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Abstract

How to pass from local to global scales in anonymous networks? In such networks, how to
organize a self-stabilizing propagation of information with feedback? From Angluin’s results, the
deterministic leader election is impossible in general anonymous networks. Thus, it is impossible
to build a rooted spanning tree. In this paper we show how to use Unison to design a self-
stabilizing barrier synchronization in an anonymous network. We show that the communication
structure of this barrier synchronization designs a self-stabilizing wave stream, or pipelined wave,
in anonymous networks. We introduce two variants of waves: Strong Wave and Wavelet. Strong
waves can be used to solve the idempotent r-operator parametrized problem, which implies well
known problems like depth-first search tree construction – this instance requires identities for the
processors. Wavelets deal with ρ-distance computation. We show how to use Unison to design a
self-stabilizing strong wave stream, and wavelet stream respectively.
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1 Introduction

Several general message passing problems are useful to achieve many tasks in distributed networks,

like broadcasting information, global synchronization, reset, termination detection, or calculation of

a global function whose the input depends on several processes or the totality of the processes in

the network – see [RH90, Tel94, Lyn96]. In this paper we consider the wave propagation problem in

asynchronous anonymous networks.

1.1 Related Works

In asynchronous systems, there is no global signal. Synchronization is a crucial task. Informally, a

synchronizer allows asynchronous systems to simulate synchronous ones. In asynchronous systems,

one can at most ensure that no process starts to execute its phase i + 1 before all processes have

completed their phase i. This strongest synchronization task, named Barrier Synchronization, was

introduced by Misra in [Mis91] in a complete graph. The research about synchronization started with

Awerbuch [Awe85]. Communications waves are often used to achieve synchronization. Designing

efficient fault-tolerant wave algorithms is an important task. Self-stabilization [Dij74, Dol00] is a

general technique to design a system that tolerates arbitrary transient faults, i.e. faults that may

corrupt the state of processes or links. [KA98] proposes a self-stabilizing solution for complet graphs.

[HL01] designs a solution in uniform rings with an odd size. A relaxed synchronization requirement is

defined as follows: the clocks are in phase if the values of two neighboring processes differ by no more

than 1, and the clock value of each process is incremented by 1 infinitely often. The self-stabilizing

asynchronous unison [CFG92] deals with this criterium.

A distributed protocol is uniform if every process with the same degree executes the same pro-

gram. In particular, we do not assume a unique process identifier – the network is anonymous – or

some consistent orientation of links in the network such that any dynamic election of a master clock

can be feasible. Numerous self-stabilizing wave algorithms use a rooted spanning tree or simply an

only initiator, called the root– see for instance [Kru79] [ABDT98].In these cases, protocols are not

uniform, they are only at most semi-uniform. So, for a uniform distributed protocol any processor

may initiate a wave, and most generally a global computation. Any processor may be an initiator.

To face this inherent concurency, a solution is that every processor maintains the identity of the

initiators – see for instance [CDPV02]. That is impossible in an anonymous network.

[KA98] designs a self-stabilizing Barrier Synchonization algorithm in asynchronous anonymous

complet networks. For the other topologies the authors use the network with a root, the program

is not uniform, but only semi-uniform. An interesting question is to give a solution to this problem

in a general connected asynchronous anonymous network. As far as we know, the phase algorithm

[Tel91] is the only decentralised uniform wave algorithm for a general anonymous network. This

algorithm requires that the processors know the diameter, or most simply a common upper bound

D′ of the diameter. This algorithm is not self-stabilizing.

1.2 Contribution and paper outline

The main task of this paper is to show how Unison can be viewed as a self-stabilizing wave stream

algorithm in asynchronous anonymous networks scheduled by an unfair daemon. The contribution

is threefold:
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Firstly, we introduce the ρ-distance barrier synchronization notion. It is a small extention of the

barrier synchronization [Mis91] which ensures that no process starts to execute its phase i+1 before

all processes at distance less than or equal to ρ have completed their phase i. We show how to design

a self-stabilizing barrier synchronization at distance ρ in an anonymous network. The self-stabilizing

time complexity is in O(n) rounds. It has its space complexity in O(log(n) + log(K)), where n is

the number of processes in the network and K the size of the clock. Secondly, we introduce two

variants of Wave: Wavelet and Strong Waves. We show that a strong wave can be used to solve

the idempotent r-operator parametrized problem, and a wavelet deals with ρ-distance computation.

Thirdly, we show that the communication structure of our ρ-distance barrier synchronization designs

a self-stabilizing wavelet stream, or pipelined wavelet, in any anonymous networks. We show that if

ρ ≥ D the communications design a self-stabilizing wave stream , and if ρ is greater than or equal

to the length of the longest simple path in the network, then the protocol designs a self-stabilizing

strong-wave stream.

