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This paper deals with Fault Tolerant Control (FTC) strategy for polytopic Linear Parameter Varying (LPV) systems. The main contribution consists in the design of a Static Output Feedback (SOF) dedicated for such systems in the presence of multiple actuator faults/failures. The controllers are designed through Linear Matrix Inequality (LMI) both in fault-free and faulty cases in order to preserve the system closed-loop stability. Hence, this paper provides a new sucient (but not necessary) condition for the solvability of the stabilizing output feedback control problem. An example illustrates the eectiveness and performances of the proposed FTC method.

Introduction

As performance requirements increase in advanced technological systems, their associated control systems are becoming more and more complex. At the same time, complicated systems could have various consequences in the event of component failures. Therefore, it is very important to consider the safety and fault tolerance of such systems at the design stage. For these safety-critical systems, Fault Tolerant Control Systems (FTCS) have been developed to meet these essential objectives. FTCS have been a subject of great practical importance, which has attracted a lot of interest for the last three decades. Bibliographical reviews on recongurable Fault Tolerant Control Systems can be found in [START_REF] Patton | Fault-tolerant control: the 1997 situation[END_REF], [START_REF] Zhang | Bibliographical review on recongurable Fault-Tolerant Control systems[END_REF].

The objective of FTCS is to maintain current performances close to desirable ones and preserve stability conditions in the presence of component and/or instrument faults; in some circumstances reduced performances could be accepted as a trade-o. In fact, many FTC methods against actuator failures have been recently developed by [START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF], [START_REF] Noura | Fault-tolerant control in dynamic systems: Application to a winding machine[END_REF]. Almost all the methods can be categorized into two groups [START_REF] Zhang | Bibliographical review on recongurable Fault-Tolerant Control systems[END_REF]: passive [START_REF] Eterno | Design issues for fault-tolerant restructurable aircraft control[END_REF], [START_REF] Veillette | Design of reliable control systems[END_REF] and active [START_REF] Theilliol | Fault diagnosis and accommodation of three-tank system bsaed on analytical redundancy[END_REF], [START_REF] Wu | Detection, estimation and accommodation of loss of control eectiveness[END_REF], [START_REF] Zhang | Integrated active Fault-Tolerant Control using IMM approach[END_REF] approaches.

First of all, passive FTC deals with a presumed set of system component failures based on the actuator redundancies at the controller design stage. The resulting controller usually has a xed structure and parameters. However, the main drawback of a passive FTC approach is that as the number of potential failures and the degree of system redundancy increase, controller design could become very complex and the performance of the resulting controller (if exists) could become signicantly conservative. Moreover, if an un-anticipated failure occurs, passive FTC can not ensure system stability and can not reach again nominal performances. Controllers switching underlines the fact that many faulty system representations have to be identied so as to synthesize o-line pre-computed and stabilizing controllers. These identications are sometimes dicult to obtain and it is restrictive to consider only pre-determined actuator faults and not all actuator faults.

On the other part, AFTC is characterized by an on-line Fault Detection and Isolation (FDI) scheme [START_REF] Rodrigues | A Fault Detection and Isolation Scheme for Industrial Systems based on Multiple Operating Models[END_REF] and an automatic control reconguration mechanism. Active FTC strategy allows to consider more faults than passive one: some research works deal with it and underline the problem of closed-loop system stability in the presence of multiple actuator failures [START_REF] Kanev | Robust Fault-Tolerant Control[END_REF], [START_REF] Maki | A stability guaranteed active fault-tolerant control system against actuator failures[END_REF], [START_REF] Rodrigues | Design of an Active Fault Tolerant Control and Polytopic Unknown Input Observer for Systems described by a Multi-Model Representation[END_REF], [START_REF] Theilliol | A multiple model based approach for Fault Tolerant Control in nonlinear systems[END_REF], [START_REF] Wu | Detection, estimation and accommodation of loss of control eectiveness[END_REF], [START_REF] Zhang | Managing performance degradation in Fault Tolerant Control Systems[END_REF]. Moreover, AFTC is often dedicated to linear systems or linearization of nonlinear systems but not for LPV systems.

