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CONVERGENCE OF GENERALIZED VOLUME AVERAGING METHOD ON A
CONVECTION-DIFFUSION PROBLEM : A SPECTRAL PERSPECTIVE

C. PIERRE*, F.PLOURABOUE, AND M. QUINTARD'

Abstract. This paper proposes a thorough investigation of the convergence of the volume averaging method
described in [36] as applied to convection-diffusion problems inside a cylinder. A spectral description of volume
averaging brings to the fore new perspectives about the mathematical analysis of those approximations. This spectral
point of view is complementary with the Liapounov-Schmidt reduction technique and provides a precise framework
for investigating convergence. It is shown for convection-diffusion inside a cylinder that the spectral convergence of
the volume averaged description depends on the chosen averaging operator, as well as on the boundary conditions.
A remarkable result states that only part of the eigenmodes among the infinite discrete spectrum of the full solution
can be captured by averaging methods. This leads to a general convergence theorem (which was already examined
with the use of the centre manifold theorem [22] and investigated with Liapounov-Schmidt reduction techniques [11]
in similar contexts). Moreover, a necessary and sufficient condition for an eigenvalue to be captured is given. We
then investigate specific averaging operators, the convergence of which is found to be exponential.

Key words. Volume averaging, homogenization, convection, diffusion, Sturm-Liouville, spectral theory, Picard’s
successive approximation method, spectral methods

AMS subject classifications.

1. Introduction. Volume averaging techniques are widely used to model transport problems
for which decoupled or separated scales can be identified. The first part of this introduction deals
with the potential interest of volume averaging for convection-diffusion problems in different ap-
plications. In the second part we discuss the interest and the specificity of volume averaging as
compared to other homogenization methods. This general discussion is developed in the paper in a
specific case suitable for mathematical treatment : the problem of convection-diffusion in a circular
tube.

Convection-diffusion inside a tube would seem to be a simple mathematical problem. It turns
out that it is a non-trivial problem, well-known in the history of applied mathematics. Starting from
Graetz [16] and Lévéque [19] in the stationary case, it has more lately interested Taylor [35] and
Aris [1] in the context of its transient non-stationary asymptotic behaviour. These seminal works
have inspired many others, some of which are discussed in the second part of the introduction when
discussing the methodological point of view.

Many research areas such as chemical engineering, bio-mechanics, porous media, are interested
by variants of such a simple generic convection-diffusion problem. For example, when the considered
problem involves many tubes inside which convection occurs (such as heat exchangers, or micro-
vascular beds), transport equations have been sought in terms of cross-section averaged fields [7,
18, 24, 38, 23]. Recently, the design and optimisation of micro heater exchangers has stimulated
the search for averaged equations governing averaged temperature either at the tube scale, or at
the scale of the whole exchanger [38, 23]. In the context of heat exchange in biological tissues,
averaged descriptions have remained very useful models [25] since the pioneering Pennes’s model
[27, 2, 3]. These investigations suggest that averaged temperature associated with “compartmental”
domains such as tissues and blood flow in vessels are interesting quantities to consider in order to
model heat exchanges inside bodies. In these cases it is crucial to understand how the micro-scale
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flow may be approximated by averaged models because, even if possible, a detailed description
of the full stationary problem at the local scale of each tube is not of great interest. In the
context of these applications, averaged models have proved to be useful and interesting for applied
concerns. Nevertheless, even if the description of averaged quantities is useful in practise for obvious
operational reasons, there are still numerous questions concerning the validity and the quality of
the approximation given by these ad-hoc models. As a matter of fact, even if the model predictions
could be in retrospect tested numerically, it is always interesting to better understand what their
mathematical foundations are. This allows one to better understand their limits and their possible
extensions. In this paper, we investigate the model of stationary convection-diffusion inside a tube.
This study shows that, in this particular context, an averaged description can only capture large
scale features of the exact solution, the convergence of which can be made as precise as necessary.

From a methodological point of view, spatial averaging is at first used as an operational defini-
tion of macro-scale quantities. From this, macro-scale equations may be derived, and the reader is
referred to the paper [12] for a review of the different perspectives and points of view. For example,
macro-scale equations are introduced by many authors from extensive use of irreversible thermo-
dynamics [17] (this approach is also often called mixture theory). In this paper, we are interested
in methods that provide a direct, deterministic link, through some mapping variables, between the
micro-scale and the macro-scale fields. Such a method has been applied to determine macro-scale
transport equations for porous media applications, as illustrated in [36] whilst concomitantly a very
similar approach has been proposed by Brenner [9]. Many characteristics and assumptions of the
cited methods are close to other macroscopisation methods, such as homogenization theory [6, 33].
Indeed, the general agreement between both methods has been described for diffusion problems in
[8]. The major features may be summarised in the following terms:

e The macroscopic characteristic scales are supposed to be decoupled from the microscopic
ones, each level having its own variable description.

e The Initial Boundary Value Problem (IBVP) that determines the micro-scale fields is solved
in an approximated manner in terms of the macro-scale variables and some mapping variables. The
approximation is materialised by micro-scale problems or closure problems that completely define
these mapping variables.

e Having solved these micro-scale problems, the macroscopic mathematical description is es-
sentially dependent on the estimation of macroscopic coefficients or effective coefficients that are
explicitly given in terms of averages of the mapping variables.

One feature of the considered volume averaging method is, therefore, that some additional
hypotheses are needed in order to simplify the original problem and relate the micro-scale fields to
the macro-scale ones. These additional relations, which we called “closure relations”, are problem
dependent, and must be consistent with the assumption made of separated scales. This feature
is common to almost all homogenisation methods. For example, asymptotic methods are based
on regular asymptotic expansions for inner (micro-scale) and outer variables (macro-scale) to be
specified, the scaling of which has to be carefully evaluated by order of magnitude analysis of the
relevant parameters [21]. Another method involving scales is the time-scale separation between
master and slave modes based on centre manifold description [30]. This method has been used
to provide a general and rigorous treatment of Taylor dispersion [20, 22, 37, 4, 28, 10, 31, 5].
This method shares many features with the one examined in this paper, beside a more general
background and different objectives. One important starting point for this method is to use steady
state solutions as decomposed into a discrete and infinite set of eigenfunctions. Examining a linear
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problem, the temporal solution are then linearly decomposed into those stationary eigenmodes, i.e
each stationary eigenmode is associated with a non-stationary one. Among those, the one associated
with the trivial zero eigenvalue is called the master mode because it is associated with slow temporal
relaxations of interest for long-time asymptotic behaviour. The other temporal modes fulfil fast
temporal relaxations whose influence on the master mode can be re-cast into the master equation
parameters. The coupling between slave and master modes is obtained from a linear decomposition
strictly similar to the above mentioned “closure relations”. These closure relation are derived from a
Lyapunov-Schmidt reduction [4, 5] associated with a small parameter which is the product between
the Péclet number and the aspect ratio of the considered tube.

The general philosophy of this master/slave time separation method is then much similar to
the one applied in this paper on the spatial level. In the case of volume averaged methods, far-field
spatial asymptotic behaviour (sometimes called “fully developed” spatial variations) are interesting
in that they describe the evolution of a simple one-dimensional macroscopic field, without requiring
of a precise description of supplementary spatial variations. There is nevertheless one major tech-
nical difference with the goal pursued in this paper. In the case of the master/slave time separation
method, the invariant manifold theorem gives a nice framework for the validity of such slow/fast
mode decomposition close to any trivial zero eigenvalue [22] (because the time scales separation
is governed by the ratio of the fast to slow modes eigenvalues). This framework can be easily
transposed for spatially decaying mode close to a trivial zero eigenvalue [4]. Those zero eigenvalue
macroscopic modes might be interesting, especially when the problem has Neumann boundary con-
ditions. In this case, direct Liapounov-Schmidt reduction techniques have been used to assess the
convergence of averaging models, for example, when chemical reaction occurs within the fluid [11].
In section 5.1.1 we will compare our results with those obtained in [11] that are re-discussed in
the third section of [5]. Those zero eigenvalue macroscopic modes are nevertheless less interesting
in transfer problems. In that case they are associated with a spatially uniform eigenmode whose
contribution to the transfer between the tube wall and the fluid is zero. Other non-trivial spatially
decaying eigenmodes should then be sought. This is especially true when boundary conditions are
not of Neumann type, so that there is no trivial zero eigenmode. But, in this case, the invariant
manifold theorem hardly guarantees the validity and accuracy of a slow/fast scale decoupling. One
of the purposes of this paper is to re-examine the conditions for which a macro/micro decoupling
is a sensible approach in the case of a simple convection-diffusion problem, with general boundary
conditions. In this sense, the presented analysis extend previous works [11, 5] which have used
Liapounov-Schmidt reduction techniques close to a 0 eigenmode. Our analysis considers the ap-
proximation of non-zero eigenmodes with non-self-adjoint operators. Whilst restricted to a given
convection-diffusion problem, this paper examines the precise conditions for which a part of the
exact solution can be captured by an averaged model. One important conclusion, for applications
purposes, that is drawn from the proposed analysis is that, depending on the chosen averaging
method (more precisely depending on the applied weighting function), the non-trivial, interesting
eigenmodes can not always be captured. It is therefore of great interest to know better what causes
averaging for convection-diffusion problems to work and why.