The remainder of the paper is organized as follows. In the next section (Section 2), we describe

the underlying model for distributed system. We also state what it means for a protocol to be

self-stabilizing, we introduce the notion of causal-DAG and we present the unison problem and its

solutions. In Section 3 we define the ρ-distance barrier synchronization notion and we introduce

a protocol which designs a self-stabilizing barrier synchronization at distance ρ in any anonymous

networks. In Section 4 we define two kinds of waves: wavelet and strong waves, and we show

the relationship between a strong wave and the idempotent r-operator parametrized computation

problem . In Section 5, we show how Unison can be view as a wave stream, or a wavelet stream, or

a strong wave stream. In Section 6, we give some concluding remarks. Because of the lack of place,

somme proofs are put back in an annexe.

2 Preliminaries

In this section, firstly we define the model of distributed systems considered in this paper, and state

what it means for a protocol to be self-stabilizing. Secondly, we present the notions of finite incre-

menting system and reset on it. Next, we define what a self-stabilizing distributed Unison is.

2.1 The model

Distributed System. A distributed system is an undirected connected graph, G = (V,E), where

V is a set of nodes—|V | = n, n ≥ 2—and E is the set of edges. Nodes represent processes, and

edges represent bidirectional communication links. A communication link (p, q) exists iff p and q are

neighbors. The set of neighbors of every process p is denoted as Np. The degree of p is the number of

neighbors of p, i.e., equal to |Np|. The distance between two processes p and q, denoted by d (p, q),

is the length of the shortest path between p and q. Let k be a positive integer. Define V (p, k) as the

set of processes such that d(p, q) ≤ k. D is the diameter of the network.

The program of a process consists of a set of registers (also referred to as variables) and a finite

set of guarded actions of the following form: < label >:: < guard > −→< statement >. Each

process can only write to its own registers, and read its own registers and registers owned by the

neighboring processes. The guard of an action in the program of p is a boolean expression involving
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the registers of p and its neighbors. The statement of an action of p updates one or more registers

of p. An action can be executed only if its guard evaluates to true. The actions are atomically

executed, meaning the evaluation of a guard and the execution of the corresponding statement of an

action, if executed, are done in one atomic step. The state of a process is defined by the values of its

registers. The configuration of a system is the product of the states of all processes. Let a distributed

protocol P be a collection of binary transition relations denoted by 7→, on C, the set of all possible

configurations of the system. P describes an oriented graph S = (C, 7→), called the transition graph

of P. A sequence e = γ0, γ1, . . . , γi, γi+1, . . . is called an execution of P iff ∀i ≥ 0, γi 7→ γi+1 ∈ S. A

process p is said to be enabled in a configuration γi (γi ∈ C) if there exists an action A such that the

guard of A is true in γi. The value of a register r of a process p in the state γi, is denoted by pi.r. i

is the moment of the state γi. When there is no ambiguity, we will omit i. Similarly, an action A is

said to be enabled (in γ) at p if the guard of A is true at p (in γ). We assume that each transition

from a configuration to another is driven by a distributed scheduler called daemon. In this paper,

we consider only an Asynchronous distributed Daemon. The Asynchronous Daemon chooses any

nonempty set of enabled processes to execute an action in each computation step (Unfair Daemon).

In order to compute the time complexity, we use the definition of round [DIM97]. This definition

captures the execution rate of the slowest processor in any computation. Given an execution e, the

first round of e (let us call it e′) is the minimal prefix of e containing the execution of one action of

the protocol or the neutralization of every enabled processor from the first configuration. Let e′′ be

the suffix of e, i.e., e = e′e′′. Then second round of e is the first round of e′′, and so on.

Self-Stabilization. Let X be a set. A predicate P is a function that has a Boolean value—true

or false—for each element x ∈ X . A predicate P is closed for a transition graph S iff every state

of an execution e that starts in a state satisfying P also satisfies P . A predicate Q is an attractor of

the predicate P , denoted by P ⊲ Q, iff Q is closed for S and for every execution e of S, beginning

by a state satisfying P , there exists a configuration of e for which Q is true. A transition graph S is

self-stabilizing for a predicate P iff P is an attractor of the predicate true, i.e., true ⊲ P .

2.2 Causal DAGs

Definition 2.1 (Events and Causal DAGs) Let γt0γt0+1.... be a finite or infinite execution. ∀p ∈

V, (p, t0) is an event. Let γt → γt+1 be a transition. If the process p executes a guarded action during

this transition, we say that p executes an action at time t+1, and we say that (p, t + 1)is an event or

a p-event. The causal DAG associated is the smallest relation ; on the set of events that satisfies:

1. Let (p, t) be an event with t > t0. Let t′ be the greatest integer such that t0 ≤ t′ < t and (p, t′)

is an event, then (p, t′) ; (p, t)

2. Let (p, t) be an event and let t > t0. Let q ∈ Np and let t′ be the greatest integer such that

t0 ≤ t′ < t and such that (q, t′) is an event, then (q, t′) ; (p, t).

The causal order � on the set of events is the reflexive and transitive closure of the causal

relation ;. The past cone of an event (p, t) is the causal-DAG induced by every event (q, t′) such

that (q, t′) � (p, t). A past cone involves a process q iff there is a q-event in the cone. The cover

of an event (p, t) is the set of processes q covered by the past cone of (p, t), this set is denoted by

Cover(p, t).
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Definition 2.2 (Cut) A cut C on a causal DAG is a map from V to N, which associates each

process p with a time tCp such that (p, tCp ) is an event. We mix this map with its graph: C ={(
p, tCp

)
, p ∈ V

}
. The past of C is the events (p, t) such that t ≤ tCp . It is denoted by ]←, C].