On the other part, various system modeling techniques in fault-free case are presented in [START_REF] Glover | Modeling and Stability Analysis of Power Electronics based Systems[END_REF], [START_REF] Reberga | LPV modeling of a turbofan engine[END_REF], [START_REF] Wan | Ecient scheduled stabilizing output feedback model predictive control for constrained nonlinear systems[END_REF] which deal with Linear Parameter Varying (LPV) and/or polytopic representations. The main motivation of polytopic LPV or just LPV systems is for analysis and control of nonlinear systems. Moreover from our knowledge, there is no work for handling multiple actuator failures and polytopic LPV systems.

Starting our research on FTC and polytopic systems, we can note that Multi-models often use polytopic representations. In [START_REF] Chadli | A lmi formulation for output feedback stabilization in multiple model approach[END_REF], the authors develop an output feedback through LMI in multi-models context but only in fault-free case. A solution has been proposed in the same multi-models context in [START_REF] Rodrigues | Fault Tolerant Control Design of Nonlinear Systems using LMI gain Synthesis[END_REF] where the authors design a static state feedback which take into account multiple actuator failures. From a practical point of view, a state feedback need to use an estimator if all the states are not measurable. It can be dicult to design such state estimators in the same time the system is recongured. So, we propose to develop a solution to handle FTC and polytopic LPV systems with a SOF design. An output feedback design is less restrictive than state feedback design and it can bring solutions for practical FTC problems where only system outputs are available. Output Feedback design is also developed in [START_REF] Geromel | Static Output Feedback Controllers: Stability and Convexity[END_REF] with a sucient condition for the solvability of stabilizing SOF control problem and in [START_REF] Jabbari | Output Feedback Controllers for Systems with Structured Uncertainty[END_REF] with structured uncertainty. Also, [START_REF] Rosinova | Robust Static Output Feedback for Discrete Time Systems LMI Approach[END_REF] develop a robust SOF for linear discrete-time systems with polytopic uncertainties through LMI synthesis. However, all these studies do not take into account any actuator failures, dealing with linear systems and not with LPV systems.

In this paper, an Active FTC strategy is developed to avoid actuator fault/failure eects on polytopic LPV systems. In many of research works, Feedback design is only used for polytopic LPV system in fault-free case [START_REF] Angelis | System Analysis, Modelling and Control with Polytopic Linear Models[END_REF] and [START_REF] Bouazizi | Hinf control of LPV systems with dynamic output feedback[END_REF], but not consider actuator failures: this paper deals with a SOF synthesis in the presence of multiple actuator failures. Under the assumption that the fault is detected, isolated and estimated, the developed method preserves the system performances through an appropriate controller re-design in faulty case. Multiple controllers are designed such that any controller can maintain the closed-loop stability for any combination of multiple actuator failures.

The paper is organized as follows. Section II denes the polytopic LPV systems representation under multiple actuator failures. In Section III, we develop a controller synthesis for each actuator and we generate an output feedback control law for polytopic LPV systems both in fault-free and faulty cases. FTC philosophy is carried out under accurate FDI information. An illustrative example is given in Section IV to underline the synthesis. Finally, concluding remarks are given in the last Section.

2 Polytopic LPV systems with multiple actuator failures Let consider the discrete LPV representation in fault-free case:

x k+1 = A(θ)x k + B(θ)u k y k = C(θ)x k + D(θ)u k (1)
where x ∈ R n represents the state vector, u ∈ R p is the input vector, y ∈ R m is the output vector. The system (1) considers ane parameters dependence such M (θ) = M 0 + υ j=1 θ j M j with the following notation:

M =     A B C D     (2)
The ane LPV system (1) with bounded parameters θ j ≤ θ j (k) ≤ θ j , (where θ j and θ j represents the maximum and the minimum value of θ j respectively) can be represented by a polytopic form (see [START_REF] Bouazizi | Hinf control of LPV systems with dynamic output feedback[END_REF], [START_REF] Rodrigues | Diagnostic et commande active tolérante aux défauts appliqués aux systèmes décrits par des multi-modèles linéaires[END_REF]) when the varying parameter θ(k) evolves in a polytopic domain Θ of vertices [θ 1 , θ 2 , . . . , θ υ ] (where the vertices are the extreme values of the parameter θ). In the following, we consider only systems strictly proper such that D = 0. The system can be dened via a matrix polytope with summits S j := [A j , B j , C j ], ∀ j ∈ [1, . . . , N ] and barycentric combination where N = 2 υ . Consequently, under a multiplicative actuator fault representation [START_REF] Rodrigues | Design of an Active Fault Tolerant Control and Polytopic Unknown Input Observer for Systems described by a Multi-Model Representation[END_REF], system (1) can be rewritten as a polytopic representation:

x k+1 = N j=1 α j k (θ)[A j x k + B j (I p -γ)u k ] y k = N j=1 α j k (θ)[C j x k ] (3) 
where α j k (θ) = α(θ j , θ j , θ j (k), k): θ j (k) is the value of θ j at sample k (see [START_REF] Rodrigues | Diagnostic et commande active tolérante aux défauts appliqués aux systèmes décrits par des multi-modèles linéaires[END_REF] and [START_REF] Silva | Robust control to parametric uncertainties in smart structures using linear matrix inequalities[END_REF] for more details about LPV to polytopic representation). A j ∈ R n×n , B j ∈ R n×p , C j ∈ R m×n are time-invariant matrices dened for the j th models. The polytopic system is scheduled through functions designed as the following:

α j k (θ), ∀j ∈ [1, . . . , N ] lie in a convex set Ω = {α j k (θ) ∈ R N , α k (θ) = [α 1 k (θ), . . . , α N k (θ)] T , α j k (θ) ≥ 0, ∀j, N j=1 α j k (θ) = 1}.
These functions are assumed to be available in real time depending on fault-free parameters measurement [START_REF] Casavola | Predictive control of constrained nonlinear systems via LPV linear embeddings[END_REF]. The matrix γ is dened as follows:

γ diag[γ 1 , γ 2 , . . . , γ p ], 0 ≤ γ i ≤ 1 such that for extreme values        γ i = 1 → represents a total failure of the ith actuator i ∈ [1, . . . , p] γ i = 0 → denotes the healthy ith actuator (4) 
Note: γ i can take any value between 0 and 1. It represents the loss of eectiveness of ith actuator, i.e. for example a loss of eectiveness 70% of 1st actuator will be represented by γ 1 = 0.7. When an actuator fault appears on the system, if the controller is not designed by taking into account such problem, the closed-loop system stability can not be ensured obviously. So, we propose to develop a SOF for polytopic systems with multiple actuator failures.

3 Fault Tolerant Control for polytopic LPV Systems

Nominal control law design

Let us recall the multiplicative actuator fault representation on a polytopic system as follows:

x k+1 = N j=1 α j k A j x k + p i=1 B i j (I p -γ)u k y k = Cx k (5) 
where α j k represents α j k (θ) for simplicity and matrices B i j represent a total failure in all actuators except the i-th such that:

B i j = [0, . . . , 0, b i j , 0, . . . , 0] (6) 
and

B j = [b 1 j , b 2 j , . . . , b p j , ] with b i j ∈ R n×1 .
It is assumed that each column of B j is full column rank whatever the model j. The following assumptions are considered:

Assumption 1: The pairs (A j , b i j ), ∀i = [1, . . . , p] are assumed to be controllable ∀j ∈ [1, . . . , N ] Assumption 2: The matrix C = C j , ∀j ∈ [1, . . . , N ].
Assumption 3: The matrix C is full row rank.

Assumption 4: At every time instant there is at least one fault-free actuator which means that the situation

γ 1 = • • • = γ p = 1 is excluded.
In the nominal case, the SOF can be expressed such as:

u k = -F y k (7) 
with y k = Cx k and F ∈ R p×m is the output feedback controller gain. In fault-free case (γ = 0), the system (5) with a nominal control law u k = -F y k is equivalent to:

x k+1 = N j=1 α j k [A j x k + B j (I -γ)(-F y k )] = N j=1 α j k (A j -B j F C)x k (8) 
The stability of the closed-loop system is established with a LMI pole placement. In order to achieve some desired transient performance, a pole placement should be considered. For many problems, exact pole assignment may not be necessary, it suces to locate the pole of the closed-loop system in a sub-region of the complex left half plane [START_REF] Chilali | H ∞ design with pole placement constraints: an LMI approach[END_REF], [START_REF] Rodrigues | Design of an Active Fault Tolerant Control and Polytopic Unknown Input Observer for Systems described by a Multi-Model Representation[END_REF].

