2.1 is now complete.
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3 Uniqueness

In this section, we prove the uniqueness by a verification method. Let (Ỹ , Z̃, K̃) be a

solution in the space (S2,M2, N2) to RBSDE (1.1). We will prove that Ỹ is in fact

the (vector) value for an optimal switching problem of BSDEs. For this purpose, we

introduce the following optimal switching problem.

Let {θj}
∞
j=0 be an increasing sequence of stopping times with values in [0, T ] and

∀j, αj is an Fθj
-measurable random variable with values in Λ, and χ is the indicator

function. We assume moreover that for P -a.s. ω, there exists an integer N(ω) such

that θN = T .

Then we define the admissible switching strategy as follows:

a(s) = α0χ{θ0}(s) +

N∑

j=1

αj−1χ(θj−1,θj ](s). (3.1)

We denote by A the set of all these admissible switching strategies and by Ai the

subset of A consisting of admissible switching strategies starting from the mode i. In

the same way, we denote by At the set of all the admissible strategies starting at the

time t (or equivalently θ0 = t ) and by Ai
t the subset of At consisting of admissible

switching strategies starting at time t from the mode i.

For any a(·) ∈ At, we define the associated (cost) process Aa(·) as follows:

Aa(·)(s) =

N−1∑

j=1

k(αj−1, αj)χ[θj ,T ](s), s ∈ [t, T ]. (3.2)

Obviously, Aa(·)(·) is a càdlàg process.

Now we are in position to introduce the switched BSDE:

U(s) = ξa(T )+A
a(·)(T )−Aa(·)(s)+

∫ T

s
ψ(r, U(r), V (r), a(r))dr−

∫ T

s
V (r)dW (r), s ∈ [t, T ].

(3.3)

This is a (slightly) generalized BSDE: it is equivalent to the following standard BSDE:

Ū(s) = ξa(T )+A
a(·)(T )+

∫ T

s
ψ(r, Ū (r)−Aa(·)(r), V̄ (r), a(r))dr−

∫ T

s
V̄ (r)dW (r), s ∈ [t, T ]

(3.4)

via the simple change of variable:

Ū(s) = U(s) +Aa(·)(s), V̄ (s) = V (s), s ∈ [t, T ].

Hence, BSDE (3.3) has a solution in S2×M2. We denote this solution by (Ua(·), V a(·)).

Note that U is only a càdlàg process.

The optimal switching problem with the initial mode i ∈ Λ is to minimize Ua(·)(t)

subject to a(·) ∈ Ai
t.

The assumptions required for the uniqueness will be slightly stronger than those

needed for existence. We keep the same assumption on ψ and we assume the following

for k.
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Hypothesis 3.1. (i) For any (i, j) ∈ Λ × Λ, k(i, j) ≥ 0.

(ii) For any (i, j, l) ∈ Λ × Λ × Λ such that i 6= j and j 6= l,

k(i, j) + k(j, l) > k(i, l).

We have the following representation for the first component of the adapted solution

to RBSDE (1.1), which immediately implies the uniqueness of the adapted solution to

RBSDE (1.1).

Theorem 3.1. Let us suppose that the Hypotheses 2.1 and 3.1 hold. Let us also

assume that ξ ∈ L2(Ω,FT , P ;Rm) takes values in Q̄. Let (Ỹ , Z̃, K̃) be a solution in

(S2,M2,K2) to RBSDE (1.1). Then

(i) For any a(·) ∈ Ai
t, we have:

Ỹi(t) ≤ Ua(·)(t), P − a.s. (3.5)

(ii) Set θ∗0 = t, α∗
0 = i. We define the sequence {θ∗j , α

∗
j}

∞
j=1 in an inductive way as

follows:

θ∗j := inf {s ≥ θ∗j−1 : Ỹα∗

j−1
(s) = min

l 6=α∗

j−1

{Ỹl(s) + k(α∗
j−1, l)} ∧ T, (3.6)

and α∗
j is the Fθ∗j

-measurable random variable such that

Ỹα∗

j−1
(θ∗j ) = Ỹα∗

j
(θ∗j ) + k(α∗

j−1, α
∗
j ),

with j = 1, 2, · · · .