The future of C is the events (p, t) such that tCp ≤ t. It is denoted by [C,→[.A cut is coherent

if (q, t′) � (p, t) and (p, t) �
(
p, tCp

)
then (q, t′) �

(
q, tCq

)
. A cut C1 is less than or equal to a

cut C2, denoted by C1 � C2, if the past of C1 is included in the past of C2.If C1 and C2 are

coherent and C1 � C2 then [C1, C2] is the induced causal DAG defined by the events (p, t) such that(
p, tC1

p

)
� (p, t) �

(
p, tC2

p

)
.Any segment [C1, C2] is a sequence of events, each event of C1 is called

an initial event.

2.3 Distributed Unison

Unison, or most precisely Self-Stabilizing Asynchronous Unison, is a relaxed self-stabilizing Barrier

Synchronization in the following meaning: the clocks are in phase if the values of two neighboring

processes differ by no more than 1, and the clock value of each process is incremented by 1 infinitly

often. Self-stabilizing Unison was introduced by [CFG92]. There is a possibility of deadlock if the

size of the clock is too short– see[BPV04]. A little algebraic framework, and some vocabulary are

necessary. The vocabulary will be used in the definition of the algorithm 1.

Algebraic framework Let Z be the set of integers and K be a strictly positive integer. Two

integers a and b are said to be congruent modulo K, denoted by a ≡ b[K] if and only if ∃λ ∈ Z, b =

a + λK. We denote ā the unique element in [0,K − 1] such that a ≡ ā[K]. min(a− b, b− a) is a

distance on the torus [0,K − 1] denoted by dK(a, b) . Two integers a and b are said to be locally

comparable if and only if dK(a, b) ≤ 1. We then define the local order relationship ≤l as follows:

a ≤l b
def
⇔ 0 ≤ b− a ≤ 1. If a and b are two locally comparable integers, we define b ⊖ a as follows:

b⊖a =def if a ≤l b then b− a else −a− b. If a0, a1, a2, . . . ap−1, ap is a sequence of integers such that

∀i ∈ {0, . . . , p− 1}, ai is locally comparable to ai+1, then S =
p−1∑
i=0

(ai+1 ⊖ ai) is the local variation of

this sequence.

Incrementing system We define X = {−α, . . . , 0, . . . ,K − 1}, where α is a positive integer. Let

ϕ be the function from X to X defined by: ϕ(x) =def if x ≥ 0 then x + 1 else x+1. The pair (X , ϕ)

is called a finite incrementing system. K is called the period of (X , ϕ). Let tailϕ = {−α, . . . , 0} and

stabϕ = {0, . . . ,K − 1} be the sets of “extra” values and “expected” values, respectively. The set

tail∗ϕ is equal to tailϕ \ {0}. We assume that each process p maintains a clock register rp with an

incrementing system (X , ϕ). Let γ the system configuration, we define the predicate WU :

WU(γ) ≡def ∀p ∈ V, ∀q ∈ Np : (rp ∈ stabϕ) ∧ (d(rp, rq) ≤ 1) in γ.

Intrinsic Path Delay [BPV04] Let γ a configurations in WU , the clock values of neighboring
processes are locally comparable. We define the four notions:

Delay The delay along a path µ = p0p1 . . . pk, denoted by ∆µ, is the local variation of the

sequence rp0
, rp1

, . . . , rpk
, i.e, ∆µ =

k−1∑
i=0

(
rpi+1

⊖l rpi

)
if k > 0, 0 otherwise (k = 0).

4



Intrinsic Delay The delay between two processes p and q is intrinsic if it is independent on the
choice of the path from p to q. The delay is intrinsic iff it is intrinsic for every p and q in V . In this
case, and at time t, the intrinsic delay between p and q is denoted by ∆(p,q).

WU0 The predicate WU0 is true for a system configuration γ iff γ satisfies WU and the delay is
intrinsic in γ.

Precedence relationship When Delay is intrinsic, it defines a total preordering on the processes
in V , named precedence relationship. This relationship depends on the state γ ∈WU0. The absolute
value of the delay between two processes p and q, is equal to or less than the distance d(p, q) in the
network. This remark is important for the following.

Cyclomatic Characteristic CG [BPV04] If G is an acyclic graph, then its cyclomatic charac-
teristic CG is equal 2. Otherwise G contains cycles: Let Λ be a cycle basis, the length of the longest
cycle in Λ is denoted λ(Λ). The cyclomatic characteristic of G, is equal to the lowest λ(Λ) among
cycle bases. It follows from the definition of CG that CG ≤ 2D.

Unison Definition We assume that each process p maintains a register p.r ∈ χ. The self-
stabilizing asynchronous (distributed) unison problem, or most shortly the unison problem, is to
design a uniform protocol so that the following properties are true in every execution [BPV05]:

Safety : WU is closed. Synchronization: In WU , a process can increment its clock rp only if
the value of rp is lower than or equal to the clock value of all its neighbors. No Lockout (Liveness):
In WU , every process p increments its clock rp infinitely often. Self-Stabilization : Γ ⊲ WU .