So, let dene a disk region LMI D included in the unit circle with an ax (-q, 0) and a radius r such that (q + r) < 1. These two scalars q and r are used to determine a specic region included in the unit circle so as to place closed-loop system eigenvalues. The pole placement of the closed-loop system (8) for all the models j ∈ [1 . . . N ] in a LMI region, can be expressed as the following:

    -rX qX + (A j X -B j F CX) T qX + (A j X -B j F CX) -rX     < 0 (9) 
However these inequalities are no longer linear with regard to the unknown matrices X = X T > 0 and F, ∀j ∈ [1 . . . N ]. So, the solution is not guaranteed to belong to a convex domain and the classical tools for solving sets of matrix inequalities cannot be used. It constitutes the major diculty of output feedback design.

We propose to transform BMI conditions (9) in X and F, ∀j ∈ [1 . . . N ], in LMI conditions which will be used to synthesize directly a stabilizing SOF. We will synthesize controllers F i for each actuator in order to dene a SOF control law.

Theorem 1 Consider the system (5) in fault-free case (γ = 0),

dened ∀j ∈ [1 . . . N ]. Let assume that it is possible to nd matrices X i = X T i > 0, M and V i ∀i = [1, . . . , p] such that ∀i = [1, . . . , p], ∀j = [1, . . . , N ]:     -rX i qX i + (A j X i -B i j V i C) T qX i + A j X i -B i j V i C -rX i     < 0 (10) 
with

CX i = M i C (11) 
The control law with the SOF u k = -F y k allows to place the eigenvalues of the closed-loop system (5) in a predetermined LMI-region with

F M = V , F = p i=1 G i V i (CC T (C p i=1 X i C T ) -1 )
or F = V CC T (CXC T ) -1 , with G i ∈ R p×p is a matrix equals to zero except in the diagonal entry

(i, i)
where there is a one such as:

G i =         0 • • • 0 . . . 1 . . . 0 • • • 0         Proof:
As proposed in [START_REF] Rodrigues | Design of an Active Fault Tolerant Control and Polytopic Unknown Input Observer for Systems described by a Multi-Model Representation[END_REF], summation of (10) under the actuators set i ∈ [1, . . . , p] of the system (5)

i = [1, . . . , p] gives for one model j, ∀j = [1, . . . , N ]:

p i=1     -rX i qX i + (A j X i -B i j V i C) T qX i + A j X i -B i j V i C -rX i     < 0 (12) Let denote X = p i=1 X i (with X = X T > 0) to obtain       -rX qX + (A j X - p i=1 B i j V i C) T qX + (A j X - p i=1 B i j V i C) -rX       < 0 (13) 
∀i = [1, . . . , p], ∀j = [1, . . . , N ]. Now, denote the l-th row of the matrix V i as V l i , i = [1, . . . , p] and l = 1, . . . , p which can be calculated from:

V l i = G l V i (14) 
Therefore,

p i=1 B i j V i C = p i=1 [0, . . . , 0, b i j , 0, . . . , 0]V i i C = B j p i=1 V i i C = B j ( p i=1 G i V i C) = B j V C (15) with V = p i=1 G i V i . Moreover, we get ∀i = [1, . . . , p], ∀j = [1, . . . , N ]     -rX qX + (A j X -B j V C) T qX + (A j X -B j V C) -rX     < 0 (16) 
With the changes of variables V = F M and CX = M C which substituted in LMI [START_REF] Rodrigues | Diagnostic et commande active tolérante aux défauts appliqués aux systèmes décrits par des multi-modèles linéaires[END_REF], lead to

    -rX qX + (A j X -B j F CX) T qX + (A j X -B j F CX) -rX     < 0 (17) ∀i = [1, . . . , p], ∀j = [1, . . . , N ].
We should note that inequalities [START_REF] Rodrigues | A Fault Detection and Isolation Scheme for Industrial Systems based on Multiple Operating Models[END_REF] are BMIs which could not be solve with classical tools but recall the denition of the disk LMI region into unit circle [START_REF] Glover | Modeling and Stability Analysis of Power Electronics based Systems[END_REF]. By multiplying each LMI (16) by α j k and summing all of them, we obtain

       -rX qX + N j=1 α j k (A j X -B j V C) T qX + N j=1 α j k (A j X -B j V C) -rX        < 0 (18) 
it is equivalent to

    -rX qX + (A(α)X -B(α)V C) T qX + (A(α)X -B(α)V C) -rX     < 0 (19) 
with

A(α) = N j=1 α j k A j and B(α) = N j=1 α j k B j .
Due to the fact that matrix C is supposed to be full row rank, we deduce from [START_REF] Kanev | Robust Fault-Tolerant Control[END_REF] there exists a non-singular matrix M = CXC T (CC T ) -1

and then after variables changes

F = V M -1 = p i=1 G i V i (CC T (C p i=1 X i C T ) -1
). So, quadratic D-stability is ensured by solving [START_REF] Rodrigues | Design of an Active Fault Tolerant Control and Polytopic Unknown Input Observer for Systems described by a Multi-Model Representation[END_REF] with a SOF u k = -F y k .