Then, P -a.s. ω, there exists an integer N(ω) such that θ∗N = T . And the following

switching strategy:

a∗(s) = iχ{t}(s) +

N∑

j=1

α∗
j−1χ(θ∗

j−1
,θ∗

j
](s), (3.7)

is admissible, i.e., a∗(·) ∈ Ai
t. Moreover,

Ỹi(t) = Ua∗(·)(t).

(iii) We have the following representation for Ỹ (t):

Ỹi(t) = essinf
a(·)∈Ai

t

Ua(·)(t), i ∈ Λ, t ∈ [0, T ].

RBSDE (1.1) has a unique solution.

Proof. Without loss of generality, we will prove (i) and (ii) for the case of t = 0.

Otherwise, it suffices to consider the admissible switching strategies starting at time t.
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(i) We define

Ỹ a(·)(s) =

N∑

i=1

Ỹαi−1
(s)χ[θi−1,θi)(s) + ξa(T )χ{T}(s), (3.8)

Z̃a(·)(s) =
N∑

i=1

Z̃αi−1
(s)χ[θi−1,θi)(s), (3.9)

K̃a(·)(s) =

N∑

i=1

∫ θi∧s

θi−1∧s
dK̃αi−1

(r). (3.10)

Noting that Ỹ a(·)(·) is a càdlàg process with jump Ỹαi
(θi) − Ỹαi−1

(θi) at θi, i =

1, · · · , N − 1, we deduce that

Ỹ a(·)(s) − Ỹ a(·)(0)

=

N∑

i=1

∫ θi∧s

θi−1∧s
[−ψ(r, Ỹαi−1

(r), Z̃αi−1
(r), αi−1)dr + Z̃αi−1

(r)dW (r) + dK̃αi−1
(r)]

+
N−1∑

i=1

[Ỹαi
(θi) − Ỹαi−1

(θi)]χ[θi,T ](s)

=

∫ s

0
[−ψ(r, Ỹ a(·)(r), Z̃a(·)(r), a(r))dr + Z̃a(·)(r)dW (r) + dK̃a(·)(r)]

+Ãa(·)(s) −Aa(·)(s),

where

Ãa(·)(s) =

N−1∑

i=1

[Ỹαi
(θi) + k(αi−1, αi) − Ỹαi−1

(θi)]χ[θi,T ](s), (3.11)

and it is an increasing process due to the fact that

Ỹ (t) ∈ Q̄, ∀t ∈ [0, T ].

Consequently, we conclude that (Ỹ a(·), Z̃a(·)) is a solution of the following BSDE:

Ỹ a(·)(s)

= ξa(T ) +Aa(·)(T ) −Aa(·)(s) − [(K̃a(·)(T ) + Ãa(·)(T )) − (K̃a(·)(s) + Ãa(·)(s))]

+

∫ T

s
ψ(r, Ỹ a(·)(r), Z̃a(·)(r), a(r))dr −

∫ T

s
Z̃a(·)(r)dW (r), s ∈ [0, T ]. (3.12)

Since both K̃a(·) and Ãa(·) are increasing càdlàg processes, from the comparison

theorem, we conclude that

Ỹ a(·)(0) ≤ Ua(·)(0),

which implies that

Ỹi(0) ≤ Ua(·)(0).

(ii) Let us first claim that if 0 ≤ θ∗1 < θ∗2 < T , then there exists a constant c > 0

such that

|Ỹ (θ∗2) − Ỹ (θ∗1)| ≥ c.
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To prove this claim, we introduce the following subsets of Q̄: for i 6= j,

Bi,j := {(y1, · · · , ym)T ∈ Rm : yi = yj + k(i, j)} ∩ Q̄.

We assert that for i 6= j and j 6= l, Bi,j ∩Bj,l = ∅.

In fact, if there exists an element (y1, · · · , ym)T ∈ Bi,j ∩Bj,l, then

yi = yj + k(i, j) and yj = yl + k(j, l).