Moreover, there is an additional interest in our analysis for those willing to use averaged models.
Macro-scale equations, as generally introduced in the literature [36], come from first order terms.
The ”quality” of the first order approximation is often checked through some comparison with
direct simulations, or analytical solutions of the micro-scale equations, or by developing estimates
for the higher order terms. It is often difficult to have a precise quantitative determination of those
terms, and the first approach, if available, is a valuable information. In a preliminary study of the
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tube problem, it was found that the approximation proposed by [29] would provide a reasonable
estimate of the exchange term for the established regime in the case of diffusion/advection in a tube
with constant temperature or concentration at the surface [15]. The objective of this paper is to
exhibit a higher order analysis of the problem from which convergence proofs can be obtained so
that a posteriori conditions are found for the definition of the macroscopic scale.

The paper is organised as follows. The second section reviews convection-diffusion problem
in the stationary case, and describes its known solutions. A short review of the results obtained
with the volume averaging method is also presented in this section to further document the general
context of the study. The third section presents a generalisation of the volume averaging method
previously used to describe temporal variations [4, 5]. This leads to a precise formulation of the
mathematical convergence to any eigenmode. The fourth section presents the convergence proof
in a two-step procedure. Some numerical results associated with the the convergence of different
averaging operators are presented at the end of this section.

2. General background.

2.1. Convection-diffusion problem. The material exposed in this section closely follows
classical steps that may be find in textbooks, see for instance [13]. We first present the dimensionless
formulation associated with convection-diffusion of a passive scalar inside a cylinder, with radial
coordinate  made dimensionless by the tube radius R. This passive scalar could be associated, for
instance, with some heat or mass transfer problem, and we will refer to it as T'(r, ¢, z). Classicaly,
the ratio between convection to diffusion characteristic times is associated with a dimensionless
Péclet number Pe = (v)R/D,,, where D,, is the diffusion coefficient of the passive tracer in the
liquid, and (v) is the spatially averaged velocity field. The physical problem giving the convection
velocity is supposed to be independent of the passive scalar, so that a translation-invariant fully
developed flow v(r) settles in the longitudinal direction z along the cylinder principal axis. Making
dimensionless the longitudinal direction z by the tube radius R, the stationary governing equation
expressing heat — or mass — conservation of the passive scalar T'(r, z) reads :

AT = Pev(r)0,T, with wv(r) >0 analyticalin 0, (2.1)

where A stands for the Laplace operator, which will be appropriately expressed in cylindrical coor-
dinates. As discussed later, we will be mainly interested in situation where Pe > 1. Nevertheless,
it is important to note that other definitions of the dimensionless variable in the z direction could
be adopted. As a matter of facts, the typical longitudinal variations are linearly increasing with
the Péclet number when Pe > 1, and, furthermore, the longitudinal dimensions of the tube could
be much larger than its radius. Hence, many authors among which [4, 5] prefer to introduce an
additional parameter pe = PeR/L where L is some longitudinal characteristic length associated
with the axial variations. In this context, many studies such as the classical ones [35, 1] have been
interested in the limit of pe <« 1, while Pe > 1 so that longitudinal diffusion can be neglected
in comparison with transverse diffusion. This choice is important when considering the averaged
description of equation (2.1), which should then be written with a small parameter pe instead of a
large parameter Pe on the right hand side. In the following, we will keep using the Péclet number
Pe parameter for the problem. Of course, this choice should give equivalent results as those ob-
tained from the use of the small parameter pe, as will be explained in section 5.1.1.

In the case of a Newtonian fluid, the velocity field develops a parabolic Poiseuille flow v(r) =
2(1 — r?). Because its particular importance, all the numerical results will be given in this case.
However all the theoretical results obtained in this paper still hold for general nonnegative velocity



first draft for submission in STAM AM 5

fields v(r) > 0 that are analytical in 0. General velocity profiles are of interest for applications as-
sociated with non-Newtonian fluid, such as for example blood for which different analytical model
have been proposed for the velocity profile in a tube [14]. This can also be useful in the treatment of
turbulent dispersion in tubes, for which the Poiseuille solution is replaced by the turbulent average
velocity field, following the double averaging procedure in Pedras and Lemos (2001) [26].

Because of its relevance to many research areas, this partial differential problem has received much
attention. Three basic classes of boundary conditions are naturally associated with this cylindrical
geometry : adiabatic Neumann boundary condition 8, T(r = 1, ¢, 2) = 0 — we shall refer to it as N’
in the following —, constant temperature Dirichlet boundary condition T'(r = 1, ¢, z) = 0 — we shall
refer to it as D in the following — or mixed Robin boundary condition 0,T(r = 1, ¢, z) + yT(r =
1,¢,2) = 0 where v > 0 may be called Thiele modulus by reference to the case of heterogeneous
reaction — we shall refer to it as R in the following. Furthermore, the passive scalar reference value
is chosen so that, far away from the origin, it reaches its equilibrium state, T'(r,00) = 0. The
only missing boundary condition is the initial value of the scalar field at the cylinder origin z = 0,
T(r,0) = To(r), which has to be specified. It is easy to note that the PDE problem (2.1) is not
tensorized, so that it does not independently factorise the radial coordinate r and the longitudinal
one z. Whilst very simple, the linear problem (2.1) does not have any explicit general solution.
Hence, many authors have been interested in the special limit for which a variable separation can
be found. In the limit of large Péclet number, Pe > 1, when neglecting the longitudinal diffusion
compared to the radial one, equation (2.1) degenerates to :

1
<AC + r—28§,> T = Pev(r)0,T , (2.2)

where A, stands for the cylindrical part of the Laplace operator A, = 1/79,(r0,), and ¢ is the
azimuthal angle. It can be shown that such an approximation is O(1/Pe?), because in this limit,
the longitudinal typical variations scale linearly with Pe [13]. Equation (2.2) associated with either
Neumann AN, Dirichlet D or Robin R boundary conditions, is then a separable problem, for which
the PDE degenerates into a Sturm-Liouville ODE problem. Graetz [16] has found that its general
solution is associated with the discrete sets Ly, N € Z, of eigenvalues depending on the boundary
condition :

T(r,¢,2) = Z Z CNJGNJ(?“)eiN%ﬁZ , (2.3)

NEeZleLn

We define the generalised Graetz functions G n; as the functions of r that satisfy :

(AC — ]X—;) GNJ = lU(T)GNJ with D : GNJ(l) =0, N 8TGN71(1) =0
Gralr), B . B (2.4)
T(T’ = O) = 1 R : GN,l(].) + ’YarGN,l(]-) =0

For a general — analytical in 0 — velocity field v(r) one can use the Frobenius method (Cf e.g. [32])
to see that the following equation :
N2
<Ac - ?> y=wry ,

which is singular in zero, has two linearly independent solutions y; and ys; the first one regular in
0 satisfies y1(r)/r™ (r = 0) # 0, and the second one being singular in 0 : y2(0) = +o00. As a result,
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the equation (2.4) with initial condition Gy ;/r™(r = 0) = 1 defines a unique function Gy, —that
we will call generalised Graetz function — for each [ € C and N € Z. Thus the following conditions
n (2.4), Gn (1) = 0 for D, 9,Gn (1) = 0 for N, or Gn (1) + 79-Gn,i(1) = 0 for R only selects
among these generalised Graetz functions those satisfying the correct boundary condition.
Historically, the cylindrical Graetz functions Gy ; has been associated with a parabolic Poiseuille flow
v(r) = 2(1 —r?) and it is usually found in the literature that the function Gy is the eigenfunction
of v/—I rather than [. However this notation will be kept for the sake of simplicity in the rest of the
paper, and Appendix A gives a more detailed discussion of Graetz eigenfunction and their relations
with confluent hyper-geometric functions —or Kummer’s functions.

Because (2.4) defines a self-adjoint Sturm-Liouville problem, the eigenvalues associated either with
the Dirichlet, Neumann or Robin conditions are real. Moreover, the chosen far-field extinction
boundary condition T'(r,00) = 0 selects, among those, negative eigenvalues. Ly is therefore a
discrete set Ly C R~ of ordered eigenvalues Ly = {--- < iy < --- < l1,ny < lo,v < 0}. For
convenience, we will use a specific notation for the sets associated with Dirichlet, Neumann or
Robin boundary conditions, i.e :

LD = {l ER™, Gy (1) = o} . LY = {z €R™,0,Gny(1) = o}

or  LR= {l ER™,Gr(1) +70,Gn (1) = 0}. (2.5)
Py =0 =1 =2
N =0 | -3.656793458 | -22.30473055 | -56.96051540
N =1 | -10.69115115 | -37.38965286 | -80.07477640
N =2 | -21.24944651 | -56.05580310 | -106.8036412
N =3 | -35.46611328 | -78.38573690 | -137.2070675

First three elements (i = 0,1,2) of sets Lﬁ for Dirichlet boundary conditions, N = 0,1,2,3 and a parabolic

velocity field v(r) = 2(1 — r2)

TABLE 2.1

Ny i=0 i=1 i=2
N=0 0 -12.8398060 | -41.93087773
N =1 [ -4.160532810 | -25.33493287 | -62.48391850
N =2 [ -12.83980600 | -41.93087773 | -87.08337035
N =3 | -26.13743028 | -62.80555035 | -115.8424000

TABLE 2.2

First three elements (i = 0,1,2) of sets L% for Neumann boundary conditions, N = 0,1,2,3 and a parabolic
velocity field v(r) = 2(1 — r2)

Graetz has computed the first eigenvalue with two digits precision in [16]. Tables 2.1 and 2.2
give the numerical estimates of the first three eigenvalues associated with a parabolic flow, Dirichlet
and Neumann boundary conditions. More complete and precise computations of the eigenvalues
can be found, for example, in [34]. S olution given by (2.3) can be completed by the orthogonality
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properties of the eigenfunctions :
27 1 ) - o,
/ / Gna(r)eNoGys y(r)e™ ™ Pu(r)rdrdd = 0 if N#N or l#£1. (2.6)
o Jo

where the over bar denotes a complex conjugate. Hence, using (2.6), the constant coefficients
¢, in decomposition (2.3) are directly related to the projection of the initial conditions over its
corresponding eigenfunction G ; :

27 1 ‘
/ / To(r, )G i (r)e” N u(r)rdrdg
o= 20 Jo .