The following guarded action solves the synchronization property and the safety :

∀q ∈ Np : (rq = rp) ∨ (rq = ϕ(rp)) −→ rp := ϕ(rp); (1)

The predicate WU0 is closed for any execution of this guarded action. Moreover, for any execution
starting from a configuration in WU0, the no lockout property is guaranteed. Generally this property
is not guaranteed in WU . A few general schemes to self-stabilizing the non-stabilizing protocols
have been proposed. The first self-stabilizing asynchronous unison was introduced in [CFG92]. The
deterministic protocol proposed needs K ≥ n2. The stabilization time complexity is in O(nD).
The second solution is proposed in [BPV04]. The authors show that if K is greater than CG then
WU = WU0 and the no lockout property is guaranteed in WU . (see Definition 2.3). The protocol
is self-stabilizing if α ≥ TG − 2, where TG is the length of the longest chordless cycle (2 in tree
networks). One can notice that CG and TG are bounded by n. So, even if CG and TG are unknown,
we can choose K ≥ n + 1 and α = n. Its self-stabilizing time complexity is in O(n). In [BPV06], the
authors present the Protocol WU Min, which is self-stabilizing to asynchronous unison in at most
D rounds in trees.

3 Barrier Synchronization

3.1 Barrier synchronization at distance ρ

Barrier Synchronization problem has been specified in [KA98]. Let ρ be an integer greater than 0.
The relaxation of this problem at distance ρ is the following. Let K be an integer greater than 1.
We assume that each process p maintains a K-order clock register p.R ∈ {0, 1, ...,K − 1}. Each
process executes a cyclique sequence of K terminating phases (the critical section << cs >>). The
following two properties are required for each phase:
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Global Unison (Safety) : for each phase x ∈ {0, ...,K − 1} , no process p can proceed to phase
x + 1 until all nodes q, such that d(p, q) ≤ ρ, has executed its phase x.

No lockout (liveness): every process increments its clock infinitly often.
For ρ = 1, this specification is the specification of the standard stabilized unison. For ρ ≥ D,

this specification is the specification of the global Barrier Synchronization.

3.2 The general self-stabilizing Scheme

The idea is to stabilize an underlayer unison in order to synchronize a δK−clock, with δ large enough
to guarantee that the absolute value of the delay between every two processes at distance less than or
equal to ρ is never larger than δ. It is sufficient that δ ≥ ρ holds. We take χ = {−α, .., 0, .., δK − 1}
and α ≥ TG − 2 . We use the unison of [BPV04] which stabilizes in O(n). The protocol is describe
in Algorithm 1. To ensure self-stabilization in WU0, we require δK > CG. If we want to program
a Barrier Synchronization, we must take δ ≥ D, thus from CG ≤ 2D, if K ≥ 3 then the inequality
Kδ > CG holds. In the remainder we suppose that the inequality Kδ > CG holds.

Algorithm 1 (SS −WS)Self-Stabilizing ρ-Barrier Synchronization algorithm for the process p
Constant and variable:

Np: the set of neighbors of process p; p.r ∈ χ;

Boolean Functions:
ConvergenceStepp ≡ p.r ∈ tail∗ϕ ∧ (∀q ∈ Np : (q.r ∈ tailϕ) ∧ (p.r ≤tailϕ q.r));
LocallyCorrectp ≡ p.r ∈ stabϕ ∧ (∀q ∈ Np, q.r ∈ stabϕ ∧ ((p.r = q.r) ∨ (p.r = ϕ (q.r)) ∨ (ϕ (p.r) = q.r)));
NormalStepp ≡ p.r ∈ stabϕ ∧ (∀q ∈ Np : (p.r = q.r) ∨ (q.r = ϕ(p.r)));
ResetInitp ≡ ¬LocallyCorrectp ∧ (p.r 6∈ initϕ);

Actions:
NA : NormalStepp −→ if p.r ≡ ρ − 1[ρ] then << CS 2 >> else << CS 1 >> ; p.r := ϕ(p.r);
CA : ConvergenceStepp −→ p.r := ϕ(p.r);
RA : ResetInitp −→ p.r := α (reset);

3.3 Analysis

Lifting construction In order to analyse the protocol 1 we introduce for each process p, a global
device, the register p̃.r. Of course the value of this virtual register is inaccessible to the process p.
Informally p̃.r is a way to unwind of the register p.r. Let γt0γt0+1.... be an infinite execution starting
in WU0. Let p0 be a maximal process, according to the precedence relation – see Remark 2.3 –
for the state γ0. Let ⊥0 = p0.r at time 0. For each process p ∈ V , we unwind the register p.r in
the following manner. We associate a virtual register p̃.r. For the state γ0, we initiate this virtual
register by the instruction p̃.r := ⊥0 + ∆0

