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How to pass from local to global scales in anonymous networks? In such networks, how to organize a self-stabilizing propagation of information with feedback? From Angluin's results, the deterministic leader election is impossible in general anonymous networks. Thus, it is impossible to build a rooted spanning tree. In this paper we show how to use Unison to design a selfstabilizing barrier synchronization in an anonymous network. We show that the communication structure of this barrier synchronization designs a self-stabilizing wave stream, or pipelined wave, in anonymous networks. We introduce two variants of waves: Strong Wave and Wavelet. Strong waves can be used to solve the idempotent r-operator parametrized problem, which implies well known problems like depth-first search tree construction -this instance requires identities for the processors. Wavelets deal with ρ-distance computation. We show how to use Unison to design a self-stabilizing strong wave stream, and wavelet stream respectively.

Introduction

Several general message passing problems are useful to achieve many tasks in distributed networks, like broadcasting information, global synchronization, reset, termination detection, or calculation of a global function whose the input depends on several processes or the totality of the processes in the network -see [START_REF] Helary | Synchronization and control of distributed Systems and programs[END_REF][START_REF] Tel | Introduction to Distributed Algorithms[END_REF][START_REF] Lynch | Distributed algorithms[END_REF]. In this paper we consider the wave propagation problem in asynchronous anonymous networks.

Related Works

In asynchronous systems, there is no global signal. Synchronization is a crucial task. Informally, a synchronizer allows asynchronous systems to simulate synchronous ones. In asynchronous systems, one can at most ensure that no process starts to execute its phase i + 1 before all processes have completed their phase i. This strongest synchronization task, named Barrier Synchronization, was introduced by Misra in [START_REF] Misra | Phase synchronization[END_REF] in a complete graph. The research about synchronization started with Awerbuch [START_REF] Awerbuch | Complexity of network synchronization[END_REF]. Communications waves are often used to achieve synchronization. Designing efficient fault-tolerant wave algorithms is an important task. Self-stabilization [START_REF] Ew Dijkstra | Self stabilizing systems in spite of distributed control[END_REF][START_REF] Dolev | Self-Stabilization[END_REF] is a general technique to design a system that tolerates arbitrary transient faults, i.e. faults that may corrupt the state of processes or links. [START_REF] Kulkarni | Low-cost fault-tolerance in barrier synchronizations[END_REF] proposes a self-stabilizing solution for complet graphs. [START_REF] Huang | Phase synchronization on asynchronous uniform rings with odd size[END_REF] designs a solution in uniform rings with an odd size. A relaxed synchronization requirement is defined as follows: the clocks are in phase if the values of two neighboring processes differ by no more than 1, and the clock value of each process is incremented by 1 infinitely often. The self-stabilizing asynchronous unison [START_REF] Jm Couvreur | Asynchronous unison[END_REF] deals with this criterium.

A distributed protocol is uniform if every process with the same degree executes the same program. In particular, we do not assume a unique process identifier -the network is anonymous -or some consistent orientation of links in the network such that any dynamic election of a master clock can be feasible. Numerous self-stabilizing wave algorithms use a rooted spanning tree or simply an only initiator, called the root-see for instance [START_REF] Hsm Kruijer | Self-stabilization (in spite of distributed control) in tree-structured systems[END_REF] [START_REF] Alima | Self-stabilization with global rooted synchronizers[END_REF].In these cases, protocols are not uniform, they are only at most semi-uniform. So, for a uniform distributed protocol any processor may initiate a wave, and most generally a global computation. Any processor may be an initiator. To face this inherent concurency, a solution is that every processor maintains the identity of the initiators -see for instance [START_REF] Cournier | Snap-stabilizing PIF algorithm in arbitrary networks[END_REF]. That is impossible in an anonymous network.

[KA98] designs a self-stabilizing Barrier Synchonization algorithm in asynchronous anonymous complet networks. For the other topologies the authors use the network with a root, the program is not uniform, but only semi-uniform. An interesting question is to give a solution to this problem in a general connected asynchronous anonymous network. As far as we know, the phase algorithm [START_REF] Tel | Topics in Distributed Algorithms[END_REF] is the only decentralised uniform wave algorithm for a general anonymous network. This algorithm requires that the processors know the diameter, or most simply a common upper bound D ′ of the diameter. This algorithm is not self-stabilizing.

Contribution and paper outline

The main task of this paper is to show how Unison can be viewed as a self-stabilizing wave stream algorithm in asynchronous anonymous networks scheduled by an unfair daemon. The contribution is threefold: Firstly, we introduce the ρ-distance barrier synchronization notion. It is a small extention of the barrier synchronization [START_REF] Misra | Phase synchronization[END_REF] which ensures that no process starts to execute its phase i + 1 before all processes at distance less than or equal to ρ have completed their phase i. We show how to design a self-stabilizing barrier synchronization at distance ρ in an anonymous network. The self-stabilizing time complexity is in O(n) rounds. It has its space complexity in O(log(n) + log(K)), where n is the number of processes in the network and K the size of the clock. Secondly, we introduce two variants of Wave: Wavelet and Strong Waves. We show that a strong wave can be used to solve the idempotent r-operator parametrized problem, and a wavelet deals with ρ-distance computation. Thirdly, we show that the communication structure of our ρ-distance barrier synchronization designs a self-stabilizing wavelet stream, or pipelined wavelet, in any anonymous networks. We show that if ρ ≥ D the communications design a self-stabilizing wave stream , and if ρ is greater than or equal to the length of the longest simple path in the network, then the protocol designs a self-stabilizing strong-wave stream.