We deduce then

yi = yl + k(i, j) + k(j, l) > yl + k(i, l),

which contradicts the fact that (y1, · · · , ym)T ∈ Q̄.

Hence, the distance between Bi,j and Bj,l is strictly positive,

dist(Bi,j , Bj,l) > 0.

We set

c := min
i6=j,j 6=l

dist(Bi,j, Bj,l) > 0.

We return to the proof of the claim. From the definition of (θ∗1, α
∗
1) and (θ∗2, α

∗
2),

Ỹ (θ∗1) ∈ Bi,α∗

1
and Ỹ (θ∗2) ∈ Bα∗

1
,α∗

2
,

which implies that

|Ỹ (θ∗2) − Ỹ (θ∗1)| ≥ c,

and the proof of the claim is finished.

In the same way, if θ∗1 < θ∗2 < · · · < θ∗j−1 < θ∗j < T , then

|Ỹ (θ∗j ) − Ỹ (θ∗j−1)| ≥ c.

On the other hand, as Ỹ satisfies (1.1), it is easy to check that

E




∞∑

j=1

|Ỹ (θ∗j ) − Ỹ (θ∗j−1)|
2


 <∞.

As a consequence, there exists N(ω) such that θ∗N = T .

Finally, from the choice of a∗(·),

K̃a∗(·) + Ãa∗(·) = 0.

We conclude from (3.12) that

Ỹ a∗(·)(0) = Ua∗(·)(0),

which implies that

Ỹi(0) = Ua∗(·)(0).

(iii) The representation for Ỹ is a combination of both assertions (i) and (ii). This

gives the uniqueness of the first component of the adapted solution, and the uniqueness

of the other two components of the adapted solution follows then.
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4 Optimal switching of functional SDEs

In this section, we study the optimal switching problem. In order to ensure the exis-

tence of optimal switching strategy, we use the weak formulation of the problem. Let

(Ω,F , P ) be a complete probability space and let {Ft, t ≥ 0} be a filtration satisfying

the usual conditions. The process W is an {Ft, t ≥ 0}-Brownian motion on Rd defined

on (Ω,F , P ).

Consider the switched equation

Xa(·)(t) = x0 +

∫ t

0
σ(s,Xa(·))[dW (s) + b(s,Xa(·), a(s))ds], t ∈ [0, T ] (4.1)

and the cost functional

J(a(·)) = E

[∫ T

0
l(s,Xa(·), a(s))ds

]
+ E

[
N−1∑

i=1

k(αi−1, αi)

]
. (4.2)

The switching problem is to minimize the cost J(a(·)) with respect to a(·), subject to

the state equation (4.1).

In the above, x0 is a fixed point in Rd. σ, b and l are defined on [0, T ]×C([0, T ];Rd),

[0, T ] × C([0, T ];Rd) × Λ and [0, T ] × C([0, T ];Rd) × Λ, respectively, with values in

Rd×d, Rd and R, respectively. As in Section 3, a(·) is an admissible (Ft)t≥0-adapted

switching strategy, A is the set of all the admissible {Ft, t ≥ 0}-adapted switching

strategies and Ai is the subset of A consisting of the admissible {Ft, t ≥ 0}-adapted

switching strategies starting from the mode i. We assume that σ, b(·, i) and l(·, i) are

progressively measurable functionals on C([0, T ];Rd) in the following sense:

Definition 4.1. Let C([0, T ];Rd) be the space of continuous functions x : [0, T ] → Rd.

For 0 ≤ t ≤ T , define Gt := σ(x(s) : 0 ≤ s ≤ t), and set G := GT . A progressively

measurable functional on C([0, T ];Rd) is a mapping µ : [0, T ] × C([0, T ];Rd) → H (

H is some Euclidean space) such that for each fixed t ∈ [0, T ], µ restricted to [0, t] ×

C([0, T ];Rd) is B([0, t]) ⊗ Gt/B(H)-measurable.

We assume that k satisfies Hypothesis 3.1. And we assume also that σ, b and l

satisfy the following hypothesis.

