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Global stabilization of a four rotor helicopter with bounded inputs

Ahmad Hably and Nicolas Marchand

Abstract— This paper proposes a global asymptotic stabiliz-
ing control law for a quad-rotor helicopter with bounded inputs.
The proposed control design exploits the technique based on
the sum of saturating functions and is based on the global
stabilization of multiple integrators with bounded inputs. The
positiveness of the thrust and the boundedness of the control
inputs are taken into account. Numerical simulations show the
effectiveness of the proposed controller.

I. INTRODUCTION

The control and design of mini aerial robots have received
much attention within the automatic control community
throughout the last decade. This interest was motivated by
the enormous military and civil applications of such vehicles
accompanied with the technological progress in sensors,
actuators, processors and power storage devices. Within mini
aerial robots, the quad-rotor helicopter (also known as the X-
4 flyer) that is a helicopter with four fixed rotors and is one
of the most interesting architecture because of its mechanical
simplicity. Moreover, this under-actuated dynamical system
is characterized by the payload augmentation and a high
maneuverability [1]. The complete model of this quad-rotor
has been the subject of several papers (see for instance [2],
[14] or [15]). Fig.1 depicts the quad-rotor developed at gipsa-
lab in Grenoble within the ”Drone” project.

Fig. 1. The quad-rotor helicopter prototype of the gipsa-lab

Different control schemes have been explored. For the
quad-rotor’s rotational dynamics, PID and LQ control tech-
niques are studied in [3]. Sliding mode control is utilized
in [4] and [20]. Backstepping control is also applied to
stabilize the orientation (limiting it to small values) and the
height of the quad-rotor helicopter in [7]. These approaches,
focused on the rotational dynamics, do not consider neither
the boundedness and the positiveness of the thrust nor the
translational dynamics of the quad-rotor helicopter. In fact,
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actuators saturation has a significant effect on the overall
stability of the aircraft [6]. To overcome this constraint, sev-
eral tools have been introduced for analyzing and controlling
linear and sometimes also nonlinear systems with bounded
inputs. However, strategies to handle actuators constraints
for autonomous UAV’s (Unmanned Aerial Vehicles) are
very few. In [10], a gain scheduling approach is applied
to stabilize a pitch axis flight in presence of input rate
saturation. The proposed approach is based on recent results
on stabilization of linear systems by means of nonlinear
bounded feedbacks [12], [17], [18], [19]. Nested saturation
algorithms first proposed by [19] has already been used in
[9] extending results previously given in [5] for the quad-
rotor helicopter. In these works, the model is obtained via a
Lagrange approach assuming that yaw angle does not affect
the translational dynamics of the system which is clearly an
approximation of the real behavior. Furthermore, the control
law proposed in [9] is limited to the rotational dynamics
and to the helicopter’s altitude contrary to the present paper
where the attitude and the position in three dimensions is
addressed. In addition, the control of the helicopter’s thrust is
not bounded since it is obtained after a feedback linearization
with the assumption of the boundedness of the pitch and roll
angles.

In this paper, the asymptotic stabilization of both rotational
and translational dynamics is considered. The proposed
bounded control law is based on the global stabilization
of multiple integrators with bounded control of [17], [13].
It is a simple control law with a very low computational
cost which is crucial in real-time applications with limited
embedded capabilities. The boundedness of all the control
inputs of the quad-rotor helicopter is considered in addition
to the positiveness of the thrust. The proposed control law
is generalization of a previous result [8] obtained for the
global stabilization of the PVTOL (Planar Vertical Take-Off
and Landing) aircraft with bounded control. The PVTOL
aircraft is the natural restriction of a V/STOL (Vertical/Short
Take-Off and Landing) aircraft to a jet-borne maneuver in a
vertical-lateral plane [11].

This paper is organized as follows. In section II, a brief
description of the quad-rotor helicopter is given. The control
law design is presented in section III and its stability is
proved in section IV. Numerical simulations are provided
in section V.

II. THE QUAD-ROTOR HELICOPTER MODEL

The quad-rotor helicopter developed at gipsa-lab’s has four
fixed-pitch rotors mounted at the four ends of a simple cross



frame. Given that the front and rear motors rotate counter-
clockwise while the other two rotate clockwise, gyroscopic
effects and aerodynamic torques tend to cancel in trimmed
flight. The thrust force is the sum of the vertical thrusts
of each rotor. Pitch movement θ is obtained by increasing
(reducing) the speed of the rear motor while reducing (in-
creasing) the speed of the front motor. The roll movement
φ is obtained similarly using the lateral motors. The yaw
movement ψ is obtained by increasing (decreasing) the speed
of the front and rear motors while decreasing (increasing)
the speed of the lateral motors. This should be done while
keeping the total thrust constant.
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Fig. 2. 3D quad-rotor model