The remainder of the paper is organized as follows. In the next section (Section 2), we describe the underlying model for distributed system. We also state what it means for a protocol to be self-stabilizing, we introduce the notion of causal-DAG and we present the unison problem and its solutions. In Section 3 we define the ρ-distance barrier synchronization notion and we introduce a protocol which designs a self-stabilizing barrier synchronization at distance ρ in any anonymous networks. In Section 4 we define two kinds of waves: wavelet and strong waves, and we show the relationship between a strong wave and the idempotent r-operator parametrized computation problem . In Section 5, we show how Unison can be view as a wave stream, or a wavelet stream, or a strong wave stream. In Section 6, we give some concluding remarks. Because of the lack of place, somme proofs are put back in an annexe.

Preliminaries

In this section, firstly we define the model of distributed systems considered in this paper, and state what it means for a protocol to be self-stabilizing. Secondly, we present the notions of finite incrementing system and reset on it. Next, we define what a self-stabilizing distributed Unison is.

The model

Distributed System. A distributed system is an undirected connected graph, G = (V, E), where V is a set of nodes-|V | = n, n ≥ 2-and E is the set of edges. Nodes represent processes, and edges represent bidirectional communication links. A communication link (p, q) exists iff p and q are neighbors. The set of neighbors of every process p is denoted as N p . The degree of p is the number of neighbors of p, i.e., equal to |N p |. The distance between two processes p and q, denoted by d (p, q), is the length of the shortest path between p and q. Let k be a positive integer. Define V (p, k) as the set of processes such that d(p, q) ≤ k. D is the diameter of the network.

The program of a process consists of a set of registers (also referred to as variables) and a finite set of guarded actions of the following form: < label >:: < guard > -→< statement >. Each process can only write to its own registers, and read its own registers and registers owned by the neighboring processes. The guard of an action in the program of p is a boolean expression involving the registers of p and its neighbors. The statement of an action of p updates one or more registers of p. An action can be executed only if its guard evaluates to true. The actions are atomically executed, meaning the evaluation of a guard and the execution of the corresponding statement of an action, if executed, are done in one atomic step. The state of a process is defined by the values of its registers. The configuration of a system is the product of the states of all processes. Let a distributed protocol P be a collection of binary transition relations denoted by →, on C, the set of all possible configurations of the system. P describes an oriented graph S = (C, →), called the transition graph of P. A sequence e = γ 0 , γ 1 , . . . , γ i , γ i+1 , . . . is called an execution of P iff ∀i ≥ 0, γ i → γ i+1 ∈ S. A process p is said to be enabled in a configuration γ i (γ i ∈ C) if there exists an action A such that the guard of A is true in γ i . The value of a register r of a process p in the state γ i , is denoted by p i .r. i is the moment of the state γ i . When there is no ambiguity, we will omit i. Similarly, an action A is said to be enabled (in γ) at p if the guard of A is true at p (in γ). We assume that each transition from a configuration to another is driven by a distributed scheduler called daemon. In this paper, we consider only an Asynchronous distributed Daemon. The Asynchronous Daemon chooses any nonempty set of enabled processes to execute an action in each computation step (Unfair Daemon).

In order to compute the time complexity, we use the definition of round [START_REF] Dolev | Uniform dynamic self-stabilizing leader election[END_REF]. This definition captures the execution rate of the slowest processor in any computation. Given an execution e, the first round of e (let us call it e ′ ) is the minimal prefix of e containing the execution of one action of the protocol or the neutralization of every enabled processor from the first configuration. Let e ′′ be the suffix of e, i.e., e = e ′ e ′′ . Then second round of e is the first round of e ′′ , and so on.

Self-Stabilization. Let X be a set. A predicate P is a function that has a Boolean value-true or false-for each element x ∈ X . A predicate P is closed for a transition graph S iff every state of an execution e that starts in a state satisfying P also satisfies P . A predicate Q is an attractor of the predicate P , denoted by P ⊲ Q, iff Q is closed for S and for every execution e of S, beginning by a state satisfying P , there exists a configuration of e for which Q is true. A transition graph S is self-stabilizing for a predicate P iff P is an attractor of the predicate true, i.e., true ⊲ P .