(p0,p). During the execution, for each transition γt → γt+1

the intruction p̃.r := p̃.r + 1 holds if and only if p.r := p.r + 1 holds during the same transition. For
k ≥ ⊥0 we define the cut Ck = {(p, tp,k) , p ∈ V } where tp,k is the smallest time such that p̃.r := k.
The first question is to prove that this cuts are coherent. We first introduce the easy lemma:

Lemma 3.1 If (p, t) ; (q, t′) then: q̃t′ .r ∈
{

p̃t.r, p̃t.r + 1
}
. Inductively, if (q0, t0) ; (q1, t1) ;

(q2, t2) ... ; (qi, ti) then: q̃ti
i .r ∈

{
q̃t0
0 .r, ..., q̃t0

0 .r + i
}

From the Lemma 3.1, if (q, t) � (p, tp,k) then (q, t) � (q, tq,k). It follows the proposition:

Proposition 3.2 For every k ≥ ⊥0 the cut Ck is coherent.
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Virtual register p.R and virtual clock For each process p we associate the register p.R, which
is virtual. Its value is evaluated by the procedure: if p.r ∈ stabϕ then p.R := p.r/δ else p.R := −1,
where the symbol / is the integer division operator. The virtual register p.R defines a clock on
{−1, 0, ...,K − 1}. The algorithm 1 solves self-stabilizing Asynchronous Unison, so every process p
increments its clock p.r infinitly often. We deduce that p.R increments infinitly often, thus:

Lemma 3.3 (Liveness) For every process p, the virtual register p.R is incremented infinitly often.
Consequently << CS 2 >> is executed infinitly often.

Theorem 3.4 If δ ≥ ρ, once the protocol is stabilized, it solves the Barrier Synchronization at
distance ρ for the virtual clock defined by the register p.R .

Proof. We consider the phase U = [CUδ, CUδ+δ−1], for any event (p, t) in this sequence, the
register p.R is equal to U [K]. Let p and q be two processes, such that d(p, q) ≤ ρ. Let (p, tp) and
(q, tq) be in CUδ+δ. Suppose that tp ≤ tq, at time tp the register q̃.r ∈ {Uδ + δ − i, i ∈ {0, ..., ρ − 1}},
thus at time tp, the critical section << CS 2 >> of the phase U is terminated for the process q.

2

Our protocol synchronizes processors at distance ρ in any anonymous general network. On the
general graph, this synchronizer does not need any identity and does not build any real or virtual
spanning tree. Here, the broadcast runs in the beginning of a phase from any decentralised node
p. For each node q ∈ V (p, ρ), at the end of the phase for q, the node knows that information is
gone to all the others nodes in V (q, ρ), the feedback is implicit. The time complexity of a phase
[CUδ, CUδ+δ−1] is δ rounds in worst case. The message complexity is 2δ |E|, which is the price to pay
for uniformity. But is this message complexity usable? We will give a positive answer.

4 Wavelet, Wave and Strong Wave

During each phase of Algorithm 1, the structure of communications is a kind of wave depending of
the value of δ. These communication structures are formally defined in this section. In the section 5,
following the Theorem 5.2, we will be able to use these communications to compute some important
functions on the network, for instance an infimum if δ ≥ D, or most generally the idempotent
r-operator parametrized calculation problem when δ ≥ n, and so to solve many silent tasks [Duc98].

4.1 Walk and Wave

Definition 4.1 Walk. A Walk is a finite non empty word m = q0q1.....qr on the alphabet V , such
that for all i ∈ {0, r − 1}, qi = qi+1 or qi+1 ∈ Nqi

. A walk is circular if r > 1 and q0 = qr. The walk
m is beginning in q0 denoted head(m), and is ending in qr. Its length is r.

Let m be a walk, if there exists two words m1 and m2 , and a circular walk u such that m =
m1um2, (u is a factor of m), then m1head(u)m2 is a walk and we write: m → m1head(u)m2 The

transitive closure of the relationship → defines a strict partial ordering
∗
→ in the set of walks. A

simple walk is a minimal walk according to the
∗
→ partial ordering. Most simply, a simple walk is a

walk without any repetition. An elementary walk is a walk such that if for i < j , qi = qj then for

all k ∈ {i, ..., j} , qk = qi. A reducing of a walk m is a simple walk m′ such that m
∗
→ m′.

Walk cover of an event in a sequence. Let S = [C1, C2] be a sequence of events. If in S,
(q, t′) � (p, t) then there exists a causality chain from (q, t′) to (p, t): (q, t′) = (q0, t0) ; (q1, t1) ;
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(q2, t2) ... ; (qr, tr) = (p, t) , its associated walk is the walk q0q1...qr. The walk cover of an event
(p, t) ∈ S is the set of walks associated to the causality chains of S ending to (p, t). This set is
denoted by WalkCover(p, t). Of course, this set contains the walk of length 0 denoted by p.