In nominal case, we do not really need Assumption 1 in the sense that the proposed SOF is sufcient by solving LMI [START_REF] Jabbari | Output Feedback Controllers for Systems with Structured Uncertainty[END_REF][START_REF] Kanev | Robust Fault-Tolerant Control[END_REF]. However, in faulty case, as the proposed FTC method considers actuators which are out of order, we have to assume that each pairs (A j , b i j ) are controllable because the lost of one actuator can make the system unstable if the Assumption 1 is not considered. Moreover, if Assumption 1 is untrue, try to nd a solution of (10-11) will be not possible i.e. pole placement is obviously not possible for each separate controller.

Principles of Fault Tolerant Control Strategy

We present a reconguration strategy which is able to design a recongured controller from the nominal one with an exact fault estimation coming from FDI scheme i.e. γ = γ. Without loss of generality, it is assumed that when actuator fault occurs on the system, the matrix γ in system

(5) can be decomposed as follows:

γ =     γ p-h 0 0 I h     (20) 
Thus, γ is a diagonal matrix: γ p-h a diagonal matrix where its elements

γ i p-h , i ∈ [1, . . . , p]
are dierent from 1 which represent the number of actuators not out of order (γ i = 1) and I h represents the number h of actuators totally failed. By recalling γ in [START_REF] Rosinova | Robust Static Output Feedback for Discrete Time Systems LMI Approach[END_REF], let dene Γ such that

Γ     I p-h -γ p-h 0 0 0 h         (I p-h -γ p-h ) -1 0 0 0 h     =     I p-h 0 0 O h     (21) 
where 0 h represents actuators which are out of order and I p-h represents governable ones. The corresponding matrix partitions of B is dened as:

B = [B p-h B h ] (22) 
B p-h ∈ R n×(p-h) and B h ∈ R n×h . We will present a control law which is able to vanish actuator faults into the state space representation (3) and ensure closed-loop stability despite of multiple actuator failures. Based on a multiplicative fault representation [START_REF] Chadli | A lmi formulation for output feedback stabilization in multiple model approach[END_REF], we propose to use the following control law u F T C that must vanish all actuator faults on the system (5) such that:

u F T C =     (I p-h -γ p-h ) -1 0 0 0 h     u nom =     I p-h 0 h×(p-h)     [I p-h -γ p-h ] -1 I p-h 0 (p-h)×h u nom (23) 
Let introduce the set of indexes of all actuators that are not out of order [START_REF] Rodrigues | Diagnostic et commande active tolérante aux défauts appliqués aux systèmes décrits par des multi-modèles linéaires[END_REF], i.e.

Φ {i : i ∈ (1, . . . , p), γ i = 1} [START_REF] Theilliol | A multiple model based approach for Fault Tolerant Control in nonlinear systems[END_REF] and note that u

F T C =     (I p-h -γ p-h ) -1 0 0 0 h     u nom = -     (I p-h -γ p-h ) -1 0 0 0 h     F nom y k =
-F F T C y k where F nom is a nominal controller and F F T C the new controller. So, this specic control law in the state space representation (5) leads to:

B j (I -γ)u F T C = B j     I p-h -γ p-h 0 0 0 h         (I p-h -γ p-h ) -1 0 0 0 h     u nom = B j Γu nom = i∈Φ B i j u i nom (25) 
which avoids actuator fault eect and where i∈Φ B i j represents the actuators not out of order, i.e. i∈Φ B i j = B p-h and u i nom the i-th element of u nom . From Assumption 1, due to the fact that each pair (A j , b i j ), ∀i = [1, . . . , p] are assumed to be controllable ∀j = [1, . . . , N ], the system remains still controllable in spite of actuator failures.