¢ (2.7)

1
27 / |GN,l(r)|21)(r)rdr
0

Hence, using the eigenfunctions defined in (2.4) the complete solution of the high Péclet limit
of the convection-diffusion problem (2.2) within a tube admits a complete spectral representation.
Incidentally, the convergence of this representation is known to be rather slow [34]. This is especially
true when describing the solution near the origin z = 0. In this limit, even if (2.3) and (2.7) describe
the true mathematical solution, the Lévéque [19] asymptotic expansion should be preferred, because
of its simplicity.

Nevertheless, this spectral representation is very useful when only part of the solution is re-
quired, as for example, for the far field behaviour when z > Pe/(l; — lp), for which the solution
exponentially converges to the first eigenfunction. In the following, we will concentrate on the first
eigenfunctions and their associated eigenvalues. We will be furthermore interested in the averaged
description of the solution. It should be noted that a uniform averaging along the disk section of the
cylinder only keeps axi-symmetrical modes. A more detailed discussion about non-asymmetrical
contributions to the averaged description will be discussed in section 5.1.3. The amplitude decom-
position (2.7) nevertheless shows that every axi-symmetrical eigenvalue [; ¢ contributes to uniformly
averaged concentration solution. This should be kept in mind in the following because many results
associated with averaged description in the literature have neglected contributions from eigenvalue
li0, with ¢ > 1. In the following, we will, for example, see (what is already obvious from directly av-
eraging solution (2.3) & (2.7) which lead to no contribution of [ # 0 modes for which (v(r)Gy,) = 0)
that a uniform averaging does not permit to capture any decaying eigenvalue associated with the
Neumann boundary conditions.

2.2. Weighted volume averaging method. In this section we present an improved version
of the volume averaging method introduced in [36] that nevertheless remains closely related to
this first method — that we will call ”standard volume averaging method”. The improvement is
based on the introduction of weighted averaging operators as proposed in [15] when the standard
volume averaging method only considers averaging associated with the Lebesgue measure. The
use of weighted averages had been considered long ago for averaging transport equations [39, 40,
29, 12]. The intentions were to correctly regularize the micro-scale fields, with the objective of
improving comparison with experiments. It is interesting to notice that this paper emphasizes
another important and fundamental role of weighted averages more related to the mathematical
structure of the operator to be averaged.

2.2.1. Definition and notations. To introduce general weighted averaging operators we
first introduce the standard averaging operator ( ) corresponding to the Lebesgue measure on each
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cylinder section for functions with radial symmetry :

(T) (6.2) =2 / T(r, ¢, 2)rdr

and we now define a general weighted averaging operator ()* sometimes simply denoted * associated
with any normalised weight function w(r) — i.e. such that (w) =1 —in cylindrical coordinates as :

(TV(6,2) = T*(6, 2) = (Tw)(e, 2) = 2 /0 T(r, 6, 2)w(r)rdr . (2.8)

In the next sections of this paper we will examine special cases of weight function w. First, a uniform
weight w = 1 is associated with the standard volume averaging method [36]. Another interesting
case, introduced in the preceding section is the “mixing-cup” averaging where the weight function
has a dependence exactly similar to that of the velocity field w(r) = v(r)/(v). The resulting averaged
temperature is also often called bulk temperature. As mentioned in the previous section, this weight
function is precisely interesting to be considered in this context because it exactly corresponds to
the orthogonalisation operator associated with the Graetz eigenfunctions, as illustrated in (2.6).
In the following, the averaging operator is either defined using a specific weight function yet to be
specified w, or, on the contrary, to simplify the notation, a generic * is used for averaging (2.8).
Now, averaging the theoretical solution (2.3) leads to :

T*(g,2) = > Y Onue™%e* with Cy,=cn G, ER. (2.9)

NEZIELN

It should be noted that a supplementary average along the azimuthal direction ¢ could be performed.
If uniform along ¢, such average will only preserve the axi-symmetric mode N = 0 in (2.9). If
the azimuthal averaging is chosen non-uniform along ¢, then the averaged solution could have
contributions from non axi-symmetric mode N # 0. In the following, we will be mainly interested
in averaging along the radial coordinate. Thus the macroscopic field depends on the azimuthal
angle ¢. The results that are presented for the convergence of averaging models, will be discussed
for any azimuthal mode N. Those averaged models, could easily been averaged a second time along
¢ to find longitudinally varying averaged equations as finally discussed in subsection 5.1.3.

As mentioned in the introduction, the volume averaging method is a general technique whose
purpose is to find a macroscopic description, i.e , an averaged description of a microscopic field
that fulfills some PDE problem, without explicitly solving the complete problem, but solving some
simplified version of it. Greek letters will be reserved for quantities associated with the volume
averaging predictions. Prediction for the scalar field T" is thus denoted ©. In general, the prediction
is decomposed into a macroscopic volume averaging prediction ©* and some local deviation 6 to
this macroscopic behaviour :

O(r,¢,2) = ©*(¢,2) +0(r,$,2) = D (ON(2) +On(r,2)) ™ (2.10)
NeZ

with the associated condition (#)* = 0. In the upscaling techniques considered in this paper, the
derivation is sought generally under the form of a mapping onto the macroscopic variables and
derivatives. The averaged of the microscale equation will be discussed in detail later. This macro-
scale equation can be used to show that ©* also decomposes into a sum of exponential modes :

0% (¢, 2) = Z Oy (2)eN? | (2.11)

NeZ
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@7\,(2’) = Z CNM\@%Z with Cya = CN7)\F7V’)\ € R, (2.12)
AEAN

where the corresponding Greek letters have been used to describe the approximated discrete spec-
trum Ay and its corresponding approximated eigenvalues A, as well as the corresponding approxi-
mated eigenfunction I'y , approximating G, with an approximated amplitude cy,y that will be
more explicitly defined in section 4.

The main purpose of section 4 is to find from which conditions it is possible to find intersections
between Ay and the eigenvalue set Ly (2.5) of the theoretical problem (2.2). Tt will be found in
section 4.1 that only a part of the spectrum Ly can be approzimated by elements of Ay. It will fur-
thermore be shown in section 4.2 that elements of A converges toward these elements of Ly that
can be approximated when increasing the order of the averaging method. The rate of convergence
is consequently studied in section 4.3.

2.2.2. Weighted volume averaging technique. In this subsection we present the principal
steps of the weighted volume averaging technique. The next section will a posteriori justify the
classical assumptions made in this section, from examining the weighted volume averaging method
generalised to higher order. We will study here both Neumann and Dirichlet Graetz problems.
The case of Dirichlet boundary conditions associated with the Graetz problem has been previously
examined in the context of the standard volume averaging technique in [15]. The first step of the
method is to average the governing equation (2.2), so that (2.2)* is

Ped. (vO)* = (A.O)* + %@;ey = (AO)* + 7128;<@>* . (2.13)

The next step is to use decomposition (2.10) and (2.11) in (2.13), so that a macroscopic equation
is defined for O% :

(A.ON)" — N? <?—§>* = Ped. (vON)". (2.14)

The completeness of this macroscopic equation necessitates the knowledge of deviation 65. The
problem associated with the deviation 6y is now obtained from subtracting (2.14) from (2.2) :

(v = (v)") Ped.OF + Ped, (vOn — (v0n)") = LNON , (2.15)
where L7} stands for the non-local differential operator :

NON = AnNOn — (ANOnN)*,
2

N
ANOny = A.On — T_ZGN’ (2.16)

1
(ANO)" = (AON)" — N2<r_2@N>*
This operator is neither local nor self-adjoint. It is nevertheless invertible as shown in appendix

C. The first term of (2.15) is a macroscopic source term that enters in the microscopic problem
defined for deviation #p. From now on, no hypothesis has been made and the above equations are
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exact. These equations are nevertheless not closed because the coupling between the deviation and
the macroscopic field still remains unsolved. Finding this coupling is in fact exactly identical to
solving the original problem (2.2), the resolution of which we precisely want to avoid.

