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Abstract

This paper deals with Fault Tolerant Control (FTC) strategy for polytopic Linear Pa-

rameter Varying (LPV) systems. The main contribution consists in the design of a Static

Output Feedback (SOF) dedicated for such systems in the presence of multiple actuator

faults/failures. The controllers are designed through Linear Matrix Inequality (LMI) both

in fault-free and faulty cases in order to preserve the system closed-loop stability. Hence,

this paper provides a new su�cient (but not necessary) condition for the solvability of the

stabilizing output feedback control problem. An example illustrates the e�ectiveness and

performances of the proposed FTC method.

Keywords: Fault Tolerant Control, Multiple Actuator Failures, Polytopic LPV Systems, LMI,

Static Output Feedback, Stability.
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1 Introduction

As performance requirements increase in advanced technological systems, their associated control

systems are becoming more and more complex. At the same time, complicated systems could

have various consequences in the event of component failures. Therefore, it is very important to

consider the safety and fault tolerance of such systems at the design stage. For these safety-critical

systems, Fault Tolerant Control Systems (FTCS) have been developed to meet these essential

objectives. FTCS have been a subject of great practical importance, which has attracted a lot

of interest for the last three decades. Bibliographical reviews on recon�gurable Fault Tolerant

Control Systems can be found in [14], [29].

The objective of FTCS is to maintain current performances close to desirable ones and preserve

stability conditions in the presence of component and/or instrument faults; in some circumstances

reduced performances could be accepted as a trade-o�. In fact, many FTC methods against

actuator failures have been recently developed by [2], [13]. Almost all the methods can be

categorized into two groups [29]: passive [7], [25] and active [23], [27], [28] approaches.

First of all, passive FTC deals with a presumed set of system component failures based on

the actuator redundancies at the controller design stage. The resulting controller usually has

a �xed structure and parameters. However, the main drawback of a passive FTC approach is

that as the number of potential failures and the degree of system redundancy increase, controller

design could become very complex and the performance of the resulting controller (if exists)

could become signi�cantly conservative. Moreover, if an un-anticipated failure occurs, passive

FTC can not ensure system stability and can not reach again nominal performances. Controllers

switching underlines the fact that many faulty system representations have to be identi�ed

so as to synthesize o�-line pre-computed and stabilizing controllers. These identi�cations are

sometimes di�cult to obtain and it is restrictive to consider only pre-determined actuator faults

and not all actuator faults.
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On the other part, AFTC is characterized by an on-line Fault Detection and Isolation (FDI)

scheme [17] and an automatic control recon�guration mechanism. Active FTC strategy allows

to consider more faults than passive one: some research works deal with it and underline the

problem of closed-loop system stability in the presence of multiple actuator failures [11], [12],

[18], [24], [27], [30]. Moreover, AFTC is often dedicated to linear systems or linearization of

nonlinear systems but not for LPV systems.

On the other part, various system modeling techniques in fault-free case are presented in [9], [15],

[26] which deal with Linear Parameter Varying (LPV) and/or polytopic representations. The

main motivation of polytopic LPV or just LPV systems is for analysis and control of nonlinear

systems. Moreover from our knowledge, there is no work for handling multiple actuator failures

and polytopic LPV systems.

Starting our research on FTC and polytopic systems, we can note that Multi-models often use

polytopic representations. In [5], the authors develop an output feedback through LMI in

multi-models context but only in fault-free case. A solution has been proposed in the same

multi-models context in [19] where the authors design a static state feedback which take into

account multiple actuator failures. From a practical point of view, a state feedback need to

use an estimator if all the states are not measurable. It can be di�cult to design such state

estimators in the same time the system is recon�gured. So, we propose to develop a solution

to handle FTC and polytopic LPV systems with a SOF design. An output feedback design is

less restrictive than state feedback design and it can bring solutions for practical FTC problems

where only system outputs are available. Output Feedback design is also developed in [8] with

a su�cient condition for the solvability of stabilizing SOF control problem and in [10] with

structured uncertainty. Also, [20] develop a robust SOF for linear discrete-time systems with

polytopic uncertainties through LMI synthesis. However, all these studies do not take into

account any actuator failures, dealing with linear systems and not with LPV systems.