Remark:

We have assumed for simplicity that matrix γ can be decomposed as in [START_REF] Rosinova | Robust Static Output Feedback for Discrete Time Systems LMI Approach[END_REF] (of diagonal matrix γ) can take any value in [0, . . . , 1] and let denote

u F T C =         u 1 F T C . . . u p F T C         (26) 
then each element u i F T C of u F T C can be calculated as follows:

If γ i = 1 then u i F T C = (1 -γ i ) -1 u i nom ( 27 
)
If γ i = 1 then u i F T C = 0 So, expression (25): B j (I -γ)u F T C = i∈Φ B i j u i
nom remains unchanged and the system still remains controllable under Assumption 1. In the following and without loss of generality, we will consider the case with γ dened in (20).

Faulty control law design

By considering the system (5) and based on the previous synthesis control law in section (3.1), the FTC method will be developed in this section under assumption that actuator fault estimation γ is exactly known, i.e. γ = γ.

Theorem 2 Consider the system (5) with multiple actuator failures (γ i = 0) under the Assumption 4 ∀j, j = [1, . . . , N ] and the set of indexes of the actuators which are not out of order [START_REF] Theilliol | A multiple model based approach for Fault Tolerant Control in nonlinear systems[END_REF]. Let the matrices M, X i and V i be determined as in Theorem 1, then the following control law ( 28)

u F T C = -     (I p-h -γ p-h ) -1 0 0 0 h     i∈Φ G i V i (CC T (C i∈Φ X i C T ) -1 ) y k = -     (I p-h -γ p-h ) -1 0 0 0 h     F rec y k = -F F T C y k ( 28 
)
with G i ∈ R p×p (a matrix equals to zero except in the diagonal entry (i, i) where there is a one), stabilizes the closed-loop system and places the closed-loop poles in the following LMI stability region

    -rX qX + (A j X -B j F rec CX) T qX + (A j X -B j F rec CX) -rX     < 0 (29) 
The SOF control law

u k = -F F T C y k is computed with F rec M = V , F rec = i∈Φ G i V i (CC T (C i∈Φ X i C T ) -1 = V CC T (CXC T ) -1 .
Proof:

Applying the new control law (28) to the faulty system (5), leads to the following equation

B j (I -γ)u F T C = -B j Γ i∈Φ G i V i (CC T (C i∈Φ X i C T ) -1 ) y k (30) 
with Γ calculated in [START_REF] Shin | Parameter transient behavior analysis on fault tolerant control system[END_REF] and dened as

Γ =     I p-h 0 0 O h     (31) 
Γ is a diagonal matrix which contains only entries zero (representing total faults) and one (no fault), see section 3.2. Since B j Γ = i∈Φ B j i models only the actuators that are not out of order, then performing the summations in the proof of Theorem 1 over the elements of Φ

shows that

i∈Φ G i V i (CC T (C i∈Φ X i C T ) -1 )
is the output feedback gain matrix for the faulty sys-

tem (A j , i∈Φ B j i , C).
We need to assume the pairs (A j , b i j ), ∀i = [1, . . . , p] are controllable ∀j = [1, . . . , N ] because we consider the case of actuators which are out of order: the system has to be controllable with at least one actuator. Moreover, if there is a solution for each LMI [START_REF] Jabbari | Output Feedback Controllers for Systems with Structured Uncertainty[END_REF][START_REF] Kanev | Robust Fault-Tolerant Control[END_REF] it means that each pair

(A j , b i j )
is controllable. However, the assumption 1 does not guarantee the feasibility of [START_REF] Jabbari | Output Feedback Controllers for Systems with Structured Uncertainty[END_REF][START_REF] Kanev | Robust Fault-Tolerant Control[END_REF] i.e. the proposed SOF solution is only sucient for computing the controller, but not necessary.

Illustrative Example

The feature of the proposed scheme and eectiveness of the Fault-Tolerant Control System are developed using an illustrative example with a SOF for polytopic LPV systems. We present the case of two actuator faults which make unstable the closed-loop system. Let consider a system described by N = 4 unstable models. These four models can be adapted from a LPV model, where each of these ones represents a vertex, as it is done in [START_REF] Glover | Modeling and Stability Analysis of Power Electronics based Systems[END_REF] or in [START_REF] Silva | Robust control to parametric uncertainties in smart structures using linear matrix inequalities[END_REF] where an aluminum cantilever beam is considered under parametric uncertainties. The discrete state space representation (5) consists of the following matrices:

A 1 =          0.75 0 0 0 0 0.85 0 0 0 0 1.25 0 0 0 0 1.5          , A 4 =          0.6375 0 0 0 0 0.7225 0 0 0 0 1.0625 0 0 0 0 1.275          A 3 =          0.525 0 0 0 0 0.595 0 0 0 0 0.875 0 0 0 0 1.05          , A 2 =          0.6 0 0 0 0 0.68 0 0 0 0 1 0 0 0 0 1.2          C =       0 1 0 0 0 0 1 0 0 0 0 1       , B 1 =          1 1 1 1 1 1 1 1         
The other matrices are B 2 = 0.8B 1 , B 3 = 0.7B 1 and B 4 = 0.85B 1 . The system is in closed-loop way with a SOF with parameters q = -0.05, r = 0.93 arbitrarily chosen for stabilizing the closed-loop system: 

u k = -     (I p-h -γ p-h ) -1 0 0 0 h     F y k (with y k = Cx k )
V 1 =     -0.157 -0.153 -0.132 0 0 0     , V 2 =     0 0 0 -0.157 -0.153 -0.132     X 1 =             1 
        with X 1 = X 2 , M 1 = M 2 and F = V M -1 = p i=1 G i V i (CC T (C p i=1 X i C T ) -1 ) : F =     -0.0253 -1.2221 2.1734 -0.0253 -1.2221 2.1734     , G 1 =     1 0 0 0     , G 2 =     0 0 0 1    
Parameters q and r are chosen in regards to system eigenvalues in the complex plane without FTC strategy. A LMI-region is dened into the unit circle (see section 3.1) with an ax (-q, 0) and a radius r: for a same example we can dene dierent combinaisons of parameters i.e. dierent LMI-regions. This LMI-region allows to place system eigenvalues in a stable region in spite of actuator failures: it is represented in Figure [START_REF] Chadli | A lmi formulation for output feedback stabilization in multiple model approach[END_REF] with a dashed circle.

Figure [START_REF] Angelis | System Analysis, Modelling and Control with Polytopic Linear Models[END_REF] represents the parameters evolution of the system in nominal case: the system outputs(a), second actuator (b), rst actuator (c) and parameters evolution α j k (d). The closed-loop system is stable without any fault. At sample k = 2, the rst actuator is out of order and also an actuator fault of 60% loss of eectiveness appears on the second actuator. The matrix γ is equal to [21] discusses issues with a time delay in FTC reconguration. The reader could refer to this NASA/NIA Report for more information on time delay in reconguration. We do not deal more with time delay on reconguration because we assume that a perfect FDI is available.

γ =     1 0 0 0.6     , k ≥ 2
We observe that the outputs and the control laws converge to zero. The system is stabilized with the Fault Tolerant Control law in spite of these actuator fault and failure. the developed FTC strategy allows the system to continue to operate safely in spite of actuator failures.

Conclusion

The FTC method presented in this paper underlines the importance of the Fault Tolerant Control on polytopic LPV systems. Controllers are designed for each separate actuator through an LMI pole placement in fault-free and faulty cases. The system continues to operate safely and ensures closed-loop stability in spite of the presence of actuator failures. The main contribution is the design of a Static Output Feedback that takes into account the information provided by a FDI scheme. The proposed SOF solution is sucient and place eigenvalues of the closed-loop system into a predetermined LMI region inside the unit circle. From investigating a new algorithm point of view in FTC, it may be a rst step to develop a more practical active FTC for nonlinear systems based on polytopic LPV representation. An example on a polytopic LPV system has been presented to illustrate the eectiveness of the scheme.
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 12 Figure 1: Nominal case: (a) the system outputs, (b) 2nd actuator, (c) 1st actuator and (d) parameters evolution α j k
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 2 Figure (2).b) illustrates the instability of the closed-loop system in faulty-case and Figure (2).c)

  4). Figure (3).a) and 4.a) present the actuators in nominal case and Figure (3).b) illustrates the lost of the 1st actuator.
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 4 Figure (4.b) illustrates the instability of the 2nd actuator in faulty-case and Figure (4.c) the
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 3456 Figure 3: 1st Actuator:(a)Nominal case, (b)Faulty and reconguration case

  in order to consider the two distinguished cases which are γ i = 1 for actuators out of order and γ i = 1 actuators still valid: it is directly indicated by the FDI scheme. Of course, not only the rst actuators are always valid and the last ones are not: Assumption 4 indicates that any actuator can fails but at least one is still governable. So by generalizing, let's recall that each element γ i , i ∈[1, . . . , p] 
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