Hence, the key step is then to find a suitable hypothesis to close deviation problem (2.14) so that it
should only depend on the macroscopic field ©% . First, it should be born in mind that the governing
equation (2.2) is linear. As a consequence, it is obvious that the deviation 6y dependence with
the macroscopic field ©% has to be linear here. Such a linear dependence is in fact very generally
admitted in most of the application of the method [36], and comes from the assumption of scale
separation. Hence, one writes the “closure hypothesis” by introducing the additional closure field
or mapping variables ag 1(r) which relates the deviation x(r, z) to the macroscopic field ©%(2) :

On(r,z) = (w(r)aoyN(r) - 1)@},(2) + w(r)oaq,n(r)Ped,ON(2) ,
or equivalently :
On(r,z) = ao n(r)ON(2) + a1 n(r)Ped.ON(2) . (2.17)

It is clear that additional terms are required to obtain an exact solution, and this is our objective
to understand what has been kept in such an approximate solution. Using the closure hypothesis
(2.17) in (2.15) we obtain :

(ﬁ}\;ao,N)G}*V + (ﬁ}(\,aLN —v(r)oo,n + (vaO,NY )Pe@z@}\,
- (v(r)ozLN - <voz17N>*)Pe28§ N=0

The condition of this equality is that each coefficient multiplying the macroscopic field variations
©*,0,0*,0?0* are equal to zero. Nevertheless, (2.17) has introduced a closure hypothesis with
only two terms, so that, the first two terms should also self-consistently be considered here. This
last point is further discussed in the next section. Hence, problems associated with the closure
fields oo, ;v and o v are :

{ (CTVOZE,N)(T) = 0 and { (@vajw)(r) - v(r)ao,n (1) = (vao,n)” (2.18)
o, N = 1 a1,N =0
with i n(1) =0 for D, Oray n(1) =0 for N or
aiN(1) +v0ra; (1) =0for R, i=1,2
These problems can be solved analytically for a Neumann, Dirichlet or Robin boundary condition

and their resolution is detailed in appendix C. When introducing these solutions in the macroscopic
problem (2.14), one find the following macroscopic problem

Ko nOy + K1 nPed. O — (vay n) Pe*020% =0 (2.19)
which involves the effective parameters
K07N = <AN050,N>* 5 Kl,N = <AN051,N>* — <’U0¢07N>* 5 (220)

and the solution for ©% decomposes to a sum of exponential modes with an associated characteristic
length Pe/\ which then defines the set A; n of eigenvalues predicted by the volume averaging
technique

M ={ A/ Kox+EKinA=(varn) 22 =0}. (2.21)
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2.2.3. Explicit results. This subsection gives the solutions of problem (2.18) i.e, the mapping
variables, and (2.19) obtained for different values of the weighted function w.
e Standard volume averaging, w = 1, axi-symmetric mode N =0 :
The solution for the closure function has been found equal to :

= 2(1—r? 1
for D : { @0,0(r) Tg TZ ) 2 1, for N { @0,0(r) A2 (2.22)
ao(r) = FT-5+%5 3 are(r) = —F+7 -5
So that constants Ky ¢ and K; o can be computed :
| Koo = -16 f Koo = 0
for D : { Kio = —2 for N : { Kip = -1 (2.23)

These calculations permit to compute the associated approximated eigenvalues by solving (2.21).
As already observed in [15], the resulting Dirichlet eigenvalue )\30 ~ — — 3.874877690 gives a
rather good approximation of the Graetz value l(?o ~ —3.656793458 up to 6%. On the contrary,
the Neumann eigenvalue i ~ —12.839806 is completely missed by the volume averaging method,
which nevertheless gives the trivial solution zero l{)\fo = 0. This trivial solution is of course of great
practical interest since it corresponds to the exact solution when the temperature at the origin is
constant, it also gives the correct averaged temperature of the far field solution.

e Flow averaging, w = v/{v) = 2(1 — r?), axi-symmetric mode N =0 :

The solution for the closure function has been found equal to :

3 2
= 3(1- 1
for D : { @0.0(r) %e( 3:4) stz g1 s for N { @0,0(r) A2 (2.29)
aro(r) = - % + 65 ~ iso ao(r) = —F+5T -1
So that constants Kq o, K1,0 can be computed :
for D ;4 Koo = _%3 , for N - Koo =0 (2.25)
10 = —u Ko = -1

The approximate Dirichlet eigenvalue is found in this case equal to )\0?0 ~ —3.809523810 which

is 4% from the theoretical Graetz eigenvalue lo? o- The Neumann trivial solution )\6‘7/0 = 0 is also
found and the first Neumann non-trivial eigenvalue )\{‘_/0 is also totally missed in the case of a flow
averaging. /

The following section investigates the capacity of the method to find the correct answer to the
problem, while generalising it by introducing higher order closure hypothesis.

3. Weighted volume averaging method of higher order. The notations and method-
ological steps in this section are closely following those previously presented in sections 2.2.1 and
2.2.2. More precisely, the solution we are looking for is decomposed as (2.10), and the same exact
steps (2.13) to (2.15) are now considered again.

The improvement of the method consists in a generalisation of the closure hypothesis (2.17). This is
introduced in order to ameliorate the results previously obtained in section 2.2.3, with, for instance,
the hope to capture the first non trivial Neumann eigenvalue lffo.

From the property (4.2) of the exact solution, that will be studied in section 4.1.1, and from the
previously examined closure relation (2.17) let us now introduce a generalised closure relation :

On(r,2) =Y ann(r)Pe"drON(2) , (3.1)

n=0
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with p > 1. The case p = 1 has been analysed in section 2.2.2, and we now follow the same steps.
Using (3.1) in the deviation equation (2.15) it is found — assuming that a1 n(r) =0 :

p

Z ( NOn, N — V0n_1,N + <van_17N>* )Pe"@?@f\,(z)

n=0

— (vap,n — (vapn)* ) PePTTOPTION (2) = 0

The condition of this equality gives, at each order, the closure problem associated with the closure
functions ay, v (1), whose solvability is left to appendix C, and which is to be solved recursively :

Lyoann = v(r)an—1,n(r) — (va,—1n)" with a_1n(r)=0

aS’N = or a;’N =0 for n>1

apn(l) = 0 for D (3.2)
Oran N(1) = 0 for N

The resolution of these problems is detailed in appendix C.2.
From solving (3.2) it is possible to find the generalised macroscopic closed problem at order p :

p
Z K, NPe"dmO0% (2) — (vay n)* PePTLoPTIO%(2) =0 (3.3)

n=0

where the macroscopic coeflicients K, n are given by :
Kn,N - <AN04n,N>* - <U04n—1,N>* ) Kn,N S R7 (34)

The predicted solutions of (3.3) then decompose into a sum of exponentials with modes A/ Pe for A
belonging to the set of predicted eigenvalues at order p, A, v, defined as the zeros set of a p+1 order
polynomial :

p
Mpv ={A /Y KuwA" = (vapn) A =0} (3.5)
n=0

As previously, A, v is independent of Pe, but does depend on the chosen boundary conditions, and

the order p of the closure relation. This last point naturally leads to the concept of convergence :
DEFINITION 3.1 (convergence of the weighted volume averaging method).

The elements of all sets Ap N define sequences of predicted eigenvalues : (Ai’p)pzl,izo’ Aip €EAp N

We shall say that the method is convergent toward some eigenvalue l; € Ly of the theoretical

problem (2.2) if there exists a sequence of predicted eigenvalues (/\@P)pzuzo such that N\jp € Ap N

and limpHJroo )\i,p =1; € Ly.

We will establish the convergence for a characterised part of the spectrum in section 4.3.

4. Convergence analysis. Previous sections have mainly considered the explicit application
of the averaging method to Graetz problem. The necessary material and notation being now
defined, this section considers the mathematical analysis of the convergence of these averaging
methods. This convergence analysis requires two different steps. The first step introduces two
necessary conditions over eigenvalues, for convergence to hold. The second step gives the proof that
these two necessary conditions are sufficient. In the two subsequent sections, the results are derived
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in a general context, and formally apply to any mode N, as well as any boundary conditions D,
N or R and any flow v(r). Hence, in order to simplify notations, the analysis does not mention,
unless necessary to avoid confusion, which azimuthal mode it refers to, nor the boundary conditions
that is considered. Finally, specific situations will be considered in section 4.3 for analysing the
numerical convergence.

4.1. Restricted convergence of weighted averaging methods. We define in the two
following subsections two sets, the validity — D}, — and the accessibility — D;.. — domains, which
are disks lying in the complex plane C. As we will see, a necessary condition for the weighted
averaging method to converge toward an eigenvalue [ € L is that this eigenvalue belongs to both

these domains.