In this paper, an Active FTC strategy is developed to avoid actuator fault/failure e�ects on
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polytopic LPV systems. In many of research works, Feedback design is only used for polytopic

LPV system in fault-free case [1] and [3], but not consider actuator failures: this paper deals with

a SOF synthesis in the presence of multiple actuator failures. Under the assumption that the fault

is detected, isolated and estimated, the developed method preserves the system performances

through an appropriate controller re-design in faulty case. Multiple controllers are designed

such that any controller can maintain the closed-loop stability for any combination of multiple

actuator failures.

The paper is organized as follows. Section II de�nes the polytopic LPV systems representation

under multiple actuator failures. In Section III, we develop a controller synthesis for each actuator

and we generate an output feedback control law for polytopic LPV systems both in fault-free

and faulty cases. FTC philosophy is carried out under accurate FDI information. An illustrative

example is given in Section IV to underline the synthesis. Finally, concluding remarks are given

in the last Section.

2 Polytopic LPV systems with multiple actuator failures

Let consider the discrete LPV representation in fault-free case:

xk+1 = Ã(θ)xk + B̃(θ)uk

yk = C̃(θ)xk + D̃(θ)uk (1)

where x ∈ R
n represents the state vector, u ∈ R

p is the input vector, y ∈ R
m is the output

vector. The system (1) considers a�ne parameters dependence such M̃(θ) = M̃0 +
∑υ

j=1 θjM̃j

with the following notation:
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M̃ =




Ã B̃

C̃ D̃


 (2)

The a�ne LPV system (1) with bounded parameters θj ≤ θj(k) ≤ θj , (where θj and θj represents

the maximum and the minimum value of θj respectively) can be represented by a polytopic form

(see [3], [16]) when the varying parameter θ(k) evolves in a polytopic domain Θ of vertices

[θ1, θ2, . . . , θυ] (where the vertices are the extreme values of the parameter θ). In the following,

we consider only systems strictly proper such that D = 0. The system can be de�ned via a

matrix polytope with summits Sj := [Aj , Bj , Cj ],∀ j ∈ [1, . . . , N ] and barycentric combination

where N = 2υ. Consequently, under a multiplicative actuator fault representation [18], system

(1) can be rewritten as a polytopic representation:

xk+1 =

N∑

j=1

α
j
k(θ)[Ajxk + Bj(Ip − γ)uk]

yk =
N∑

j=1

α
j
k(θ)[Cjxk] (3)

where α
j
k(θ) = α(θj , θj , θj(k), k): θj(k) is the value of θj at sample k (see [16] and [22] for

more details about LPV to polytopic representation). Aj ∈ R
n×n, Bj ∈ R

n×p, Cj ∈ R
m×n are

time-invariant matrices de�ned for the jth models. The polytopic system is scheduled through

functions designed as the following: α
j
k(θ),∀j ∈ [1, . . . , N ] lie in a convex set Ω = {αj

k(θ) ∈

R
N , αk(θ) = [α1

k(θ), . . . , α
N
k (θ)]T , α

j
k(θ) ≥ 0,∀j,

∑N
j=1 α

j
k(θ) = 1}. These functions are assumed

to be available in real time depending on fault-free parameters measurement [4]. The matrix γ

is de�ned as follows:
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γ , diag[γ1, γ2, . . . , γp], 0 ≤ γi ≤ 1 such that for extreme values




γi = 1 → represents a total failure of the ith actuator i ∈ [1, . . . , p]

γi = 0 → denotes the healthy ith actuator
(4)

Note: γi can take any value between 0 and 1. It represents the loss of e�ectiveness of ith actuator,

i.e. for example a loss of e�ectiveness 70% of 1st actuator will be represented by γ1 = 0.7. When

an actuator fault appears on the system, if the controller is not designed by taking into account

such problem, the closed-loop system stability can not be ensured obviously. So, we propose to

develop a SOF for polytopic systems with multiple actuator failures.