Causal DAGs

Definition 2.1 (Events and Causal DAGs) Let γ t 0 γ t 0 +1 .... be a finite or infinite execution. ∀p ∈ V, (p, t 0 ) is an event. Let γ t → γ t+1 be a transition. If the process p executes a guarded action during this transition, we say that p executes an action at time t + 1, and we say that (p, t + 1)is an event or a p-event. The causal DAG associated is the smallest relation ; on the set of events that satisfies:

1. Let (p, t) be an event with t > t 0 . Let t ′ be the greatest integer such that t 0 ≤ t ′ < t and (p, t ′ ) is an event, then (p, t ′ ) ; (p, t)

2. Let (p, t) be an event and let t > t 0 . Let q ∈ N p and let t ′ be the greatest integer such that t 0 ≤ t ′ < t and such that (q, t ′ ) is an event, then (q, t ′ ) ; (p, t).

The causal order on the set of events is the reflexive and transitive closure of the causal relation ;. The past cone of an event (p, t) is the causal-DAG induced by every event (q, t ′ ) such that (q, t ′ ) (p, t). A past cone involves a process q iff there is a q-event in the cone. The cover of an event (p, t) is the set of processes q covered by the past cone of (p, t), this set is denoted by Cover(p, t).

Definition 2.2 (Cut) A cut C on a causal DAG is a map from V to N, which associates each process p with a time t C p such that (p, t C p ) is an event. We mix this map with its graph:

C = p, t C p , p ∈ V . The past of C is the events (p, t) such that t ≤ t C p . It is denoted by ]←, C]. The future of C is the events (p, t) such that t C p ≤ t. It is denoted by [C, →[.A cut is coherent if (q, t ′ ) (p, t) and (p, t) p, t C p then (q, t ′ ) q, t C q . A cut C 1 is less than or equal to a cut C 2 , denoted by C 1 C 2 , if the past of C 1 is included in the past of C 2 .If C 1 and C 2 are coherent and C 1 C 2 then [C 1 , C 2 ] is the induced causal DAG defined by the events (p, t) such that p, t C 1 p (p, t) p, t C 2 p .Any segment [C 1 , C 2 ]
is a sequence of events, each event of C 1 is called an initial event.

Distributed Unison

Unison, or most precisely Self-Stabilizing Asynchronous Unison, is a relaxed self-stabilizing Barrier Synchronization in the following meaning: the clocks are in phase if the values of two neighboring processes differ by no more than 1, and the clock value of each process is incremented by 1 infinitly often. Self-stabilizing Unison was introduced by [START_REF] Jm Couvreur | Asynchronous unison[END_REF]. There is a possibility of deadlock if the size of the clock is too short-see [START_REF] Boulinier | When graph theory helps self-stabilization[END_REF]. A little algebraic framework, and some vocabulary are necessary. The vocabulary will be used in the definition of the algorithm 1. Incrementing system We define X = {-α, . . . , 0, . . . , K -1}, where α is a positive integer. Let ϕ be the function from X to X defined by: ϕ(x) = def if x ≥ 0 then x + 1 else x + 1. The pair (X , ϕ) is called a finite incrementing system. K is called the period of (X , ϕ). Let tail ϕ = {-α, . . . , 0} and stab ϕ = {0, . . . , K -1} be the sets of "extra" values and "expected" values, respectively. The set tail * ϕ is equal to tail ϕ \ {0}. We assume that each process p maintains a clock register r p with an incrementing system (X , ϕ). Let γ the system configuration, we define the predicate W U :

Algebraic framework

W U (γ) ≡ def ∀p ∈ V, ∀q ∈ N p : (r p ∈ stab ϕ ) ∧ (d(r p , r q ) ≤ 1) in γ.

Intrinsic Path Delay [BPV04]

Let γ a configurations in W U , the clock values of neighboring processes are locally comparable. We define the four notions:

Delay The delay along a path µ = p 0 p 1 . . . p k , denoted by ∆ µ , is the local variation of the sequence r p 0 , r p 1 , . . . , r p k , i.e, ∆ µ = k-1 i=0 r p i+1 ⊖ l r p i if k > 0, 0 otherwise (k = 0).

Intrinsic Delay

The delay between two processes p and q is intrinsic if it is independent on the choice of the path from p to q. The delay is intrinsic iff it is intrinsic for every p and q in V . In this case, and at time t, the intrinsic delay between p and q is denoted by ∆ (p,q) . WU 0 The predicate W U 0 is true for a system configuration γ iff γ satisfies W U and the delay is intrinsic in γ.

Precedence relationship When Delay is intrinsic, it defines a total preordering on the processes in V , named precedence relationship. This relationship depends on the state γ ∈ W U 0 . The absolute value of the delay between two processes p and q, is equal to or less than the distance d(p, q) in the network. This remark is important for the following.

Cyclomatic Characteristic C G [START_REF] Boulinier | When graph theory helps self-stabilization[END_REF] If G is an acyclic graph, then its cyclomatic characteristic C G is equal 2. Otherwise G contains cycles: Let Λ be a cycle basis, the length of the longest cycle in Λ is denoted λ(Λ). The cyclomatic characteristic of G, is equal to the lowest λ(Λ) among cycle bases. It follows from the definition of C G that C G ≤ 2D.