Hypothesis 4.1. (i) σ, b(·, ·, i) and l(·, ·, i), i ∈ Λ, are progressively measurable func-

tionals on C([0, T ];Rd).

(ii) There exists a constant β > 0 such that ∀(t, x, x′, i) ∈ [0, T ] ×Rd ×Rd × Λ,

|b(t, x, i) − b(t, x′, i)| + |σ(t, x) − σ(t, x′)| + |l(t, x, i) − l(t, x′, i)| ≤ β||x− x′||C([0,t];Rd).

(iii) σ has a bounded inverse.

(iv) b is bounded.

Let (Y,Z,K) be the unique solution in (S2,M2, N2) of the following RBSDE:




Yi(t) =

∫ T

t
ψ(s,X,Zi(s), i) ds −

∫ T

t
dKi(s) −

∫ T

t
Zi(s) dW (s),

Yi(s) ≤ min
j 6=i

{Yj(s) + k(i, j)},
∫ T

0

(
Yi(s) − min

j 6=i
{Yj(s) + k(i, j)}

)
dKi(s) = 0, i ∈ Λ,

(4.3)
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where ψ is defined as follows: ∀(t, x, z, i) ∈ [0, T ] × C([0, T ];Rd) ×Rd × Λ,

ψ(t, x, z, i) := l(t, x, i) + 〈z, b(t, x, i)〉,

and X is the solution to the following functional SDE:

X(t) = x0 +

∫ t

0
σ(s,X)dW (s), t ∈ [0, T ]. (4.4)

Theorem 4.1. Let the Hypotheses 3.1 and 4.1 hold. Then

(i) For any a(·) ∈ Ai, we have:

J(a(·)) ≥ Yi(0). (4.5)

(ii) There exists an optimal switching strategy a∗, and a weak solution (P ∗,W ∗,X∗),

such that

X∗(t) = x0 +

∫ t

0
σ(s,X∗)[dW ∗(s) + b(s,X∗, a∗(s,X∗))], t ∈ [0, T ], (4.6)

and

J(a∗(·)) = Yi(0).

Proof. (i) For any a(·) ∈ Ai, we set

dP̄ := exp

{
−

∫ T

0
b(s,Xa(·), a(s))dW (s) −

1

2

∫ T

0
|b(s,Xa(·), a(s))|2ds

}
dP.

Then W̄ (t) = W (t) +
∫ t
0 b(s,X

a(·), a(s))ds is a Brownian motion under the new prob-

ability measure P̄ . Let (Ȳ , Z̄, K̄) be the solution of the following RBSDE:





Ȳi(t) =

∫ T

t
ψ(s,Xa(·), Z̄i(s), i) ds −

∫ T

t
dK̄i(s) −

∫ T

t
Z̄i(s) dW̄ (s),

Ȳi(s) ≤ min
j 6=i

{Ȳj(s) + k(i, j)},
∫ T

0

(
Ȳi(s) − min

j 6=i
{Ȳj(s) + k(i, j)}

)
dK̄i(s) = 0, i ∈ Λ.

(4.7)

Note that since Xa(·) solves (4.1), we have

Xa(·)(t) = x0 +

∫ t

0
σ(s,Xa(·))dW̄ (s), t ∈ [0, T ].

By a classical argument of Yamada-Watanabe, for RBSDE (4.3), the pathwise unique-

ness implies the uniqueness in the sense of probability law (see, e.g. [5], for a proof in

the framework of BSDE). Hence, we have

Yi(0) = Ȳi(0), i ∈ Λ. (4.8)
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Recalling the cost process Aa(·) defined by (3.2), and defining Ȳ a(·), Z̄a(·) , K̄a(·)

and Āa(·) in the same way as (3.8), (3.9), (3.10) and (3.11), we deduce in the same

manner as in Section 3 that (Ȳ a(·), Z̄a(·)) is the unique solution of the following BSDE:

Ȳ a(·)(t)

= Aa(·)(T ) −Aa(·)(t) − [(K̄a(·)(T ) + Āa(·)(T )) − (K̄a(·)(t) + Āa(·)(t))]

