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TRANSPORTATION-INFORMATION INEQUALITIES FOR MARKOV
PROCESSES

ARNAUD GUILLIN, CHRISTIAN LÉONARD, LIMING WU, AND NIAN YAO

Abstract. In this paper, one investigates the following type of transportation-information
TcI inequalities: α(Tc(ν, µ)) ≤ I(ν|µ) for all probability measures ν on some metric
space (X , d), where µ is a given probability measure, Tc(ν, µ) is the transportation cost
from ν to µ with respect to some cost function c(x, y) on X 2, I(ν|µ) is the Fisher-
Donsker-Varadhan information of ν with respect to µ and α : [0,∞) → [0,∞] is some
left continuous increasing function. Using large deviation techniques, it is shown that
TcI is equivalent to some concentration inequality for the occupation measure of a µ-
reversible ergodic Markov process related to I(·|µ), a counterpart of the characterizations
of transportation-entropy inequalities, recently obtained by Gozlan and Léonard in the
i.i.d. case [24]. Tensorization properties of TcI are also derived.
Let d be a metric. One denotes W1I := TdI and W2I := Td2I the transportation-
information inequalities associated with the metric cost c = d and the quadratic cost
c = d2.

It is proved that W2I is stronger than Poincaré inequality, weaker than log-Sobolev in-
equality, and equivalent to it when Bakry-Emery’s curvature is bounded from below.
For the trivial metric cost d, one establishes the sharp transportation-information in-
equality W1I in terms of the spectral gap. In particular, a Hoeffding type concentration
inequality for Markov processes is derived and one shows that W1I implies a Poincaré
inequality.
For a general metric cost d, it is established that the spectral gap in the space of Lipschitz
functions of the Markov diffusion process implies W1I. A sharp estimate of the constant
is obtained for general one-dimensional diffusion processes. Finally, a Lyapunov function
condition for W1I is proposed. It may be applied to a wide class of examples; some
examples are worked out.
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1. Introduction

Let M1(X ) be the space of all probability measures on some complete separable metric
space (X , d) and consider the cost function c(x, y) : X 2 → [0,+∞] with c(x, x) = 0 (for
all x ∈ X ), which is lower semicontinuous on X 2. Given µ, ν ∈M1(X ), the transportation
cost Tc(ν, µ) from ν to µ with respect to the cost function c is defined by

Tc(ν, µ) = inf
π∈M1(X 2):π0=ν,π1=µ

∫∫

X 2

c(x, y) π(dx, dy) (1.1)

where π0(dx) = π(dx×X ), π1(dy) = π(X×dy) are the marginal distributions of π. When
c(x, y) = dp(x, y) where p ≥ 1, (Tc(ν, µ))1/p = Wp(ν, µ) is the Lp- Wasserstein distance
between ν and µ.
The relative entropy (or Kullback information) of ν with respect to µ is given by

H(ν|µ) :=





∫

X

f log f dµ, if ν ≪ µ and f := dν
dµ

+∞, otherwise.
(1.2)

The usual transportation inequalities for a given µ ∈ M1(X ), introduced by K. Marton
[31, 32] and M. Talagrand [37], compare the Wasserstein metric Wp(ν, µ) with the relative
entropy H(ν|µ). The following extension of these inequalities:

α(Tc(ν, µ)) ≤ H(ν|µ), ∀ν ∈M1(X ), (TcH)

has recently been proposed and developed by Gozlan and Léonard [24]. Here α : [0,∞) →
[0,+∞] is some left continuous and increasing function with α(0) = 0.
Let us denote

α⊛(λ) := sup
r≥0

(λr − α(r)) (1.3)

the monotone conjugate of α.With α as above, one sees that α⊛ is the restriction to [0,∞)
of the usual convex conjugate α̃∗(λ) = supr∈R

(λr − α̃(r)) of α̃(r) = 1r≥0α(r), r ∈ R. We
also denote µ(v) :=

∫
X
vdµ.

Notation. In the special case c(x, y) = dp(x, y) where p ≥ 1 and d is a metric, Tc(ν, µ) =
Wp(ν, µ)p. We shall use the notation WpH instead of TdpH. In particular, W1H stands for
TdH.

As an extension of the Bobkov-Götze criterion [5], we have

Theorem 1.1 (Gozlan-Léonard [24]). Let (Xn)n∈N be a sequence of X -valued i.i.d. random
variables with common law µ and α be moreover convex. Then the following properties
are equivalent:

(a) The transportation inequality TcH holds;
(b) For any couple of bounded and measurable functions u, v : X → R such that

u(x) − v(y) ≤ c(x, y) over X 2,

log

∫

X

eλudµ ≤ λµ(v) + α⊛(λ), ∀λ ≥ 0;

(c) For all n ≥ 1 and r > 0 and for any couple of bounded and measurable functions
u, v : X → R such that u(x) − v(y) ≤ c(x, y) over X 2, the following concentration
inequality holds
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P

(
1

n

n∑

k=1

u(Xk) ≥ µ(v) + r

)
≤ e−nα(r);

(c’) The following large deviation upper bound holds for any couple of bounded and
measurable functions u, v : X → R such that u(x) − v(y) ≤ c(x, y) over X 2,

lim sup
n→∞

1

n
log P

(
1

n

n∑

k=1

u(Xk) ≥ µ(v) + r

)
≤ −α(r), ∀r ≥ 0.

The main purpose of this paper. In this paper, instead of the transportation-entropy
inequality TcH, one investigates the following transportation-information inequality

α(Tc(ν, µ)) ≤ I(ν|µ), ∀ν ∈M1(X ) (TcI)

for some given probability measure µ. Here I(ν|µ) is the Fisher-Donsker-Varadhan infor-
mation of ν with respect to µ

I(ν|µ) =

{
E(

√
f,

√
f) if ν = fµ,

√
f ∈ D(E)

+∞ otherwise
(1.4)

associated with the Dirichlet form E on L2(µ) with domain D(E).

Notation. In the special case where c(x, y) = dp(x, y), we use the notation WpI instead
of TdpI. In particular, W1I stands for TdI.

Organization of the paper. This paper is organized as follows. In the next section we
characterize TcI by means of concentration inequalities for the empirical means Lt(u) =
1
t

∫ t
0
u(Xs) ds of observables u along the symmetric Markov process (Xt) associated with

the Dirichlet form E , extending Theorem 1.1 from i.i.d. sequences to time-continuous
Markov processes. The method of proof is borrowed from Gozlan and Léonard [24] who
proved Theorem 1.1 by means of large deviations of the empirical measure of an i.i.d.
sequence. In the present paper, it relies on the large deviations of the occupation measure
of (Xt). The tensorization of TcI is proved, and the relations between W2I, Poincaré and
log-Sobolev are exhibited with the help of Otto-Villani [34].

In Section 3, we prove W1I for the trivial metric d(x, y) = 1x 6=y with the sharp constant
in terms of the spectral gap and derive a sharp Hoeffding concentration inequality for
Markov processes. Furthermore, we also prove that W1I implies the existence of a positive
spectral gap in the symmetric and uniform positive improving case by means of a result
of L. Wu [46].

For a general metric, using Lyons-Meyer-Zheng forward-backward martingale decom-
position, we obtain in Section 4 sharp W1I under the spectral gap existence of the Markov
diffusion process in the space of Lipschitz functions, and an explicit and sharp constant
is provided for one-dimensional diffusions.

Finally in Section 5 we propose a practical Lyapunov condition for W1I (or a more
general TΦI), which, although not providing the sharp constant, provides a good order.
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About the literature. Let us give some historical notes on the usual transportation in-
equality WpH . K. Marton [31] first noticed that W1H implies the concentration inequality
for µ by a very elementary and neat argument, and she established W1H for the law of a
Dobrushin-contractive Markov chain in [32]. M. Talagrand [37] established W2H for the
Gaussian measure µ with α(r) = r/2C and provided the sharp constant C (this particu-
lar case of TcH is often called Talagrand’s transportation inequality). Bobkov and Götze
[5] obtained the characterization of WpH in Theorem 1.1 with [p = 1, α quadratic] and
[p = 2, α linear]. Otto and Villani [34] proved that the log-Sobolev inequality is stronger
than Talagrand’s transportation inequality and presented a differential geometrical point
of view on M1(X ) equipped with the W2-metric. Bobkov, Gentil and Ledoux [4] shed
light on a profound relation between Talagrand’s transportation inequality, log-Sobolev
inequality, inf-convolution and some Hamilton-Jacobi equation. Djellout, Guillin and Wu
[13] obtained a necessary and sufficient condition for W1H with a quadratic α by means
of the Gaussian integrability of d(x, x0) under µ, and gave a direct proof of Talagrand’s
transportation inequality for the law of a diffusion process by means of Girsanov’s for-
mula, without appealing to log-Sobolev inequality. Bolley and Villani [6] and later Gozlan
and Léonard [24] refined the result of [13] under a Gaussian integrability condition. Cat-
tiaux and Guillin [9] constructed the first example for which Talagrand’s transportation
inequality holds but not log-Sobolev inequality, and Gozlan [23] found a necessary and
sufficient condition for Talagrand’s transportation inequality with µ(dx) = e−V (x)dx on R

when the Bakry-Emery curvature V ′′ is lower bounded. Otto-Villani’s differential geomet-
rical point of view on M1(X ) equipped with the W2-metric is very fruitful, as developed
by the recent works of Sturm [35, 36] and Lott and Villani [30]. The reader is referred to
the textbooks by Ledoux [27] and Villani [39, 38] for further references pertaining to this
very active field.

Convention and notation. Throughout this paper either (X , d) is a complete separable
metric space with the associated Borel σ-field B.
- The space of all real bounded and B-measurable functions is denoted by bB.
- The functions to be considered later are assumed to be measurable without warning.
- For µ, ν ∈M1(X ), ‖ν − µ‖TV := supu:|u|≤1

∫
u d(ν − µ) is the total variation norm.

- Throughout this paper a cost function c is a nonnegative lower semicontinuous function
on X 2 such that c(x, x) = 0 for all x ∈ X .

2. General results on TcI

2.1. Markov processes, Fisher-Donsker-Varadhan information and Feynman-
Kac semigroup. The main probabilistic object to be considered in this paper is an
X -valued time-continuous Markov process (Ω,F , (Xt)t≥0, (Px)x∈X ) with an invariant prob-
ability measure µ. The transition semigroup is denoted (Pt)t≥0.

Assumption: Ergodicity. It is assumed that the invariant probability measure µ is ergodic:
if f ∈ bB satisfies Ptf = f, µ-a.e. for all t ≥ 0, then f is constant µ-a.e. Denoting
Pβ(·) :=

∫
X

Px(·) β(dx) for any initial probability measure β, the previous condition on µ
amounts to stating that ((Xt)t≥0,Pµ) is a stationary ergodic process.
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Assumption: Closability of the Dirichlet form. It is assumed that (Pt) is strongly contin-
uous on L2(µ) := L2(X ,B, µ). Let L be its generator with domain D2(L) on L2(µ). It is
also assumed that

E(g, g) := 〈−Lg, g〉µ, g ∈ D2(L)

is closable in L2(µ). Its closure which is denoted by (E ,D(E)) is a Dirichlet form: the
symmetrized Dirichlet form associated with the Markov process (Xt) (or (Pt)). Notice
that (E ,D(E)) corresponds to a self-adjoint generator Lσ (formally Lσ = (L+L∗)/2), and
P σ
t = etL

σ

is the symmetrized Markov semigroup of (Pt). When Pt is symmetric on L2(µ),
the above closability assumption is always satisfied and the domain D(E) of the Dirichlet
form coincides with the domain D2(

√
−L) in L2(µ).

These above assumptions of ergodicity and closability of the Dirichlet form prevail for
the whole paper.

Fisher-Donsker-Varadhan information. The following definition is motivated by standard
large deviation results.

Definition 2.1. Given the Dirichlet form E with domain D(E) on L2(µ), the Fisher-
Donsker-Varadhan information of ν with respect to µ is defined by

I(ν|µ) :=

{
E(

√
f,

√
f), if ν = fµ,

√
f ∈ D(E)

+∞, otherwise.
(2.1)

Convention. We adopt the following convention for the Fisher-Donsker-Varadhan infor-
mation on a Riemannian manifold X : if ν = fµ with f > 0 smooth,

I(ν|µ) =
1

4

∫

X

|∇f |2
f

dµ.

This means that I = IF/4 where IF is the standard Fisher information. This will lead
to transportation-information inequalities with a natural interpretation in terms of large
deviations, see (2.2) below.