4.1.1. Validity domain D} ;. The variables of the initial problem (2.2) can be separated so
that any solution T'(r, ¢, z) may be written as a product of functions of r, ¢ and z only. Let us first
show in this section that the exact solution of the problem can be formally written as a regular
asymptotic expansion of the macroscopic field T*(¢, z). First let us decompose T" as :

T(r,¢,2) =Y Tn(r,z)e™N? (4.1)

NeZ

The aim of this subsection is to analyse under which condition the N** component Tix(r,z) in
decomposition (4.1) of the theoretical solution T'(r, ¢, z) can be written as the following expansion
of TX(2) :

Tn(r,z) = an(r)Pe"drT5(z) (4.2)
n>0

(where the index N on the closure functions a,, () has been omitted for simplicity) to be compared
with the general closure hypothesis (3.1) for On(r, 2).
Let us recall the form of the original solution (2.3) :
Tn(r, z) = Z aTi(r,z) with g eR, T(rz) = GN,l(r)eﬁz , (4.3)
lELN

so that (4.2) is true for T (r, z) if and only if it holds for each function T;(r, z) standing in the
decomposition (4.3) of Tx(r, z). Comparing then the expression for 7; in (4.2) and (4.3), one can
see that (4.2) holds for Tj(r, z) if and only if the following equality over the Graetz eigenfunctions
Gy holds :

Z an (M = Grilr) . (4.4)

*
7>0 GN,z

We will prove that both functions G (r) and Gj\” are analytical with respect to [, so that the
expansion of Gy,(r)/GY; on the form (4.4) is only possible for I belonging to a disk D* , centered
on zero whose radius R is equal to the smallest root of Gj :

DEFINITION 4.1. Let us call validity domain the disk D}, C C :

va

s =11, |l|<R} where R=inf{|l|/ Gy, =0}
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it is depending only on the averaging operator x and on N.

Now, one can see that the decomposition (4.2) is not true in general. It is true only if all the
eigenvalues [ standing in the decomposition (4.3) of T (r, z) belong to the validity domain D} ;.
An important consequence is that a closure formulation (3.1) only makes sense for eigenvalues lying
in D ;. Hence, a necessary — but not sufficient — condition for an eigenvalue [ € L to be predicted
by the averaging method is to lie within D7 ;. It is also interesting to note that D}, only depends
on the averaging operator x, and IV, but not on the boundary conditions.

We summarise this condition, as well as the definition of the new functions a,(r) in the following
lemma (4.2) :

LEMMA 4.2. The base functions Ti(r, z) = G (r)ere* for problem (2.2) can be written :

Ti(r.2) = Y au(r)Pear T ()

n>0

iff l € D}, defined by

sa={1/ <R} where R=inf{|l]/ Gy,=0},

val —

and the functions a,(r) are the solution of the recursive scheme :

Anan(r) = v(r)an—1(r) with a_1(r) =0 (4.5)
ay=1 and ay =0 for n>1 ’
Proof. In appendix B we give the proof that the functions Gy, (r), 0,Gn,(r) and ANGn ()

are analytical with respect to [ on the whole complex plane C. More precisely there exists a set of
functions (¢n(r)),cn (depending also on N) defined by (B.4) such that for ~ € [0,1] and [ € C one
has :

Gna(r) = an(MI", 0Gnu(r) =D Opgn()l™ and ANGni(r) =D Angn(r)i" .
n>0 n>0 n>0
GNJ(’I“) 8TGN71(7“) ANGNJ(T)
Gng - Gy Gy
l € D}, and r € [0,1] and there exist three sets of functions (a,(r)),,cn, (bn(7)),cn and (cn (7)), cn
such that for [ € D*_, and r € [0,1] :

As a result the three functions are analytical with respect to [ for

and using the integration theorem on these series one gets :
bn (1) = Oran(r) and ¢, (r) = Anay(r) forallm e N

so that :

ANGnNy
Gy

(r) = Z Anan ()™ . (4.7)

n>0
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G
Now the function Giv’l (r) is the unique solution of the ODE :
NI

Anf=l(r)f and f*=1 (4.8)

Rewriting (4.8) with (4.6) and (4.7) gives that the functions (a,(r)), oy are exactly given by the
recursive scheme (4.5). O

4.1.2. Accessibility domain D} _.. The eigenvalues predicted by the averaging method are

the roots of the polynomial equation (3.5). Let us consider — as p — oo — the limit set of predicted
eigenvalues A, defined as the zeros set of the series > . K,A" :

Ao={X/ D K.\"=0}, (4.9)

n>0

where the index N on the macroscopic coefficient, assumed to be fixed, has been omitted. Among
the eigenvalues predicted with the averaging method at order p, the only ones that make sense
are these approximating some A € A, and by increasing the order p of the method one can only
improve the computation on these modes A € A,. As a result, for an eigenvalue | € L of the
theoretical problem (2.2) to be approximated by the averaging method, and for this method to be
convergent as p — oo to this eigenvalue [ € L, it is necessary — but not sufficient — that the series
> om0 Knl™ is convergent.
With definition (3.4) of the macroscopic coefficient K, the series Y, -, K,I" make sense for | €
Dz, defined as follows : B

DEFINITION 4.3. Let us call accessibility domain Dj;.. C C the disk of all the complex A € C
such that the series

Zan(r))\” , ZANan(r))\" : Zaran(r))\" (4.10)

n>0 n>0 n>0

are convergent for r € [0,1]. If A € D . we say that A is accessible by the averaging method.

acc

On the contrary of the validity domain D7, the accessibility domain D}, does not only depend

on the averaging operator x and on NN, but also on the boundary conditions that influences the
computation of functions «,.

4.1.3. Evaluation of D}, and D}.. We here focus on the numerical evaluation of the two
previously introduced domains D}, and D..
To compute the radius of the validity domain D} ,, we need to compute the smallest root of the
function of I, G ;. For this, we give in appendix B an expansion of the generalised Graetz functions
G, (r) with the help of a set of functions ¢, (r) defined in (B.4) : Gy (r) = >_,50 ¢ (r)". The
computation of these functions ¢, (r) make possible to compute the radius of D}, as the smallest
root of the polynomial } -, qrl".
To compute the radius of the accessibility domain D},.. one needs an upper bound on the three
functions ay,(r), Oran(r) and Ayay(r) for r € [0,1]. Experiments based on the computation of
these functions showed that Ay, (r = 1) is a good upper bound for these functions and the radius
of D}, is equal to the convergence radius of the series Y - Anay,(r = 1)\".
Radii for D, and Dy, for some chosen weight functions w(r) are given in table 4.1. Comparing

acc

table 4.1 with table 2.1 and 2.2
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w(r) D:al Dgcm D Dgcm N
1 7.84 15.899 10.568
2(1—72) | =1V ~12.839 | 18.632 12.839
1/(2r) 354.75 24780 | 14.665
10(1 — 1) > 500 29.82 23.33
TABLE 4.1

Radius of D}, and D} .. for different weights and for N =0

D*

acc

FIGURE 4.1. Computation of the accessibility domain D}.. for a Robin boundary condition versus the parameter
~ and for N = 0. The four weighting functions w considered on table 4.1 have been analysed. Circular black symbols

stands for the flow-averaging method with w = v/{v), and circular white symbols for the classical uniform volume

averaging w = 1. White square symbols are for w = 1/(2r) and black square symbols are for w = 10(1 — r)3.

shows that the standard and the flow averaging method can only capture lo? o for D and lé\(o =0
for /. This result is self-consistent with the computations previously examined in sections 2.2.3. To
capture the first non trivial eigenvalue for A one needs to use other averaging operators. Moreover,
it will be shown in section 4.2 that the two necessary conditions introduced in the previous sections
are actually sufficient for the convergence to hold. In addition, it will appear that the first non trivial
eigenvalue for N, ljl\’[o ~ —12.8398060, and even the second eigenvalue for D, ZEO ~ —22.30473055,
can be captured when using adapted averaging operators.

4.2. Convergence theorem. We introduced in the previous subsection two necessary con-
ditions associated with any eigenvalue I € L to be captured by the averaging method. We prove
here that these conditions are actually sufficient for the convergence to hold. More precisely, the
eigenvalues predicted by the averaging method when p — oo are exactly the eigenvalues of the
theoretical problem (2.2) that both belong to the validity and accessibility domains.

THEOREM 4.4. Between the set of eigenvalues L of theoretical problem (2.2) and the three fol-
lowing sets : the validity domain D}, defined in definition 4.1, the limit set of predicted eigenvalues
A in (4.9) and the accessibility domain DY, defined in definition 4.3, one has the following rela-

acc

tion (for any azimuthal mode N, any boundary condition D, N or R and any averaging operator
x) :

AOO N D:(Ll = L n D:al n D{:cc 5 (4.11)

which means that the eigenvalues predicted by the averaging method inside D7, exactly converge
toward the theoretical eigenvalues of (2.2) being inside D}, N D%

acc*
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Proof. We recall that we defined in (2.4) the generalised Graetz functions Gy (r) for each € C
and each N € Z as the unique solution for the ODE :

GN’l(T)

rN

AnGy, = lv(r)Gn,(r), (r=1)=1, (4.12)
and that, for Neumann, Dirichlet or Robin boundary conditions, the associated sets of theoretical
eigenvalues are given by (2.5).

Using lemma 4.2, one has that :

Nnp:, = {z eC. S dan (1) = o} , LPND’, = {z ec, Y a, "

n>0 n>0

LRADs, = {1eC Y (an() +1dran ()"
n>0

0} or
o}.

where the functions (a,(r)), ¢y are those defined by the recursive scheme (4.5). For simplicity, one
introduces the quantities A,, defined as :

for D : A, =an(l), for N : A, =0ra,(1), forR : A, =an(l)+~0ran(1), (4.13)
so that for D, N or R cases one has
LND},={leC, Y A"=0}.
n>0
Let us consider the two functions of [ as the sum of the following series in [ :
A=) A0 K=Y K,
n>0 n>0

which are convergent for [ € D} , N Dj...