The equation of motion are written using the force and
moment balance [1]

ẍ = u1(cosφ sinθ cosψ + sinφ sinψ)− k1
m ẋ

ÿ = u1(cosφ sinθ sinψ − sinφ cosψ)− k2
m ẏ

z̈ = −g+u1(cosφ cosθ)− k3
m ż

θ̈ = lu2− l k4
J1

θ̇

φ̈ = lu3− l k5
J2

φ̇

ψ̈ = u4− k6
J3

ψ̇

(1)

with
u1 = (F1 +F2 +F3 +F4)/m
u2 = (F1−F3)/J1
u3 = (−F2 +F4)/J2
u4 = C(F1−F2 +F3−F4)/J3

(2)

x, y and z are the position coordinates of the centre of mass
of the helicopter in a fixed inertial frame. The angles φ , θ

and ψ represent respectively the roll, pitch and yaw angles.
l is the distance from one rotor to the centre of mass of
the helicopter. J1,2,3 are the moment of inertia with respect
to the axes and C is the force-to-moment scaling factor.
{ki}i=1,...,6 are the drag coefficients. m is the mass of the
quad-rotor helicopter and g is the gravitational acceleration.
The {ui}i=1,...,4 are direct functions of the generated thrusts
{Fi}i=1,...,4 that can be controlled with local loops (low level
inner control loops). Therefore, the {ui}i=1,...,4’s can directly
be taken as control inputs. u1 is the sum of the thrusts F1,2,3,4
produced by each rotor. u2, u3 an u4 are respectively the
pitch, the roll and the yaw inputs. Each generated thrust Fi
is related to the rotational speed ϖi of the corresponding

rotor by the thrust coefficient kr by the following equation:

Fi = krϖ
2
i i = 1,2,3,4 (3)

In practical application like the one treated in this paper, the
rotor’s rotational speed is bounded. As a result, the control
inputs must be bounded as follows

0 ≤ u1 ≤ ū1
−ū2 ≤ u2 ≤ ū2
−ū3 ≤ u3 ≤ ū3
−ū4 ≤ u4 ≤ ū4

(4)

where the ūi’s can directly be deduced from the maximum
voltage of the electrical drives used giving a maximum
rotation speed and consequently a maximum thrust that one
rotor can generate. In the present work, the normalized model
of the quad-rotor is considered and the quad-rotor system (1)
then writes:

ẍ = u(cosφ sinθ cosψ + sinφ sinψ)− kxẋ
ÿ = u(cosφ sinθ sinψ − sinφ cosψ)− kyẏ
z̈ = −1+u(cosφ cosθ)− kzż
θ̈ = vθ − kθ θ̇

φ̈ = vφ − kφ φ̇

ψ̈ = vψ − kψ ψ̇

(5)

with
vθ = u2l, vφ = u3l, vψ = u4

u = u1
g , kθ = lk4

J1
, kφ = lk5

J2
,

kψ = k6
J3

, kx = k1
m , ky = k2

m ,

kz = k3
m

(6)

Our objective is to design a bounded stabilization control
law for system (5). For this we neglect the drag coefficients
{ki}i=1,...,6 (or equivalently we consider the system only at
low speeds). The system becomes:

ẍ = u(cosφ sinθ cosψ + sinφ sinψ)
ÿ = u(cosφ sinθ sinψ − sinφ cosψ)
z̈ = −1+u(cosφ cosθ)
θ̈ = vθ

φ̈ = vφ

ψ̈ = vψ

(7)

System (7) will be used for the design of bounded control
inputs verifying

0 ≤ u ≤ ū := ū1
g

−lū2 =: −v̄θ ≤ vθ ≤ v̄θ := lū2
−lū3 =: −v̄φ ≤ vφ ≤ v̄φ := lū3
−ū4 =: −v̄ψ ≤ vψ ≤ v̄ψ := ū4

(8)

but the obtained control law can be applied on the complete
system with drag (5). The next section is devoted to the
formulation of the control law.

III. FORMULATION OF THE CONTROL LAW

System (7) is clearly a cascade such that the evolution of
the rotational dynamics is independent of the translational
dynamics and since the translational dynamics depends on
the angles. It is therefore natural to apply a cascaded design.
The rotational dynamics will be first stabilized to a desired



configuration (determined in the following) and, in the same
time, the angles θ , φ , and ψ will be taken as fictitious inputs
for the translational dynamics in addition to the bounded
positive input u. Therefore, system (7) is decomposed into
two subsystems. The first subsystem Σt , composed of the
three first equations, represents the translational dynamics in
x, y and z. The second one Σr, composed of the last three
equations, represents the rotational motion.