When (Pt) is µ-symmetric, ν 7→ I(ν|µ) is exactly the Donsker-Varadhan entropy i.e.
the rate function governing the large deviation principle of the empirical measure

Lt :=
1

t

∫ t

0

δXs
ds

for large time t. This was proved by Donsker and Varadhan [15, 16, 17] under some con-
ditions of absolute continuity and regularity of Pt(x, dy), and established in full generality
by L. Wu [44, Corollary B.11]. When µ = e−V (x)dx/Z (Z is the normalization constant)
with V ∈ C1 on a complete connected Riemannian manifold X = M , the diffusion (Xt)
generated by L = ∆ −∇V · ∇ (∆,∇ are respectively the Laplacian and the gradient on
M) is µ-reversible and the corresponding Dirichlet form is given by

Eµ(g, g) =

∫

M

|∇g|2 dµ, g ∈ D(Eµ) = H1(X , µ)

where H1(X , µ) is the closure of C∞
b (M) (the space of infinitely differentiable functions

f on M with |∇nf | bounded for all n) with respect to the norm
√
µ(|g|2 + |∇g|2).
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It also matches with the space of these g ∈ L2(M) such that ∇g ∈ L2(M → TM ;µ) in
distribution. In this case, if ν = fµ with 0 < f ∈ C1(M), then

I(ν|µ) =

∫

X

|∇
√
f |2 dµ =

1

4

∫

X

|∇f |2
f

dµ. (2.2)

Feynman-Kac semigroup. The derivation of the large deviation results for Lt as t tends
to infinity is intimately related to the Feynman-Kac semigroup

P u
t g(x) := E

xg(Xt) exp

(∫ t

0

u(Xs) ds

)
. (2.3)

When u is bounded, (P u
t ) is a strongly continuous semigroup of bounded operators on

L2(µ) whose generator is given by Lug = Lg + ug, for all g ∈ D2(Lu) = D2(L).
It is no surprise that this semigroup also plays a role in the present investigation.

2.2. Characterizations of TcI. Recall that Kantorovich’s duality theorem (see [39])
states that for any ν, µ ∈M1(X ) so that Tc(ν, µ) < +∞,

Tc(ν, µ) = sup
(u,v)∈Φc

∫
u dν −

∫
v dµ (2.4)

where
Φc := {(u, v) ∈ (bB)2 : u(x) − v(y) ≤ c(x, y), ∀(x, y) ∈ X 2}.

This motivates us to introduce as in [24]

TΦ(ν, µ) = sup
(u,v)∈Φ

∫
u dν −

∫
v dµ (2.5)

where Φ ⊂ (bB)2 (non-empty) satisfies

(A1) u ≤ v for all (u, v) ∈ Φ (or equivalently TΦ(ν, ν) = 0 for all ν ∈M1(X ));
(A2) For all ν1, ν2 ∈ M1(X ), there exists (u, v) ∈ Φ such that

∫
u dν1 −

∫
v dν2 ≥ 0 (or

equivalently TΦ(ν1, ν2) ≥ 0 for all ν1, ν2 ∈M1(X )).

Note that for (A1) and (A2) to be satisfied when Φ = Φc, it is enough that c(x, x) = 0
for all x. The main result of this section is the following generalization of Theorem 1.1.

Theorem 2.2. Let ((Xt)t≥0,Pµ) be a stationary ergodic Markov process with the sym-
metrized Dirichlet form (E ,D(E)), Φ be as above and α : [0,∞) → [0,∞] be a left contin-
uous increasing function such that α(0) = 0. Consider the following properties:

(a) The following transportation inequality holds

α(TΦ(ν, µ)) ≤ I(ν|µ), ∀ν ∈M1(X ) (TΦI)

(b) For all (u, v) ∈ Φ and all λ, t ≥ 0

‖P λu
t ‖L2(µ) ≤ et[λµ(v)+α⊛ (λ)] (2.6)

where P λu
t is the Feynman-Kac semigroup (2.3) and α⊛ is defined at (1.3).

(b′) For all (u, v) ∈ Φ and all λ ≥ 0

lim sup
t→∞

1

t
log Eµ exp

(
λ

∫ t

0

u(Xs) ds

)
≤ λµ(v) + α⊛(λ)
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(c) For any initial measure β ≪ µ with dβ/dµ ∈ L2(µ) and for all (u, v) ∈ Φ and
r, t > 0,

Pβ

(
1

t

∫ t

0

u(Xs) ds ≥ µ(v) + r

)
≤
∥∥∥∥
dβ

dµ

∥∥∥∥
2

e−tα(r) (2.7)

(c′) For all (u, v) ∈ Φ and for any r ≥ 0, there exists β ∈ M1(E) such that β ≪ µ,
dβ/dµ ∈ L2(µ) and

lim sup
t→∞

1

t
log Pβ

(
1

t

∫ t

0

u(Xs) ds ≥ µ(v) + r

)
≤ −α(r)

We have

(1) (a) ⇒ (b) ⇒ (b′) and (a) ⇒ (c) ⇒ (c′).
(2) If α is convex, then (a) ⇔ (b).
(3) If (Pt) is symmetric on L2(µ), then (a) ⇔ (c) ⇔ (c′).

If furthermore α is convex, (a), (b), (b′), (c) and (c′) are equivalent.

The proof of this result is similar to [24, Theorems 2 and 15]’s ones. It takes advantage
of large deviation results previously obtained by L. Wu. Namely,

- the identification of the rate function in the symmetric case and the large deviation
lower bound are taken from [44] and

- the non-asymptotic Cramér’s upper bounds which are used in [24] are replaced by the
following result.

Lemma 2.3 (L. Wu [43]). For any u ∈ bB with µ(|u|) < +∞ and any t > 0, the following
statements hold true.

(1) Denoting

Λ(u) := sup

{∫
ug2 dµ− E(g, g); g ∈ D(E), µ(g2) = 1, µ(g2|u|) < +∞

}
, (2.8)

one has

‖P u
t ‖L2(µ) ≤ etΛ(u) (2.9)

and the equality holds in the symmetric case;
(2) For all r > 0,

Pβ

(
1

t

∫ t

0

u(Xs) ds− µ(u) ≥ r

)
≤
∥∥∥∥
dβ

dµ

∥∥∥∥
2

exp

(
−t lim

δ↓0
Iu(µ(u) + r − δ)

)
(2.10)

where

Iu(r) := inf {I(ν|µ); ν ∈ M1(X ), ν(u) = r} , r ∈ R.

It is proved in [43, 44] that in the symmetric case, Iu(r) is exactly the rate function

governing the large deviation principle of 1
t

∫ t
0
u(Xs) ds for bounded u. In these papers

no mixing assumptions are required, this is in contrast with the usual assumptions for
the large deviation principle as discovered by Donsker and Varadhan [15, 16, 17] and
reconsidered by Deuschel and Stroock [12]. This relaxation of the usual assumptions
is allowed by the assumed restriction that the initial law is absolutely continuous with
respect to the ergodic measure µ.
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Proof of Theorem 2.2. Part (1). As ν → I(ν|µ) is convex on M1(X ), so is Iu : R →
[0,+∞]. Since Iu(µ(u)) = 0, Iu is increasing on [µ(u),+∞). For all (u, v) ∈ Φ and all
λ ≥ 0, we have

Λ(λu) = I∗u(λ) (2.11)

where I∗u is the convex conjugate of Iu. Indeed for λ ≥ 0, by (2.8)

Λ(λu) = sup{λ
∫
ug2 dµ− E(g, g); g ∈ D(E), µ(g2) = 1}

= sup{λ
∫
ug2 dµ− E(g, g); 0 ≤ g ∈ D(E), µ(g2) = 1}

= sup{λ
∫
u dν − I(ν|µ); ν ∈M1(X )}

= sup
a∈R

{λa− Iu(a)}

where the second equality follows from the fact that E(|g|, |g|) ≤ E(g, g) for all g ∈ D(E).
Note also that TΦI implies that for any (u, v) ∈ Φ,

Iu(µ(v) + r) ≥ α̃(r), ∀r ∈ R (2.12)

where α̃(r) = α(r) for r ≥ 0 and = 0 for r ≤ 0. Indeed it is trivial for r ≤ 0 and for any
r ≥ 0 and ν ∈M1(X ) such that ν(u) = µ(v) + r, TΦI implies that

I(ν|µ) ≥ α(TΦ(ν, µ)) ≥ α(ν(u) − µ(v)) = α(r).

• (a) ⇒ (b): Putting together (2.11) and (2.12) leads us to

Λ(λu) = sup
a∈R

[λa− Iu(a)] ≤ sup
r∈R

[λ(µ(v) + r) − α̃(r)]} = λµ(v) + α⊛(λ)

for all λ ≥ 0. Statement (b) now follows from inequality (2.9).

• (a) ⇒ (c): This follows from (2.10) and (2.12), noting that by (A1), µ(u) ≤ µ(v) for all
(u, v) ∈ Φ.

• (b) ⇒ (b′) and (c) ⇒ (c′): These implications are trivial.

Part (2). (b) ⇒ (a) in the case where α is convex. By (2.6), we have for (u, v) ∈ Φ fixed
and for any g ∈ D2(L),

〈P λu
t g, P λu

t g〉µ ≤ e2t(λµ(v)+α⊛ (λ))〈g, g〉µ.
Differentiating at time zero we obtain

2〈g,Lg + λug〉µ = 2(λµ(g2u) − E(g, g)) ≤ 2(λµ(v) + α⊛(λ))µ(g2).

Then for all g ∈ D2(L),

λ[µ(g2u) − µ(v)µ(g2)] − α⊛(λ)µ(g2) ≤ E(g, g).

It can be extended to g ∈ D(E). Now for any ν ∈ M1(X ) such that I(ν|µ) < +∞,

applying the above inequality to g =
√

dν
dµ

, we get

λ[ν(u) − µ(v)] − α⊛(λ) ≤ I(ν|µ).
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Taking the supremum over all λ ∈ R, as α assumed to be convex and α⊛ = α̃∗ on [0,∞)
(see the remark below (1.3)), we get

α̃(ν(u) − µ(v)) ≤ I(ν|µ)

and taking the supremum over all (u, v) ∈ Φ leads to the desired result.

Part (3). Let us assume from now on that the semigroup (Pt) is symmetric in L2(µ).
• (c′) ⇒ (a) : By the large deviation lower bound in [44, Theorem B.1] and the identifi-
cation of the rate function in the symmetric case in [44, Corollary B.11], we have for any
initial probability measure β ≪ µ,

lim inf
t→∞

1

t
log Pβ

(
1

t

∫ t

0

u(Xs) ds ≥ µ(v) + r

)
≥ − inf{I(ν|µ); ν(u) > µ(v) + r}.

This together with (c′) implies that for any r ≥ 0,

inf{I(ν|µ); ν(u) > µ(v) + r} ≥ α(r).

Fix now ν such that r0 = TΦ(ν, µ) > 0 (otherwise TΦI is obviously true.) Choosing a
sequence (un, vn) ∈ Φ so that ν(un) − µ(vn) > r0 − 1/n, for all large enough n,

α(r0 − 1/n) ≤ I(ν|µ)

where TΦI follows by letting n→ ∞ and by the left-continuity of α.

• α is convex and (Pt) is symmetric. (b′) ⇒ (c′) with β = µ: The proof is standard
and consists in optimizing exponential upper bounds. So doing, one obtains by means of
(b′) the asymptotic upper bound (c′) with the convex envelope of α̃ instead of α̃. As α is
assumed to be convex, (c′) is proved.
This completes the proof of the theorem. �

We now investigate two particular cases of Theorem 2.2.

Corollary 2.4 (The inequalities W1I(c) and W2I(c)). Let c > 0 and let (Xt) be a µ-
reversible and ergodic Markov process such that

∫
d2(x, x0) dµ(x) < +∞.

(1) The statements below are equivalent:
(a) The following W1I(c) inequality holds true:

W 2
1 (ν, µ) ≤ 4c2 I(ν|µ), ∀ν ∈M1(X ); (W1I(c))

(b) For all Lipschitz function u on X with ‖u‖Lip ≤ 1 and all λ, t ≥ 0,

‖P λu
t ‖L2(µ) ≤ exp

(
λµ(u) + c2λ2

)
;

(c) For all Lipschitz function u on X with ‖u‖Lip ≤ 1, µ(u) = 0 and all λ ≥ 0,

lim sup
t→+∞

1

t
log Eµ exp

(
λ

∫ t

0

u(Xs) ds

)
≤ c2λ2;

(d) For all Lipschitz function u on X , r > 0 and β ∈ M1(X )such that dβ/dµ ∈ L2(µ),

Pβ

(
1

t

∫ t

0

u(Xs) ds ≥ µ(u) + r

)
≤
∥∥∥∥
dβ

dµ

∥∥∥∥
2

exp

(
− r2

4c2‖u‖2
Lip

)
.