+

∫ T

t
ψ(s,Xa(·), Z̄a(·)(s), a(s))ds −

∫ T

t
Z̄a(·)(s)dW̄ (s), t ∈ [0, T ]. (4.9)

Since, both K̄ and Ā are increasing, we deduce that

Ȳ a(·)(0)

≤ Aa(·)(T ) +

∫ T

0
ψ(s,Xa(·), Z̄a(·)(s), a(s))ds −

∫ T

0
Z̄a(·)(s)[dW (s) + b(s,Xa(·), a(s))]

= Aa(·)(T ) +

∫ T

0
l(s,Xa(·), a(s))ds −

∫ T

0
Z̄a(·)(s)dW (s). (4.10)

From the definition of Ȳ a(·),

Ȳi(0) = Ȳ a(·)(0). (4.11)

From (4.8), (4.11) and (4.10),

Yi(0) ≤ Aa(·)(T ) +

∫ T

0
l(s,Xa(·), a(s))ds −

∫ T

0
Z̄a(·)(s)dW (s).

Taking expectation with respect to P , we have

Yi(0) ≤ J(a(·)).

(ii) Let X be the solution of SDE (4.4) and (Y,Z,K) be the solution of RBSDE

(4.3). Then, Y is adapted to the filtration FW
t = FX

t , due to (4.4) and Hypothesis 4.1

(iii).

Set θ∗0 = 0, α∗
0 = i. We define the sequence {θ∗j , α

∗
j}

∞
j=1 in an inductive way as

follows:

θ∗j := inf {s ≥ θ∗j−1 : Yα∗

j−1
(s) = min

l 6=α∗

j−1

{Yl(s) + k(α∗
j−1, l)} ∧ T, (4.12)

and α∗
j is the Fθ∗j

-measurable random variable such that

Yα∗

j−1
(θ∗j ) = Yα∗

j
(θ∗j ) + k(α∗

j−1, α
∗
j ),

with j = 1, 2, · · · . Then, P -a.s. ω, there exists an integer N(ω) such that θ∗N = T .

And we define the switching strategy a∗ as follows:

a∗(s) := iχ{0}(s) +
N∑

j=1

α∗
j−1χ(θ∗j−1

,θ∗j ](s), (4.13)
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is admissible, i.e., a∗(·) ∈ Ai. a∗ is adapted to the filtration FW
t = FX

t , i.e., a∗(t) =

a∗(t,X). Setting

dP ∗ := exp

(∫ t

0
b(s,X, a∗(s,X))dW (s) −

1

2

∫ t

0
|b(s,X, a∗(s,X))|2ds

)
dP,

then

W ∗(t) := W (t) −

∫ t

0
b(s,X, a∗(s,X))dW (s), t ∈ [0, T ],

is a Brownian motion under the probability measure P ∗, and (P ∗,W ∗,X) is a weak

solution of (4.1).

Computing Y a∗(·) as in Section 3, we deduce that

Y a∗(·)(0)

= Aa∗(·)(T ) − (Ka∗(·)(T ) + Ãa∗(·)(T ))

+

∫ T

0
ψ(s,X,Za∗(·)(s), a∗(s))ds−

∫ T

0
Za∗(·)(s)dW (s), (4.14)

where

Aa∗(·)(s) =

N−1∑

j=1

k(α∗
j−1, α

∗
j )χ[θ∗j ,T ](s),

Y a∗(·)(s) =

N∑

i=1

Yα∗

i−1
(s)χ[θ∗i−1

,θ∗i )(s) + Ya∗(T )(s)χ{T}(s),

Za∗(·)(s) =

N∑

i=1

Zα∗

i−1
(s)χ[θ∗i−1

,θ∗i )(s),

Ka∗(·)(s) =

N∑

i=1

∫ θ∗i ∧s

θ∗
i−1

∧s
dKα∗

i−1
(r),

Ãa∗(·)(s) =

N−1∑

i=1

[Yαi
(θ∗i ) + k(α∗

i−1, α
∗
i ) − Yα∗

i−1
(θ∗i )]χ[θ∗i ,T ](s).

