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Abstract

In this paper, a fault diagnosis method is developed for systems described by multi-
models. The main contribution consists in the design of a new Fault Detection and
Isolation scheme (FDI) through an adaptive filter for such systems. Based on the
assumption that dynamic behavior of the process is described by a multi-model
approach around different operating points, a set of residual is established in order
to generate weighting functions robust to faults. These robust weighting functions
are directly linked with the adaptive filter effectiveness which provides multiple
fault magnitude estimations for the whole operating range of the system. Stability
conditions of the adaptive filter are studied and its performances are tested using
an hydraulic system.

Key words: Fault Detection and Isolation, multi-models, decoupling filter, LMI,
stability.

1 Introduction

The role of a human operator is to preserve normal operating conditions ac-
cording to several plant parameters, measurements and observations. Com-
plex automated industrial systems are vulnerable to faults in instrumentation
as sensors, actuators or components. With the growing complexity of mod-
ern engineering systems and ever increasing demand for safety and reliability,
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there has been great interest in the development of FDI methods. FDI has
been developed traditionally with model-based approaches using linear or lin-
earized models (Frank and Ding, 1997; Gertler, 1998; Chen and Patton, 1999)
by considering modeling errors or parametric uncertainties. These diagnosis
methods are based on residual generation. However, when the system operat-
ing range becomes wider, the linearized model is no longer able to represent
the dynamic behavior of the system. One solution is to use nonlinear methods
such that nonlinear observers with analytical approach (Alcorta-Garcia and
Frank, 1997) and geometric approach (Persis and Isidori, 2001) which require
a perfect knowledge of nonlinear system.

In practice, process industries as mining, chemical, water treatment processes,
are characterized by complex processes which often operate in multiple oper-
ating regimes. It is often difficult to obtain nonlinear models that accurately
describe plants in all regimes. Also, considerable effort is required for develop-
ment of nonlinear models. Comparatively, different techniques for linear sys-
tem identification, control and monitoring are readily available. An attractive
alternative to nonlinear technique is to use a multi-linear model strategy.

Multi-linear models methods are based on partitioning the operating range of
a system into separate regions and applying local linear models to each re-
gion. The multi-model approach has been often used in recent years for mod-
eling and control of nonlinear systems (Murray-Smith and Johansen, 1997).
Some methods based on neural networks have been proposed by Narendra
et al. (1995). In the philosophy ”divide and conquer”, Takagi-Sugeno structure
based on a fuzzy logic systems has been proposed to model nonlinear systems
in fault-free case with multiple linear models. Chen and Patton (1999) have
proposed FDI scheme using linear observers and Takagi-Sugeno configuration
for nonlinear system representation in the deterministic case. Various studies
based on a multi-model approach with a bank of linear Kalman filters have
been developed in order to detect, isolate and estimate an accurate state of a
system in presence of faults/failures when a model is defined around an oper-
ating point (Li and BarShalom, 1993; Maybeck, 1999). In Diao and Passino
(2002), a multi-model strategy is developed where each model represents a
particular fault in the system. More recently, effectiveness of a multi-model
approach on real industrial systems for fault diagnosis (Bhagwat et al., 2003;
Gatzke and Doyle, 2002) and for control purposes (Porfirio et al., 2003; Athans
et al., 2005) have been demonstrated under the assumptions that weighting
functions of models are not affected by faults. On the other hand, a multi-
model approach has been developed in faulty case using Polytopic Unknown
Inputs Observers (Rodrigues et al., 2005; Rodrigues, 2005) where FDI is per-
formed by taking into account weighting functions coming from the methodol-
ogy presented in this paper. Weighting functions allow to interpolate models
defined around different operating points. However, weighting functions are
quite important in a multi-control techniques such as gain scheduling strat-
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egy (Leith and Leithead, 2000) or interpolated controllers (Banerjee et al.,
1995) or switching controllers (Narendra et al., 1995): these methods do not
deal both with multiple operating regimes and faults. Their strategy is totally
based on fault-free weighting functions.

Under this consideration, the paper contributes to the fault detection, isolation
and estimation in multi-model framework where weighting functions of models
are commonly coming from measured data and can be corrupted by faults. The
main goal of this paper is to design a scheme which allows simultaneously a
FDI and robust weighting functions for systems described by an interpolation
of multi-linear models. Moreover, the proposed multi-model method allows to
determine both the operating regime and faults at each sample. To achieve
this purpose, an adaptive filter is developed based on an interpolated multi-
models. The proposed adaptive filter allows an efficient FDI according to a
faulty multi-model representation based on decoupled Kalman filter developed
by Keller (1999) in linear case.

The paper is organised as follows: in Section 2, the general problem of the
weighting functions estimation is developed. A solution based on the design
of a bank of decoupled Kalman filters is developed and justified. In Section
3, the design of the adaptive filter is developed in order to estimate multiple
faults. The stability study is addressed in terms of Lyapunov quadratic sta-
bility by using Linear Matrix Inequality (LMI). In Section 4, an application
to an hydraulic process dedicated to water treatment in mining processing is
considered to illustrate the theoretical results. Finally, Section 5 is devoted to
conclusions.

2 Robust weighting functions

2.1 System modeling in faulty case

Consider a discrete-time nonlinear dynamical system described by:





Xk+1 = g
(
Xk, Uk, dk

)

Yk = h
(
Xk, Uk, dk

) (1)

where Xk ∈ X ⊆ R
n represents the state vector, Uk ∈ U ⊆ R

p is the input
vector, Yk ∈ R

m is the output vector and dk ∈ R
q is the fault vector. Functions

g and h are assumed to be continuously differentiable in X and U .