(2) The statements below are equivalent:
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(a) The following W2I(c) inequality holds true:

W 2
2 (ν, µ) ≤ 4c2I(ν|µ), ∀ν ∈M1(X ); (W2I(c))

(b) For any v ∈ bB,

‖P
1

4c2
Qv

t ‖L2(µ) ≤ e
t

4c2
µ(v), ∀t ≥ 0

where Qv(x) = inf
y∈X

{v(y) + d2(x, y)} is the so-called “inf-convolution” of v;

(c) For any u ∈ bB,

‖P
1

4c2
u

t ‖L2(µ) ≤ e
t

4c2
µ(Su), ∀t ≥ 0

where Su(y) = sup
x∈X

{u(y)− d2(x, y)} is the so-called “sup-convolution” of u.

Notation. The best constants c > 0 in W1I(c) and W2I(c) will be denoted respectively
by cW1I(µ) and cW2I(µ).

Remarks 2.5.

(i) The best constants cW1I(µ) and cW2I(µ) depend on the metric d and the Dirichlet
form E . Of course cW1I(µ) ≤ cW2I(µ).

(ii) The above corollary may be seen as the counterpart of Bobkov-Götze’s characteri-
zations of WpH (p = 1, 2) for Markov processes.

(iii) For a justification of the choice of the constant 4c2 inWI(c), see Example 2.12 below,
where cW1I and cW2I are identified as standard error in a Gaussian model.

Proof. Part (1). Notice that W1(ν, µ) = TΦ(ν, µ), where Φ := {(u, u); ‖u‖Lip ≤ 1, u ∈
bB}. The result is a direct consequence of Theorem 2.2 in case u is bounded. The
transition from a bounded to an unbounded u follows from an elementary monotone
convergence argument.
Part (2). The equivalence of (b) and (c) is direct. Though (a) ⇔ (b) follows easily from
Theorem 2.2, we nevertheless present a simple proof. In the present symmetric case, by
Lemma 2.3, for any u ∈ L1(µ) the equality is achieved in inequality (2.9):

‖P u
t ‖L2(µ) = etΛ(u), ∀t ≥ 0

(possibly infinite) where Λ(u) is given at (2.8). Notice that Qv is upper semicontinuous
and Su is lower semicontinuous.
• (a) ⇒ (b). Since for any ν ∈M1(E),

∫
Qv dν −

∫
v dµ ≤W 2

2 (ν, µ) ≤ 4c2 I(ν|µ)

then
1

4c2

∫
Qv dν − I(ν|µ) ≤ 1

4c2
µ(v)

Taking the supremum over all ν yields (b).
• (b) ⇒ (a). Reverse the above proof. �
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Remarks 2.6. We have seen that, by Theorem 2.2, TΦI inequalities lead to exponential
deviation inequalities when the initial measure β is such that dβ/dµ ∈ L2(µ). It is of
course a limitation for the applications. Let us see that in the diffusion case we may
overcome this limitation. As remarked by Wu [43, p.441-442] , this assumption can be
replaced by dβ/dµ ∈ Lq(µ) for 1 ≤ q < 2, provided that one replaces (2.9) in Lemma 2.3
by ‖P u

t ‖p ≤ etΛp(u), with

Λp(u) := sup

{∫
u|f |p dµ + 〈sgn(f)|f |p−1,Lf〉µ ; f ∈ Dp(L) and

∫
|f |pdµ = 1

}
,

where p and q are conjugate numbers. Now, suppose that L admits a carré du champ Γ.
One can integrate by parts and get

〈sgn(f)|f |p−1,Lf〉µ = − (4(p− 1)/p2)

∫
Γ(|f |p/2) dµ .

Taking g = |f |p/2 in the definition of Λ, we obtain that

Λp(u) = (4(p− 1)/p2) Λ((p2/4(p− 1))u).

Once again a deviation inequality is obtained, however with worse constants.

2.3. Tensorization of TcI. Assume that µi ∈M1(Xi) satisfies

αi(Tci(ν, µi)) ≤ Ii(ν|µi), ∀ν ∈M1(Xi) (2.13)

where Ii(ν|µi) is the Fisher-Donsker-Varadhan information related to the Dirichlet form
(Ei,D(Ei)), and αi is moreover convex. On the product space X (n) :=

∏n
i=1 Xi equipped

with the product measure µ :=
∏n

i=1 µi, consider the sum-cost function

⊕ici(x, y) :=

n∑

i=1

c(xi, yi), ∀x, y ∈ X (n) (2.14)

and the inf-convolution of (αi)

α12 · · ·2αn(r) := inf

{
n∑

i=1

α(ri); ri ≥ 0,
n∑

i=1

ri = r

}
. (2.15)

It also shares the following properties of every αi : it is increasing, left continuous and
convex on R

+ with α(0) = 0 (see [24]). Define the sum-Dirichlet form of ⊕iEi by

D(⊕iEi) :=

{
g ∈ L2(µ) : gi ∈ D(Ei), for µ-a.e. x̂i and

∫

X (n)

n∑

i=1

Ei(gi, gi) dµ < +∞
}

⊕iEi(g, g) :=

∫

X (n)

n∑

i=1

Ei(gi, gi) dµ, g ∈ D(E)

(2.16)
where gi(xi) := g(x1, · · · , xi, · · · , xn) with x̂i := (x1, · · · , xi−1, xi+1, · · · , xn) fixed.

Theorem 2.7. Assume (2.13) for each i = 1, · · · , n with αi moreover convex. Define
c, α, E respectively by (2.14), (2.15) and (2.16). Let I⊕iEi

(ν|µ) be the Fisher-Donsker-
Varadhan information associated with (⊕iEi,D(⊕iEi)). Then

α12 · · ·2αn(r)(T⊕ci(ν, µ)) ≤ I⊕iEi
(ν|µ), ∀ν ∈M1

(
X (n)

)
. (2.17)
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This result is similar to [24, Corollary 5], but the proof will be different. It is based on
the following sub-additivity result for the transportation cost of a product measure which
is different from Marton’s original proof [31] where an ordering of sites is required.

Lemma 2.8. Given a probability measure ν on
∏n

i=1 Xi, let νi be the regular conditional
distribution of xi knowing x̂i. Then with the cost function c given at (2.14),

T⊕ci(µ, ν) ≤ E
ν

n∑

i=1

Tci(µi, νi).

Notation. The expectation E
ν simply means integration with respect to ν.

Proof. Let (Zi = (Xi, Yi))i=1,··· ,n be a sequence of random variables valued in
∏n

i=1 X 2
i

defined on some probability space (Ω,F ,P), realizing T⊕ci(µ, ν), i.e., the law of X =
(Xi)i=1,··· ,n is µ =

∏n
i=1 µi, the law of Y = (Yi)i=1,··· ,n is ν, and

E

∑

i

ci(Xi, Yi) = T⊕ci(µ, ν).

For each i fixed, construct a couple of r.v. (X̃i, Ỹi) so that its conditional law given (Zj)j 6=i
is a coupling of (µi(dxi), νi(dxi|Yj, j 6= i) and P-a.s.,

E[ci(X̃i, Ỹi)|Zj, j 6= i] = Tci(µi, νi(·|Yj, j 6= i)).

Obviously (Xj, j 6= i; X̃i) and (Yj, j 6= i; Ỹi) (more precisely their joint law) constitute a

coupling of (µ, ν). Thus E
∑

j cj(Xj , Yj) ≤ E[
∑

j 6=i cj(Xj, Yj) + ci(X̃i, Ỹi)] or

Eci(Xi, Yi) ≤ Eci(X̃i, Ỹi) = ETci(µi, νi(·|Yj, j 6= i)).

Consequently

T⊕ci(µ, ν) = E

n∑

i=1

Tci(Xi, Yi) ≤ E

n∑

i=1

Tci(µi, νi(·|Yj, j 6= i)) =

∫ n∑

i=1

Tci(µi, νi) dν.

�

The following additivity property of the Fisher information will be needed. It holds
even in the dependent case.

Lemma 2.9. Let ν, µ be probability measures on
∏n

i=1 Xi such that I(ν|µ) < +∞, let µi,
νi be the regular conditional distributions of xi knowing x̂i under µ, ν. Then

I⊕iEi
(ν|µ) = E

ν
∑

i

Ii(νi|µi). (2.18)

Proof. Let f = dν/dµ. Then dνi/dµi = f/µi(f) = fi/µi(fi), ν-a.s. (recalling that fi is
the function f of xi with x̂i fixed). For ν-a.e. x̂i fixed,

Ii(νi|µi) = Ei
(√

fi
µi(fi)

,

√
fi

µi(fi)

)
=

1

µi(fi)
Ei(
√
fi,
√
fi)
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(for µi(fi) is constant with x̂i fixed). We obtain

E
ν

n∑

i=1

Ii(νi|µi) = E
µf

n∑

i=1

1

µi(fi)
Ei(
√
fi,
√
fi)

= E
µ

n∑

i=1

Ei(
√
fi,
√
fi)

= ⊕iEi(
√
f,
√
f) = I⊕iEi

(ν|µ),

which completes the proof. �

The above additivity is different from the super-additivity of the Fisher information for
product measure obtained by E. Carlen [7].

Proof of Theorem 2.7. Without loss of generality we may assume that I(ν|µ) < +∞. For
simplicity write α = α12 · · ·2αn. By Lemma 2.8, Jensen’s inequality and the definition
of α,

α(T⊕ci(ν, µ)) ≤ α

(
E
ν

n∑

i=1

Tci(νi, µi)

)

≤ E
να

(
n∑

i=1

Tci(νi, µi)

)

≤ E
ν

n∑

i=1

αi(Tci(νi, µi))

≤ E
ν

n∑

i=1

Ii(νi|µi).

The last quantity is equal to I⊕Ei
(ν|µ), by Lemma 2.9. �

As an example of application, let (X i
t)t≥0, i = 1, · · · , n be n Markov processes with the

same transition semigroup (Pt) and the same symmetrized Dirichlet form E on L2(µ),
and conditionally independent once (X i

0)i=1,··· ,n is fixed. Then Xt := (X1
t , · · · , Xn

t ) is a
Markov process with the symmetrized Dirichlet form given by

⊕nE(g, g) =

∫ n∑

i=1

E(gi, gi)µ(dx1) · · ·µ(dxn)

which is the n-fold sum-Dirichlet form of E .

Corollary 2.10. Assume that µ satisfies TcI on X with α convex. Then µ⊗n satisfies

nα

(
T⊕nc(ν, µ

⊗n)

n

)
≤ I⊕nE(ν|µ⊗n), ∀ν ∈M1(X n). (2.19)

In particular for all (u, v) ∈ Φc, for all initial measure β on X n with dβ/dµ⊗n ∈ L2(µ⊗n)
and for any t, r > 0,

Pβ

(
1

n

n∑

i=1

1

t

∫ t

0

u(X i
s) ds ≥ µ(v) + r

)
≤
∥∥∥∥
dβ

dµ⊗n

∥∥∥∥
2

e−ntα(r). (2.20)
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Proof. As α2n(r) = nα(r/n), (2.19) follows from Theorem 2.7. Noting that for u, v ∈ Φc,
(
∑n

i=1 u(xi),
∑n

i=1 v(xi)) as a couple of functions on X n belongs to Φ⊕nc, we obtain (2.20)
by Theorem 2.2. �

The tensorization of WpI in the dependent Gibbs measure case is carried out in Gao
and Wu [20].

2.4. Relations between W2I, Poincaré and log-Sobolev inequalities. In the rest of
the paper we are interested in two particular cases of TcI: W1I(κ) and W2I(κ) introduced
at Corollary 2.4.
Notation (Spectral gap). As usual, one says that µ satisfies a Poincaré inequality if

Varµ(g) ≤ c E(g, g), ∀g ∈ D2(L)

for some finite c ≥ 0 and a Dirichlet form E which is closable in L2(µ). We denote cP(µ)
the best constant c in the above Poincaré inequality. It is the inverse of the spectral gap
of L.

From the work of Otto-Villani [34], we have the following observations.

Proposition 2.11. Let X be a complete connected Riemannian manifold and µ = e−V (x)dx/Z
where dx is the Riemannian volume measure, V ∈ C2(X ) and Z =

∫
X
e−V dx < +∞. Let

D(E) be the space H1(X , µ) of those functions g ∈ L2(X , µ) such that ∇g ∈ L2(TM, µ)
in the sense of distribution and consider the Dirichlet form,

E∇(g, g) :=

∫

X

|∇g|2 dµ, g ∈ D(E)

and the associated Fisher-Donsker-Varadhan information I(ν|µ), see (2.2).

(a) If the log-Sobolev inequality below

H(ν|µ) ≤ 2c I(ν|µ), ∀ν
is satisfied, then µ satisfies W2I(c). In other words the best constant cLS(µ) in the
log-Sobolev inequality above satisfies

cLS(µ) ≥ cW2I(µ).

(b) If W2I(c) holds, then the Poincaré inequality holds with constant c. In other words
the inverse spectral gap cP(µ) of E∇ satisfies

cW2I(µ) ≥ cP(µ).