3 Fault Tolerant Control for polytopic LPV Systems

3.1 Nominal control law design

Let us recall the multiplicative actuator fault representation on a polytopic system as follows:

xk+1 =
N∑

j=1

α
j
k

[
Ajxk +

p∑

i=1

Bi
j(Ip − γ)uk

]

yk = Cxk (5)

where α
j
k represents α

j
k(θ) for simplicity and matrices Bi

j represent a total failure in all actuators

except the i-th such that:

Bi
j = [0, . . . , 0, bi

j , 0, . . . , 0] (6)
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and Bj = [b1
j , b

2
j , . . . , b

p
j , ] with bi

j ∈ R
n×1. It is assumed that each column of Bj is full column

rank whatever the model j. The following assumptions are considered:

Assumption 1: The pairs (Aj , b
i
j),∀i = [1, . . . , p] are assumed to be controllable ∀j ∈ [1, . . . , N ] ¤

Assumption 2: The matrix C = Cj ,∀j ∈ [1, . . . , N ]. ¤

Assumption 3: The matrix C is full row rank. ¤

Assumption 4: At every time instant there is at least one fault-free actuator which means that

the situation γ1 = · · · = γp = 1 is excluded. ¤

In the nominal case, the SOF can be expressed such as:

uk = −Fyk
(7)

with yk = Cxk and F ∈ R
p×m is the output feedback controller gain. In fault-free case (γ = 0),

the system (5) with a nominal control law uk = −Fyk is equivalent to:

xk+1 =
N∑

j=1

α
j
k[Ajxk + Bj(I − γ)(−Fyk)]

=
N∑

j=1

α
j
k(Aj − BjFC)xk

(8)

The stability of the closed-loop system is established with a LMI pole placement. In order

to achieve some desired transient performance, a pole placement should be considered. For

many problems, exact pole assignment may not be necessary, it su�ces to locate the pole of the

closed-loop system in a sub-region of the complex left half plane [6], [18].

So, let de�ne a disk region LMI D included in the unit circle with an a�x (−q, 0) and a radius

r such that (q + r) < 1. These two scalars q and r are used to determine a speci�c region

included in the unit circle so as to place closed-loop system eigenvalues. The pole placement of

the closed-loop system (8) for all the models j ∈ [1 . . . N ] in a LMI region, can be expressed as

the following:
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


−rX qX + (AjX − BjFCX)T

qX + (AjX − BjFCX) −rX


 < 0 (9)

However these inequalities are no longer linear with regard to the unknown matrices X = XT > 0

and F,∀j ∈ [1 . . . N ]. So, the solution is not guaranteed to belong to a convex domain and the

classical tools for solving sets of matrix inequalities cannot be used. It constitutes the major

di�culty of output feedback design.

We propose to transform BMI conditions (9) in X and F,∀j ∈ [1 . . . N ], in LMI conditions

which will be used to synthesize directly a stabilizing SOF. We will synthesize controllers Fi for

each actuator in order to de�ne a SOF control law.

Theorem 1 Consider the system (5) in fault-free case (γ = 0), de�ned ∀j ∈ [1 . . . N ]. Let

assume that it is possible to �nd matrices Xi = XT
i > 0, M and Vi ∀i = [1, . . . , p] such that

∀i = [1, . . . , p],∀j = [1, . . . , N ]:




−rXi qXi + (AjXi − Bi
jViC)T

qXi + AjXi − Bi
jViC −rXi


 < 0 (10)

with

CXi = MiC (11)

The control law with the SOF uk = −Fyk allows to place the eigenvalues of the closed-loop

system (5) in a predetermined LMI-region with FM = V , F =

p∑

i=1

GiVi(CCT (C

p∑

i=1

XiC
T )−1)

or F = V CCT (CXCT )−1, with Gi ∈ R
p×p is a matrix equals to zero except in the diagonal entry

(i, i) where there is a one such as: Gi =




0 · · · 0

... 1
...

0 · · · 0




¥
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Proof:

As proposed in [18], summation of (10) under the actuators set i ∈ [1, . . . , p] of the system (5)

i = [1, . . . , p] gives for one model j,∀j = [1, . . . , N ]:

p∑

i=1




−rXi qXi + (AjXi − Bi
jViC)T

qXi + AjXi − Bi
jViC −rXi


 < 0 (12)

Let denote X =
∑p

i=1 Xi (with X = XT > 0) to obtain




−rX qX + (AjX −

p∑

i=1

Bi
jViC)T

qX + (AjX −

p∑

i=1

Bi
jViC) −rX




< 0 (13)

∀i = [1, . . . , p],∀j = [1, . . . , N ]. Now, denote the l-th row of the matrix Vi as V l
i , i = [1, . . . , p]

and l = 1, . . . , p which can be calculated from:

V l
i = GlVi (14)

Therefore,

p∑

i=1

Bi
jViC =

p∑

i=1

[0, . . . , 0, bi
j , 0, . . . , 0]V i

i C

= Bj

p∑

i=1

V i
i C = Bj(

p∑

i=1

GiViC) = BjV C (15)

with V =

p∑

i=1

GiVi.