Definition: in fault-free case (dk = 0)(Wan and Kothare, 2003)
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Given a set U , a point X0 ∈ X ⊆ R
n is an equilibrium point of the system (1)

if a control U0 ⊆ U exists such that X0 = g(X0, U0). We call a connected set
of equilibrium points an equilibrium surface. Suppose (Xe, Ue) is a point on
an equilibrium surface and define a shifted state X̄ = X − Xe and a shifted
input Ū = U − Ue, the nonlinear system (1) with respect to (Xe, Ue) can be
expressed as:





X̄k+1 = g
(
Xk, Uk

)
− g

(
Xe, Ue)

)
, f

(
X̄k, Ūk

)

Ȳk = h
(
Xk, Uk

)
− h

(
Xe, Ue)

)
, v

(
X̄k, Ūk

) (2)

2

Based on previous definition, it is assumed that the dynamic behaviour of the
system at different operating points can be approximated by a set of M Lin-
ear Time Invariant (LTI) models as proposed by Murray-Smith and Johansen
(1997), Tayebi and Zaremba (2002), Adam-Medina et al. (2003) or Wan and
Kothare (2003). Hence, dynamic systems such as nonlinear systems, Linear
Time-Varying, linear piecewise systems can be represented by a decomposi-
tion of the full operating range into a number of possibly overlapping operat-
ing regimes (Leith and Leithead, 2000; Rodrigues, 2005). For each regime, a
simple local linear system is defined as Murray-Smith and Johansen (1997).
Consequently the state space representation of a system around the jth oper-
ating point ∀j ∈ [1, ..,M ] with additive faults under stochastic assumptions,
is described as follows:





Xk+1 − Xj
e = Aj(Xk − Xj

e ) + Bj(Uk − U j
e ) + FXj

dk + ω
j
k

Yk − Y j
e = Cj(Xk − Xj

e ) + Dj(Uk − U j
e ) + FYj

dk + ν
j
k

(3)

Matrices (Aj, Bj, Cj, Dj) are invariant matrices defined around the jth op-
erating point (OPj) generally obtained from a first-order Taylor expansion
around (Xj

e , U
j
e ) or identification of a nonlinear system around predefined op-

erating points (Ozkan et al., 2003; Theilliol et al., 2003). It is assumed that
each operating point is well chosen such that state matrices are different from
each operating point: it is directly referred to system modeling which is sup-
posed to be correctly done in regards to economical, productivity points of
view. Therefore, models for each operating points are assumed to be suffi-
ciently different from each other in order to generate different residuals in
FDI scheme. FXj

and FYj
are distribution matrices of actuator faults and sen-

sor faults respectively. ωj and νj are two independent zero mean white noises
with variance-covariance matrices defined respectively by Qj and Rj. Without
loss of generality, Dj is supposed to be equal to zero and according to Park
et al. (1994), in the presence of sensor, actuator or component faults, the sys-
tem represented by the previous state space defined in (3) may be equivalent
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to:





Xk+1 = AjXk + BjUk + Fjdk + ∆Xj
+ ω

j
k

Yk = CjXk + ∆Yj
+ ν

j
k

(4)

with ∆Xj
and ∆Yj

are constant vectors depending on the jth linear model
such as:

∆Xj
= Xe

j − AjX
e
j − BjU

e
j

∆Yj
= Y e

j − CjX
e
j

(5)

The fault distribution matrix is represented by Fj ∈ R
n×q rank(Fj) = q,∀j.

Around the jth operating point, it is assumed that ∀j, rank(Cj) = m. This
linear system can be specified by the following set of system matrices:

Sj =



Aj Bj Fj ∆Xj

Cj ∆Yj


 , ∀j = [1, . . . ,M ] (6)

Let Sk be a matrix sequence varying within a convex set, defined as:

Sk :=





∑M
j=1 ϕ

j
kSj : ϕ

j
k ≥ 0,

∑M
j=1 ϕ

j
k = 1



 (7)

So, Sk characterizes at each sample the system as proposed in fault-free case by
Murray-Smith and Johansen (1997), Tayebi and Zaremba (2002) and in faulty-
case by Theilliol et al. (2003). Consequently, the system dynamic behavior
can be defined by a convex set of multi-LTI models (S1, S2, . . . , SM). The
state space representation (4) under a convex set (7) can be considered as
a conventional modeling approach for non linear smooth plant where ϕ

j
k is

an appropriate weighting function. The weighting function ϕ
j
k embodies the

nonlinearity of the plant.

2.2 Problem statement

Now, let consider systems which can be described by a multi-model represen-
tation. In the following, we will only use the multi-model representation which
is assumed to accurately model the system dynamic behavior. As proposed in
Banerjee et al. (1995); Murray-Smith and Johansen (1997), a bank of classical
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Kalman filters can be designed to achieve an estimation of ϕ
j
k. Under assump-

tion that the system evolves around the jth operating point, an ith Kalman
filter (∀i ∈ [1, 2, . . . ,M ] which represents the number of Kalman filters) is
described by:





X̂ i
k+1 = AiX̂

i
k+BiUk + Ki

k(Yk − Ŷ i
k ) + ∆Xi

Ŷ i
k = CiX̂

i
k + ∆Yi

(8)

where X̂ i
k ∈ R

n denotes the estimated state vector and Ŷ i
k ∈ R

m is the output
estimation obtained from the linear filter based on the ith linear model. K i

k ∈
R

n×m is the Kalman filter gain matrix. The index j represents the system and
index i is dedicated to the models.