From the definition of a∗(·), Ka∗(·) = 0 and Aa∗(·) = 0. Hence, from (4.14), it follows

that

Y a∗(·)(0)

= Aa∗(·)(T ) +

∫ T

0
l(s,X, a∗(s))ds −

∫ T

0
Za∗(·)(s)dW ∗(s). (4.15)

Taking the expectation with respect to P ∗, we conclude the proof.

5 System of variational inequalities

In this section, we will show that the RBSDE studied in Sections 2 and 3 allows us to

give a probabilistic representation of the solution to a system of variational inequalities.

For this purpose, we will put RBSDE (1.1) in a Markovian framework.
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Let b : [0, T ] × Rd → Rd and σ : [0, T ] × Rd → Rd×d be continuous mappings. We

assume:

Hypothesis 5.1. There exists a constant C > 0, such that for all t ∈ [0, T ], and

(x, x′) ∈ Rd ×Rd,

|b(t, 0)| + |σ(t, 0)| ≤ C,

and

|b(t, x) − b(t, x′)| + |σ(t, x) − σ(t, x′)| ≤ C|x− x′|.

For each (t, x) ∈ [0, T ] × Rd, let {Xt,x(s); t ≤ s ≤ T} be the unique Rd-valued

solution of the SDE:

Xt,x(s) = x+

∫ s

t
b(r,Xt,x(r))dr +

∫ s

t
σ(r,Xt,x(r))dW (r), s ∈ [t, T ].

We suppose now that the data ξ and ψ of RBSDE (1.1) take the following form:

ξi = g(Xt,x(T ), i),

ψ(s, y, z, i) = ψ(s,Xt,x(s), y, z, i),

where g and ψ are given as follows.

Hypothesis 5.2. (i) For each i ∈ Λ, the function g(·, i) ∈ C(Rd) and has at most

polynomial growth at infinity.

(ii) For each i ∈ Λ,

ψ(·, i) : [0, T ] ×Rd ×R×Rd → R

is jointly continuous and there exist two constants C > 0 and p ≥ 0 such that

|ψ(t, x, 0, 0, i)| ≤ C(1 + |x|p),

|ψ(t, x, y, z, i) − ψ(t, x, y′, z′, i)| ≤ C(|y − y′| + |z − z′|),

for t ∈ [0, T ], x, z, z′ ∈ Rd, y, y′ ∈ R, and i ∈ Λ.

(iii) ∀x ∈ Rd,

g(x) := (g(x, 1), · · · , g(x,m))T ∈ Q̄.

For each t ≥ 0, we denote by {F t
s, t ≤ s ≤ T} the natural filtration of the Brownian

motion {Ws −Wt, t ≤ s ≤ T}, augmented by the P -null sets of F .

It follows from the results of Sections 2 and 3 that for each (t, x), there exists

a unique triple (Y t,x, Zt,x,Kt,x) in S2 × M2 × N2 of {F t
s, t ≤ s ≤ T} progressively

measurable processes, which solves the following RBSDE:




Yi(s) = g(Xt,x(T ), i) +

∫ T

s
ψ(r,Xt,x(r), Yi(r), Zi(r), i)dr

−

∫ T

s
dKi(r) −

∫ T

s
Zi(r) dW (r), s ∈ [0, T ];

Yi(s) ≤ min
j 6=i

{Yj(s) + k(i, j)}, s ∈ [0, T ];
∫ T

0

(
Yi(s) − min

j 6=i
{Yj(s) + k(i, j)}

)
dKi(s) = 0; i ∈ Λ.

(5.1)
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We now consider the related system of variational inequalities. Roughly speaking,

a solution of the system of variational inequalities is a function u : [0, T ] × Rd → Rm

which satisfies:

max

{
−∂tui(t, x) − Lui(t, x) − ψ(t, x, ui(t, x),∇ui(t, x)σ(t, x), i),

ui(t, x) − min
j 6=i

(uj(t, x) + k(i, j))

}
= 0, (5.2)

(t, x, i) ∈ [0, T ] ×Rd × Λ, with the terminal condition

ui(T, x) = g(x, i), (x, i) ∈ Rd × Λ. (5.3)

Here, the second-order partial differential operator L is given by

L :=
1

2

d∑

j,l=1

(σσT (t, x))j,l
∂2

∂xj∂xl
+

d∑

j=1

bj(t, x)
∂

∂xj
.