Moreover, we get ∀i = [1, . . . , p],∀j = [1, . . . , N ]




−rX qX + (AjX − BjV C)T

qX + (AjX − BjV C) −rX


 < 0 (16)
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With the changes of variables V = FM and CX = MC which substituted in LMI (16), lead to




−rX qX + (AjX − BjFCX)T

qX + (AjX − BjFCX) −rX


 < 0 (17)

∀i = [1, . . . , p],∀j = [1, . . . , N ]. We should note that inequalities (17) are BMIs which could

not be solve with classical tools but recall the de�nition of the disk LMI region into unit circle

(9). By multiplying each LMI (16) by α
j
k and summing all of them, we obtain




−rX qX +
N∑

j=1

α
j
k(AjX − BjV C)T

qX +

N∑

j=1

α
j
k(AjX − BjV C) −rX




< 0 (18)

it is equivalent to




−rX qX + (A(α)X − B(α)V C)T

qX + (A(α)X − B(α)V C) −rX


 < 0 (19)

with A(α) =
∑N

j=1 α
j
kAj and B(α) =

∑N
j=1 α

j
kBj . Due to the fact that matrix C is supposed to

be full row rank, we deduce from (11) there exists a non-singular matrix M = CXCT (CCT )−1

and then after variables changes F = V M−1 =

p∑

i=1

GiVi(CCT (C

p∑

i=1

XiC
T )−1). So, quadratic

D-stability is ensured by solving (18) with a SOF uk = −Fyk. ¤

In nominal case, we do not really need Assumption 1 in the sense that the proposed SOF is suf-

�cient by solving LMI (10-11). However, in faulty case, as the proposed FTC method considers

actuators which are out of order, we have to assume that each pairs (Aj , b
i
j) are controllable

because the lost of one actuator can make the system unstable if the Assumption 1 is not consid-

ered. Moreover, if Assumption 1 is untrue, try to �nd a solution of (10-11) will be not possible

i.e. pole placement is obviously not possible for each separate controller.
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3.2 Principles of Fault Tolerant Control Strategy

We present a recon�guration strategy which is able to design a recon�gured controller from the

nominal one with an exact fault estimation coming from FDI scheme i.e. γ̂ = γ. Without loss of

generality, it is assumed that when actuator fault occurs on the system, the matrix γ in system

(5) can be decomposed as follows:

γ =




γp−h 0

0 Ih


 (20)

Thus, γ is a diagonal matrix: γp−h a diagonal matrix where its elements γi
p−h, i ∈ [1, . . . , p]

are di�erent from 1 which represent the number of actuators not out of order (γi 6= 1) and Ih

represents the number h of actuators totally failed. By recalling γ in (20), let de�ne Γ such that

Γ ,




Ip−h − γp−h 0

0 0h







(Ip−h − γp−h)−1 0

0 0h


 =




Ip−h 0

0 Oh


 (21)

where 0h represents actuators which are out of order and Ip−h represents governable ones. The

corresponding matrix partitions of B is de�ned as:

B = [Bp−h Bh] (22)

Bp−h ∈ R
n×(p−h) and Bh ∈ R

n×h. We will present a control law which is able to vanish actuator

faults into the state space representation (3) and ensure closed-loop stability despite of multiple

actuator failures. Based on a multiplicative fault representation (5), we propose to use the

following control law uFTC that must vanish all actuator faults on the system (5) such that:
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uFTC =




(Ip−h − γp−h)−1 0

0 0h


unom =




Ip−h

0h×(p−h)


 [Ip−h−γp−h]−1

[
Ip−h 0(p−h)×h

]
unom

(23)

Let introduce the set of indexes of all actuators that are not out of order [16], i.e.

Φ , {i : i ∈ (1, . . . , p), γi 6= 1} (24)

and note that uFTC =




(Ip−h − γp−h)−1 0

0 0h


unom = −




(Ip−h − γp−h)−1 0

0 0h


Fnomyk =

−FFTCyk where Fnom is a nominal controller and FFTC the new controller. So, this speci�c

control law in the state space representation (5) leads to:

Bj(I − γ)uFTC = Bj




Ip−h − γp−h 0

0 0h







(Ip−h − γp−h)−1 0

0 0h


unom

= BjΓunom =
∑
i∈Φ

Bi
ju

i
nom

(25)

which avoids actuator fault e�ect and where
∑
i∈Φ

Bi
j represents the actuators not out of order, i.e.