Assume now that one can stabilize the yaw dynamics (that
is ψ and ψ̇ with vψ as in (8), then after a sufficiently long
time, system (7) will behave like the system:

ẍ = ucosφ sinθ

ÿ = −usinφ

z̈ = −1+ucosφ cosθ

θ̈ = vθ

φ̈ = vφ

(9)

Moreover, the right-hand side of (7) being bounded, the
system can not diverge during that time. Therefore, finding
bounded stabilizing control laws for (9) and for the yaw
dynamics is equivalent to finding a bounded stabilizing
control law for the quad-rotor helicopter (7).

A. Stabilization of the yaw dynamics

vψ can be chosen as in [12]:

vψ =
v̄ψ

εψ + ε2
ψ

(−εψ σ(ψ̇)− ε
2
ψ σ(εψ ψ + ψ̇)) (10)

where 0 < εψ < 1 is a free tuning parameter and σ(·) a
saturation function as defined in Appendix I. This choice
insures the asymptotic stabilization of (ψ, ψ̇) [12].

B. Stabilization of system (9)

Let p := (p1, p2, p3, p4, p5, p6) = (x, ẋ,y, ẏ,z, ż) and η :=
(η1,η2,η3,η4) = (θ , θ̇ ,φ , φ̇) and rewrite the translational
part Σt and rotational part Σr of (9) as follows:

Σt :



ṗ1 = p2
ṗ2 = ucosη3 sinη1
ṗ3 = p4
ṗ4 =−usinη3
ṗ5 = p6
ṗ6 =−1+ucosη3 cosη1

Σr :


η̇1 = η2
η̇2 = vθ

η̇3 = η4
η̇4 = vφ

(11)
The idea is to choose bounded controls vθ and vφ that drive
η1 and η3 to desired angles η1d and η3d . With an appropriate
choice of these target configuration, it will be possible to
transform Σt into three independent linear double integrators.
For this, take:

η1d = arctan
(

rx

1+ rz

)
(12)

η3d = arctan

(
−ry√

r2
x +(1+ rz)2

)
(13)

and choose as positive thrust u:

u =
√

(1+ rz)2 + r2
x + r2

y (14)

where rx, ry and rz remain to be defined. Then Σt becomes: p̈1 = rx
p̈3 = ry
p̈5 = rz

(15)

Following [12], to insure that asymptotic stability of (15),
we choose:

rx =
r̄x

εx + ε2
x
(−εxσ(p2)− ε

2
x σ(εx p1 + p2)) (16)

ry =
r̄y

εy + ε2
y
(−εyσ(p4)− ε

2
y σ(εy p3 + p4)) (17)

rz =
r̄z

εz + ε2
z
(−εzσ(p6)− ε

2
z σ(εz p5 + p6)) (18)

where 0 < εx,y,z < 1 are free tuning parameters, σ(·) is the
saturation function defined in Appendix I and where the
upper bounds r̄x, r̄y and r̄z are chosen such that:

ū =
√

(1+ r̄z)2 + r̄2
x + r̄2

y (19)

Note that this implicitly implies that ū > 1 which is a natural
constraint if one wants to compensate the effect of the
gravity. And finally, to force η1 and η3 to converge to the
desired angles η1d and η3d , one can take:

vθ = v̄θ

βθ +εθ +ε2
θ

[
σβθ

(η̈1d )− εθ σ(η2− η̇1d )

−ε2
θ

σ(εθ (η1−η1d )+(η2− η̇1d ))
] (20)

vφ = v̄φ

βφ +εφ +ε2
θ

[
σβφ

(η̈3d )− εφ σ(η4− η̇3d )

−ε2
φ

σ(εφ (η3−η3d )+(η4− η̇3d ))
] (21)

where, for any β > 0, σβ (.) := βσ(.) and where, as previ-
ously, 0 < εθ ,φ < 1 are free tuning parameters.

C. Main result

The following theorem summarizes the above construc-
tion:

Theorem 1: Consider the quad-rotor helicopter system
(7) with input saturation bounds ū > 1 and v̄ψ , v̄φ , v̄θ > 0.
Then the thrust input u given by (14) with vψ as in (10), vθ

as in (20) and vφ as in (21) globally asymptotically stabilizes
the quad-rotor helicopter normalized system to the origin.
The next section is devoted its formal proof.

IV. PROOF OF STABILITY RESULTS

The stability results follow from the cascaded design.
The following proof breaks up into three main steps. First,
the asymptotic stability of the yaw dynamics is established.
Then, it is proved that η1 and η3 converge to the desired
angles η1d and η3d . Finally, the global asymptotic stability
of Σt is proved. The global asymptotic stability (GAS) of the
overall system is then obtained by invoking [16].