Unison Definition We assume that each process p a register p.r ∈ χ. The selfstabilizing asynchronous (distributed) unison problem, or most shortly the unison problem, is to design a uniform protocol so that the following properties are true in every execution [START_REF] Boulinier | Synchronous vs. asynchronous unison[END_REF]:

Safety : W U is closed. Synchronization: In W U , a process can increment its clock r p only if the value of r p is lower than or equal to the clock value of all its neighbors. No Lockout (Liveness): In W U , every process p increments its clock r p infinitely often. Self-Stabilization : Γ ⊲ W U .

The following guarded action solves the synchronization property and the safety:

∀q ∈ N p : (r q = r p ) ∨ (r q = ϕ(r p )) -→ r p := ϕ(r p ); (1) 
The predicate W U 0 is closed for any execution of this guarded action. Moreover, for any execution starting from a configuration in W U 0 , the no lockout property is guaranteed. Generally this property is not guaranteed in W U . A few general schemes to self-stabilizing the non-stabilizing protocols have been proposed. The first self-stabilizing asynchronous unison was introduced in [START_REF] Jm Couvreur | Asynchronous unison[END_REF]. The deterministic protocol proposed needs K ≥ n 2 . The stabilization time complexity is in O(nD).

The second solution is proposed in [START_REF] Boulinier | When graph theory helps self-stabilization[END_REF]. The authors show that if K is greater than C G then W U = W U 0 and the no lockout property is guaranteed in W U . (see Definition 2.3). The protocol is self-stabilizing if α ≥ T G -2, where T G is the length of the longest chordless cycle (2 in tree networks). One can notice that C G and T G are bounded by n. So, even if C G and T G are unknown, we can choose K ≥ n + 1 and α = n. Its self-stabilizing time complexity is in O(n). In [START_REF] Boulinier | Toward a time-optimal odd phase clock unison in trees[END_REF], the authors present the Protocol W U M in, which is self-stabilizing to asynchronous unison in at most D rounds in trees.

3 Barrier Synchronization

Barrier synchronization at distance ρ

Barrier Synchronization problem has been specified in [START_REF] Kulkarni | Low-cost fault-tolerance in barrier synchronizations[END_REF]. Let ρ be an integer greater than 0. The relaxation of this problem at distance ρ is the following. Let K be an integer greater than 1. We assume that each process p maintains a K-order clock register p.R ∈ {0, 1, ..., K -1}. Each process executes a cyclique sequence of K terminating phases (the critical section << cs >>). The following two properties are required for each phase:

Global Unison (Safety) : for each phase x ∈ {0, ..., K -1} , no process p can proceed to phase x + 1 until all nodes q, such that d(p, q) ≤ ρ, has executed its phase x.

No lockout (liveness): every process increments its clock infinitly often. For ρ = 1, this specification is the specification of the standard stabilized unison. For ρ ≥ D, this specification is the specification of the global Barrier Synchronization.

The general self-stabilizing Scheme

The idea is to stabilize an underlayer unison in order to synchronize a δK-clock, with δ large enough to guarantee that the absolute value of the delay between every two processes at distance less than or equal to ρ is never larger than δ. It is sufficient that δ ≥ ρ holds. We take χ = {-α, .., 0, .., δK -1} and α ≥ T G -2 . We use the unison of [START_REF] Boulinier | When graph theory helps self-stabilization[END_REF] which stabilizes in O(n). The protocol is describe in Algorithm 1. To ensure self-stabilization in W U 0 , we require δK > C G . If we want to program a Barrier Synchronization, we must take δ ≥ D, thus from C G ≤ 2D, if K ≥ 3 then the inequality Kδ > C G holds. In the remainder we suppose that the inequality Kδ > C G holds.

Algorithm 1 (SS -W S)Self-Stabilizing ρ-Barrier Synchronization algorithm for the process p

Constant and variable:

Np: the set of neighbors of process p; p.r ∈ χ;

Boolean Functions:

ConvergenceStepp ≡ p.r ∈ tail * ϕ ∧ (∀q ∈ Np : (q.r ∈ tailϕ) ∧ (p.r ≤ tailϕ q.r)); LocallyCorrectp ≡ p.r ∈ stabϕ ∧ (∀q ∈ Np, q.r ∈ stabϕ ∧ ((p.r = q.r) ∨ (p.r = ϕ (q.r)) ∨ (ϕ (p.r) = q.r))); N ormalStepp ≡ p.r ∈ stabϕ ∧ (∀q ∈ Np : (p.r = q.r) ∨ (q.r = ϕ(p.r))); ResetInitp ≡ ¬LocallyCorrectp ∧ (p.r ∈ initϕ); Actions: N A : N ormalStepp -→ if p.r ≡ ρ -1[ρ] then << CS 2 >> else << CS 1 >> ; p.r := ϕ(p.r); CA : ConvergenceStepp -→ p.r := ϕ(p.r); RA : ResetInitp -→ p.r := α (reset);