Then, to prove (4.11) one exactly has to show that :

Vie D!, ND*

val acc

A=0 iff K =0. (4.14)

To prove this, one has to find a relation between A, and the macroscopic coeflicient K,,. For this,
one introduces the set of functions (e, (r)) associated with the difference between functions a,(r)
and oy, () defined in (4.5) and (3.2) :

en(r) = an(r) —an(r) . (4.15)

These functions, by subtracting (4.5) from (3.2), are exactly defined by the following recursive
scheme :

Anen(r) = K,+ov(r)ep,_1(r) with e_1(r) =0
er = 0
en(1) = —A, for D (4.16)
Oren(1) = —A, for N
en(l) +70ren(l) = —A, for R
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This recursive formula does depend on both macroscopic coefficients K,, and A,,. Let us finally
define the macroscopic difference function Fj(r) by :

7") = Z en(r)l" = Z Oén(?ﬁ)ln — Z an(r)ln )

n>0 n>0 n>0

which is well defined for [ € D}, N D},..
We search a differential problem satisfied by E;(r).

Thanks to lemma 4.9 on D} ;, and to definition 4.3 of D}

val>’
S anmi, Y an(ml”, S Anan(r)l" and

the following series :

n>0 n>0 n>0
danM", Y Gan(r)l”, > Anan(r)i™,
n>0 n>0 n>0

converge for all € D}, N D%, . and all » € [0,1]. Then, using the integration theorem and the
properties (4.16) of functions e, (r) one has :

ANEi(r) = K;+v(r)Er)
By = 0
VieD;,ND:., VYrelo1] : Ei(1) = —A for D
6rEl(1) = —Al for N
El(l) + 78,,El(1) = —A for R

K; or A; being fixed, this problem has one and only one solution so that A; is a function of K;
and conversely. Now, it is easy to check that the solution associated with A; = 0 is E; = 0, which
eventually fixes K; = 0. Conversely, and for the same reason, K; = 0 fixes A; = 0. This ensures
(4.14), which proves theorem 4.4. O
It is interesting to note that because E; = 0 is the solution associated with a converging eigenvalue
Ao € Ao =1 € L, the ratio between the predicted eigenfunction and its value at » = 0 also
converges to the theoretical Graetz eigenfunction. This leads to the following important corollary :
COROLLARY 4.5. For an eigenvalue l € LN D}, N D, ., with an associated set of approximated
eigenvalues (Ap)pen such that limy, o A, = [, let us define the approzimated eigenfunction 'y, as :

1 <& " . P ap (7T "
= p Z an(r)Ay , with p = Z 7"](\’ ) (r=0)\y, (4.17)
n=0

n=0

then 'y, converges toward the generalised Graetz function Gy :

plir{:o HP)\p — GN,l” =0, (4.18)

moreover, defining the amplitude cy, in the same way as ¢; defined in (2.7) :
) g P ; Y

27
/ / To(r I‘A e~ Ney(r)rdr

e ,  then lim [cx, —c| = 0. (4.19)
p— 00
27r/ s, (r)[*v(r)rdr
Hence, not only Theorem (4.4) gives a necessary and sufficient condition for an eigenvalue to

converge, but, also, the eigenmode will converge to the corresponding theoretical solution. We now
numerically study the convergence of various eigenmodes for different averaging operator w.
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4.3. Convergence evaluation. This section studies the numerical evaluation of the con-
vergence to either the eigenvalue, the eigenfunction and the eigenmode amplitude for a Poiseuille
parabolic velocity profile v(r) = 2(1—r2). We calculate the closure functions o, from the recursive

10" ‘ ‘ 10 : : : : : : 10°
&
10’713 b 1 ey
El 1
10° 102
10° ¢ 16°
2 ; s 3 6 o 1 15 1 2 sT6 o 12 15 1
(a) p (b) p (c) p
FIGURE 4.2. Relative error for azi-symmetrical N = 0 eigenvalues lo,o and lo,1 (a) Relative error EOD =
|)\0Dp — l()DOVlODO between the predicted eigenvalue and the theoretical one l()Do = —3.656793458, versus the order p

of the approzimation. Circular black symbols stands for the flow-averaging method with w = v/{v), and circular
white symbols for the classical uniform volume averaging w = 1. White square symbols are for w = 1/(2r) and black
square symbols are for w = 10(1 — r)3. In every case the convergence is exponential, as indicated by the observed
semi-log linear behaviour. (b) same conventions for the second Dirichlet eigenvalue 151 = —22.30473055 convergence
EP = |>\1Dp - 151\/151. (¢) same conventions for the second Neumann eigenvalue convergence 16\,[1 = —12.8398060

with B = XY, — 1,1/,

FIGURE 4.3. Relative error for azi-symmetrical N = 0 eigenmode. (a) Relative error E. = |C/\0D - clopo\/clopo
3P 5 5

between the predicted amplitude and its theoretical value associated with a uniform initial temperature To =1 at z =0
for the first Dirichlet eigenmode, versus the order p of the approzimation. (b) Absolute error Eq = ||Typ —Gp || =
0,p 0,0

(w('yp —Gp )2) on the predicted eigenfunction for the first Dirichlet eigenmode.
0,p 0,0

scheme (3.2), so that the coeflicients K, defined in (3.4) of the eigenvalues polynomial (3.5) can
be computed. From the obtained solution leading to p 4+ 1 eigenvalues, we select the larger one in
R~. Figure 4.2 displays the relative error of this approximated eigenvalue for different weighting

21
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functions w. For the first Dirichlet eigenvalue, figure 4.2(a) displays exponential convergence rates.
Moreover, when comparing the results of figure 4.2(a) with table 4.1, it is not surprising to observe
that a larger radius of convergence D . gives rise to a faster convergence rate. As demonstrated
in the previous section, the second eigenvalue for Dirichlet or Neumann boundary condition is not
accessible to the standard volume averaging methods — w = 1— or the kinematic volume averaging
— w = v/{v)—. On the contrary, two other weighting functions w have been proposed in table 4.1,
the convergence of which has been established for the second eigenvalue in the previous section.
Figures 4.2(b) and 4.2(c) study their convergence on the second eigenvalue in the Dirichlet and
Neumann case. It is interesting to observe on these figures that the convergence rate still looks
exponential, even if the convergence rate is much slower than those observed on figure 4.2(a). More
modes should be indeed needed for an acceptable precision to be obtained.

Moreover, for finite values of the spectral cut-off p, the second eigenvalue could not always
be captured. For example, this can be observed on Figure 4.2b in the case of weighting function
w = 10(1 — )3, for which the eigenvalue becomes real, so that it is considered as being captured
by the approximation for p > 12 only. This example also illustrates that an empirical test of

FIGURE 4.4. Same conventions as figure 4.2 for the relative error for non azi-symmetrical N = 1 eigenvalues
11,0 (a) Relative error E(J)\/ = \A{)\{p - ljl\,/o\/ljl\,/o between the predicted eigenvalue and the theoretical Neumann one

ljl\,/o = —4.160532810 , versus the order p of the approximation. (b) same conventions for the first Dirichlet eigenvalue
convergence [T = —10.69115115 with EF = [AP —1T|/1T;.

the convergence is not always successful. If one would have guessed, ignoring the convergence
proof, from the computation of the first ten mapping variables oy, p < 10 that the first eigenvalue
computed in figure 4.2b is captured by the weighting function w = 10(1 —7)? , it would have found
the wrong answer. Figure 4.3 displays the convergence of the amplitude and the eigenfunction
defined in corollary (4.5), for the first Dirichlet mode. It is interesting to note that even the first
approximation p = 1 that has been detailed in section 2.2.3 permits a rather precise amplitude
and eigenmode estimate for every tested weighting function w. The convergence rate displayed on
figure 4.3 is also found to be exponential, as already observed for the eigenvalue convergence. This
result does not seem very surprising, for the generalised averaging method has many characteristics
in common with a spectral discrete method.

Finally, non-axi-symmetrical mode convergence have been investigated. The convergence of the
leading order N = 1 eigenvalue is represented on figure 4.4. It is interesting to observe that low order
approximation (e.g p < 5) give rises to a rather precise estimation of this first non-axisymmetric
mode. It should then be noted that for both Neumann and Dirichlet boundary conditions, |I1 o]
is smaller than |lp,1|. Hence, the better convergence of figure 4.4a,b compared to 4.2b,c can be
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qualitatively understood. Neumann and Dirichlet situations gives lower and upper bound for the
convergence of the more general Robin boundary condition, when varying ~ from 0 to infinity.
Hence, the Robin case should converge the same way as it is observed on the above figures.

5. Discussion and Conclusion.

5.1. Discussion. This section discusses the results obtained in the previous sections in the
light of previous analysis found in the literature.