Lemma 4.2 If m ∈ WalkCover(p,t) then there exists an elementary walk m′ in WalkCover(p,t)

such that m
∗
→ m′

Proof. Let m = q0q1.....qr the associated walk of the causality chain (q0, t0) ; (q1, t1) ; (q2, t2) ... ;

(qr, tr). Suppose that m = m1um2 where u is a circular walk qiq.....qj . From the definition of ; relationship,

there exists a chain: (qi, ti) ; (qi, ti1) ; (qi, ti2) ... ; (qi, tj). Let l the length of this chain. If v =
l∏

k=1

qi then

m̄ = m1vm2 is an element of WalkCover(p,t). Such a rewriting operation is possible only a finite number of

times, at the end, the word is elementary. 2

Definition 4.3 (Wavelet, Wave, and Strong Wave) Following [Tel94], we assume that there
are special events called decide events, the nature of these events depends of the algorithm. Let k an
integer. A k-wavelet is a sequence of events [C1, C2] that satisfies the following two requirements:

The causal DAG induced by [C1, C2] contains at least one decide event.
For each decide event (p, t) , the past of (p, t) in [C1, C2] covers V (p, k).

We simply call it a wave when k ≥ D, where D is the diameter of the network.
A strong wave is a wave [C1, C2] that satisfies the following added requirement:

For each decide event(p, t) in [C1, C2], and for each simple walk m0 = q0q1...qn−1p ending in p,
there exists a causality chain (q0, t0) ; (q′1, t1) ... ;

(
q′r−1, tr−1

)
; (p, t) in [C1, C2], such that its

associated walk m is elementary, and m
∗
→ m0.

4.2 Infima and r−operators

Tel, in his work about wave algorithms [Tel94], introduces the infimum operators. An infimum ⊕
over a set S, is an associative, commutative and idempotent (i.e. x ⊕ x = x) binary operator. If
P = {a1, a2, ..., ar} is a finite part of (S) then, from the associativity, ⊕P makes sens as a1⊕a2⊕...⊕ar.
And if a ∈ S, then a⊕P makes sens as a⊕a1⊕a2⊕ ...⊕ar. Such an operator defines a partial order
relation ≤⊕ over S, by x ≤⊕ y if and only if x⊕ y = x. We suppose that S has a greater element e⊕,
such that x ≤⊕ e⊕ for every x ∈ S. Hence (S,⊕) is an Abelian idempotent semi-group with e⊕ as
identity element for ⊕. Ducourthial introduces in [Duc98] the notion of r-operator which generalizes
the infimum operators.

Definition 4.4 The binary operator ⊳ on S is a r−operator if there exits a (S,⊕)-endomorphism r,
called r-function, such that: ∀x, y ∈ S, x ⊳ y = x⊕ r (y). Let ⊳ be a r−operator on S, and let r be its
associated r−function , ⊳ is idempotent if and only if: ∀x ∈ S, x ≤⊕ r(x). A mapping ⊳ from (S)n

to S is an n−ary r−operator if there exists n− 1 (S,⊕)-endomorphisms r1, r2, ..., rn−1 such that for
all (x0, x1, ..., xn−1) ∈ (S)n : ⊳ (x0, x1, ..., xn−1) = x0 ⊕ r1 (x1)⊕ ...⊕ rn−1 (xn−1)

Remark 4.5 r is an endomorphism, which means that for all x, y in S, r(x ⊕ y) = r(x) ⊕ r(y).
From the definition of ≤⊕, we deduce that r is compatible with ≤⊕, formally: ∀x, y ∈ S, x ≤⊕ y ⇒
r (x) ≤⊕ r (y)
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4.3 Infimum and r-operator parametrized computation problem

Let [C1, C2] be a wave . We denote by N t
p the set of processes such that there exists a time tq

such that (q, tq) ; (p, t). Note that p may be in N t
p. Because of the lack of place, the proof of

Theorem 4.10 is in the annexe .

Infimum computation Give each process p, an extra variable p.res : S . Each register p.res is
initialised during the initial event of p by the value p.v0. let (p, t) be any event in [C1, C2]. Whenever
(p, t) holds, p.res is set to the value p.v0

⊕ {
qtq .res, q ∈ N t

p

}
. Tel shows the following theorem:

Theorem 4.6 [Tel94] A wave can be used to compute an infimum.

Idempotent r-operator parametrized computation problem Let [C1, C2] be a strong wave
. We associate to each oriented link (pi, pj) of G = (V,E) a idempotent r−function: rpi,pj

. By
extention, for the sequence (pi, pi) we associate the identity: rii = id. Like above, give each process
p, an extra constant p.v0 : S and a register p.res. Each register p.res is initialised during the initial
event of p by the value p.v0. let (p, t) be any event in [C1, C2]. Whenever (p, t) holds, p.res is set to
the value p.v0 ⊕

{
rq,p (q.res) , q ∈ N t

p

}
. Each node p can be seen as a (d + 1)-ary r-operator if d is

the degree of the node.

Definition 4.7 For any walk µ = p0p1....pn, we define eval (µ) = rµ (p0.v0) , with
rµ = rpn−1,pnorpn−2,pn−1

o...orp0,p1
, where o is the composition of functions. For any p ∈ V , the sets

Λ′
p and Λp are defined by: Λ′

p =
{
eval (µ) , µ ∈ Σ′

p

}
and Λp = {eval (µ) , µ ∈ Σp}, where Σ′

p is the
set of the walks ending to p, and Σq is the set of the simple walks ending to p.