This bank of Kalman filters leads us to obtain the estimated error εi
k (εi

k =
Xk − X̂ i

k) and the output residual vectors ri
k (ri

k = Yk − Ŷ i
k ). When a fault

occurs and operating regime do not change (i.e. when d 6= 0 and j = i),
the difference between the system representation (4) and the filters (8) is
represented as follows:

εi
k+1 = (Ai − Ki

kCi)ε
i
k + Fjdk − Ki

kν
j
k + ω

j
k (9)

and the output estimation error

ri
k = Ciε

i
k + ν

j
k (10)

In the following in fault-free case, the estimation error vector is written as
ε̄i and the output residual vector is noted r̄i. In fault-free case, the residual
generated by the ith filter is supposed to be a Gaussian distribution with zero-
mean value (noted N ). This residual allows to evaluate the validity of each
linear model. Indeed, Banerjee et al. (1995) consider the residual vector in
order to determine probability of each linear model (validity) by taking into
account the previous measurement according to Bayes’s probability theory.
By definition a valid model is the model that has the greatest probability. The
residuals of the filter, considered around the corresponding operating point,
follow a Gaussian distribution law. Then, assuming stationarity of residuals,
a probability distribution function, noted ℘i

k, is defined by:

℘i
k =

exp{−0.5 × ri
k × (Θi

k)
−1 × (ri

k)
T}

[(2π)m × det(Θi
k)]

1/2
(11)

6



where Θi ∈ R
m is the covariance matrix of the residuals ri

k. Based on the prob-
ability distribution function, a mode probability, noted ϕ(ri

k), can be computed
by the Bayes’s theorem ∀i ∈ [1, . . . ,M ] as:

ϕ(ri
k+1) =

℘i
k × ϕ(ri

k)∑M
h=1 ℘h

k × ϕ(rh
k)

(12)

Therefore, the mode probability estimation algorithm can get locked onto
one model so that the probability converges to one while the other models
converge to zero. This mode probability estimation associated to each model
is considered in the following as a weighting function for each model. In the
faulty case, the following assessment can be established ∀i, j ∈ [1, . . . ,M ]:

for j = i,





ri
k ∼ N if d = 0

ri
k ≁ N if d 6= 0

(13)

A first assumption has been done previously that each model is different from
each one, so only one residual ri

k can follow a normal gaussian distribution
when j = i. When j 6= i, the difference between the system representation (4)
with (Aj, Bj, Cj) and the Kalman filter (8) with (Ai, Bi, Ci), lead to a residual
different from (13), i.e. ri

k ≁ N for j 6= i whatever d. Otherwise, when j 6= i,
the difference between the system representation and the Kalman filter leads
to:

εi
k+1 = (Ai − Ki

kCi)ε
i
k + Fjdk − Ki

kν
j
k + ω

j
k + (∆∆i

Xj
− Ki

k∆∆i
Yj

)ξi
j,k (14)

and

ri
k = Ciε

i
k + ν

j
k + ∆∆i

Yj
ξi

j,k
(15)

where ξi
j,k ∈ R

(n+p+1)×1 corresponds to the magnitude of the modeling er-
rors between the system represented by the jth linear model and the ith
linear model used for the Kalman filters computation. ∆∆i

Xj
∈ R

n×(n+p+1)

and ∆∆i
Yj

∈ R
m×(n+p+1) are the distribution matrices of modeling error as-

sociated to the system state equation and the output equation respectively.
Dimensions of ∆∆i

Xj
and ∆∆i

Yj
are directly linked with modeling error coming

from matrices (Ai, Bi, ∆Xi
) and (Ci, Di, ∆Yi

) respectively.
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It should be noted that residual (15) is sensitive to modelling errors (i.e. a
change in the operating point or the distance between the model and the filter)
and also sensitive to faults. The use of Kalman filters leads to the following
residual properties ∀i, j ∈ [1, . . . ,M ]:

ri
k ∼ N , if d = 0, i = j

ri
k ≁ N , if d = 0, i 6= j

ri
k ≁ N , if d 6= 0, ∀i

(16)

When i 6= j, the algorithm provides weighting functions such that ∀i ϕ(ri
k) 6= 1

but
∑M

j=1 ϕ(ri
k) = 1. It underlines the interpolation method between different

operating points and the functions ϕ(ri
k) can take any values between 0 and 1

expressing the validity percentage of a model in regards to the system dynamic
behavior (7).

According to (16), FDI cannot be achieved correctly since the residual vector
is simultaneously corrupted by operating point changes and fault occurrences.
The probabilistic Bayes’s method cannot define a suitable weighting function
for each model. Moreover, the statistical methods do not allow us to accurately
detect and isolate the fault.

A new residual generator is designed allowing faults decoupling in order to
provide weighting functions robust to faults. This new residual generator gives
a first signal insensitive to faults, but sensitive to modeling errors and a second
signal sensitive to faults. The new residual generator is expressed as:

r̃i
k =



Σi

Ξi


 ri

k (17)

where Σi and Ξi are terms introduced in order to decouple the residuals with
appropriate dimensions and r̃i

k is the new residual vector. This consideration
lead us to study detection filters generating residuals decoupled from faults as
Keller (1999), which we proposed to generalize in the multi-model framework.