5.1.1. Context of the presented analysis. As already mentioned in section 2.1 after defin-
ing the convection diffusion problem, (2.1), different characteristic lengths can be chosen for making
dimensionless the longitudinal dimension z and this leads to different Péclet number Pe > 1 or
pe < 1. Any choice should lead to consistent results. When choosing the Péclet number Pe > 1, it
is known that longitudinal variations along z scale linearly with Pe. This result holds as an asymp-
totic expansion discarding O(1/Pe?) terms [1], and leads to the simplified constitutive equation
(2.2). Balakotaiah and Chang[5] mention that the condition Pe >> 6.93 is necessary for neglecting
axial diffusion. The linear scaling of z variations with Pe is described in solution (2.3) and used in
the average description of the problem (2.12). From this non-dimensionalisation choice, it appears
that standard [36] “ad-hoc”closure relations used in (2.17) and (3.1) do not depends on the Péclet
number because each z derivative cancels the corresponding algebraic dependence in Pe. It then
appears that closure relations (2.17) and (3.1) are in fact an asymptotic expansion that involves
the eigenvalue [ of the problem as a small parameter. The validity range of this asymptotic ex-
pansion, that should better be described as an analytic expansion of the eigenfunction with the
eigenvalue, is investigated in section 4, while in the mean time the “ad-hoc”closure relations are a
posteriori justified by the convergence proof obtained in the same section. All the validity range
result for eigenvalues are obtained independently from the value of the Péclet number, but are valid
for Pe >> 1 since the starting constitutive equation (2.2) derives from (2.1) discarding O(1/Pe?)
terms [1].

5.1.2. Comparison with other convergence results. It is now interesting to more clearly
compare our analysis with previously obtained convergence results. For example, some convergence
criteria have been discussed in the context of centre manifold approximations of the convection-
diffusion problem (2.1) by Balakotaiah & Chang in [4]. In the case of spatially varying solutions,
the solution is projected over Graetz eigenfunctions. and a criterion has been found from summing
the expansion series. The convergence criterion can be expressed in the same framework from
considering the smallest longitudinal variations associated with a critical A.. In the case of Dirichlet
boundary conditions, it was found AP = 13.80 in [4], whereas M = 37.7 was obtained in the case
of Neumann boundary conditions. These values have to be compared with table 4.1 results. One
has to note, that, in our case, the convergence radius D,.. obtained from computing the expansion
series, is not the only relevant parameter for convergence. D,q;, which comes from the analyticity
condition on the averaged Graetz eigenfunction that we wish to approximate, has to be considered
also. The convergence radius is the minimum of Dy, and D,q;.

Liapounov-Schmidt reduction technique such as used in [11, 5] is also another method that
should be compared to our analysis. As mentioned in the introduction, this approximation shares
much similarities with ours, and the results are also quite similar. In this case, the considered
equation (2.1) is written by making dimensionless the longitudinal direction z by L so that the
Péclet number is replaced by the small parameter pe = PeR/L, as already indicated in section 2.1.
The first step of Liapounov-Schmidt reduction approximation is to look for a regular asymptotic
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expansion solution of (2.1) in terms of the small parameter pe. The solution is then decomposed in
two parts similar to (2.10) & (3.1) (but based on a splitting of the linear operator eigenfunctions
into “master” eigenfunctions of the kernel of the adjoint operator, and “slave” eigenfunctions of the
image of the adjoint operator, see for example [11]). In the case of Neumann boundary condition
and weighting function w = 1, the first closure field solution that we have obtained are exactly
similar with those previously obtained in [11, 5]. More precisely, the first slave mode computed
in Eq. (31) of [11] or Eq.(3.8) of [5] corresponds to the Neumann solution ay o found in (2.22).
Nevertheless, higher expansion closure fields differ from those of Chakraborty & Balakotaiah [11].
From summing the expansion series those authors have been able to find a convergence radius for
the approximation. Following criteria (73) of [11], and section 3 discussion of [5], the convergence
radius of the Neumann boundary conditions with uniform averaging is )\é\/ = 48 x 0.288 = 13.8
which should be compared with the value 10.56 of table 4.1.

This comparison shows that some of our convergence results are very similar with those previously
obtained in the literature with other approaches.

5.1.3. Azimuthal averaging. In this section we discuss the possibility and the interest of

azimuthal averaging. First, it should be noted that relation (2.7) gives the amplitude of each non-
axisymmetrical mode of the theoretical solution. If, for example, an initial condition is chosen with a
pulse at a given location (rg, ¢o), i-e To(r, ¢) = §(r—10)d(dp— o), then all non-axisymmetrical mode
N # 0 will be represented with a weight cy; = Gy ,1(r0)v(ro)ro/ fol |G N.i(7)]2v(r)rdr because the
Fourier transform of the Dirac distribution is uniform. In that case, if one averages the theoretical
solution with a uniform weight function along the azimuthal angle ¢, all non-axisymmetrical mode
N # 0 will not contribute to the averaged concentration because (e/N?), = 0 for N # 0. This is
not true when using a non uniform averaging operator wy along the azimuthal angle ¢. In this case,
there should be some contribution to the averaged concentration coming from non-axisymmetrical
mode N # 0, summing ¢y (€N ?wg) s (Gn,)* contributions.
Some of these non-axi-symmetrical contributions to the true averaged concentration solution could
be indeed captured by an averaging method, as shown in the previous sections. Hence, for
each non-axisymmetrical eigenvalue [, one can obtain the appropriate averaging approximation
cx, (€N Pwg) ¢ (D, )* of its contribution to the averaged solution.

5.2. Conclusion. This paper analyses the convergence of volume averaging methods on unidi-
rectional convection-diffusion problems. Neumann, Robin and Dirichlet boundary conditions have
been considered. The latter problem is of a great interest in the case of local non-equilibrium con-
ditions, i.e, averaged temperature not equal to the value at the boundary, for which approximate
solutions are more difficult to obtain.

Concentrating on the stationary solution associated with large Péclet numbers, it has been
found that volume averaging methods converge toward the exact solution. A necessary and sufficient
condition for this convergence to occur has been found for any unidirectional velocity field, that
depends on the averaging operator w. This condition has been obtained in a general form, as related
to the analytical character of the averaged eigenfunction with the eigenvalue A. This condition has
in fact a general scope, because it is the basis for writing “closure relations” as a power series of
the eigenvalue.

It is interesting to note that the convergence also depends, obviously, on the eigenvalue to be
captured. In the case of a parabolic velocity profile, the convergence to the Graetz solution has
been studied in more details. In the case of Dirichlet boundary conditions, “natural” operators
w =1 or w = v allow the convergence to the first non-trivial eigenvalue. In the case of a Neumann
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boundary condition, these usual weighing operators do not capture the first non-trivial eigenvalue
of the Graetz problem. In this case, it is necessary to use other averaging operators w to get the
first spatially decaying mode, and some of which have been proposed in this paper.

This result shows that averaging over some spatial volume unavoidably degenerates the space

of mathematically accessible solutions. Nevertheless, despite smoothing out the small scales —the
large eigenvalues— the averaged solution can lead to an asymptotically exact representation of the
large scale structure —the small eigenvalues— of the solution. It is expected that this conclusion
could be of some general scope when decreasing the dimension number of a problem by averaging
along part of its dimensions.
Moreover, the mathematical proof presented in this paper has been complemented in the case of
a parabolic Poiseuille flow by some numerical computation of convergence rates. They have been
found to be exponential, as expected from a spectral discrete method. It should also be of some
general scope, when averaging linear problems. It is interesting to note that the convergence toward
non-trivial eigenvalues is directly related to a correct evaluation of the heat transfer between the
fluid and the solid boundary. As a matter of fact it should be born in mind that the Nusselt number
Nu, defined as usual as the dimensionless number associated with the heat (or mass) transfer [13]
scales asymptotically, when z > Pe/(l; — lp), as Nu = [3/2. Hence, convergence toward the
eigenvalue of the averaged model is also directly related to a correct evaluation of the asymptotic
transfer between the flow and the solid.

Different extensions of this work could be considered. First, a direct transposition of the
convergence proof in the case of a plane geometry, with transverse velocity field, should be easily
obtained. The quantitative results on the accessibility domain as well as on the convergence accuracy
could nevertheless be different in that case. The second extension of interest should be related to
more complicated situations associated with a coupling with conduction in some external solid
domain.

Appendix A. Graetz functions and Kummer’s functions.
The generalised Graetz functions are the eigenfunctions of the operator 17—22A N

1 1 1 N2
Ay = 2129, — — Al
-2 N T 12 (@—i—ra 7“2) (A1)
One wants to solve the self-adjoint Sturm-Liouville problem :
! Anf = —02f (A.2)
1—p2 N ’ '
where we have introduced the positive eigenvalue /> = —I to compare to (2.4). Defining a new
function y, from f(r) = rNe_%sz(&"Q), y is then a solution of the hyper geometric equation :
1+N ¢
20%y+ (1+ N —2) 0.y — (+T—Z>y20. (A.3)
In its more general form, the hyper geometric equation reads :
202y 4 (c—2) 0.y —ay =0 (A.4)

which possesses two solutions called confluent hyper geometric functions, and when ¢ =1 :
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e the first one is singular at z = 0 and is not considered here,
e the other one is regular, convergent and noted ® (a,c, z). It is defined by the Kummer’s
series (with infinite radius of convergence) :

a a(a+1) 22 a..(a+n—1)z"
o y2) =1+ - _— A5
(a,¢,2) +cz+c(c+1) > " +c...(c—|—n—1) n! (A:5)
f is proportional to the Graetz function Gy ¢
1+N ¢
Gny(r) = rNe= /29 <+T - 1+ N, érz) (A.6)

Appendix B. Analyticity in [ of the Graetz functions.