From the definitions and the idempotence of the r-operators, the following lemma holds:

Lemma 4.8 Assume that m and m′ are two walks with p = head(m). We suppose that m
∗
→ m′.

Then rm(p.v0) ≥⊕ rm′(p.v0), and if m is elementary then rm(p.v0) = rm′(p.v0)

Definition 4.9 (Legitimate output) We define the legitimate output of a process p as the quan-
tity: ⊕Λp

Theorem 4.10 A strong wave can be used to solve the idempotent r-operator parametized problem.

5 Unison as a self-stabilizing wave stream algorithm, applications

5.1 Analysis of the Unison Behavior starting in WU0

Lemma 5.1 Let k ≥ ⊥0. If (p, t) is an event in the interval [Ck,→[, then: V (p, p̃t.r − k) ⊂

Cover(p, t) and Σp̃t.r−k
p ⊂WalkCover(p, t).

Where Σρ
p is the set of simple walks of length less than or equal to ρ, ending to p.

Proof. The lemma is true for the initial events of [Ck,→[. Let A be the set of events (p, t) in [Ck,→[
such that the sentence:

V (p, p̃t.r − k) ⊂ Cover(p, t) ∧ Σp̃t.r−k
p ⊂WalkCover(p, t)

9



does not hold. We assume that A is not empty, let (q, τ) a minimal event in A according to �. Let δ = q̃τ .r−k,

and let p1 ∈ V (q, δ). If p1 = q then p1 ∈ Cover(q, τ), else there exists q1 ∈ Nq such that p1 ∈ V (q1, δ − 1).

(q, τ)is not a initial event, so q1 ∈ N τ
q and there exists τq1

such that (q1, τq1
) ; (q, τ), and by the minimality of

(q, τ) the inclusion V (q1, δ−1) ⊂ Cover(q1, τq1
) holds and thus V (q1, δ−1) ⊂ Cover(q, τ) and p1 ∈ Cover(q, τ).

Following the same way, let m be a walk in Σδ
p , if m = q then m ∈ WalkCover(q, τ), else if m = p1p2....prq

then pr ∈ N τ
q because(q, τ) is not a initial event, so there exists τpr

such that (pr, τpr
) ; (q, τ), and by the

minimality of (q, τ) the inclusion Σδ−1
pr
⊂ WalkCover(pr, τpr

) holds, and thus p1p2....prq ∈ WalkCover(q, τ)

. So (q, τ) is not in A. Thus A =∅, and the lemma is proved. 2

As corollary, we deduce the important following theorem:

Theorem 5.2 Let k ≥ ⊥0 and δ be a positive integer, then [Ck, Ck+δ], with Ck+δ as the set of decide
events, is a δ-wavelet, and a wave if δ ≥ D. If δ is greater than or equal to the length of a longest
simple walk in G, then [Ck, Ck+δ] is a strong wave.

5.2 Self-stabilizing computation of an infimum at distance ρ

If ρ ≥ D For each process p, the registers p.v0 and p.res are intializedby the same value. We need
one step for the initilisation, and D steps for the wave of calculation. So we take δ ≥ D + 1. For any
integer U , [CUδ, CUδ+δ−1] is a wave. So we define the critical sections as follows:

<< CS2 >>≡ initialization of p.v0 and p.res

<< CS1 >>≡ p.res := p.v0

⊕
{q.res, q ∈ Np}

From Theorem 4.6, at the cut CUδ+δ−1 the register p.res contains the right value
⊕
{q.v0, q ∈ V }.

If ρ < D We take δ = ρ + 1. We suppose that the register q.v0 is initialised during the critical
section << CS2 >> at the beginning of the phase, precisely when the register p.r takes the value
Uδ. To reach the objective, we define for each process p two added registers p.v1 and p.v2. These
two registers are initialized at the date CUδ during the critical section << CS2 >>, by the value
p.v0. For α ∈ {1, 2, ..., ρ}, at the date CUδ+α, the action << CS1 >> is the following:

p.v1 := p.v2; p.v2 := p.v0

⊕ {
q.vϕ(q), q ∈ Np

}

with, if q.r = p.r then ϕ (q) = 2, and if q.r = p.r + 1 then ϕ (q) = 1.

Theorem 5.3 At the cut CUδ+δ−1 the register p.res contains the right value:
⊕
{q.v0, q ∈ V (p, ρ)}.

The proof is in the annexe.

6 Concluding remarks

We showed how the stucture of the communications between processes of Unison can be viewed as
a wave stream. Thanks to this structure, we have been able to build a self-stabilizing wave stream
algorithm in asynchronous anonymous networks scheduled by an unfair daemon. Precisely, we showed
that the behavior of Unison can be viewed as a self-stabilizing wave, k-wavelet or bidirected link
flood streams. From these remarks, in any asynchronous anonymous network scheduled by an unfair
daemon, we deduced self-stabilizing solutions to the barrier synchronization problem, the infimum
calculation problem, and the idempotent r-operator parametrized calculation problem. Now, an
important question would be to reduce the self-stabilizing time complexity of unison from O(n) to
O(D) in a general graph.
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7 Annexe

7.1 Proof of Theorem 4.10

Proposition 7.1 For any p ∈ V , ⊕Λ′
p exists, and the equality ⊕Λ′

p = ⊕Λp holds.