2.3 Robust weighting function

Under the assumptions that a fault occurs at time kd (k > kd) and that
operating point change at time ke (k > ke), the residual vector of the ith filter
is expressed as following (Adam-Medina et al., 2003):
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ri
k = r̄i

k +∆∆i
Xj

ξi
j,k +ρk,kd

[dkd
dkd+1 . . . dk−1]+βk,ke

[ξi
j,ke

ξi
j,ke+1 . . . ξi

j,k−1] (18)

with

ρk,kd
= Ci




Γi
k,kd+1Fj

Γi
k,kd+2Fj

· · ·

Fj




(19)

and

βk,ke
= Ci




Γi
k,ke+1(∆∆i

Xj
− Ki

ke
∆∆i

Yj
)

Γi
k,ke+2(∆∆i

Xj
− Ki

ke+1∆∆i
Yj

)

· · ·

(∆∆i
Xj

− Ki
k−1∆∆i

Yj
)




(20)

where

Γi
k,(kd,ke)

=
∏k−1

τ=(kd,ke)
Li

τ

Li
k = (Ai − Ki

kCi)
(21)

Equation (18) allows us to confirm that residual is affected both by fault
and modelling errors. The aim is to generate residuals insensitive to fault but
sensitive only to modelling errors, that is:

(
Ai − Ki

kCi

)
Fi = 0, ∀i ∈ [1, . . . ,M ] (22)

If equation (22) is satisfied and if the number of faults is strictly lower than
the number of outputs (i.e. rank(CiFi) = q < m,∀i), a solution to (22) was
proposed by Keller (1999) which parametrized a Kalman filter gain as:

Ki
k = ωiΞi + K̄i

kΣi (23)
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with Ξi = (CiFi)
+, ωi = AiFi, Σi = αi(Im − CiFiΞi) and αi ∈ R

(m−q)×m is an
arbitrary constant matrix defined so that matrix Σi is of full row rank.

Hence, residual defined in (18) under equalities (22) becomes:

ri
k = r̄i

k + ∆∆i
Xj

ξi
j,k + CiFi[dk−1] + βk,ke

[ξi
j,ke

ξi
j,ke+1 · · · ξi

j,k−1] (24)

The Kalman filter should also minimize the trace of the variance-covariance
matrix of the estimation error. This minimization is carried out under the
existence and stability conditions presented and studied in Keller (1999). Ac-
cording to the equation (23), each detection filter, defined in the equation (8),
is described by:





X̂ i
k+1 = AiX̂

i
k + BiUk + (ωiΞi + K̄i

kΣi)(Yk − Ŷ i
k ) + ∆Xi

Ŷ i
k = CiX̂

i
k + ∆Yi

(25)

where

K̄i
k = ĀiP̄

i
kC̄

T
i (C̄iP̄

i
kC̄

T
i + V̄i)

−1 (26)

P̄ i
k+1 = (Āi − K̄i

kC̄i)P̄
i
k(Āi − K̄i

kC̄i)
T + K̄i

kV̄i(K̄
i
k)

T + Q̄i (27)

with Āi = (Ai−ωiΞiCi), C̄i = ΣiCi, V̄i = ΣiRiΣ
T
i and Q̄i = Qi+ωiΞiRiΞ

T
i ωT

i .

According to (23) and the previous matrices properties, a residual vector r̃i
k

can be obtained as suggested in (17):



Σi(Yk − Ŷ i

k )

Ξi(Yk − Ŷ i
k )


 =



Σir

i
k

Ξir
i
k


 =



γi

k

Ωi
k


 = r̃i

k (28)

where γi
k ∈ R

m−q is the residual vector decoupled from faults and Ωi
k ∈ R

q is
the residual vector sensitive to faults. Due to the matrix properties ΣiCiFj = 0
and ΞiCiFj = I, each residual (28) can be developed according to equation
(18) into insensitive γi

k and sensitive Ωi
k fault vectors respectively expressed

as:

γi
k = Σi(r̄

i
k + ∆∆i

Xj
ξi
j,k) + Σiβk,ke

[ξi
j,ke

ξi
j,ke+1 · · · ξi

j,k−1] (29)
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Ωi
k = dk−1 + Ξi(r̄

i
k + ∆∆i

Xj
ξi
j,k) + Ξiβk,ke

[ξi
j,ke

ξi
j,ke+1 · · · ξi

j,v] (30)

Thus, equations (29) and (30) indicate that a bank of decoupling Kalman
filters provides a solution to fault distinguishability problem in a multi-model
approach. Following these assumptions when the system operates around the
jth operating point, the new residual γi

k insensitive to fault satisfies to the
following properties:

∀d,





γi
k ∼ N if i = j

γi
k ≁ N if i 6= j

(31)

Considering that residual γi
k around jth operating point follows a Gaussian

distribution, residual vector can then be used to compute the probability dis-
tribution as:

℘i
k =

exp{−0.5γi
k(Θ

i
k)

−1(γi
k)

T}

[(2π)(m−q) det(Θi
k)]

1/2
(32)

where Θi
k ∈ R

m−q defines the covariance matrix of the residuals γi
k, equal to

(C̄iP̄
i
kC̄

T
i + V̄i). The probability robust to faults is expressed as:

ϕ(γi
k+1) =

℘i
kϕ(γi

k)∑M
h=1 ℘h

kϕ(γh
k )

(33)

The probability algorithm allows to obtain a global model describing the sys-
tem dynamic behavior both in fault-free and faulty cases. The probabilities
allows us to determine the operating point where the system is evolving. These
probabilities are used to isolate the operating point and consequently define
a robust weighting function. Note that when i 6= j, it seems that probabil-
ities are not equal to one or zero but can take any value between [0 . . . 1]
and

∑M
i=1 ϕ(γi

k) = 1. This case underlines the interpolation method when the
system is represented by several models defined around multiple operating
regimes. The robust weighting function ϕ(γi

k) is used to represent the plant
dynamic behavior as a convex set of multi-linear models such that:

S⋆
k :=





∑M
i=1 ϕ(γi

k)Si : ϕ(γi
k) ≥ 0,

∑M
i=1 ϕ(γi

k)=1



 (34)

where S⋆
k represents the global model and Si is defined as:
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Si =



Ai Bi Fi ∆Xi

Ci ∆Yi


 , ∀i = [1, 2, ...,M ] (35)

According to (34), the system state space representation is then defined as:





Xk+1 = A⋆
kXk + B⋆

kUk + F ⋆
k dk + ∆⋆

X,k

Yk = C⋆
kXk + ∆⋆

Y,k

(36)

where matrices (·)⋆
k are equal to

M∑

i=1

ϕ(γi
k)(·)i. Equation (36) represents an

estimation of the nominal system without assumptions on state and measure-
ment noises. This convex set representation is used to design an adaptive filter
which is developed in the following section for fault detection, isolation and
estimation.