∑
i∈Φ

Bi
j = Bp−h and ui

nom the i-th element of unom. From Assumption 1, due to the fact that each

pair (Aj , b
i
j),∀i = [1, . . . , p] are assumed to be controllable ∀j = [1, . . . , N ], the system remains

still controllable in spite of actuator failures.

Remark:

We have assumed for simplicity that matrix γ can be decomposed as in (20) in order to consider

the two distinguished cases which are γi = 1 for actuators out of order and γi 6= 1 actuators

still valid: it is directly indicated by the FDI scheme. Of course, not only the �rst actuators are

always valid and the last ones are not: Assumption 4 indicates that any actuator can fails but
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at least one is still governable. So by generalizing, let's recall that each element γi, i ∈ [1, . . . , p]

(of diagonal matrix γ) can take any value in [0, . . . , 1] and let denote

uFTC =




u1
FTC

...

u
p
FTC




(26)

then each element ui
FTC of uFTC can be calculated as follows:

If γi 6= 1 then ui
FTC = (1 − γi)−1ui

nom (27)

If γi = 1 then ui
FTC = 0

So, expression (25): Bj(I−γ)uFTC =
∑
i∈Φ

Bi
ju

i
nom remains unchanged and the system still remains

controllable under Assumption 1. In the following and without loss of generality, we will consider

the case with γ de�ned in (20).

3.3 Faulty control law design

By considering the system (5) and based on the previous synthesis control law in section (3.1), the

FTC method will be developed in this section under assumption that actuator fault estimation

γ̂ is exactly known, i.e. γ̂ = γ.

Theorem 2 Consider the system (5) with multiple actuator failures (γi 6= 0) under the As-

sumption 4 ∀j, j = [1, . . . , N ] and the set of indexes of the actuators which are not out of order

(24). Let the matrices M, Xi and Vi be determined as in Theorem 1, then the following control

law (28)
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uFTC = −




(Ip−h − γp−h)−1 0

0 0h




(∑

i∈Φ

GiVi(CCT (C
∑

i∈Φ

XiC
T )−1)

)
yk

= −




(Ip−h − γp−h)−1 0

0 0h


Frecyk = −FFTCyk (28)

with Gi ∈ R
p×p (a matrix equals to zero except in the diagonal entry (i, i) where there is a one),

stabilizes the closed-loop system and places the closed-loop poles in the following LMI stability

region




−rX qX + (AjX − BjFrecCX)T

qX + (AjX − BjFrecCX) −rX


 < 0 (29)

The SOF control law uk = −FFTCyk is computed with FrecM = V ,

Frec =
∑
i∈Φ

GiVi(CCT (C
∑
i∈Φ

XiC
T )−1 = V CCT (CXCT )−1. ¥

Proof:

Applying the new control law (28) to the faulty system (5), leads to the following equation

Bj(I − γ)uFTC = −BjΓ
(∑

i∈Φ

GiVi(CCT (C
∑

i∈Φ

XiC
T )−1)

)
yk (30)

with Γ calculated in (21) and de�ned as

Γ =




Ip−h 0

0 Oh


 (31)

Γ is a diagonal matrix which contains only entries zero (representing total faults) and one

(no fault), see section 3.2. Since BjΓ =
∑
i∈Φ

B
j
i models only the actuators that are not out

of order, then performing the summations in the proof of Theorem 1 over the elements of Φ
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shows that
∑
i∈Φ

GiVi(CCT (C
∑
i∈Φ

XiC
T )−1) is the output feedback gain matrix for the faulty sys-

tem (Aj ,
∑
i∈Φ

B
j
i , C). ¤

We need to assume the pairs (Aj , b
i
j),∀i = [1, . . . , p] are controllable ∀j = [1, . . . , N ] because we

consider the case of actuators which are out of order: the system has to be controllable with at

least one actuator. Moreover, if there is a solution for each LMI (10-11) it means that each pair

(Aj , b
i
j) is controllable. However, the assumption 1 does not guarantee the feasibility of (10-11)

i.e. the proposed SOF solution is only su�cient for computing the controller, but not necessary.