(c) Assume that the Bakry-Emery curvature Ric+HessV is bounded from below by K ∈ R,
where Ric is the Ricci curvature and HessV is the Hessian of V. If W2I(c) holds with
cK ≤ 1 (this is possible by Part (a) and Bakry-Emery’s criterion), then the log-Sobolev
inequality

H(ν|µ) ≤ 2(2c− c2K) I(ν|µ), ∀ν
is also satisfied or equivalently

2cW2I(µ) −KcW2I(µ)2 ≥ cLS(µ).
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Proof. Before the proof, let us remind the reader that I = IF/4 where IF is I in Otto-
Villani’s paper [34].
• Statement (a). The proof is direct, as by [34] or [4] a logarithmic Sobolev inequality

implies the W2H (sometimes called T2) inequality so that

W2(ν, µ) ≤
√

2cH(ν|µ) ≤ 2c
√
I(ν|µ)

which is the announced conclusion.

• Statement (b). The proof follows from the usual linearization procedure. Set µε =
(1 + εg)µ for some smooth and bounded g with

∫
g dµ = 0, we easily get: as ε→ 0,

I(µε|µ)/ε2 → 1

4
E∇(g, g)

and by Otto-Villani [34, p.394], there exists r such that
∫
g2 dµ ≤

√
E∇(g, g)

W2(µε, µ)

ε
+
r

ε
W 2

2 (µε, µ).

Using now W2I(c) we get
∫
g2 dµ ≤ 2c

√
E∇(g, g)

√
I(µε|µ)

ε2
+

4rc2

ε
I(µε|µ).

Letting ε→ 0 gives the result.

• Statement (c). This result is a direct application of the HWI inequality [34, Th.3] in
the Euclidean case and [4] for a general Riemannian manifold:

H(ν|µ) ≤ 2W2(ν, µ)
√
I(ν|µ) − K

2
W 2

2 (ν, µ). (2.21)

�

Example 2.12. Let µ = N (0,Σ) be the centered Gaussian measure on R
n, with positive

definite covariance matrix Σ. We claim that with respect to the Euclidean metric | · |,
cW1I(µ) = cW2I(µ) = λ−1

min(Σ
−1)

where λmin denotes the minimal eigenvalue. Indeed it is well known that with respect to
the usual gradient ∇ on R

n (cf. Ledoux [27]),

cP(µ) = cLS(µ) = λ−1
min(Σ

−1).

Then by Proposition 2.11(a) and (b),

cW1I(µ) ≤ cW2I(µ) = λ−1
min(Σ

−1).

On the other hand, let ν = N (m,Σ) where m ∈ R
n. Then W1(ν, µ) = |m| (indeed

Wp(ν, µ) = |m| for all p ≥ 1), and I(ν|µ) = 1
4
|Σ−1m|2. Thus

cW1I(µ) ≥
(

inf
m∈Rn

|Σ−1m|
|m|

)−1

= λ−1
min(Σ

−1)

completing the proof of the claim.
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As is seen from this proposition, in the bounded below curvature case, W2I(κ) is (qual-
itatively as constants are lost) equivalent to a logarithmic Sobolev inequality. It is an
interesting question to know whether or not it is the case in full generality. We do not
believe this to be true, and the hint for this conjecture comes from the fact that even for
the usual W2H inequality, the only cases of measures satisfying W2H but not log-Sobolev
inequality which are known so far have an infinite curvature [9]. That is why in the rest of
the paper we are mainly interested in W1I(κ). Nevertheless, note that W2I may easily be
applied to obtain tensorization results in some situations where dependence occurs and
the log-Sobolev inequality seems to be unfruitful, see [20].

3. Poincaré inequality implies Hoeffding’s deviation inequality

3.1. Relations between Poincaré and W1I inequalities. The purpose of this section
is to establish

Theorem 3.1. Let ((Xt),Pµ) be a stationary ergodic Markov process.

(a) The Poincaré inequality

Varµ(g) ≤ cP E(g, g), ∀g ∈ D2(L) (3.1)

implies

‖ν − µ‖2
TV

≤ 4cP I(ν|µ), ∀ν ∈M1(X ). (3.2)

In particular for every initial probability measure β ≪ µ with dβ/dµ ∈ L2(µ) and for
all u ∈ bB, t, r > 0,

Pβ

(
1

t

∫ t

0

u(Xs) ds− µ(u) ≥ r

)
≤
∥∥∥∥
dβ

dµ

∥∥∥∥
2

exp

(
− tr2

cPδ(u)2

)
(3.3)

where δ(u) := supx,y∈X |u(x) − u(y)| is the oscillation of u.
(b) Conversely, under the additional assumption that (Xt,Pµ) is reversible and R1 :=∫∞

0
e−tPt dt is µ-uniformly positive improving, if there is some left-continuous and

increasing α such that α(r) > 0 for all r > 0 and

α (‖ν − µ‖TV) ≤ I(ν|µ), ∀ν ∈M1(X ),

then the Poincaré inequality (3.1) holds.
(c) In other words when d is the trivial metric, W1I is equivalent to Poincaré’s inequality

in the symmetric and uniformly positive improving case.

Here the kernel R1 is said µ-uniformly positive improving, if for any ε > 0,

inf
A,B:µ(A),µ(B)≥ε

µ(1AR11B) > 0.

Note that if the symmetric semigroup (Pt) is irreducible, i.e. R1(x,A) =
∫∞

0
e−tPt(x,A) dt >

0, ∀x ∈ X for any A ∈ B charged by µ, then R1 is µ-uniformly positive improving for every
t > 0 (cf. [46, 22]). A typical example of this situation is when Pt(x, dy) = pt(x, y)µ(dy)
and pt(x, y) > 0, µ⊗ µ-a.s. for some t > 0. See [46, 22] for related results and references
on this subject.

Remarks 3.2.
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(i) Let d(x, y) = 1x 6=y (the trivial metric) and Φ = {(u, u); δ(u) ≤ 1}. Then

1

2
‖ν − µ‖TV = W1(ν, µ) = TΦ(ν, µ).

Hence (3.2) is exactly the inequality TΦI or W1I(c) with 4c2 = cP, and (3.3) is a
direct consequence of (3.2) and Corollary 2.4-(1-d).

(ii) Hoeffding type inequality (3.3) improves a similar result by Cattiaux and Guillin [8].
Lezaud [28] proved a deviation inequality, which is better than (3.3) in the moderate
deviation scale (r very small), nevertheless his proof involves a difficult argument
based on Kato’s theory of perturbation of operators.

(iii) Inequality (3.3) is only meaningful for r small enough, since its left-hand side vanishes
as soon as r > δ(u).

(iv) About the deviation inequality in Theorem 2.2(c), several variants are already known.
K. Marton [32] proved a Gaussian deviation inequality for Doeblin recurrent Markov
chains (Xn)n∈N by means of L1-transportation inequality for the law of the chain.
Her result is next generalized in Djellout and al. [13].

(v) Does W1I(c) imply the exponential decay: W1(νPt, µ) ≤ Ce−δtW1(ν, µ)? In the
trivial metric case this decay means Doeblin recurrence and Theorem 3.1 gives a
negative answer. Indeed, there exist reversible Markov processes having a positive
spectral gap which are not Doeblin recurrent, for instance the Ornstein-Uhlenbeck
processes.

Proof of Theorem 3.1. • Statement (a). As noticed at Remark 3.2-(i), all we have to
prove is the transportation inequality (3.2). To this end we may assume that f = dν/dµ
satisfies

√
f ∈ D(E). By the inequality (3.5) in Theorem 3.3 below and the assumed

Poincaré inequality,

1

4
‖ν − µ‖2

TV ≤ Varµ(
√
f) ≤ cPE(

√
f,
√
f) = cPI(ν|µ).

• Statement (b). This converse part is based on the third author’s paper [46]. Indeed by
Theorem 2.2 and our assumption,

lim sup
t→∞

1

t
log Pµ

(∣∣∣∣
1

t

∫ t

0

u(Xs) ds− µ(u)

∣∣∣∣ > r

)
< 0

for all u : X → R
d bounded and measurable (d ≥ 1) and any r > 0. This implies by [46,

Theorem 3.9] that (Pt) satisfies the Resolvent Tail-Norm Condition (named in [46]). This
last property together with the uniform positive improving property implies the existence
of a spectral gap by [46, Theorem 4.1] or [22, Theorem 4.4].
• Finally, (c) is a direct consequence of (a) and (b). �

3.2. A CKP type inequality. During the proof of (a), we have used inequality (3.5)
which is part of the Theorem 3.3 below. The usual CKP (Csiszár-Kullback-Pinsker)
inequality is

1

2
‖ν − µ‖2

TV ≤ H(ν|µ), ∀ν ∈M1(X ).

We shall see during the proof of Lemma 3.7 at (3.12) that (3.5) is of the similar form

1

4
‖ν − µ‖2

TV ≤ I(ν|µ), ∀ν ∈M1(X )
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for some well chosen I. This is the reason why it is called a CKP type inequality.
Let ((Xt)t≥0,P) be the pure jump Markov process on the state space X with generator

Lg(x) =
∫
X
[g(y)− g(x)]µ(dy), g ∈ bB and initial law µ ∈M1(X ). A representation of X

is given by
Xt = YNt

, t ≥ 0 (3.4)

where N is a Poisson process with parameter one which is independent of the sequence
(Yn)n≥0 of independent identically µ-distributed X -valued random variables.

Theorem 3.3. Let µ be any probability measure on X and X be its associated process
defined at (3.4).

(1) The following two equivalent families of inequalities hold true:
(a) For every µ-probability density f, i.e. f ≥ 0 and µ(f) = 1,

‖fµ− µ‖2
TV

≤ 4Varµ(
√
f); (3.5)

(b) For all λ ∈ R and u ∈ bB such that µ(u) = 0 and δ(u) ≤ 2, we have

lim sup
t→∞

1

t
log E exp

(
λ

∫ t

0

u(Xs) ds

)
≤ ρ(λ) (3.6)

where ρ(λ) = 1|λ|≤1λ
2 + 1|λ|>1(2|λ| − 1).

(2) The constant 4 in (3.5) is sharp and the equality holds if and only if

µ ◦ f−1 = pδ 1−p

p
+ (1 − p)δ p

1−p
(3.7)

for some 0 < p < 1.
(3) The function ρ is the best right-hand side for the inequality (3.6) and the equality

is achieved for some λ ∈ R and some u ∈ bB such that µ(u) = 0 and δ(u) ≤ 2, if
and only if there exists 0 < p < 1 such that

λ = 1 − 2p := λ(p)

and
µ ◦ u−1 = pδ2−2p + (1 − p)δ−2p. (3.8)

Proof. The statement of Theorem 3.3 is simply a gathering of Lemmas 3.5 and 3.7 below.
These lemmas provide two distinct proofs of inequality (3.5). �

Remarks 3.4.

(i) Note the symmetry p ↔ 1 − p in (3.7) and the antisymmetry in (3.8) : (λ, u) ↔
(−λ,−u) gives p↔ 1 − p.

(ii) Let us recall some well-known facts about optimal transportation [39, 38]. The total
variation ‖µ− ν‖TV is the minimal transportation cost Tc(ν, µ) associated with the
cost function c(x, y) = 2 · 1x 6=y (see Remarks 3.2) :

‖µ− ν‖TV = 2 inf
π∈P (ν,µ)

π({(x, y); x 6= y})

where P (ν, µ) = {π ∈M1(X 2) : π0 = ν, π1 = µ}. The infimum is attained on P (ν, µ),
these minimizers are often called optimal couplings of ν and µ. One has the following
characterization: π ∈ P (ν, µ) is optimal if and only if there exists some measurable
function u on X such that

π({(x, y) ∈ X 2; u(x) − u(y) = 2 · 1x 6=y}) = 1. (3.9)



TRANSPORTATION-INFORMATION INEQUALITIES 19

Such a u is often called an optimal Kantorovich potential.
Let 0 < p < 1 and f satisfy (3.7). Any optimal coupling π of fµ and µ satisfies

π({(x, y); x 6= y}) = |1 − 2p| = |λ(p)|
and it admits an optimal Kantorovich potential u (see (3.9)) satisfying (3.8). More
precisely,
(a) {u = 2 − 2p} = {f = (1 − p)/p} if 0 < p < 1/2;
(b) {u = 2 − 2p} = {f = p/(1 − p)} if 1/2 < p < 1;
(c) When p = 1/2, (3.7) is equivalent to f = 1 µ-a.e., that is ν = µ. On the other

hand, any u satisfying (3.8) with p = 1/2 is an optimal potential for the trivial
optimal coupling π(dxdy) = µ(dx)δx(dy).

The equalities in (a) and (b) are satisfied up to µ-negligible sets.
(iii) Inequality (3.5) is already known in statistics. Indeed for ν = fµ, the Hellinger

distance between ν and µ is given by

d2
H(ν, µ) =

1

2

∫
(1 −

√
f)2dµ = 1 − µ(

√
f).