3 Design of an Adaptive Filter

3.1 System modeling

To design the adaptive filter, an unique formulation of the convex represen-
tation is proposed. In the state space representation (36), a matrix F ⋆

k is
calculated as: F ⋆

k =
∑M

i=1 ϕ(γi
k)Fi where matrix Fi ∈ R

n×q is the fault distri-
bution matrix for each model i. Faults effects are described into state space
representation by:

( ∑M
i=1 ϕ(γi

k)Fi

)
dk.

Definition 1 Matrix F h
i (respectively ℑh) defines the hth column of matrix

Fi (respectively ℑ).

Proposition 1 ∀h ∈ [1...q],∀i ∈ [1...M ], with rank[Fi] = q

if rank[F h
1 ...F h

i ...F h
M ] = 1, then

(
∑M

i=1 ϕ(γi
k)Fi

)
dk = ℑfk

where d ∈ R
q represents the actual fault vector, f ∈ R

q is an image of fault
vector and ℑ ∈ R

n×q is a constant fault distribution matrix which column
vectors get direction of column vectors of matrices Fi. ¥
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Proof : See Appendix B. ¤

The actual fault vector can be estimated as follows:

dk =

(
∑M

i=1 ϕ(γi
k)Fi

)+

ℑfk (37)

where (·)+ denotes the Moore-Penrose matrix. Based on Proposition 1, the
system (36) is rewritten as:





Xk+1 = A⋆
kXk+B⋆

kUk+ℑfk +∆⋆
X,k

Yk = C⋆
kXk+∆⋆

Y,k

(38)

where ℑ is the new faulty distribution matrix representation. In the follow-
ing, it is assumed that there is no nonlinearity on the outputs and moreover
matrices Ci are equal to an unique matrix C.

3.2 Adaptive Filter Design

In order to detect and isolate faults, a classical discrete filter with a gain Kk

could be designed according to matrices A⋆
k and C defined in (36):





X̂k+1 = A⋆
kX̂k + B⋆

kUk + Kk(Yk − Ŷk) + ∆⋆
X,k

Ŷk = CX̂k + ∆⋆
Y,k

(39)

where X̂ and Ŷ represent the estimated state and the estimated output re-
spectively. According to (39) estimation error ek (ek = Xk − X̂k) and output
residual rk (rk = Yk − Ŷk) are expressed as:





ek+1 = (A⋆
k − KkC)ek + ℑfk

rk = C ek

(40)

Under the assumption that a fault occurs at time kd (k > kd), residual vector
is defined as:

rk = r̄k + ρk,kd
[fkd

fkd+1 · · · fk−1] (41)

where r̄k represents the residual in fault-free case and
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ρk,kd
= C




Γkd+1
k ℑ

Γkd+2
k ℑ

· · ·

ℑ




(42)

with Γkd

k =
∏k−1

τ=kd
Lτ , Lk = (A⋆

k − KkC).

As defined in the previous section, gain Kk is design such that
(
(A⋆

k−KkC)ℑ
)

is equal to zero. Under the general classical condition that the number of faults
is not greater than the number of measurements (i.e. rank(Cℑ) < m), an
adaptive filter insensitive to faults is designed with the following gain:

Kk = ωkΠ + K̄kΣ (43)

with Π = (Cℑ)+, ωk = A⋆
kℑ and Σ = α(Im − CℑΠ) where α is an arbitrary

matrix determined so that matrix Σ is full row rank. According to (43), the
decoupling filter is defined as:





X̃k+1 = A⋆
kX̃k + B⋆

kUk + ∆⋆
X,k + (ωkΠ + K̄kΣ)(Yk − Ỹk)

Ỹk = CX̃k + ∆⋆
Y,k

(44)

where X̃k and Ỹk are respectively the estimated state and the estimated out-
put. The gain decomposition (43) involves the following matrices properties:

ΠCℑ = I and ΣCℑ = 0 (45)

and makes possible the generation of a new residual vector:




γ⋆
k

Ω⋆
k


=




Σ

Π


 rk =




Σr̄k

Πr̄k + fk−1


 (46)

It should be noticed that γ⋆
k ∈ R

m−q is a residual vector insensitive to faults
and Ω⋆

k ∈ R
q is a residual vector sensitive to faults and defines also a fault

estimation of fk. With only one sample for time delay and as previously men-
tioned in Proposition 1, an estimation d̂k of dk could be realized through a

Moore-Penrose matrix as d̂k =

(
∑M

i=1 ϕ(γi
k)Fi

)+

ℑΩ⋆
k.
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The gain K̄k (43) is the unique degree of freedom in the adaptive filter synthe-
sis. It is designed such as an interpolation of gains K̄i designed for each model,
see Stiwell and Rugh (1999); Leith and Leithead (2000). In the following, K̄k

is noted K̄⋆
k =

∑M
i=1 ϕ(γi

k)K̄i.