4 Illustrative Example

The feature of the proposed scheme and e�ectiveness of the Fault-Tolerant Control System are

developed using an illustrative example with a SOF for polytopic LPV systems. We present

the case of two actuator faults which make unstable the closed-loop system. Let consider a

system described by N = 4 unstable models. These four models can be adapted from a LPV

model, where each of these ones represents a vertex, as it is done in [9] or in [22] where an

aluminum cantilever beam is considered under parametric uncertainties. The discrete state

space representation (5) consists of the following matrices:

A1 =




0.75 0 0 0

0 0.85 0 0

0 0 1.25 0

0 0 0 1.5




, A4 =




0.6375 0 0 0

0 0.7225 0 0

0 0 1.0625 0

0 0 0 1.275




A3 =




0.525 0 0 0

0 0.595 0 0

0 0 0.875 0

0 0 0 1.05




, A2 =




0.6 0 0 0

0 0.68 0 0

0 0 1 0

0 0 0 1.2



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C =




0 1 0 0

0 0 1 0

0 0 0 1




, B1 =




1 1

1 1

1 1

1 1




The other matrices are B2 = 0.8B1, B3 = 0.7B1 and B4 = 0.85B1. The system is in closed-loop

way with a SOF uk = −




(Ip−h − γp−h)−1 0

0 0h


Fyk (with yk = Cxk) which is synthesized by

Theorem 1 and Theorem 2. The following matrices are directly issued from the �rst Theorem

(with Tklmitool version 2.2 which is a Matlab-based graphical user interface to semide�nite

programming (SeDuMi) developed by R. Nikoukhah, F. Delebecque, J.-L. Commeau and L. El

Ghaoui, and later upgraded by L. Paolopoli, see http://www.eecs.berkeley.edu/~elghaoui/

links.htm) with parameters q = −0.05, r = 0.93 arbitrarily chosen for stabilizing the closed-loop

system:

V1 =




−0.157 −0.153 −0.132

0 0 0


 , V2 =




0 0 0

−0.157 −0.153 −0.132




X1 =




1 0 0 0

0 0.9680 0.1074 0.1079

0 0.1074 0.1738 0.1341

0 0.1079 0.1341 0.1071




,M1 =




0.9680 0.1074 0.1079

0.1074 0.1738 0.1341

0.1079 0.1341 0.1071




with X1 = X2, M1 = M2 and F = V M−1 =

p∑

i=1

GiVi(CCT (C

p∑

i=1

XiC
T )−1) :

F =




−0.0253 −1.2221 2.1734

−0.0253 −1.2221 2.1734


 , G1 =




1 0

0 0


 , G2 =




0 0

0 1




Parameters q and r are chosen in regards to system eigenvalues in the complex plane without FTC

strategy. A LMI-region is de�ned into the unit circle (see section 3.1) with an a�x (−q, 0) and
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a radius r: for a same example we can de�ne di�erent combinaisons of parameters i.e. di�erent

LMI-regions. This LMI-region allows to place system eigenvalues in a stable region in spite

of actuator failures: it is represented in Figure (5) with a dashed circle.

Figure (1) represents the parameters evolution of the system in nominal case: the system out-

puts(a), second actuator (b), �rst actuator (c) and parameters evolution α
j
k (d). The closed-loop

system is stable without any fault. At sample k = 2, the �rst actuator is out of order and also

an actuator fault of 60% loss of e�ectiveness appears on the second actuator. The matrix γ is

equal to

γ =




1 0

0 0.6


 , k ≥ 2
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10 20 30 40 50 60
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b 

c 

d 

Figure 1: Nominal case: (a) the system outputs, (b) 2nd actuator, (c) 1st actuator and (d)
parameters evolution α

j
k

Figure (2) represents the outputs in di�erent situations: a) represents the nominal case, b)

represents the faulty case with a failure on the 1st actuator and a fault on the second actuator
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Figure 2: Outputs: (a) Nominal case, (b) Faulty case, (c) Recon�guration case

at sample k = 2 and �nally, c) represents the recon�guration case at time instant k = 15s.

Figure (2).b) illustrates the instability of the closed-loop system in faulty-case and Figure (2).c)

illustrates the contribution of the proposed Fault Tolerant Control: the outputs converge toward

to their nominal values.

Moreover, the corresponding actuator signals are depicted on Figures (3-4). Figure (3).a) and 4.a)

present the actuators in nominal case and Figure (3).b) illustrates the lost of the 1st actuator.