In this appendix we prove that the generalised Graetz functions defined in (2.4) G, (r) are
analytical in [ on the whole complex field C. More precisely : for the closure functions g ,(r)
defined in (B.4) one has for each [ € C :

GNJ(?“) = Z qu,(T)ln s (9TGN71(T) = Z 8qu7n(7“)ln . (B.l)

n>0 n>0

We point out that this result is true for any N € Z and for any flow v(r) that is non negative and
analytical in 0.

We shall prove this result in two steps :
e in B.1 we prove that (B.1) is true when [ belongs to a disk D C C which we characterise.
e in B.2 we prove that D =C
We firstly recall the following definitions :
For a given value N € Z of the axi-symmetric parameter, the operator Ay is defined as : Ay =
02 + %87, _ N , so that A_ny = Ap. Hence we will consider the case N > 0 only.

T2
The operator Ay can be written under a divergence form :
1 2N+1 f
For each | € C the Graetz function Gj y is the only one solution for the following ODE :
ANGNJ = ZU(T)GNJ(T')
B.3
G (8.3
rv o
We define the set of closure functions gy, for n > 0, as follows :
ANGNn = v(r)gnn—1(r) with ¢y _1=0
(B.4)
gN,0

r—N(O) =1 and q;\/']\}n (0)=0 for n>1
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B.1. A criterion for the Graetz function to be analytical in /.

THEOREM B.1. Let D be the convergence disk of the series

Z QN,n(l)ln )

n>0

where the closure functions qn ., are defined in (B.4), then for alll € D :

Guna(r) = ana(M™, 0,Gnu(r) = Orqnn(r)l"

n>0 n>0
(B.5)
and ANGNJ(T) = Z ANqu,(T)ln

n>0

Proof. We begin by proving that for a fixed | € D the three series > < qnn (7)™, >, <0 aqum(r)l”I
and ) <o Angnn(r)l™ are uniformly convergent for r € [0, 1].
First of all the recursive definition (B.4) of the functions gy, implies that : for all n > 0
qn (1) = rNep, (r) where v, is a non negative, non decreasing, continuous function on [0, 1] :

T 1 Yy
qgno =1 and qn.(r) = rN/ W/ eV o(x)gn 1 (z)dedy for n>1, (B.6)
0 0

so that 0 < gnn(7) < qn (1) and the series > < qnn ()™ is uniformly converging on [0,1] for
leD. -

On the same way Anqn (1) = v(r)gnn—1(r) and so one has 0 < Angn o (r) < ||v|lgn,n-1(1) and
the series >, <o Angn,n ()™ is uniformly converging on [0, 1] for [ € D.

Now one has :

T 1 Yy 1 T
0 < dhannlr) =NV [ i [T ey s )dedy + iy [ ooy, ()

<N N—-1 n 1 HU” e 1
<N g )+—N+2qu, 1(1)

S C (qN,n(l) + qN,n—l(l)) )

n

where the constant C' only depends on N and v so that the series ), -, 0rqnn(r)l™ is uniformly

converging on [0, 1] for I € D.
Now, for a given value [ € D we introduce the two functions defined on [0, 1] :

F(r) =Y qna(m", Hr) =Y Angya(r)",

n>0 n>0

since these are uniformly converging series and since ), -, 0rqn ()™ is also a uniformly converging
series for r € [0, 1], one can use the integration theorem which implies that :

H(r)=AnF(r), forrel0,1],

F

and in the same time one has with (B.4) that H(r) = lv(r)F(r) and that —(0) = 1. The unicity
T

of the solutions of (B.3) ensures then F(r) = Gx,(r) and this ends the proof. O
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B.2. Analyticity on the whole complex field C.

LEMMA B.2. The series

Z QN,n(l)ln ’

n>0

is convergent on the whole complex plane C and so (B.1) is true for all l € C.
Proof. With the integral formulation (B.6) on the closure functions gu, one has :

1
1 Y1
QN,n—i-m(l):/ W/ 2 T o(@1) N -1 (21)da1 dyy
0

0 Y
1 1 Y1 ON 41 Tm—1 1 Ym N+l
:/ T—H/ x3 v(xl)/ T—H/ Ty V(T )qN 0 (T ) AT, QY - - - dT1dy7
0 Y 0 0 Ym 0

and, since 0 < gy (1) < quNm(l) (see (B.6)), we have :

1 Y1 Tm—1 Ym
N n+m(1) L : 1 ‘
Zonrmh ] S ) ONF1 ) x%N+1U($1) . . ONF¥1 ) xanJrlv(xm)dxmdym . difldyl
1

an.n(1) y Yim
! Yoo+ fmot 1 Y N+l
§Hv||m/ —/ x] / —/ x dxmdym, . .. dx1dy;
o vVt Jo o ymtJo T e

where |[v|| = sup v(r).
This upper bound can be computed explicitly

qN,ner(]-) m 1 1
s < o
qnn(1) 2(2N +2) " 2m(2N + 2m)

= O,

1/m

and o, ' is a lower bound for the radius of convergence of the series (B.2). One can easily check

that :

1/m

and so o~ grows up to infinity. As a result the series (B.2) is convergent on the whole complex

plane C. O

Appendix C. Invertibility of the operator £}, and resolution of the closure problems.

In this appendix we prove that the closure problems :
NOn = v(r)an—1(r) — (vay—1)* with a_1(r)=0

*

af =1 or oy =0 for n>1 (C.1)

*
n
+ boundary condition

for a boundary condition either of a homogeneous Dirichlet, homogeneous Neumann or Robin type :

an(1) =0, Jdap(l)=0o0r Odan(l)+ya,(l)=0, (C.2)
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has one and only one bounded solution for each n € N.

The operator L} is defined for N € Z and for a normalised averaging operator * (i.e. such
that (1)* =1) by :

LNf=ANnf—(ANS)", (C.3)

for the operator Ay :

1 N2
ANf:83f+;3rf— T—Qf-

Because Ay = A_x we will only consider here the proof for N > 0.
We proceed in two steps : in C.1 we prove a lemma on the general solution of Ay f = g and in C.2
we apply that lemma to the problems (C.1) for every boundary condition (C.2).

C.1. A technical lemma.

LEMMA C.1. Let g be a continuous function defined on [0,1] and such that g* = 0.
Then for all A € R the ODE :

Avf—-A=yg (C.4)
ff=MEeR (C.5)

has one and only one bounded solution on [0, 1].
Moreover this solution fulfils :

(Anf)r =4,
and then is a solution of :
Nf=y
fr=M
Proof. We define the function ) (r) :
N[t 1 YN+
e / W/0 2N g(2)dady | (C.6)
which is well defined since g is continuous in 0 for N > 0, and the function 9 (r) :
rV — 2 r?
Pa(r) = N1 if N#2and o(r) = T In(r) for N=2. (C.7)

Any solution of (C.4) is of the form :

Fr) =N 4 N o+ Ao (r) + 1 (r)  if N #0 or
F(r) = XN + pln(r) + Ao (r) + o (r) if N =0.
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Then all bounded solution of (C.4) on [0, 1] are on the form :

F(r) = 2+ Ao (r) + 2 (r) (C8)
and (C.5) gives :
NI
<7”N>*

and so (C.4) (C.5) has only one bounded solution.
Since g* = 0 one also has (r'V)* = A0

C.2. Resolution of the closure problems.

e Homogeneous Dirichlet case.
We consider the solution f as in (C.8) of (C.4) (C.5) and search a value of A such that f(1) = 0.
We have :

_ M — A5 — 7

So there is only one bounded solution f of (C.4) (C.5) such that f(1) =0, it is defined as :
M _ A * *
1) = T s (o) + ()
M — 971
A= :
V3

and A is well defined because ¥9 is negative and so ¥} # 0.
Consequently, the closure problems (C.1) for an homogeneous Dirichlet boundary condition are well
posed.

o Homogeneous Neumann case.
We consider the solution f as in (C.8) of (C.4) (C.5) and search a value of A such that 0, f(1) = 0.
By multiplying (C.4) by rV*+1 and integrating over [0, 1] one gets :

o-f(1) = Nf(1) + Niw + /01 rNtlg(r)dr (C.10)
and since
1) = M‘j‘# ,
there is only one solution defined as :
70) = N ) +1(0)

1 s N _ iMoot
A<N+2_N<7~N>*>_N (rVy> _/O T g(rdr
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()
- N .
Nyz VgEy 70
Consequently the closure problems (C.1) for an homogeneous Neumann boundary condition are
well posed.

where A is well defined because 15 is negative and so

e Robin case.
We consider the solution f as in (C.8) of (C.4) (C.5) and search a value of A such that 9, f(1) +
~vf(1) =0 for v > 0.
With (C.9) and (C.10) we have :

1 w* d}*_M 1
s - e o)~ v S [

&ﬂU+vﬂU=A<

and so there is only one solution defined as :

oy = M A VN ) ()

<7"N>*
1 v\ _ M—M_/1m1
Ay - W k) = L [,
where A is well defined for v > 0.

Consequently the closure problems (C.1) for an homogeneous Neumann boundary condition are
well posed.
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