The known inequality (see Gibbs and Su [21]) is

1

4
‖ν − µ‖2

TV ≤ d2
H(ν, µ)[2 − d2

H(ν, µ)]

and the above right-hand side is exactly 1 − [µ(
√
f)]2 = Varµ(

√
f).

We are going to give two different new proofs of (3.5). The first one, at Lemma 3.5,
is elementary and provides a characterization of these f ’s which achieve the equality in
(3.5). The second one, at Lemma 3.7, is in the spirit of this paper since it is a corollary of
Theorem 2.2. It also provides a characterization of the real parameters λ which achieve
the equality in the “dual” inequality (3.6).

A first proof of the CKP type inequality (3.5) and more. It may be seen as an amusing
exercise in graduate courses.

Lemma 3.5. The inequality (3.5) holds for every µ-probability density f. Moreover, equal-
ity is achieved in (3.5) if and only (3.7) is satisfied for some 0 < p < 1.

Proof of Lemma 3.5. Assume that µ(f = 1) < 1 (trivial otherwise) in the following. Then
0 < µ(f < 1), µ(f > 1) < 1.

• Step 1. Reduction to the two-values case. This step might be the most difficult. Let
A = {f < 1}, B = {f ≥ 1} and f̄ := E

µ(f |σ(A)) = α1A + β1B with α = µ(1Af)/µ(A)
and β = µ(1Bf)/µ(B). As µ(f < 1) > 0 and µ(f > 1) > 0, one sees that 0 ≤ α < 1 < β.
Therefore, f < 1 if and only if f̄ < 1 and

1

2
µ(|1 − f |) =

∫

f<1

(1 − f) dµ =

∫

f<1

(1 − f̄) dµ =

∫

f̄<1

(1 − f̄) dµ =
1

2
µ(|1 − f̄ |)

On the other hand, by Jensen’s inequality

Varµ

(√
f̄

)
= 1 −

[
µ

(√
f̄

)]2

≤ 1 − [µ(
√
f)]2
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and the equality holds if and only if f = f̄ . It follows that for f to satisfy (3.5) it is
enough that (3.5) also holds for f̄ . Without loss of generality, we may assume from now
on that f = f̄ , i.e. there are two numbers 0 ≤ a < 1 < b such that

p = µ(f = a2) ∈ (0, 1), q = µ(f = b2) ∈ (0, 1), p+ q = 1.

• Step 2. Let ξ ∈ (0, π/2) such that
√
p = cos ξ,

√
q = sin ξ. Since

1 = µ(f) = pa2 + qb2

we may choose θ ∈ [0, π/2] such that

a =
1√
p

cos θ, b =
1√
q

sin θ.

As a ∈ [0, 1), θ > ξ. Now noting that

Varµ(
√
f) = (b− a)2pq,

1

2
µ(|1 − f |) = µ(1f<1(1 − f)) = (1 − a2)p

the inequality (3.5) amounts to saying that

(b− a)
√
pq − (1 − a2)p = sin θ cos ξ − cos θ sin ξ − (cos2 ξ − cos2 θ)

= sin(θ − ξ) − (cos2 ξ − cos2 θ) =: g(ξ, θ) ≥ 0
(3.10)

for all 0 < ξ < θ ≤ π/2. Fix ξ and put h(θ) = g(ξ, θ). We have

h′(θ) = cos(θ − ξ) − sin(2θ) = sin
(π

2
− (θ − ξ)

)
− sin(2θ)

and then h′(θ) = 0 if and only if
π

2
− (θ − ξ) = 2θ (if 2θ ≤ π/2) or

π

2
− (θ − ξ) = π − 2θ

(if 2θ ≥ π/2), i.e. θ = θ1 =
π

6
+
ξ

3
or θ = θ2 =

π

2
− ξ.

Case 1. ξ ∈ [π/4, π/2): Since θ1, θ2 ≤ ξ and h′(π/2) > 0, we have h′(θ) > 0 for all
θ ∈ (ξ, π/2]. Hence for all θ ∈ (ξ, π/2], g(ξ, θ) = h(θ) > h(ξ) = 0.

Case 2. ξ ∈ (0, π/4): In this case ξ < θ1 < θ2 < π/2. Since h′(ξ) > 0, h′(π/2) >
0, h(ξ) = h(θ2) = 0, h′ is positive, negative and positive respectively on (ξ, θ1),
(θ1, θ2) and (θ2, π/2). Consequently for all θ ∈ (ξ, π/2], g(ξ, θ) = h(θ) ≥ 0 and the

equality holds if and only if θ = θ2 =
π

2
− ξ.

• Step 3. Equality in (3.5). If f = 1, µ-a.s., then the equality in (3.5) holds. Now, assume
µ(f = 1) < 1 and the equality in (3.5). By Step 1, f = f̄ , i.e. f takes only two values√
a < 1 <

√
b. By Step 2, this is possible if and only if ξ < π/4 and θ = π/2 − ξ, i.e.

p = cos2 ξ > 1
2
, cos2 θ+cos2 ξ = a2p+p = 1. That is p(1+a2) = 1. Therefore, either there

exist two numbers 0 < a < 1 < b such that µ(f ∈ {a2, b2}) = 1 and
{
pa2 + (1 − p)b2 = 1
p(1 + a2) = 1

or f = 1, µ-a.e. This proves the desired parametrization (3.7) for 1/2 ≤ p < 1, and hence
for all 0 < p < 1 because of the symmetry in (3.7). �
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Example 3.6. (Bernoulli distribution). Let µ be the Bernoulli distribution on X = {0, 1}
with µ({1}) = p ∈ (0, 1). Consider the Dirichlet form E(g, g) = (g(1) − g(0))2. Then
cP(µ) = pq. By Theorem 3.1-(a) and Remark 3.2-(i), we see that

pqW1(ν, µ)2 ≤ I(ν|µ)

where W1 is built with the trivial metric. The constant pq is sharp. However µ does not
satisfy any W2I(κ) as is easily seen with ν = µε = (1 + εg)µ.

A second proof of the CKP type inequality (3.5) and more. Recall that ((Xt)t≥0,P) is the
pure jump Markov process defined at (3.4).

Lemma 3.7.

(1) The inequality (3.5) holds for all probability density f if and only if for all λ ∈ R

and u ∈ bB such that µ(u) = 0 and δ(u) ≤ 2, we have

lim sup
t→∞

1

t
log E exp

(
λ

∫ t

0

u(Xs) ds

)
≤ λ2. (3.11)

(2) For all λ ∈ R and u ∈ bB such that µ(u) = 0 and δ(u) ≤ 2, the inequality (3.11)
holds true.

(3) The equality is achieved in (3.11) for some λ ∈ R and some u ∈ bB such that
µ(u) = 0 and δ(u) ≤ 2, if and only if λ = 1 − 2p and (3.8) hold for some
0 < p < 1.

(4) The function ρ is sharp in inequality (3.6), that is

ρ(λ) = sup
u

{
lim sup
t→∞

1

t
log E exp

(
λ

∫ t

0

u(Xs) ds

)}

for all real λ, where the supremum is taken over all u ∈ bB such that µ(u) = 0
and δ(u) ≤ 2.

(5) For all λ ∈ R and u ∈ bB such that µ(u) = 0 and δ(u) ≤ 2, the inequalities (3.5),
(3.6) and (3.11) are equivalent. The equality in (3.6) is never achieved whenever
|λ| ≥ 1.

Proof. • Statement (1): Clearly, µ is a reversing measure for the process X and the
associated Dirichlet form is

E(g, g) = Varµ(g), g ∈ D2(L) = L2(µ). (3.12)

Therefore, statement (1) is a direct consequence of Theorem 2.2-(b′) applied with Φ = Φc,
c(x, y) = 2.1x 6=y and α(a) = a2/4. Note that one passes from λ ≥ 0 to λ ∈ R, by
considering −u instead of u. This is possible since δ(−u) = δ(u) ≤ 2 and µ(−u) = µ(u) =
0.

• Statement (2): Let us introduce the notations ψ(t) = logϕ(t) with ϕ(t) = E exp
(∫ t

0
v(Xs) ds

)

and v = λu. We wish to get an upper bound for ψ(t). For all t ≥ 0,

ψ′(t) = ϕ′

ϕ
(t) = E

v,t[v(Xt)]

ψ′′(t) =

[
ϕ′′

ϕ
−
(
ϕ′

ϕ

)2
]

(t)
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where E
v,t is the expectation with respect to

P
v,t = exp

(∫ t

0

v(Xs) − ψ(t)

)
· P.

In order to compute ψ′′(t), let us apply Itô’s formula to Yt = v(Xt) exp
∫ t
0
v(Xs) ds. This

gives

dYt = exp

(∫ t

0

v(Xs) ds

)[
(Lv(Xt) + v(Xt)

2) dt+ dMt

]

where M is some martingale. It follows that

ϕ′(t) = EYt

= E

(
v(X0) +

∫ t

0

dYs

)

= Ev(X0) +

∫ t

0

E

(
exp(

∫ s

0

v(Xr) dr)[Lv(Xs) + v(Xs)
2]

)
ds

Hence ϕ′′(t) = E

(
exp(

∫ t
0
v(Xs) ds)[Lv(Xt) + v(Xt)

2]
)

and we obtain

ψ′′(t) − E
λu,t
(
L[λu](Xt)

)
= λ2

V
λu,t[u(Xt)]

where V
λu,t is the variance with respect to P

λu,t.
Since µ(u) = 0, Lu(x) = µ(u) − u(x) = −u(x), one sees that

ψ′′(t) + ψ′(t) = λ2
V
λu,t[u(Xt)], t ≥ 0. (3.13)

As it is assumed that δ(u) ≤ 2, we have V
λu,t[u(Xt)] ≤ 1 and

ψ′′(t) + ψ′(t) ≤ λ2, t ≥ 0. (3.14)

Clearly, ψ(0) = 0 and ψ′(0) = Ev(X0) = µ(v) = 0. Let θ be the solution of

θ′′(t) + θ′(t) = λ2, t ≥ 0 (3.15)

with the same initial conditions as ψ : θ(0) = θ′(0) = 0. Denote γ(t) = θ(t) − ψ(t). As
γ′′(t) + γ′(t) ≥ 0, for all t ≥ 0, we see that γ′(t) + γ(t) ≥ γ′(0) + γ(0) = 0. By Gronwall’s
inequality, it follows that γ(t) ≥ 0 for all t ≥ 0. This means that

ψ(t) ≤ λ2(e−t + t− 1), ∀t ≥ 0

where the right hand side is θ(t) which is obtained by elementary differential calculus.
The upper bound (3.11) follows immediately.

• Statement (3): Now, let’s investigate the equality in (3.11). Inspecting the proof of
statement (2), one sees that this equality holds if and only if the equality holds in (3.14)
asymptotically as t tends to infinity, i.e.

lim
t→∞

V
λu,t[u(Xt)] = 1 (3.16)

To see this, remark that the solution to (3.15) with general initial conditions θ(0) = θo,
θ′(0) = θ′o is θ(t) = λ2(e−t + t− 1)+ θo + θ′o(1− e−t), t ≥ 0 so that limt→∞ θ(t)/t = λ2, for
any initial conditions. Using Gronwall’s inequality as above, one sees now with (3.13) that
the desired equality holds if and only if lim inft→∞ V

λu,t[u(Xt)] = 1. But this is equivalent
to (3.16) since V

λu,t[u(Xt)] ≤ 1 as δ(u) ≤ 2.
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It is an easy exercice to show that for any random variable Z such that −1 ≤ Z ≤ 1 almost
surely, we have Var(Z) ≤ 1 and Var(Z) = 1 if and only if the law of Z is 1

2
(δ−1 + δ+1). It

follows that (3.16) holds if and only if u only takes two values a+ 1 and a− 1 where a is
some real such that µ(u) = 0 and

lim
t→∞

P
λu,t(u(Xt) = a+ 1) = lim

t→∞
P
λu,t(u(Xt) = a− 1) = 1/2. (3.17)

One immediately sees that with p := µ(u = a+1), µ(u) = 0 implies that a = a(p) = 1−2p.
Therefore, the image law µ ◦ u−1 of µ by u must satisfy (3.8) for some 0 < p < 1.
Fix 0 < p < 1 and take u as in (3.8). Let us introduce the {+,−}-valued process

defined by Z
(p)
t = u(Xt) − a(p), t ≥ 0 and denote χ the identity on {+,−} : χ(+) = +1,

χ(−) = −1. Rewriting (3.17) as a ratio, one obtains

1 = lim
t→∞

E

[
1{u(Xt)=a(p)+1}

{
exp

(
λ
∫ t
0
u(Xs) ds

)
− ψ(t)

}]

E

[
1{u(Xt)=a(p)−1}

{
exp

(
λ
∫ t
0
u(Xs) ds

)
− ψ(t)

}]

= lim
t→∞

E

[
1+(Z

(p)
t ) exp

(
λ
∫ t
0
χ(Z

(p)
s ) ds

)]

E

[
1−(Z

(p)
t ) exp

(
λ
∫ t
0
χ(Z

(p)
s ) ds

)]

The process Z(p) is still Markov and its generator is given for all σ ∈ {+,−} and g ∈ R
{+,−}

by

Apg(σ) = mp(g) − g(σ)

where mp = pδ+ + (1 − p)δ− is the image of µ by x ∈ X 7→ u(x) − a(p).
The Feynman-Kac semigroup associated with Z(p) and the potential λχ is defined for all
σ ∈ {+,−} and g ∈ R

{+,−} by

P λ
t g(σ) := E

[
g(Z

(p)
t ) exp

(
λ

∫ t

0

χ(Z(p)
s ) ds

)∣∣∣Z(p)
0 = σ

]
.