Figure (4.b) illustrates the instability of the 2nd actuator in faulty-case and Figure (4.c) the

recon�gured control law with the 2nd actuator. In order to simulate a time delay of the

FDI block, the new control law is only applied at sample k = 15, see Figures (2.c) and (4.c).

[21] discusses issues with a time delay in FTC recon�guration. The reader could refer to this

NASA/NIA Report for more information on time delay in recon�guration. We do not deal

more with time delay on recon�guration because we assume that a perfect FDI is available.

We observe that the outputs and the control laws converge to zero. The system is stabilized

with the Fault Tolerant Control law in spite of these actuator fault and failure. Figure (5)
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Figure 3: 1st Actuator:(a)Nominal case, (b)Faulty and recon�guration case
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Figure 4: 2nd Actuator:(a)Nominal case, (b)Faulty case, (c) Recon�guration case

represents the evolution of closed-loop system eigenvalues which still remain into unit circle both

in fault-free case (in blue with ′o′) and faulty case (in red with ′∗′) with FTC strategy. The

LMI-region is represented by a dashed circle. Figure (6) represents the evolution of closed-loop

system eigenvalues in faulty case without FTC: we can see the closed-loop system is unstable. So,
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Figure 5: Domain of the closed-loop system eigenvalues in fault-free case (in blue with ′o′) and
with FTC strategy (in red with ′∗′)
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Figure 6: Domain of the closed-loop system eigenvalues in faulty case without FTC
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the developed FTC strategy allows the system to continue to operate safely in spite of actuator

failures.

5 Conclusion

The FTC method presented in this paper underlines the importance of the Fault Tolerant Con-

trol on polytopic LPV systems. Controllers are designed for each separate actuator through an

LMI pole placement in fault-free and faulty cases. The system continues to operate safely and

ensures closed-loop stability in spite of the presence of actuator failures. The main contribution

is the design of a Static Output Feedback that takes into account the information provided by

a FDI scheme. The proposed SOF solution is su�cient and place eigenvalues of the closed-loop

system into a predetermined LMI region inside the unit circle. From investigating a new al-

gorithm point of view in FTC, it may be a �rst step to develop a more practical active FTC

for nonlinear systems based on polytopic LPV representation. An example on a polytopic LPV

system has been presented to illustrate the e�ectiveness of the scheme.

Acknowledgments

We are grateful to anonymous referees for their constructive comments that have helped us to

improve the paper.

References

[1] G. Z. Angelis. System Analysis, Modelling and Control with Polytopic Linear Models. Phd

thesis, University of Eindhoven, The Netherlands, 2001.

[2] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki. Diagnosis and Fault-Tolerant

Control. Edts Springer-Verlag, 2003.

21



[3] M. H. Bouazizi, A. Kochbati, and M. Ksouri. Hinf control of LPV systems with dynamic

output feedback. In Proc. of the 9th Mediterranean Conference on Control and Automation

(MED'01), Dubrovnik, Croatia, 2001.

[4] A. Casavola, D. Famularo, and G. Franzè. Predictive control of constrained nonlinear

systems via LPV linear embeddings. International Journal of Robust and Nonlinear Control,

13(3-4):281�294, 2003.

[5] M. Chadli, D. Maquin, and J. Ragot. A lmi formulation for output feedback stabilization

in multiple model approach. In Proc. of the 41'st IEEE Conf. on Decision and Control, Las

Vegas, USA, pages 311�316, 2002.

[6] M. Chilali and P. Gahinet. H∞ design with pole placement constraints: an LMI approach.

IEEE Trans. on Automatic Control, 41(3):358�367, 1996.

[7] J. S. Eterno, D. P. Looze, J. L. Weiss, and A. S. Willsky. Design issues for fault-tolerant

restructurable aircraft control. In Proc. of the 24th IEEE Conference on Decision and

Control, Fort Lauderdale, 1985.

[8] J.C. Geromel, C.C DeSouza, and R.E. Skelton. Static Output Feedback Controllers: Sta-

bility and Convexity. IEEE Transactions on Automatic Control, 43:120�125, 1998.

[9] S. F. Glover. Modeling and Stability Analysis of Power Electronics based Systems. Phd

thesis, Purdue University, USA, 2003.

[10] F. Jabbari. Output Feedback Controllers for Systems with Structured Uncertainty. IEEE

Transactions on Automatic Control, pages 715�719, 1997.