In fault-free case, according to gain Kk definition (43) and previous definitions
of filter matrices, the estimation error ek (40) (noted ēk in fault-free case) can
be rewritten as:

ēk+1 =
(
A⋆

k − KkC
)
ēk =

(
A⋆

k − (ωkΠ + K̄⋆
kΣ)C

)
ēk

=
(
A⋆

k(I −ℑΠC) − K̄⋆
kΣC

)
ēk

=
(
Ā⋆

k − K̄⋆
kC̄

)
ēk (47)

with Ā⋆
k =

N∑

i=1

ϕ(γi
k)Āi and Āi = Ai(I −ℑΠC).

3.3 Stability

Using Lyapunov stability definition, the gains K̄i can be established off-line
by resolving the following inequalities:

(Āi − K̄iC̄)T P (Āi − K̄iC̄) − P < 0

P > 0, ∀i ∈ [1, . . . ,M ]
(48)

Schur Complement (Boyd et al., 1994) transforms inequality (48) in the fol-
lowing way:




P (Āi − K̄iC̄)T P

P (Āi − K̄iC̄) P


 > 0, ∀i ∈ [1, . . . ,M ] (49)

So, last inequality is not linear in variables P and K̄i. By using a change of
variables, it is possible to linearize the previous inequality with PK̄i = Ri:




P ĀT
i P − C̄T RT

i

PĀi − RiC̄ P


 > 0, ∀i ∈ [1, . . . ,M ] (50)
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If the previous inequalities (50) hold true ∀i ∈ [1, . . . ,M ], then gains K̄i =
P−1Ri ensure the quadratic stability of the filter estimation error (47). Indeed,

by multiplying each LMI (50) by ϕ(γi
k) such that ϕ(γi

k) ≥ 0,
M∑

i=1

ϕ(γi
k) = 1

and by summing all of them, we obtain:




P
M∑

i=1

ϕ(γi
k)(Ā

T
i P − C̄T RT

i )

M∑

i=1

ϕ(γi
k)(PĀi − RiC̄) P




> 0 (51)

By resolving inequality (51), matrices (Āi−K̄iC̄) are said quadratically stable
(Rodrigues et al., 2005) with K̄i = P−1Ri,∀i ∈ [1, . . . ,M ]. So, find a matrix
P > 0, ∀i = [1, . . . ,M ] allow to guarantee the filter quadratic stability (44).
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Fig. 1. General FDI scheme

The general concept of FDI in multi-model framework is summarized in fig-
ure (1). The robust weighting function generation is obtained from decoupled
Kalman filters synthesized on each model established around each operating
regime. The fault detection, isolation and estimation scheme is coming from
the adaptive filter based on available weighting functions robust to faults.
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4 Application to an hydraulic system

The proposed FDI scheme is applied to an hydraulic system (Zolghadri et al.,
1996; Theilliol et al., 2002) as shown in figure (2). This process can be dedi-
cated to treatment (water, products,...) where chemical reactions are supposed
to occur around predefined operating points. These reactions are supposed to
operate under some specific levels of chemical products for providing an op-
timal product concentration. For this purpose, the example underlines the
importance of liquid levels control in a plant so as to provide specific prod-
ucts. In our study for simplicity, mixing actuators are not considered and not
represented in figure (2).

The hydraulic system is composed of three cylindrical tanks with identical
cross section S. The tanks are coupled by two connecting cylindrical pipes
with a cross section Sp and an outflow coefficient µ13 = µ32. The nominal
outflow is located at the tank 2, it also has a circular cross section Sp and
an outflow µ20. Two pumps driven by DC motors supply the tanks 1 and 2.
The flow rates (q1 and q2) through these pumps are defined by the calculation
of flow per rotation and the control input vector is U = [q1 q2]

T . The three
tanks are equipped with piezo-resistive pressure transducers for measuring the
level of the liquid (l1, l2, l3) and the output vector Y is [l1 l2 l3]

T . Using the
mass balance equations, the system can be represented by:





S
dl1(t)

dt
= q1(t) − q13(t)

S
dl2(t)

dt
= q2(t) + q32(t) − q20(t)

S
dl3(t)

dt
= q13(t) − q32(t)

(52)

where qmn represents the water flow rate from tank m to n (m,n = 1, 2, 3 ∀m 6=
n), and can be expressed using the Torricelli law by:

qmn(t) = µmnSpsign(lm(t) − ln(t))(2g | lm(t) − ln(t) |)1/2 (53)

and q20 represents the outflow rate with

q20(t) = µ20Sp(2gl2(t))
1/2 (54)

Under the assumption (l1 > l3 > l2) in fault-free or faulty case, 3 linear
models have been identified around each of these operating points and the
operating conditions are given in Table (1). These 3 local models are supposed
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 Fig. 2. Hydraulic plant

to be significant for industrial purposes (product concentration, economical
rentability,. . .). In the following, all level or input values are expressed in
percentage (%) of the maximum level or input values respectively.

Table 1
Operating Points Definition

Operating Point OPj 1 2 3

32.26 80.65 80.65

Y
j
e = [l1 l2 l3]

T 24.19 24.19 65.32

(%) 28.23 52.42 72.58

U
j
e = [q1 q2]

T 14.60 38.6 20.63

(%) 33.66 9.65 58.16

The linearization of the nonlinear system equations around 3 operating points
leads to the following discrete state space representation with a sampling pe-
riod Te = 1s:





Xk+1 = AjXk+BjUk+∆Xj

Yk = CXk+∆Yj

(55)

where X ∈ R
3, U ∈ R

2 and Y ∈ R
3. State matrices are with appropriate

dimensions. In this paper additive actuator faults which can affect a system
due to abnormal operation or to material aging, are considered. An actuator
fault can be represented by additive and/or multiplicative faults (Theilliol
et al., 2002) as follows:
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U
f
k = αUk (56)

where U and U f represent the normal and faulty input vector respectively. The
term α , diag[α1, α2, . . . , αh, . . . , αp], αh ∈ R such that αh = 0 represents a
total lost, a failure of hth actuator and αh = 1 implies that hth actuator
operates normally. In the presence of actuator faults and for all operating
points, system (52) can also be modelled by a general formulation as in (7):