This allows to rewrite

E

[
1+(Z

(p)
t ) exp

(
λ
∫ t
0
χ(Z

(p)
s ) ds

)]

E

[
1−(Z

(p)
t ) exp

(
λ
∫ t
0
χ(Z

(p)
s ) ds

)] =
〈mp, P

λ
t 1+〉

〈mp, P λ
t 1−〉

=
〈mp, exp[t(Ap + λχ)]1+〉
〈mp, exp[t(Ap + λχ)]1−〉

which can be computed explicitly by means of elementary linear algebra in R
2. Indeed,

seeing the functions as vectors: g =

(
g(+)
g(−)

)
=

(
x
y

)
= x1+ + y1− where (1+, 1−) is

the canonical base of R
{+,−}, one immediately identifies the operator Ap + λχ with the

matrix M =

(
−1 + p+ λ 1 − p

p −p− λ

)
. It is a simple exercice to show that M has two

real distinct eigenvalues s1 > s2 given by s1 = −1/2+
√

∆/2 and s2 = −1/2−
√

∆/2 with

∆ = 1+4λ(λ+2p−1) and ∆ > 0 since 0 < p < 1. One can check that 1+ = (v1−v2)/
√

∆
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and 1− = (−p+λ+s2
p

v1 + p+λ+s1
p

v2)/
√

∆ where v1 =

(
p+ λ+ s1

p

)
and v2 =

(
p+ λ+ s2

p

)

are eigenvectors associated respectively with s1 and s2. Using the elementary remark that
s1 > s2 implies that limt→∞ e−ts1etM (av1 + bv2) = av1 for all a, b ∈ R, one obtains

lim
t→∞

〈mp, P
λ
t 1+〉

〈mp, P λ
t 1−〉

= − p

p + λ+ s2

for all 0 < p < 1 and λ ∈ R. Putting everything together, we conclude that the equality
in (3.11) holds if and only if −p/(p + λ + s2) = 1 which in turn is also equivalent to
λ = 1 − 2p.

• Statement (4): Let us denote

R(λ) := sup
u

{
lim sup
t→∞

1

t
log E exp

(
λ

∫ t

0

u(Xs) ds

)}
, λ ∈ R

where the supremum is taken over all u ∈ bB such that µ(u) = 0 and δ(u) ≤ 2. We have
to show that R = ρ.
Let us first prove that R is a convex function. As a log-Laplace transform, for each u and

t, log E exp
(
λ
∫ t
0
u(Xs) ds

)
is a convex function of λ. Since X has stationary independent

increments, by a standard sub-additivity argument, one shows that lim supt→∞ is a gen-

uine limit: limt→∞ . It follows that for each u, lim supt→∞
1
t
log E exp

(
λ
∫ t
0
u(Xs) ds

)
is a

convex function of λ. Finally, R is convex as it is the supremum of convex functions.
Because of statements (2) and (3), it is already seen that R(λ) = ρ(λ) = λ2 for all
−1 < λ < 1. On the other hand, since sup |u| ≤ 2 for each u such that µ(u) = 0

and δ(u) ≤ 2, it is clear that lim supt→∞
1
t
log E exp

(
λ
∫ t
0
u(Xs) ds

)
≤ 2|λ| for all real

λ. Therefore, for all λ, ρ(λ) ≤ R(λ) ≤ cv r(λ) where cv r is the convex envelope of
r(λ) = min(λ2, 2|λ|). Indeed, the first inequality holds since ρ is the lowest convex func-
tion which matches with λ2 on λ ∈ (−1, 1) while the second one follows from the inequality
R(λ) ≤ min(λ2, 2|λ|) for all λ and the convexity of R. One concludes that R = ρ, remark-
ing that cv r = ρ.

• Statement (5) is a direct consequence of statement (1) and the proof of statement
(4). �

Note that W1I for the trivial metric implies W1I for any bounded metric. So our
next purpose is to obtain W1I for unbounded metrics. Our study is naturally separated
into two sections. Next Section 4 is concerned with estimating sharply cW1I under strong
dissipative conditions. In Section 5, Lyapunov function conditions forW1I or more general
TΦI are taken into consideration.

4. Spectral gap in the space of Lipschitz functions implies W1I for

diffusion processes

4.1. General observations. We begin with the particular case where µ(dx) = e−V (x)dx/Z
(Z is the normalization constant) with V ∈ C2(X ) on a connected and complete Riemann-
ian manifold X , the diffusion (Xt) generated by L = ∆ −∇V · ∇ (∆,∇ are respectively
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the Laplacian and gradient on M) is reversible with respect to µ, and the corresponding
Dirichlet form is given by

E(h, h) =

∫

X

|∇h|2 dµ, ∀h ∈ D(E) = H1(X , µ).

Theorem 4.1. Assume that
∫
X
d2(x, x0) dµ(x) < +∞ and L has a spectral gap on the

space CLip(X ) of Lipschitz functions with respect to the Riemannian metric d, i.e. there
is a best finite constant C > 0 such that for any g ∈ CLip

⋂
bB with µ(g) = 0, there is

h ∈ D2(L) with µ(h) = 0 solving the Poisson equation

−Lh = −∆h + ∇V · ∇h = g, µ-a.s.

such that one µ-version h̃ of h verifies

‖h̃‖Lip ≤ C‖g‖Lip. (4.1)

Then µ satisfies W1I(C):

W1(ν, µ)2 ≤ 4C2 I(ν|µ), ∀ν ∈M1(X ) (4.2)

or equivalently for any Lipschitz function u on X and any initial probability measure β
with dβ/dµ ∈ L2(µ)

Pβ

(
1

t

∫ t

0

u(Xs) ds ≥ µ(u) + r

)
≤
∥∥∥∥
dβ

dµ

∥∥∥∥
2

exp

(
−t r2

4C2‖u‖2
Lip

)
, ∀r, t > 0. (4.3)

Remarks 4.2.

(i) Let C0
Lip be the Banach space of those g ∈ CLip with µ(g) = 0, equipped with ‖ · ‖Lip.

Hence the best constant C in (4.1) is exactly

‖(−L)−1‖C0
Lip
.

By the spectral decomposition we always have (cf. [47, Proof of Lemma 4.3])

C = ‖(−L)−1‖C0
Lip

≥ ‖(−L)−1‖L2(µ)
⋂
{g∈L2(µ);µ(g)=0} = cP(µ).

(ii) The constant in the concentration inequality (4.3) is sharp. Indeed let dXt =√
2 dBt − Xt dt, which is reversible with respect to µ = N (0, 1) on R. For this

model we have ∇Pt = e−tPt∇ and then

∇(−L)−1g = ∇
∫ ∞

0

Ptg dt = (1 − L)−1∇g, ∀g ∈ C∞
b (R), µ(g) = 0.

This implies C = 1 in (4.1). On the other hand for u(x) = x, under Pµ, the law of

1

t

∫ t

0

u(Xs) ds =
1

t

∫ t

0

Xs ds

is N (0, σ2(t)) where the variance σ2(t) is given by

σ2(t) =
2

t2

∫∫

0≤a≤b≤t

EµXaXb dadb =
2

t2

∫∫

0≤a≤b≤t

e−(b−a) dadb =
2

t
− 2

t2
(1 − e−t)

from which we get

lim
t→∞

1

t
log Pµ

(
1

t

∫ t

0

Xs ds > r

)
= −r

2

4
.



26 ARNAUD GUILLIN, CHRISTIAN LÉONARD, LIMING WU, AND NIAN YAO

This coincides with the upper bound −r2/(4C2) derived from (4.3), showing the
sharpness of (4.3).

Proof of Theorem 4.1. Let Φ = {(g, g); ‖g‖Lip ≤ 1, g bounded}. ThenW1(ν, µ) = TΦ(ν, µ)
by Kantorovich-Rubinstein’s theorem. Let us verify that (b′) of Theorem 2.2 holds.
For any g ∈ CLip with ‖g‖Lip ≤ 1, let h ∈ CLip

⋂
D2(L) such that −Lh = g. Hence

Mt(h) := h(Xt) − h(X0) +

∫ t

0

g(Xs) ds

and

M∗
t (h) := h(X0) − h(Xt) +

∫ t

0

g(Xs) ds

have the same law under Pµ by the reversibility of ((Xt),Pµ). Consequently from Lyons-
Meyer-Zheng’s forward-backward martingale decomposition

St(g) :=

∫ t

0

g(Xs) ds =
1

2
(Mt(h) +M∗

t (h)), (4.4)

it follows that for any convex function φ on R,

Eµφ(St(g)) ≤
1

2
Eµ[φ(Mt(h) + φ(M∗

t (h))] = Eµφ(Mt(h))

As Mt(h) is a (forward) continuous martingale, Mt(h) = Bτt where (Bt) is some Brownian

motion with respect to another time-changed filtration (F̂t), and τt = 〈M(h)〉t is a (F̂t)-
stopping time (a well known result). Since

〈M(h)〉t = 2

∫ t

0

|∇h|2(Xs) ds ≤ 2C2t

By Jensen’s inequality, we obtain for all convex function φ on R that

Eµφ(St(g)) ≤ Eφ(Bτt) = Eφ(E[B2C2t|F̂τt) ≤ Eφ(B2C2t) (4.5)

Applying this to φ(x) = eλx, we get

Eµ exp

(
λ

∫ t

0

g(Xs) ds

)
≤ EeλB2C2t = eλ

2C2t, ∀λ ∈ R. (4.6)

Hence Theorem 2.2-(b′) holds with Φ = {(g, g); ‖g‖Lip ≤ 1, g bounded} and α(r) =
r2/(4C2). Therefore (4.2) and (4.3) follow from Theorem 2.2. �

Klein-Ma-Privault [26] developed convex concentration inequality (4.5) for semimartin-
gales instead of St(g), by means of a forward-backward martingale calculus, but their
result cannot be applied directly here.

Before estimating the constant C in condition (4.1), we extend the above result to
general symmetric Markov diffusions by following Bakry [1].

Let ((Xt),Pµ) be a reversible ergodic Markov process with the Dirichlet form (E ,D(E)),
with continuous sample paths valued in some separable complete metric space (X , d)
(called Markov diffusion). We assume that (E ,D(E)) is given by the carré-du-champs
Γ : D(E) × D(E) → L1(µ) (symmetric, bilinear definite nonnegative form):

E(h, h) =

∫

X

Γ(h, h) dµ, ∀h ∈ D(E). (4.7)
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The continuity of sample paths of (Xt) implies that Γ is a differentiation, that is: for all
(hk)1≤k≤n ⊂ D(E), g ∈ D(E) and F ∈ C1

b (R
n),

Γ(F (h1, · · · , hn), g) =

n∑

i=1

∂iF (h1, · · · , hn)Γ(hi, g).

With exactly the same proof as that of Theorem 4.1 we have

Theorem 4.3. Assume that
∫
X
d2(x, x0) dµ(x) < +∞ and for any g ∈ CLip(X , d) bounded

with µ(g) = 0, then g ∈ D(E) and

√
Γ(g, g) ≤ σ‖g‖Lip, µ-a.s. (4.8)

and there is some h ∈ D2(L) such that −Lh = g (µ-a.e.) and a µ-continuous version h̃
of h satisfying

‖h̃‖Lip ≤ C‖g‖Lip (4.9)

where σ, C > 0 are fixed constants. Then for any u ∈ CLip(X , d) and any convex function
φ on R,

Eµφ(St(g)) ≤ Eφ(B2σ2C2t)

where B is a standard Brownian Motion. In particular

Eµ exp

(
λ

∫ t

0

g(Xs) ds

)
≤ eλ

2(σC)2‖g‖2
Lipt, ∀λ ∈ R, t > 0.

and µ satisfies W1I(σC) on (X , d).

4.2. Multi-dimensional diffusions. Let us show now how to estimate the constant C
in (4.1) or (4.9) by means of some examples.