More precisely, we shall consider solution of (5.2) in the viscosity sense. It will be

convenient for the sequel to define the notion of viscosity solution in the language of

sub- and super-jets (see, e.g., [4]). Below, S(d) will denote the set of d× d symmetric

nonnegative matrices.

Definition 5.1. Let u ∈ C((0, T ) × Rd;R) and (t, x) ∈ (0, T ) × Rd. We denote

by P2,+u(t, x) [the “parabolic superjet” of u at (t, x)] the set of triples (p, q,X) ∈

R×Rd × S(d) which are such that

u(s, y) ≤ u(t, x) + p(s− t) + 〈q, y − x〉 +
1

2
〈X(y − x), y − x)〉 + o(|s− t| + |y − x|2).

Similarly, we denote by P2,−u(t, x) [the “parabolic subjet” of u at (t, x)] the set of

triples (p, q,X) ∈ R×Rd × S(d) which are such that

u(s, y) ≥ u(t, x) + p(s− t) + 〈q, y − x〉 +
1

2
〈X(y − x), y − x)〉 + o(|s− t| + |y − x|2).

We can now give the definition of a viscosity solution of the system of variational

inequalities (5.2) and (5.3).

Definition 5.2. u ∈ C([0, T ] ×Rd;Rm) is called a viscosity subsolution (resp., super-

solution) of (5.2) and (5.3) if ui(T, x) ≤ (resp. ≥) g(x, i), (x, i) ∈ Rd × Λ, and at any

point (t, x, i) ∈ (0, T ) ×Rd × Λ, for any (p, q,X) ∈ P2,+ui(t, x) (resp., P2,−ui(t, x)) ,

max

{
−p−

1

2
Tr(σσT (t, x)X) − 〈b(t, x), q〉 − ψ(t, x, ui(t, x), qσ(t, x), i),

ui(t, x) − min
j 6=i

(uj(t, x) + k(i, j))

}
≤ (resp., ≥) 0.

u ∈ C([0, T ] × Rd;Rm) is called a viscosity solution of (5.2) and (5.3) if it is both

a subsolution and a supersolution of (5.2) and (5.3).
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We now define

ui(t, x) := Y t,x
i (t), (t, x, i) ∈ [0, T ] ×Rd × Λ; u := (u1, u2, · · · , um)T . (5.4)

Note that u is deterministic.

Lemma 5.1. Let the Hypotheses 3.1, 5.1 and 5.2 hold. For each i ∈ Λ, ui ∈ C([0, T ]×

Rd;R).

Proof: For (t, x) ∈ [0, T ]×Rd, i ∈ Λ and a(·) ∈ Ai
t, let (U

a(·)
t,x , V

a(·)
t,x ) be the unique

solution of the following switched BSDE:

U(s) = g(Xt,x(T ), a(T )) +Aa(·)(T ) −Aa(·)(s)

+

∫ T

s
ψ(r,Xt,x(r), U(r), V (r), a(r))dr

−

∫ T

s
V (r) dW (r), s ∈ [0, T ]. (5.5)

From Theorem 3.1, we have

ui(t, x) = inf
a(·)∈Ai

t

U
a(·)
t,x (t), (t, x, i) ∈ [0, T ] ×Rd × Λ.

By some classical stability arguments, we obtain the continuity of ui.

Theorem 5.1. Let the Hypotheses 3.1, 5.1 and 5.2 be true. The function u given by

(5.4) is the viscosity solution of the system of variational inequalities (5.2) and (5.3).