Analysis

Lifting construction In order to analyse the protocol 1 we introduce for each process p, a global device, the register p.r. Of course the value of this virtual register is inaccessible to the process p. Informally p.r is a way to unwind of the register p.r. Let γ t 0 γ t 0 +1 .... be an infinite execution starting in W U 0 . Let p 0 be a maximal process, according to the precedence relation -see Remark 2.3for the state γ 0 . Let ⊥ 0 = p 0 .r at time 0. For each process p ∈ V , we unwind the register p.r in the following manner. We associate a virtual register p.r. For the state γ 0 , we initiate this virtual register by the instruction p.r := ⊥ 0 + ∆ 0 (p 0 ,p) . During the execution, for each transition γ t → γ t+1 the intruction p.r := p.r + 1 holds if and only if p.r := p.r + 1 holds during the same transition. For k ≥ ⊥ 0 we define the cut C k = {(p, t p,k ) , p ∈ V } where t p,k is the smallest time such that p.r := k. The first question is to prove that this cuts are coherent. We first introduce the easy lemma: Lemma 3.1 If (p, t) ; (q, t ′ ) then: q t ′ .r ∈ p t .r, p t .r + 1 . Inductively, if (q 0 , t 0 ) ; (q 1 , t 1 ) ;

(q 2 , t 2 ) ... ; (q i , t i ) then: q t i i .r ∈ q t 0 0 .r, ..., q t 0 0 .r + i

From the Lemma 3.1, if (q, t) (p, t p,k ) then (q, t) (q, t q,k ). It follows the proposition:

Proposition 3.2 For every k ≥ ⊥ 0 the cut C k is coherent.
Virtual register p.R and virtual clock For each process p we associate the register p.R, which is virtual. Its value is evaluated by the procedure: if p.r ∈ stab ϕ then p.R := p.r/δ else p.R := -1, where the symbol / is the integer division operator. The virtual register p.R defines a clock on {-1, 0, ..., K -1}. The algorithm 1 solves self-stabilizing Asynchronous Unison, so every process p increments its clock p.r infinitly often. We deduce that p.R increments infinitly often, thus:

Lemma 3.3 (Liveness) For every process p, the virtual register p.R is incremented infinitly often. Consequently << CS 2 >> is executed infinitly often.

Theorem 3.4 If δ ≥ ρ, once the protocol is stabilized, it solves the Barrier Synchronization at distance ρ for the virtual clock defined by the register p.R .

Proof.

We consider the phase U = [C U δ , C U δ+δ-1 ], for any event (p, t) in this sequence, the register p.R is equal to U [K]. Let p and q be two processes, such that d(p, q) ≤ ρ. Let (p, t p ) and (q, t q ) be in C U δ+δ . Suppose that t p ≤ t q , at time t p the register q.r ∈ {U δ + δi, i ∈ {0, ..., ρ -1}}, thus at time t p , the critical section << CS 2 >> of the phase U is terminated for the process q.

2

Our protocol synchronizes processors at distance ρ in any anonymous general network. On the general graph, this synchronizer does not need any identity and does not build any real or virtual spanning tree. Here, the broadcast runs in the beginning of a phase from any decentralised node p. For each node q ∈ V (p, ρ), at the end of the phase for q, the node knows that information is gone to all the others nodes in V (q, ρ), the feedback is implicit. The time complexity of a phase [C U δ , C U δ+δ-1 ] is δ rounds in worst case. The message complexity is 2δ |E|, which is the price to pay for uniformity. But is this message complexity usable? We will give a positive answer.

4

Wavelet, Wave and Strong Wave

During each phase of Algorithm 1, the structure of communications is a kind of wave depending of the value of δ. These communication structures are formally defined in this section. In the section 5, following the Theorem 5.2, we will be able to use these communications to compute some important functions on the network, for instance an infimum if δ ≥ D, or most generally the idempotent r-operator parametrized calculation problem when δ ≥ n, and so to solve many silent tasks [START_REF]New operators for computing with associative nets[END_REF].

Walk and Wave

Definition 4.1 Walk. A Walk is a finite non empty word m = q 0 q 1 .....q r on the alphabet V , such that for all i ∈ {0, r -1}, q i = q i+1 or q i+1 ∈ N q i . A walk is circular if r > 1 and q 0 = q r . The walk m is beginning in q 0 denoted head(m), and is ending in q r . Its length is r.

Let m be a walk, if there exists two words m 1 and m 2 , and a circular walk u such that m = m 1 um 2 , (u is a factor of m), then m 1 head(u)m 2 is a walk and we write: m → m 1 head(u)m 2 The transitive closure of the relationship → defines a strict partial ordering * → in the set of walks. A simple walk is a minimal walk according to the * → partial ordering. Most simply, a simple walk is a walk without any repetition. An elementary walk is a walk such that if for i < j , q i = q j then for all k ∈ {i, ..., j} , q k = q i . A reducing of a walk m is a simple walk m ′ such that m * → m ′ . Walk cover of an event in a sequence. Let S = [C 1 , C 2 ] be a sequence of events. If in S, (q, t ′ ) (p, t) then there exists a causality chain from (q, t ′ ) to (p, t): (q, t ′ ) = (q 0 , t 0 ) ; (q 1 , t 1 ) ;