A first example. At first in the framework of Theorem 4.1, if the Bakry-Emery curvature
is positive

Ric + ∇2V ≥ K > 0

then it is well known that for g ∈ C1
b (X ) with µ(g) = 0,

|∇Ptg| ≤ e−KtPt|∇g|

and then h :=
∫∞

0
Ptg dt is absolutely convergent in CLip ⊂ L2(µ) (for

∫
X
d2(x, x0) dµ <

+∞). Hence h ∈ D2(L), −Lh = g and

‖h‖Lip ≤ ‖∇g‖∞
∫ ∞

0

e−Kt dt =
1

K
‖g‖Lip.

In other words condition (4.1) holds with C = K−1 and µ satisfies W1I(K
−1). Of course

one can also derive this sharp transportation inequality from the log-Sobolev inequality
of Bakry-Emery [3] and Proposition 2.11-(b).
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A second example. Now we turn to another situation where the log-Sobolev inequality is
unknown as in Djellout et al. [13]. Consider the stochastic differential equation

dXt =
√

2σ(Xt) dBt + b(Xs) ds (4.10)

where σ : R
d → Md×n (the space of real d × n-matrices) and b : R

d → R
d are locally

Lipschitz, and (Bt) is a standard Brownian motion in R
n. Assume that for some δ > 0,

tr[(σ(y) − σ(x))(σ(y) − σ(x))T ] + 〈y − x, b(y) − b(x)〉 ≤ −δ|y − x|2, ∀x, y ∈ R
d (4.11)

Here tr(·) denotes the trace and AT the transposition of matrix A. With Itô’s formula one
easily obtains

E|Xt(y) −Xt(x)|2 ≤ e−2δt|x− y|2, ∀x, y ∈ R
d, t ≥ 0

where Xt(x) is the solution of (4.10) with X0 = x. This implies that (Xt) has a unique in-
variant probability measure µ. Hence for any g ∈ CLip(R

d) (with respect to the Euclidean
norm | · |) with µ(g) = 0,

‖Ptg‖Lip = sup
x 6=y

|Eg(Xt(y)) − Eg(Xt(x))|
|y − x| ≤ e−δt‖g‖Lip. (4.12)

Then h :=
∫∞

0
Ptg dt is absolutely convergent in CLip(R

d) and ‖h‖Lip ≤ δ−1‖g‖Lip. In
other words (4.9) holds with C = δ−1. Finally as the carré-du-champ of (Xt) is given by

Γ(h, h)(x) = 〈σσT∇h(x),∇h(x)〉, h ∈ C2
0(R

d)

the constant σ in (4.8) can be identified as ‖σ(·)‖∞ := supx ‖σ(x)‖Rn→Rd, at least for
h ∈ C2

0(R
d).

Corollary 4.4. Assume that σ, b are locally Lipschitz such that ‖σ(·)‖∞ < +∞ and satisfy
the dissipativity condition (4.11). Suppose moreover that µ is absolutely continuous and
its transition semigroup (Pt) is symmetric with respect to the unique invariant measure
µ. Then the Dirichlet form (E ,D(E)) on L2(µ) is given by the closure of

E(h, h) =

∫

Rd

〈σσT∇h,∇h〉 dµ, h ∈ C∞
0 (Rd)

and µ satisfies W1I(c) on R
d with respect to the Euclidean metric with

c = ‖σ(·)‖∞/δ.
Proof. As CLip

⋂
D2(L) is stable by (Pt) and contains C∞

0 (Rd), CLip

⋂
D2(L) is an operator

core for (L,D2(L)), hence a form core for (E ,D(E)). Since any h ∈ CLip can be approached
by a sequence hn in C∞

0 (Rd) with respect to the norm
√

‖h‖2
2 +

∫

Rd

〈σσT∇h,∇h〉 dµ

one sees that CLip ⊂ D(E),

E(h, h) =

∫

Rd

〈σσT∇h,∇h〉 dµ, ∀h ∈ CLip

and C∞
0 (Rd) is a form core for (E ,D(E)). This proves the first claim. It also follows that

the conditions in Theorem 4.3 are verified. The remaining part follows from Theorem
4.3. �
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Remark. The crucial formula (4.12) for estimating our condition (4.9) is equivalent to

W1(Pt(x, ·), Pt(y, ·)) ≤ e−δtd(x, y) (4.13)

which can obtained by means of numerous coupling techniques, see M.F. Chen [11]. Note
that this condition is the one introduced by Joulin [25] under the name of Wasserstein’s
curvature, with which he obtains Poisson type deviation inequality.

4.3. One-dimensional diffusions. Now let us consider one-dimensional diffusion pro-
cesses with values in the interval (x0, y0) and generated by

Lh = ah′′ + bh′, h ∈ C∞
0 (x0, y0)

where a, b are continuous with a > 0. Let ((Xt)0≤t<τ ,Px) be the martingale solution
associated with L and initial position x, where τ is the explosion time. With a fixed
c ∈ (x0, y0),

s′(x) := exp

(
−
∫ x

c

b(z)

a(z)
dz

)
, m′(x) :=

1

a(x)
exp

(∫ x

c

b(z)

a(z)
dz

)

are respectively the derivatives of Feller’s scale and speed functions. Assume that

Z :=

∫ y0

x0

m′(x) dx < +∞ (4.14)

and let µ(dx) = m′(x)dx/Z. It is well known that (L, C∞
0 (x0, y0)) is symmetric on L2(µ).

Assume also that

∫ y0

c

s′(x) dx

∫ x

c

m′(x) dx =

∫ c

x0

s′(x)

∫ c

x

m′(x) dx = +∞ (4.15)

which, in Feller’s classification, means that x0 and y0 are not accessible or equivalently
τ = ∞, Px-a.s. In this case by the L1-uniqueness in [42, 19], the Dirichlet form

D(E) =

{
h ∈ AC(x0, y0)

⋂
L2(µ);

∫ y0

x0

(h′)2 dµ < +∞
}
,

E(h, h) =

∫ y0

x0

(h′)2 dµ, h ∈ D(E)

is associated with (Xt), where AC(x0, y0) is the space of the absolutely continuous func-
tions on (x0, y0).
Fix some ρ ∈ C1(x0, y0) such that ρ ∈ L2(µ) and ρ′(x) > 0 everywhere, consider the
metric dρ(x, y) = |ρ(x) − ρ(y)|. A function h on (x0, y0) is Lipschitz with respect to dρ
(one writes h ∈ CLip(ρ)) if and only if h ∈ AC(x0, y0) and

‖h‖Lip(ρ) = sup
x0<x<y<y0

|h(y) − h(x)|
ρ(y) − ρ(x)

= ‖h′/ρ′‖∞ <∞

The argument below is borrowed from [14]. Assume that

C(ρ) := sup
x∈(x0,y0)

1

ρ′(x)

∫ y0

x

[ρ(z) − µ(ρ)]m′(z) dz < +∞. (4.16)
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For every g ∈ CLip(ρ) with µ(g) = 0, then the C2 function h(x) =
∫ x
c
dy
∫ y0
y
g(z)m′(z) dz−A

solves

−(ah′′ + bh′) = g. (4.17)

It is obvious that ‖h‖Lip(ρ) = supx∈(x0,y0)
1

ρ′(x)

∫ y0
x
g(z)m′(z) dz. An elementary exercise

(see [14]) shows that this quantity is not greater than C(ρ)‖g‖Lip(ρ). Thus h belongs to
L2(µ) whenever ρ is in L2(µ). By Itô’s formula, h ∈ D2(L). With the constant A so that
µ(h) = 0, because of the ergodicity of (Xt), h is the unique solution of (4.17) in L2(µ)
with zero mean. One also sees that C(ρ) is the best constant by taking g = ρ − µ(ρ).
In other words, condition (4.9) is satisfied with C = C(ρ). Hence, with Theorem 4.3 one
obtains

Corollary 4.5. Let a, b : (x0, y0) → R be continuous with a > 0 and let conditions (4.14)

and (4.15) be satisfied. Assume (4.16) and σ := supx∈(x0,y0)

√
a(x)ρ′(x) < +∞. Then µ

satisfies W1I(κ) on ((x0, y0), dρ) with κ = (σC(ρ))−1. In particular for

ρa(x) =

∫ x

c

dz√
a(z)

if C(ρa) < +∞, then µ satisfies W1I(c) on ((x0, y0), dρa
) with c = C(ρa).

Remarks 4.6.

(1) dρa
is the metric associated with the carré-du-champ operator of the diffusion.

(2) The quantity C(ρ) in (4.16) is not innocent: Chen-Wang’s variational formula for
the spectral gap tells us that ([11, 41]): cP(µ) = infρC(ρ).

5. Lyapunov function conditions

We will use in this section general conditions on the generator of the process, known
as Lyapunov function conditions, for deriving W1I or more generally TΦI where Φ =
{(u, u); |u| ≤ φ} with φ unbounded, and log-Sobolev inequality. To state properly the
Lyapunov function condition, it is necessary to enlarge the domain of the generator. In
this section, the Markov process ((Xt),Pµ) is reversible and its sample paths are Pµ-càdlàg
(possibly with jumps).

A continuous function h is said to be in the µ-extended domain De(L) of the gener-
ator of the Markov process ((Xt),Pµ) if there is some measurable function g such that∫ t
0
|g|(Xs) ds < +∞,Pµ-a.s. and

Mt(h) := h(Xt) − h(X0) −
∫ t

0

g(Xs)ds

is a local Pµ-martingale. It is obvious that g is uniquely determined up to µ-equivalence.
In such case one writes h ∈ De(L) and Lh = g.

The Lyapunov condition can now be stated:

(H) There exist a continuous function U : X → [1,+∞) in De(L), a nonnegative
function φ and a constant b > 0 such that

−LU
U

≥ φ− b, µ-a.s.
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When the process is irreducible and the constant b is replaced by b1C for some “small set”
C, then it is well-known that the existence of a positive bounded φ such that infX\C φ > 0
in (H) is equivalent to Poincaré inequality (see [2], for instance).

Lyapunov conditions are widely used to study the speed of convergence of Markov
chains [33] or Markov processes [18], large or moderate deviations and essential spectral
radii [45, 47]. More recently, they have been used to study functional inequalities as weak
Poincaré inequality [2] or super-Poincaré inequality [10]. See Wang [41] on weak and
super Poincaré inequalities.

Theorem 5.1. Assume that µ satisfies a Poincaré inequality with best constant cP(µ) <
∞ and that the Lyapunov condition (H) holds. Suppose moreover that φ ∈ L2(µ), that is
‖φ‖2 := (

∫
φ2 dµ)1/2 <∞. Then, for any a ≥ 2 and for every probability measure ν,

‖φ(ν − µ)‖TV ≤ (1 + 2bcP(µ))
a + 1

a− 1
I(ν|µ) + a

√
2‖φ‖2

√
cP(µ) I(ν|µ) (5.1)

and

‖
√
φ(ν − µ)‖2

TV ≤ 2
[
3 (1 + 2bcP(µ)) + 2

√
2‖φ‖2cP(µ)

]
I(ν|µ) (5.2)

Remarks 5.2. Since ‖φ(ν − µ)‖TV = supu:|u|≤φ

∫
u d(ν − µ), the inequalities in this

theorem may be regarded as TΦI in Theorem 2.2 with Φ = {(u, u); u ∈ bB, |u| ≤ φ}.
Since

W1(ν, µ) = sup
f :‖f‖Lip≤1

∫
f d[ν − µ] ≤ inf

x0∈X
‖d(·, x0)(ν − µ)‖TV ,

one sees that (5.2) implies W1I(c) in Corollary 2.4 as soon as d(·, x0) ≤ C
√
φ for some

x0 ∈ X and C > 0. As will be seen with the Ornstein-Uhlenbeck process at Example 5.9,
the order of this inequality is sharp.

Theorem 5.3. In the framework of Proposition 2.11, assume that the Bakry-Emery’s
curvature of µ = e−V dx/Z is bounded from below by some constant K ≤ 0. Assume that
µ satisfies a Poincaré inequality with best constant cP(µ) <∞.

If the Lyapunov condition (H) holds with φ(x) = cd(x, x0)
2 where c > 0 and x0 ∈ X is

some fixed point, then µ satisfies the log-Sobolev inequality on the Riemannian manifold
X .

Their proofs are based on the following large deviation result.

Lemma 5.4. For every continuous function U ≥ 1 in De(L) such that −LU/U is µ-a.e.
lower bounded, ∫

−LU
U
g2 dµ ≤ E(g, g), ∀g ∈ D(E). (5.3)

When U is bounded, this is contained in Deuschel-Stroock [12, Lemme 4.2.35].

Proof. For any initial law β,

Nt = U(Xt) exp

(
−
∫ t

0

LU
U

(Xs)ds

)
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is a local Pβ-martingale. Indeed, denoting At := exp
(
−
∫ t
0

LU
U

(Xs)ds
)
, Itô’s formula

is dNt = At [dMt(U) + LU(Xt) dt] − LU
U

(Xt)AtU(Xt) dt = At dMt(U) where M(U) is a
local Pβ-martingale. As (Nt) is nonnegative, it is also a Pβ-supermartingale. Choosing
β := U−1 µ/Z with 0 < Z = µ(U−1) ≤ 1, one sees that for all t ≥ 0

Eβ exp

(
−
∫ t

0

LU
U

(Xs)ds

)
≤ EβNt ≤ β(U) = 1/Z < +∞.