Proof: We are going to approximate RBSDE (5.1) by penalization, which was

studied in Section 2. For each (t, x) ∈ [0, T ] × Rd, let {nY t,x(s),n Zt,x(s), t ≤ s ≤ T}

denote the solution of the penalized BSDE:

Yi(s) = g(Xt,x(T ), i) +

∫ T

s
ψn(r,Xt,x(r), Y (r), Zi(r), i) dr −

∫ T

s
Zi(r) dW (r), (5.6)

where for (t, x, y, z, i) ∈ [0, T ] ×Rd ×Rm ×Rd × Λ,

ψn(t, x, y, z, i) := ψ(t, x, yi, z, i) − n
∑

j 6=i

(yi − yj − k(i, j))+.

It is known from [15] and [1] that

un(t, x) :=n Y t,x(t), (t, x) ∈ [0, T ] ×Rd,

is the viscosity solution to the following system of parabolic PDEs:

− ∂tu
n
i (t, x) − Lun

i (t, x) − ψn(t, x, un(t, x),∇un
i (t, x)σ(t, x), i) = 0,

un
i (T, x) = g(x, i), (t, x, i) ∈ [0, T ] ×Rd × Λ. (5.7)

However, from the results of Section 2, for each (t, x, i) ∈ [0, T ] ×Rd × Λ,

un
i (t, x) ↓ ui(t, x), as n→ ∞.
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Since un and u are continuous, it follows from Dini’s theorem that the above conver-

gence is uniform on compacts.

We now show that u is a subsolution of (5.2) and (5.3). Let (t, x, i) be a point in

[0, T ] ×Rd × Λ. Since u is defined by (5.4),

ui(t, x) ≤ min
j 6=i

(uj(t, x) + k(i, j)),

and

ui(T, x) = g(x, i).

Let (t, x, i) ∈ (0, T ) × Rd × Λ and (p, q,X) ∈ P2,+ui(t, x). From Lemma 6.1 in [4],

there exist sequences

nl → +∞,

(tl, xl) → (t, x),

(pl, ql,Xl) ∈ P2,+unl

i (t, x),

such that

(pl, ql,Xl) → (p, q,X).

On the other hand, for any l, from (5.7),

−pl −
1

2
Tr(σσT (t, x)Xl) − 〈b(t, x), ql〉 − ψ(t, x, unl

i (t, x), qlσ(t, x), i) ≤ 0.

Hence, taking the limit as j → ∞ in the last inequality yields:

−p−
1

2
Tr(σσT (t, x)X) − 〈b(t, x), q〉 − ψ(t, x, ui(t, x), qσ(t, x), i) ≤ 0.

We have proved that u is a subsolution of (5.2).

We conclude by showing that u is a supersolution of (5.2) and (5.3). Let (t, x, i) ∈

(0, T )×Rd×Λ be a point at which ui(t, x) < minj 6=i(uj(t, x)+l(i, j)), and let (p, q,X) ∈

P2,−ui(t, x). Again from Lemma 6.1 in [4], there exist sequences

nl → +∞,

(tl, xl) → (t, x),

(pl, ql,Xl) ∈ P2,−unl

i (t, x),

such that

(pl, ql,Xl) → (p, q,X).

On the other hand, for any l, from (5.7),

−pl −
1

2
Tr(σσT (t, x)Xl) − 〈b(t, x), ql〉 − ψnl(t, x, unl(t, x), qlσ(t, x), i) ≥ 0.

From the assumption that ui(t, x) < minj 6=i(uj(t, x) + l(i, j)) and the uniform conver-

gence of un, it follows that for j large enough, unl

i (tl, xl) < minj 6=i(u
nl

j (tl, xl) + l(i, j));

hence, taking the limit as j → ∞ in the last inequality yields:

−p−
1

2
Tr(σσT (t, x)X) − 〈b(t, x), q〉 − ψ(t, x, ui(t, x), qσ(t, x), i) ≥ 0.

We have proved that u is a supersolution of (5.2) and (5.3).

Hence, u is a viscosity solution of (5.2) and (5.3).
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Remark 5.1. Uniqueness of viscosity solution to (5.2) and (5.3) follows from classical

arguments. See, e.g. [4] and [18].
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