Xk+1 =
M∑

j=1

ϕ
j
k

[
AjXk+BjUk+Fjdk+∆Xj

]

Yk =
M∑

j=1

ϕ
j
k

[
CXk+∆Yj

] (57)

where d ∈ R
2 represents the fault. In our case due to the fact that only actuator

faults are considered, the faulty matrix distribution Fj is equal to Bj, and due
to the system itself ∀j, Bj = B. Consequently, Fj is equal to an unique matrix
F = ℑ = B and the sensitive residual Ω∗

k is directly equal to the estimated
fault d̂k. Moreover, it should be noticed that rank(Cℑ) = rank(ℑ) = 2 for
adaptive filter synthesis (see section 3.2). The stability analysis of the adaptive
filter has been performed as mentioned in section 3.3 and the gains K̄i (see
Appendix A) ensure a quadratic stability.

4.1 Modeling

In this first part, we will show how the multi-model is able to catch the system
dynamic behavior (52) with only three linear models (57). Assume that there
exists three models Mj defined such that: M1 : [l1, l2, l3] = [High, Low, Low],
M2 : [l1, l2, l3] = [High, Low, Middle] and M3 : [l1, l2, l3] = [High, High, High]
under the assumption (l1 > l3 > l2). These 3 local models are supposed to be
significant for industrial purposes. Moreover, it is assumed that each output
signal has a gaussian noise N (0, 1e − 4).

The 3 models are defined as in Table (1) and a first experiment is realized in
order to validate the system modeling with these only 3 models. The inputs
are varying in their bounded ranges and are generated from the following
interpolated combination:

19



Uk =
3∑

j=1

̺
j
k ∗ U j

e (58)

where ̺
j
k is a scheduling variable associated to each operating regime. These

inputs are totally fictive and implemented into the nonlinear system (52), but
this experiment allows to underline the quality of the multi-models for FDI
use. Indeed, in fault-free case in Figure (3), we can see in a) the 3 outputs
(l1, l2, l3) from the nonlinear system (52) and the 3 estimated outputs (l̂1, l̂2, l̂3)
computed from the multi-model (57) with ̺

j
k = ϕ

j
k. The system modeling

(multi-model) is effective as the 3 outputs are quasi-similar along the all oper-
ating regimes coming from the nonlinear system (52). Furthermore, we can see
in the Figure (3). b) the euclidean norms of vectors eυ = lυ − l̂υ,∀υ ∈ [1, 2, 3]
represented by ‖ eυ ‖. These euclidean norms ‖ eυ ‖< 1.4% underly the
effectiveness of multi-model representation. Figure (3).c) represents the corre-
sponding weighting functions and the associated inputs in (3).d).

4.2 Results

The aim of the second experiment is to reach each of the 3 operating regimes
described in Table (1) under open-loop consideration both in fault-free and
faulty cases. In the following, we will use the outputs coming from the nonlin-
ear system (52) and the specific inputs (58) in order to reach each operating
regime.

a) In fault-free case:

Figure (4) shows evolution of the outputs driven in open-loop by the inputs.
The changes of the operating points occur around instant 2550s and around
instant 12600s. Figure (5) shows the inputs evolution which is directly gener-
ated from the following interpolated combination:

Uk =
3∑

j=1

̺
j
k ∗ U j

e (59)

where ̺
j
k is a scheduling variable associated to each operating regime. In the

following, ̺
j
k will be considered as the actual probability or actual weighting

function which characterized the dynamic behaviour of the nonlinear system.
The dynamic evolution of ̺

j
k is illustrated in Figure (6.b).
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Fig. 3. System modeling: a) outputs lυ and estimated outputs l̂υ b) euclidean norms
‖ eυ ‖ c) scheduling functions, d) inputs

In order to evaluate the method, a bank of three classical Kalman filters (8)
and a bank of decoupled Kalman filters (25) are synthesized. As illustrated
in Figure (6), the dynamic behaviour of weighting functions shows their per-
formance with respect to the actual probabilities ̺

j
k. Estimated probability

functions ϕ(rj
k) issued from a bank of classical Kalman filters in Figure (6c) or

decoupled Kalman filters ϕ(γj
k) in Figure (6a) are closer to the actual weight-

ing functions in Figure (6.b). Only a small time delay between estimated
weighting functions and actual probability exists. The weighting functions are
necessary for multi-model representation and for FDI scheme. The ability of
FDI scheme to provide good results is directly linked with robust weighting
functions design.
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Based on the weighting functions coming from decoupled Kalman filters, the
residuals generated by the decoupling filter depicted on Figure (7) are defined
in equation (46). In this study, two residuals are generated according to two
actuator faults. It should be noticed that the residuals Ω⋆

1 and Ω⋆
2 which are

dedicated to fault magnitude estimation of pump 1 and pump 2 respectively,
are zero-mean. The two residuals are only little different from zero during
transition from an operating point to another. These imperfections are directly
linked to modeling errors but due to low magnitude of these imperfections,
the two residuals can be considered as equal to zero.
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Fig. 4. Outputs in fault-free case
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Fig. 5. Inputs in fault-free case

b) In faulty case:

A gain degradation of pump 1 (clogged or rusty pump,...) equivalent to 10%
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sical Kalman filter

loss of effectiveness (i.e. 10% of the nominal value) is supposed to occur at
t1 = 5000s after the first set-point change. A second actuator fault is also
considered as an abrupt pump degradation on pump 2 with a loss of 10% of
effectiveness (i.e. 10% of the nominal value) occurring at t2 = 11500s (see
figure (9)). Consequently, the dynamic behaviour of the levels is also affected
by this fault. As illustrated in figure (8), the outputs are different from the
previous operating regime. Since an actuator fault acts on the system as a
perturbation, the system outputs can not reach again their nominal operating
regime. But according to faults with these low magnitude, the system reaches
an operating regime close to which is defined first. Based on classical Kalman
filters, the estimated weighting functions are also corrupted by the fault as
it is shown in figure (10.c): the actual probabilities in figure (10.b) are to-
taly different from Kalman probabilities. However, based on the innovation
γi

k of the three decoupled Kalman filters, the estimated weighting functions
are evolving according to the fault-free case and can be considered as robust
against actuator faults (see figure (10.a)).
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Fig. 7. Sensitive residual from the decoupling filter in fault-free case

The results of the decoupling filter are depicted on Figure (11) which shows
the residuals vectors Ω∗

1 and Ω∗
2 sensitive to faults. We can observe the resid-

uals behaviour where abrupt changes correspond to the two actuator faults.
The accurate fault magnitude estimations illustrate the performances and the
effectiveness of the decoupling filter. As in fault-free case, during the transition
from an operating point to an other, the residuals are sensitive to modeling
errors which are not integrated in the synthesis of the decoupling filter. But
hopefully, these results make possible to detect, isolate and estimate faults.
A fault detection and isolation scheme can be designed directly from fault
magnitude estimation. These residuals can be evaluated by statistical test in
order to detect bias, like Page-Hinkley test for instance, and faulty actuator
can be isolated using an elementary decision logic. The developed FDI strat-
egy is able to detect, isolate and estimate multiple faults as well as to estimate
robust weighting functions for system modeling.
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Fig. 10. Probabilities in faulty case

5 Conclusion

The FDI problem for industrial systems described by multi-models has been
addressed in this paper. The paper allows to design a FDI scheme in the multi-
model framework based on robust weighting functions generation through de-
coupled Kalman filters. These robust weighting functions allow to reproduce
the dynamic behaviour through a wide operating range both in fault-free and
faulty cases. In closed-loop, robust weighting functions should be efficient vari-
ables in multiple control techniques where for instance, the gain scheduling
variable is not mesurable or corrupted by fault occurrences. An adaptive filter
is designed to detect, isolate and estimate faults through multi-model rep-
resentation. In order to guarantee stability of the adaptive filter, a stability
analysis has been performed using LMI. The developed adaptive filter has
demonstrated its effectiveness in an hydraulic system for mining processing
and water treatment under multiple operating regimes.

Appendix
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Fig. 11. Sensitive residual from the decoupling filter in faulty case

A. Numerical matrices:

Ā1 =

[
0 0 0

0 0 0

0.1135 0.1135 0.7725

]
, Ā2 =

[
0 0 0

0 0 0

0.043 0.043 0.914

]
, Ā3 =

[
0 0 0

0 0 0

0.0805 0.0805 0.839

]

K̄1 =

[
−0.3 0 0

0 0 0

0.1135 0.1135 0.7725

]
, K̄2 =

[
−0.4 0 0

0 0 0

0.043 0.043 0.914

]
, K̄3 =

[
−0.35 0 0

0 0 0

0.0805 0.0805 0.839

]

B =

[
324.68 0

0 324.68

0 0

]
, C =

[
1 0 0

0 1 0

0 0 1

]
, P = 1e + 6 ∗

[
0.0001 0 0

0 5.5605 −0.00053

0 −0.00053 6.2200

]

B. Proof of Proposition 1:
As Rank[F h

1 ...F h
i ...F h

M ] = 1, the hth column of Fi gets same direction. This
condition could be rewritten as F h

i = αh
i ℑ

h where αh
i is a scalar corresponding

to the hth matrix column Fi with ℑ a matrix composed of constant elements.
Thus, coefficients αh

i can not be equal to zero otherwise rank conditions will
not be true. By underlying collinearity of each column, faults contribution in
state space representation can be noted as:

(
∑M

i=1 ϕ(γi
k)F

h
i

)
dh

k =

(
∑M

i=1 ϕ(γi
k)(α

h
i ℑ

h)

)
dh

k

ℑh

(
∑M

i=1 ϕ(γi
k)α

h
i d

h
k

)
= ℑhfh

k
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where dh
k and fh

k defined hth column vector of the considered vector.
This equality is repeated q times to compute column of the matrix ℑ as well
as the q elements of vector fk. A full column rank constant matrix ℑ and an
image of the fault vector fk = [f 1

k f 2
k ... f

q
k ]

T
are generated. Each element fh

k

is an interpolation of the hth element of the actual fault vector. Consequently,
matrix ℑ and the fault vector fk can be represented as:

(
∑M

i=1 ϕ(γi
k)Fi

)
dk = ℑfk (60)

with, ∀i

ℑ =
[

1
α1

i

F 1
i

1
α2

i

F 2
i ... 1

αq
i

F
q
i

]
(61)

fk =

[ (
∑M

i=1 ϕ(γi
k)α

1
i d

1
k

)T

...

(
∑M

i=1 ϕ(γi
k)α

q
i d

q
k

)T ]T

Remark 1: By synthesis, matrix ℑ is not unique. With respect to rank condi-
tions defined in Proposition 1, scalar αh

i is not equal to zero.
Remark 2: The unique formulation of the convex representation is not to much
restrictive if sensor faults are considered through an augmented state space
representation (Park et al., 1994) or in the presence of actuator faults. Indeed,
in sensor faults case each matrix Fi are identical (a set of one and zero) and
in actuator faults case Fi is equal to Bi.
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