(q 2 , t 2 ) ... ; (q r , t r ) = (p, t) , its associated walk is the walk q 0 q 1 ...q r . The walk cover of an event (p, t) ∈ S is the set of walks associated to the causality chains of S ending to (p, t). This set is denoted by W alkCover(p, t). Of course, this set contains the walk of length 0 denoted by p. Lemma 4.2 If m ∈ WalkCover(p,t) then there exists an elementary walk m ′ in WalkCover(p,t) such that m * → m ′ Proof. Let m = q 0 q 1 .....q r the associated walk of the causality chain (q 0 , t 0 ) ; (q 1 , t 1 ) ; (q 2 , t 2 ) ... ;

(q r , t r ). Suppose that m = m 1 um 2 where u is a circular walk q i q.....q j . From the definition of ; relationship, there exists a chain: (q i , t i ) ; (q i , t i1 ) ; (q i , t i2 ) ... ; (q i , t j ). Let l the length of this chain. If v = l k=1 q i then m = m 1 vm 2 is an element of WalkCover(p,t). Such a rewriting operation is possible only a finite number of times, at the end, the word is elementary.

2 Definition 4.3 (Wavelet, Wave, and Strong Wave) Following [START_REF] Tel | Introduction to Distributed Algorithms[END_REF], we assume that there are special events called decide events, the nature of these events depends of the algorithm. Let k an integer. A k-wavelet is a sequence of events [C 1 , C 2 ] that satisfies the following two requirements:

The causal DAG induced by [C 1 , C 2 ] contains at least one decide event.

For each decide event (p, t) , the past of (p, t) in [C 1 , C 2 ] covers V (p, k). We simply call it a wave when k ≥ D, where D is the diameter of the network. A strong wave is a wave [C 1 , C 2 ] that satisfies the following added requirement:

For each decide event(p, t) in [C 1 , C 2 ], and for each simple walk m 0 = q 0 q 1 ...q n-1 p ending in p, there exists a causality chain (q 0 , t 0 ) ; (q ′ 1 , t 1 ) ... ; q ′ r-1 , t r-1 ; (p, t) in [C 1 , C 2 ], such that its associated walk m is elementary, and m * → m 0 .

Infima and r-operators

Tel, in his work about wave algorithms [START_REF] Tel | Introduction to Distributed Algorithms[END_REF], introduces the infimum operators. An infimum ⊕ over a set S, is an associative, commutative and idempotent (i.e. x ⊕ x = x) binary operator. If P = {a 1 , a 2 , ..., a r } is a finite part of (S) then, from the associativity, ⊕P makes sens as a 1 ⊕a 2 ⊕...⊕a r . And if a ∈ S, then a ⊕ P makes sens as a ⊕ a 1 ⊕ a 2 ⊕ ... ⊕ a r . Such an operator defines a partial order relation ≤ ⊕ over S, by x ≤ ⊕ y if and only if x ⊕ y = x. We suppose that S has a greater element e ⊕ , such that x ≤ ⊕ e ⊕ for every x ∈ S. Hence (S, ⊕) is an Abelian idempotent semi-group with e ⊕ as identity element for ⊕. Ducourthial introduces in [START_REF]New operators for computing with associative nets[END_REF] the notion of r-operator which generalizes the infimum operators. Definition 4.4 The binary operator ⊳ on S is a r-operator if there exits a (S, ⊕)-endomorphism r, called r-function, such that: ∀x, y ∈ S, x ⊳ y = x ⊕ r (y). Let ⊳ be a r-operator on S, and let r be its associated r-function , ⊳ is idempotent if and only if: ∀x ∈ S, x ≤ ⊕ r(x). A mapping ⊳ from (S) n to S is an n-ary r-operator if there exists n -1 (S, ⊕)-endomorphisms r 1 , r 2 , ..., r n-1 such that for all (x 0 , x 1 , ..., x n-1 ) ∈ (S) n : ⊳ (x 0 , x 1 , ..., x n-1 ) = x 0 ⊕ r 1 (x 1 ) ⊕ ... ⊕ r n-1 (x n-1 ) Remark 4.5 r is an endomorphism, which means that for all x, y in S, r(x ⊕ y) = r(x) ⊕ r(y). From the definition of ≤ ⊕ , we deduce that r is compatible with ≤ ⊕ , formally: ∀x, y ∈ S, x ≤ ⊕ y ⇒ r (x) ≤ ⊕ r (y)

  Let Z be the set of integers and K be a strictly positive integer. Two integers a and b are said to be congruent modulo K, denoted by a≡ b[K] if and only if ∃λ ∈ Z, b = a + λK. We denote ā the unique element in [0, K -1] such that a ≡ ā[K]. min(ab, ba) is a distance on the torus [0, K -1] denoted by d K (a, b) . Two integersa and b are said to be locally comparable if and only if d K (a, b) ≤ 1. We then define the local order relationship ≤ l as follows: a ≤ l b def ⇔ 0 ≤ ba ≤ 1. If a and b are two locally comparable integers, we define b ⊖ a as follows: b⊖a = def if a ≤ l b then ba else -ab. If a 0 , a 1 , a 2 , . . . a p-1 , a p is a sequence of integers such that ∀i ∈ {0, . . . , p -1}, a i is locally comparable to a i+1 , then S = p-1 i=0 (a i+1 ⊖ a i ) is the local variation of this sequence.