Proof.
Λp is finite, so ⊕Λp exists, furthermore Λp ⊂ Λ′

p. If m = p0p1....pn be a not elementary walk ,

there exists a simple walk m′ such that m
∗
→ m′. From the lemma 4.8, rm(p.v0) ≥⊕ rm′(p.v0) and

rm′(p.v0) ≥⊕ ⊕Λp hold. The proposition follows.
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2

Lemma 7.2 Let (p, t) be an event in [C1, C2], then at time t,

pt.res =
⊕
{eval (µ) , µ ∈WalkCover(p, t)}

Proof.
Let A be the set of events (p, t) in [C1, C2] such that the equality is not true. Note that the

minimal events in [C1, C2] are not in A. If A is empty, the proof is finished. Suppose that A is not
empty. Let (p, t) a minimal event of A according to the relation �:

pt.res := p.v0

⊕{
rq,p(q

tq .res), q ∈ N t
p

}

But, by definition: WalkCover(p, t) =
⋃

q∈N t
p

{µp, µ ∈WalkCover (q, tq)} ∪ {p}.

From the minimality of (p, t) in A, the events (q, tq) are not in A, so:

pt.res = p.v0

⊕

q∈N t
p

rqp

(⊕
{eval (µ) , µ ∈WalkCover (q, tq)}

)

But rpq is compatible with ≤ ⊕ (remark 4.5), thus:

pt.res = p.v0

⊕

q∈N t
p

{rqp(eval(µ)), µ ∈WalkCover (q, tq)}

(p, t) is not an initial event, so p ∈ N t
p and:

p.v0 ≥⊕

⊕
{rpporµ (head(µ).v0) , µ ∈WalkCover (p, tp)}

We deduce, from associativity of ⊕ and from rqporµ = rµp that :

pt.res =
⊕

q∈N t
p

{eval(µp), µ ∈WalkCover (q, tq)}

but WalkCover(p, t) =
⋃

q∈N t
p

{µp, µ ∈WalkCover (q, tq)}, so:

pt.res = {eval(µ), µ ∈WalkCover (p, t)}

We deduce that (p, t) is not in A, which is a contradiction. We deduce that A = ∅ and the lemma.
2

Theorem 7.3 (4.10) A strong wave can be used to solve the idempotent r-operator parametized
problem.

Proof. If (p, t) is a decide event then, from the Lemma 7.2, we etablish that pt.res = {eval (µ) , µ ∈WalkCover (p, t)

holds, and that WalkCover (p, t) satisfies the Definition 4.3. Recall that Λp = {eval (µ) , µ ∈ Σp}. For any

m ∈ WalkCover (p, t), there exists m0 ∈ Σp such that m
∗

→ m0 and from the Lemma 4.8 the inequal-

ity eval (m) ≥ eval (m0) holds. We deduce that pt.res ≥ ⊕Λp. Conversely, if m0 ∈ Λp, there exists m ∈

WalkCover (p, t) such that m
∗

→ m0, but from the Lemma 4.2, there exists also a walk m1 ∈ WalkCover (p, t)

such that m
∗

→ m1 and m1
∗

→ m0, and from Lemma 4.2 eval (m1) = eval (m0). We deduce that pt.res ≤ ⊕Λp.

From these two inequalities, we deduce pt.res = ⊕Λp and the theorem is proved. 2
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7.2 Proof of Theorem 5.3

Proposition 7.4 For p ∈ V and α ∈ {1, ..., ρ}, at the date CUδ+α, hold the equalities:

p.v1 =
⊕
{q.v0, q ∈ V (p, α− 1)} and p.v2 =

⊕
{q.v0, q ∈ V (p, α)}

Proof.
At the date CUδ, any process p satisfies p.v1 = p.v0 and p.v2 = p.v0, it is the initializing step.

Let A the set of events in [CUδ+1, CUδ+δ−1], for which the proposition is not true. We assume that
A is not empty. Let (p, t) a minimal event in A. let α ∈ {1, 2, ..., ρ} such that (p, t) ∈ CUδ+α. There
exists t0 such that (p, t0) (p, t). We have pt.v1 = pt0 .v2 = and pt0.v2 =

⊕
{q.v0, q ∈ V (p, α− 1)}.

This equality is true even if α = 1. Now, pt.v2 = p.v0
⊕{

qtq .vϕ(q), q ∈ Np

}
. From the minimality

of the event (p, t), the events (q, tq), where tq < t, are not in A and are in [CUδ, CUδ+δ−1]. So,
p.v0

⊕{
qtq .vϕ(q), q ∈ Np

}
=

⊕
{q.v0, q ∈ V (p, α)}. We obtain a contradiction. We deduce that A

is empty, and the proposition follows
2

As corollary, we obtain the theorem:

Theorem 7.5 (5.3) At the cut CUδ+δ−1 the register p.res contains the right value
⊕
{q.v0, q ∈ V (p, ρ)}.

13