Let un := min{−LU/U, n}. The previous estimation implies that

F (un) := lim sup
t→∞

1

t
log Eβ exp

(∫ t

0

un(Xs)ds

)
≤ 0.

On the other hand by the lower bound of large deviation in [44, Theorem B.1, Corollary
B.11] and Laplace-Varadhan principle, as in the proof of (c′) ⇒ (a) in Theorem 2.2,

F (un) ≥ sup{ν(un) − I(ν|µ); ν ∈M1(E)}.
Thus

∫
undν ≤ I(ν|µ), which yields to (by letting n→ ∞ and monotone convergence)

∫
−LU
U

dν ≤ I(ν|µ), ∀ν ∈M1(E). (5.4)

This is equivalent to (5.3) by the fact that E(|h|, |h|) ≤ E(h, h) for all h ∈ D(E).
Note that one was allowed to apply the large deviation lower bound [44, Theorem B.1]

under Pβ since β is absolutely continuous with respect to µ. In addition, in the symmetric
case, [44, Corollary B.11] states that the large deviation rate function is I(·|µ); it doesn’t
depend on β under the underlying assumption that Pµ is ergodic. As this lower bound
holds for the topology of probability measures weakened by all bounded measurable test
functions (sometimes called τ -topology), one can apply the Laplace-Varadhan principle
to the continuous bounded function ν 7→ ν(un). �

Proof of Theorem 5.3. It is a combination of the Lyapunov function condition and the
HWI inequality of Otto-Villani.

We begin with the following fact ([39, Proposition 7.10]):

W 2
2 (ν, µ) ≤ 2‖d(·, x0)

2(ν − µ)‖TV .
Now for every function g with |g| ≤ φ(x) := cd(x, x0)

2, we have by (H),

∫
gd(ν − µ) ≤ ν(φ) + µ(φ)

≤
∫ (

−LU
U

+ b

)
dν + µ(φ)

≤ I(ν|µ) + b+ µ(φ)

where the last inequality follows by Lemma 5.4. Taking the supremum over all such g,
we get

c

2
W 2

2 (ν, µ) ≤ c‖d(·, x0)
2(ν − µ)‖TV ≤ I(ν|µ) + b+ µ(φ),
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which yields to (by the inequality at the beginning)

W 2
2 (ν, µ) ≤ 2

c
I(ν|µ) +

2

c
[b+ µ(φ)].

Substituting it into the HWI inequality of Otto-Villani (2.21), we obtain (using 2ab ≤
a2 + b2)

H(ν|µ) ≤ 2

√
2

c
I(ν|µ) +

2

c
[b+ µ(φ)]

√
I(ν|µ) − K

2

(
2

c
I(ν|µ) +

2

c
[b+ µ(φ)]

)

≤ AI(ν|µ) +B

(5.5)

where

A = (1 − K

2
)
2

c
+ 1, B =

2

c
[b+ µ(φ)](1 − K

2
).

Finally by Rothaus’ lemma the non-tight log-Sobolev inequality (5.5) together with the
spactral gap implies the tight log-Sobolev inequality

H(ν|µ) ≤ [A + (B + 2)cP(µ)]I(ν|µ).

�

Remarks 5.5. In the case that the Bakry-Emery’s curvature is bounded from below by
a negative constant K, Wang’s criterion [40] says that the log-Sobolev inequality holds

if
∫
eλd

2(x,x0)dµ(x) < +∞ for some λ > |K|. Our Lyapunov condition (H) above is
complementary to that result and sharp in order (as seen for V (x) = |x|α on X = R

d).
Furthermore our proof here is completely different and gives an explicit estimate of the
log-Sobolev constant.

Proof of Theorem 5.1. We may assume that ν = fµ with
√
f ∈ D(E) (trivial otherwise).

For any a ≥ 2, define h : R → R
+ by

h(t) =





0 if t ≤ 1;√
a+1
a−1

(t− 1) if t ∈ [1, a];
√
t2 − 1 if t ≥ a.

It is easy to see that ‖h‖Lip ≤
√

a+1
a−1

. Decompose

‖φ(ν − µ)‖TV =

∫
φ|f − 1|dµ =

∫
φh2(

√
f)dµ+

∫
φ[|f − 1| − h2(

√
f)]dµ.

First consider the last term. Since t2 − 1 − h2(t) ≤ a(t − 1) for t ∈ [1, a], and = 0 for
t ≥ a ≥ 2,

∫
φ[|f − 1| − h2(

√
f)]dµ =

∫
φ[1{f≤1}(1 − f) + 1{1≤f≤a2}a(

√
f − 1)]dµ

≤ a

∫
φ|1 −

√
f |dµ
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which is not greater than

a‖φ‖2‖1 −
√
f‖2 = a‖φ‖2

√
2

√
1 − µ(

√
f) ≤ a‖φ‖2

√
2Varµ(

√
f)

≤ a
√

2cP(µ)‖φ‖2

√
I(ν|µ).

We turn now to bound the crucial first term by means of (5.3):
∫
φh2(

√
f)dµ ≤

∫ (
−LU
U

+ b

)
h2(
√
f)dµ

≤ E(h(
√
f), h(

√
f)) + b‖h‖2

Lip

∫
(
√
f − 1)2dµ

≤ ‖h‖2
LipE(

√
f,
√
f) + 2b‖h‖2

LipVarµ(
√
f)

≤ (1 + 2bcP(µ))
a+ 1

a− 1
I(ν|µ).

Substituting these two estimates into our previous decomposition, we obtain (5.1).

For (5.2), noting that with Theorem 3.1:
∫
|f − 1|dµ ≤ 2 min{1,

√
cP(µ)I(ν|µ)}, we have

by Cauchy-Schwarz inequality and (5.1)

‖
√
φ(ν − µ)‖2

TV

≤
∫

|f − 1|dµ
∫
φ|f − 1|dµ

≤ 2 min
(
1,
√
cP(µ)I(ν|µ)

)[
(1 + 2bcP(µ))

a+ 1

a− 1
I(ν|µ) + a

√
2‖φ‖2

√
cP(µ)I(ν|µ)

]

≤ 2

[
(1 + 2bcP(µ))

a+ 1

a− 1
+ a

√
2‖φ‖2cP(µ)

]
I(ν|µ)

which gives (5.2) with a = 2. �

Remarks 5.6. When
√

2(cP(µ)−1 + 2b) ≥ ‖φ‖2, optimizing a ≥ 2 in the proof of (5.2)
above, we get the slightly better inequality:

‖
√
φ(ν−µ)‖2

TV ≤ 2
(√

2‖φ‖2cP(µ) + (1 + 2bcP(µ)) + 25/4
√

‖φ‖2(1 + 2bcP(µ))cP(µ)
)
I(ν|µ).

Notice that by Lemma 5.4 and condition (H), b ≥ µ(φ) (in practice b is much bigger).

From now on the positive constant C may change from one place to another.
One can do some variation of the proof of (5.2) above. For every p > 1 and its conjugate
number q = p/(p − 1), instead of Cauchy-Schwarz we apply Hölder inequality to get for
ν = fµ,

‖φ1/p(ν − µ)‖TV ≤
(∫

|f − 1|dµ
)1/q (∫

φ|f − 1|dµ
)1/p

≤ 21/q min{1,
√
cP(µ)I(ν|µ)

1/q}(C1I(ν|µ) + C2

√
I(ν|µ))1/p

≤ C[(1 + I(ν|µ))2/p − 1]1/2.

In other words, we have proved
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Corollary 5.7. Under the conditions of Theorem 5.1, for any p > 1, there exists some
constant κ > 0 such that for α(r) = κ[(1 + r2)p/2 − 1],

α
(
‖φ1/p(ν − µ)‖TV

)
≤ I(ν|µ), ∀ν ∈M1(X ). (5.6)

Corollary 5.8. Let µ = e−V dx/Z be a probability measure where V ∈ C∞(X ) is bounded
from below and |∇V |2 ∈ L2(µ). Let L = ∆−∇V ·∇ be the generator of the diffusion (Xt)
on the non-compact connected complete Riemannian manifold X . Assume that for some
p > 1,

d(x, x0) ≤ C(1 + |∇V |2(x))1/p, ∀x ∈ X
and

γ := lim sup
d(x,x0)→∞

∆V (x)

|∇V |2(x) < 1.

Then w.r.t. the Riemannian metric d, there exists κ > 0 such that with α(r) = κ[(1 +
r2)p/2 − 1],

α(W1(ν, µ)) ≤ I(ν|µ), ∀ν ∈ M1(X ). (5.7)

In particular for every Lipschitz function u with ‖u‖Lip ≤ 1 and any initial law β with
dβ/dµ ∈ L2(µ),

Pβ

(
1

t

∫ t

0

u(Xs)ds > µ(u) + r

)
≤
∥∥∥∥
dβ

dµ

∥∥∥∥
2

exp
(
−tκ[(1 + r2)p/2 − 1]

)
, ∀t, r > 0. (5.8)

Proof. Let γ′ ∈ (γ, 1) and λ, δ ∈ (0, 1) sufficiently small so that λ − λ2 > γ′λ + δ. For
U = eλV , we have

−LU
U

= −λLV − λ2|∇V |2 = (λ− λ2)|∇V |2 − λ∆V ≥ δ(1 + |∇V |2) − b

where b := δ + supX (λ∆V − γ′λ|∇V |2) is finite under our assumptions. Thus (H) is
satisfied with φ = δ(1 + |∇V |2) which is in L2(µ) under our assumptions. On the other
hand our assumptions imply that φ tends to infinity at infinity. Hence (1−L)−1 is compact
on L2(µ) and cP(µ) <∞. Noting that

W1(ν, µ) ≤ inf
x0∈X

‖d(·, x0)(ν − µ)‖TV ,

the statement now follows directly from Theorem 5.1 and Corollary 5.7. �

Example 5.9. Let X = R
n, V (x) = C|x|β for |x| > 1 where β ≥ 1, C > 0. Then (H) is

satisfied for φ = δ(1 + |∇V |2) ∼ C|x|2(β−1) (when |x| large).

(i) If β > 3/2, then the condition in Corollary 5.8 is verified with p = 2(β − 1) > 1, so
we have (5.8) for Lipschitz observable u with p = 2(β − 1). Then we have Gaussian
behavior for small r, and even a super-Gaussian tail for large r whenever β > 2.

(ii) Let β ∈ [1, 3/2]. Then for ψ = (1 + |x|)β−1, we have by Theorem 5.1(5.2),

‖ψ(ν − µ)‖2
TV ≤ CI(ν|µ).

Then the Gaussian deviation inequality holds true for the observable u satisfying
|u| ≤ C(1 + |x|)β−1.
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(iii) If β = 2 (Ornstein-Uhlenbeck process), the inequality (5.2) for
√
φ ∼ C|x| (proved

in (i)) becomes the correct one in order: indeed if ψ(x) ≫ |x| at infinity with
µ(ψ) < +∞, one cannot hope that

‖ψ(ν − µ)‖2
TV ≤ CI(ν|µ), ∀ν

since by Theorem 2.2, this would imply that

Eµ exp

(
λ

∫ 1

0

ψ(Xs)ds

)
≤ eλµ(ψ)+Cλ2/2, ∀λ ∈ R

which yields, integrating w.r.t. N(0, σ2)(dλ) with variance σ2 < 1/C,

Eµ exp

(
δ

(∫ 1

0

ψ(Xs)ds

)2
)
< +∞

for some δ > 0. But this is impossible.

We conclude by an example of jump process.

Example 5.10. (M/M/∞ queue). In this example X = N, µ is the Poisson measure
with mean λ > 0 and the Dirichlet form is

E(h, h) =
∑

n∈N

(h(n + 1) − h(n))2µ(n)

The associated generator is

Lh(n) = λ(h(n+ 1) − h(n)) + n(h(n− 1) − h(n)), ∀n ≥ 0

(with the convention that h(−1) = h(0)). Let U(n) = ecn where c > 0. We have

−LU
U

(n) = n(1 − e−c) − (ec − 1).

Thus condition (H) is satisfied, and we have by Theorem 5.1 that for ψ(n) :=
√

1 + n,

‖ψ(ν − µ)‖2
TV ≤ CI(ν|µ), ∀ν ∈M1(N).

By Theorem 2.2, this gives the Gaussian deviation inequality for any observable u so that
|u(n)| ≤ C

√
1 + n. See Joulin [25] and Liu-Ma [29] for previous studies on deviation

inequalities of this model. Note that they only obtain Poisson tail by their approach for
the same test function. Remark also that our result provides exponential tail for u(n) = n,
which is close of the conjectured Poisson behavior.
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