Infimum and r-operator parametrized computation problem

Let [C 1 , C 2 ] be a wave . We denote by N t p the set of processes such that there exists a time t q such that (q, t q ) ; (p, t). Note that p may be in N t p . Because of the lack of place, the proof of Theorem 4.10 is in the annexe .

Infimum computation Give each process p, an extra variable p.res : S . Each register p.res is initialised during the initial event of p by the value p.v 0 . let (p, t) be any event in [C 1 , C 2 ]. Whenever (p, t) holds, p.res is set to the value p.v 0 q tq .res, q ∈ N t p . Tel shows the following theorem:

Theorem 4.6 [START_REF] Tel | Introduction to Distributed Algorithms[END_REF] A wave can be used to compute an infimum.

Idempotent r-operator parametrized computation problem Let [C 1 , C 2 ] be a strong wave . We associate to each oriented link (p i , p j ) of G = (V, E) a idempotent r-function: r p i ,p j . By extention, for the sequence (p i , p i ) we associate the identity: r ii = id. Like above, give each process p, an extra constant p.v 0 : S and a register p.res. Each register is initialised during the initial event of p by the value p.v 0 . let (p, t) be any event in [C 1 , C 2 ]. Whenever (p, t) holds, p.res is set to the value p.v 0 ⊕ r q,p (q.res) , q ∈ N t p . Each node p can be seen as a (d + 1)-ary r-operator if d is the degree of the node. Definition 4.7 For any walk µ = p 0 p 1 ....p n , we define eval (µ) = r µ (p 0 .v 0 ) , with r µ = r p n-1 ,pn or p n-2 ,p n-1 o...or p 0 ,p 1 , where o is the composition of functions. For any p ∈ V , the sets Λ ′ p and Λ p are defined by:

where Σ ′ p is the set of the walks ending to p, and Σ q is the set of the simple walks ending to p.

From the definitions and the idempotence of the r-operators, the following lemma holds: Lemma 4.8 Assume that m and m ′ are two walks with p = head(m). We suppose that m * → m ′ . Then r m (p.v 0 ) ≥ ⊕ r m′ (p.v 0 ), and if m is elementary then r m (p.v 0 ) = r m′ (p.v 0 ) Definition 4.9 (Legitimate output) We define the legitimate output of a process p as the quantity: ⊕Λ p Theorem 4.10 A strong wave can be used to solve the idempotent r-operator parametized problem.

5 Unison as a self-stabilizing wave stream algorithm, applications

Analysis of the Unison Behavior starting in

Where Σ ρ p is the set of simple walks of length less than or equal to ρ, ending to p.

Proof. The lemma is true for the initial events of

such that the sentence:
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does not hold. We assume that A is not empty, let (q, τ ) a minimal event in A according to . Let δ = q τ .r -k, and let p 1 ∈ V (q, δ). If p 1 = q then p 1 ∈ Cover(q, τ ), else there exists q 1 ∈ N q such that p 1 ∈ V (q 1 , δ -1). (q, τ )is not a initial event, so q 1 ∈ N τ q and there exists τ q1 such that (q 1 , τ q1 ) ; (q, τ ), and by the minimality of (q, τ ) the inclusion V (q 1 , δ-1) ⊂ Cover(q 1 , τ q1 ) holds and thus V (q 1 , δ-1) ⊂ Cover(q, τ ) and p 1 ∈ Cover(q, τ ). Following the same way, let m be a walk in Σ δ p , if m = q then m ∈ W alkCover(q, τ ), else if m = p 1 p 2 ....p r q then p r ∈ N τ q because(q, τ ) is not a initial event, so there exists τ pr such that (p r , τ pr ) ; (q, τ ), and by the minimality of (q, τ ) the inclusion Σ δ-1 pr ⊂ W alkCover(p r , τ pr ) holds, and thus p 1 p 2 ....p r q ∈ W alkCover(q, τ ) . So (q, τ ) is not in A. Thus A =∅, and the lemma is proved.

2

As corollary, we deduce the important following theorem: Theorem 5.2 Let k ≥ ⊥ 0 and δ be a positive integer, then [C k , C k+δ ], with C k+δ as the set of decide events, is a δ-wavelet, and a wave if δ ≥ D. If δ is greater than or equal to the length of a longest simple walk in G, then [C k , C k+δ ] is a strong wave.