[11] S. Kanev. Robust Fault-Tolerant Control. Phd thesis, University of Twente, The Nether-

lands, 2004.

22



[12] M. Maki, J. Jiang, and K. Hagino. A stability guaranteed active fault-tolerant control

system against actuator failures. In Proc. of the 40th IEEE Conference on Decision and

Control, Orlando, Florida, 2001.

[13] H. Noura, D. Sauter, F. Hamelin, and D. Theilliol. Fault-tolerant control in dynamic sys-

tems: Application to a winding machine. IEEE Control Systems Magazine, pages 33�49,

2000.

[14] R.J. Patton. Fault-tolerant control: the 1997 situation. In Proc. IFAC Symposium Safepro-

cess,Kingston Upon Hull, U.K, volume 2, pages 1033�1055, 1997.

[15] L. Reberga, D. Henrion, J. Bernussou, and F. Vary. LPV modeling of a turbofan engine. In

Proc. 16th IFAC World Congress, Prague, Czech Republic, 2005.

[16] M. Rodrigues. Diagnostic et commande active tolérante aux défauts appliqués aux systèmes

décrits par des multi-modèles linéaires. Phd thesis, Centre de Recherche en Automatique de

Nancy, UHP, Nancy, France, 2005.

[17] M. Rodrigues, D. Theilliol, M. Adam-Medina, and D. Sauter. A Fault Detection and Iso-

lation Scheme for Industrial Systems based on Multiple Operating Models. Control Engi-

neering Practice, To appear, 2006.

[18] M. Rodrigues, D. Theilliol, and D. Sauter. Design of an Active Fault Tolerant Control and

Polytopic Unknown Input Observer for Systems described by a Multi-Model Representation.

In Proc. 44th IEEE Conference on Decision and Control and European Control Conference

ECC, Sevilla, Spain, 2005.

[19] M. Rodrigues, D. Theilliol, and D. Sauter. Fault Tolerant Control Design of Nonlinear

Systems using LMI gain Synthesis. In Proc. 16th IFAC World Congress, Prague, Czech

Republic, 2005.

23



[20] D. Rosinova and V. Vesely. Robust Static Output Feedback for Discrete Time Systems LMI

Approach. Periodica Polytechnica, 48(3-4):151�163, 2004.

[21] J-Y. Shin. Parameter transient behavior analysis on fault tolerant control system. Technical

Report NASA-CR-2003-212682-NIA Report No. 2003-05, National Institute of Aerospace,

Hampton, Virginia, USA, december 2003.

[22] S. Da Silva, V. Lopes Junior, and E. Assuncao. Robust control to parametric uncertainties

in smart structures using linear matrix inequalities. Journal of the Braz. Soc. of Mech. Sci.

Eng., 26(4):430�437, 2004.

[23] D. Theilliol, H. Noura, and J.C. Ponsart. Fault diagnosis and accommodation of three-tank

system bsaed on analytical redundancy. ISA Transactions, 41:365�382, 2002.

[24] D. Theilliol, D. Sauter, and J.C. Ponsart. A multiple model based approach for Fault

Tolerant Control in nonlinear systems. In Proc. IFAC Symposium Safeprocess,Washington

.D.C, USA, CD-Rom, 2003.

[25] R. Veillette. Design of reliable control systems. IEEE Transactions on Automatic Control,

37:290�304, 2002.

[26] Z. Wan and M.V. Kothare. E�cient scheduled stabilizing output feedback model predictive

control for constrained nonlinear systems. IEEE Transactions on Automatic Control, 2004.

[27] N. E. Wu, Y. Zhang, and K. Zhou. Detection, estimation and accommodation of loss of

control e�ectiveness. Int. J. of Adaptive Control and Signal Processing, 14(7):775�795, 2000.

[28] Y. Zhang and J. Jiang. Integrated active Fault-Tolerant Control using IMM approach.

IEEE Transactions on Aerospace and Electronics Systems, 37(4):1221�1235, 2001.

[29] Y. Zhang and J. Jiang. Bibliographical review on recon�gurable Fault-Tolerant Control

systems. In Proc. IFAC Symposium Safeprocess,Washington. D.C, USA, CD-Rom, 2003.

24



[30] Y. Zhang, J. Jiang, Z. Yang, and A. Hussain. Managing performance degradation in Fault

Tolerant Control Systems. In Proc. 16th IFAC World Congress, Prague, Czech Republic,

2005.

25