Self-stabilizing computation of an infimum at distance ρ

If ρ ≥ D For each process p, the registers p.v 0 and p.res are intializedby the same value. We need one step for the initilisation, and D steps for the wave of calculation. So we take δ ≥ D + 1. For any integer U , [C U δ , C U δ+δ-1 ] is a wave. So we define the critical sections as follows:

<< CS2 >>≡ initialization of p.v 0 and p.res << CS1 >>≡ p.res := p.v 0 {q.res, q ∈ N p } From Theorem 4.6, at the cut C U δ+δ-1 the register p.res contains the right value {q.v 0 , q ∈ V }.

If ρ < D We take δ = ρ + 1. We suppose that the register q.v 0 is initialised during the critical section << CS2 >> at the beginning of the phase, precisely when the register p.r takes the value U δ. To reach the objective, we define for each process p two added registers p.v 1 and p.v 2 . These two registers are initialized at the date C U δ during the critical section << CS2 >>, by the value p.v 0 . For α ∈ {1, 2, ..., ρ}, at the date C U δ+α , the action << CS1 >> is the following:

p.v 1 := p.v 2 ; p.v 2 := p.v 0 q.v ϕ(q) , q ∈ N p with, if q.r = p.r then ϕ (q) = 2, and if q.r = p.r + 1 then ϕ (q) = 1.

Theorem 5.3 At the cut C U δ+δ-1 the register p.res contains the right value: {q.v 0 , q ∈ V (p, ρ)}.

The proof is in the annexe.

Concluding remarks

We showed how the stucture of the communications between processes of Unison can be viewed as a wave stream. Thanks to this structure, we have been able to build a self-stabilizing wave stream algorithm in asynchronous anonymous networks scheduled by an unfair daemon. Precisely, we showed that the behavior of Unison can be viewed as a self-stabilizing wave, k-wavelet or bidirected link flood streams. From these remarks, in any asynchronous anonymous network scheduled by an unfair daemon, we deduced self-stabilizing solutions to the barrier synchronization problem, the infimum calculation problem, and the idempotent r-operator parametrized calculation problem. Now, an important question would be to reduce the self-stabilizing time complexity of unison from O(n) to O(D) in a general graph.

Annexe

7.1 Proof of Theorem 4.10

Proposition 7.1 For any p ∈ V , ⊕Λ ′ p exists, and the equality ⊕Λ ′ p = ⊕Λ p holds.

Proof.

Λ p is finite, so ⊕Λ p exists, furthermore Λ p ⊂ Λ ′ p . If m = p 0 p 1 ....p n be a not elementary walk , there exists a simple walk m ′ such that m * → m ′ . From the lemma 4.8, r m (p.v 0 ) ≥ ⊕ r m′ (p.v 0 ) and r m′ (p.v 0 ) ≥ ⊕ ⊕Λ p hold. The proposition follows.

Let A be the set of events (p, t) in [C 1 , C 2 ] such that the equality is not true. Note that the minimal events in [C 1 , C 2 ] are not in A. If A is empty, the proof is finished. Suppose that A is not empty. Let (p, t) a minimal event of A according to the relation : p t .res := p.v 0 r q,p (q tq .res), q ∈ N t p But, by definition: W alkCover(p, t) =

From the minimality of (p, t) in A, the events (q, t q ) are not in A, so:

But r pq is compatible with ≤ (remark 4.5), thus:

{r qp (eval(µ)), µ ∈ W alkCover (q, t q )} (p, t) is not an initial event, so p ∈ N t p and:

We deduce, from associativity of ⊕ and from r qp or µ = r µp that : p t .res = q∈N t p {eval(µp), µ ∈ W alkCover (q, t q )} but W alkCover(p, t) = q∈N t p {µp, µ ∈ W alkCover (q, t q )}, so:

We deduce that (p, t) is not in A, which is a contradiction. We deduce that A = ∅ and the lemma. 2

Theorem 7.3 (4.10) A strong wave can be used to solve the idempotent r-operator parametized problem.

Proof. 

At the date C U δ , any process p satisfies p.v 1 = p.v 0 and p.v 2 = p.v 0 , it is the initializing step. Let A the set of events in [C U δ+1 , C U δ+δ-1 ], for which the proposition is not true. We assume that A is not empty. Let (p, t) a minimal event in A. let α ∈ {1, 2, ..., ρ} such that (p, t) ∈ C U δ+α . There exists t 0 such that (p, t 0 ) (p, t). We have p t .v 1 = p t 0 .v 2 = and p t 0 .v 2 = {q.v 0 , q ∈ V (p, α -1)}. This equality is true even if α = 1. Now, p t .v 2 = p.v 0 q tq .v ϕ(q) , q ∈ N p . From the minimality of the event (p, t), the events (q, t q ), where t q < t, are not in A and are in [C U δ , C U δ+δ-1 ]. So, p.v 0 q tq .v ϕ(q) , q ∈ N p = {q.v 0 , q ∈ V (p, α)}. We obtain a contradiction. We deduce that A is empty, and the proposition follows 2

As corollary, we obtain the theorem:

Theorem 7.5 (5.3) At the cut C U δ+δ-1 the register p.res contains the right value {q.v 0 , q ∈ V (p, ρ)}.