A. GAS of the yaw dynamics

This is a direct application of Theorem 1 in [12].



B. GAS of η1−η1d and η3−η3d

For ψ = 0, subsystem Σr is decomposed of two indepen-
dent subsystems: Σrθ

related to θ and Σrφ
related to φ . The

global asymptotic stability of Σrθ
is firstly considered.

Σrθ
:
{

η̇1 = η2
η̇2 = vθ

(22)

Let us first scale the system by taking A = βθ +εθ +ε2
θ

v̄θ
:

and apply the change of coordinates (parametrized by εθ

determined later on):{
y1 = εθ Aη1 +Aη2
y2 = Aη2

(23)

to obtain {
ẏ1 = εθ y2 +uθ

ẏ2 = uθ

(24)

where uθ = Avθ .
Finally, let y1d := εθ Aη1d + Aη̇1d , y2d := Aη̇1d and uθd :=
Aη̈1d . The control input uθ then rewrites:

uθ = σβθ
(uθd )− εθ σ(y2− y2d )− ε

2
θ σ(y1− y1d ) (25)

Let us consider the Lyapunov function V2 = 1
2 (y2 − y2d )

2.
Then, V̇2 = (y2−y2d )(ẏ2− ẏ2d ) = (y2−y2d )(uθ −uθd ). Know-
ing that for all sufficiently small positive δθ , there exists a
finite time instant tδθ

such that for all t > tδθ
, uθd is bounded

as follows (see Appendix II for details):∣∣∣∣uθd =
d2

dt2 arctan
(

rx

1+ rz

)∣∣∣∣< δθ (26)

Therefore, if |y2−y2d |> 1 and βθ +δθ +ε2
θ

< εθ , it follows
that

|σβθ
(uθd )−uθd − ε

2
θ σ(y1− y1d )|< |εθ σ(y2− y2d )| (27)

and therefore uθ −uθd will be of opposite sign of σ(y2−y2d )
and hence of y2 − y2d . This ensures that V̇2 < 0 and as a
result, y2 − y2d will join the interval [−1,1] after a finite
time t1 > tδθ

and remains therein for all future t. During that
time, invoking Lemma 4 of [12], y1− y1d can not blow up.
In [−1,1], uθ takes the following form

uθ = σβθ
(uθd )− εθ (y2− y2d )− ε

2
θ σ(y1− y1d ) (28)

From equation (24), ẏ1 can be written as

ẏ1 = εθ y2d +uθd +σβθ
(uθd )− ε

2
θ σ(y1− y1d )−uθd (29)

Let us consider the Lyapunov function V1 = 1
2 (y1−y1d )

2. In
the case where y1−y1d is not in [−1,1], imposing βθ +δθ <
ε2

θ
will insure the decrease of V1. Then as for (27) one has

|σβθ
(uθd )−uθd |< |ε2

θ σ(y1− y1d )| (30)

which means that after a finite time t2 > t1 > tδθ
, y1 − y1d

will join the interval [−1,1] where uθ writes:

uθ = σβθ
(uθd )− εθ (y2− y2d )− ε

2
θ (y1− y1d ) (31)

βθ > δθ is chosen, the control input uθ takes the following
form

uθ = uθd − εθ (y2− y2d )− ε
2
θ (y1− y1d ) (32)

∀t > t2, the error system is hence given by:{
ẏ1− ẏ1d = −ε2

θ
(y1− y1d )

ẏ2− ẏ2d = −εθ (y2− y2d )− ε2
θ
(y1− y1d )

which clearly gives that η1(t)→ η1d (t) as t → ∞. A similar
proof can be applied on Σrφ

and to obtain η3(t)→ η3d (t) as
t → ∞. To sum up, the choice of βθ , βφ , δθ , δφ , εθ and εφ

must verify the following conditions.

βθ +δθ + ε2
θ

< εθ

βθ +δθ < ε2
θ

δθ < βθ

βφ +δφ + ε2
φ

< εφ

βφ +δφ < ε2
φ

δφ < βφ

(33)

C. GAS of the translational dynamics

Subsystem Σt , when η1(t) = η1d (t) and η3(t) = η3d (t),
takes the form (15) and is therefore globally asymptotically
stabilized by (16-18) using Theorem 1 in [12].

D. GAS of the overall system

Knowing that the solutions of Σr are bounded, the Con-
verging Input Bounded State (CIBS) property is fulfilled
and the global asymptotic stability of Σt and Σr together
is guaranteed for systems in cascade by [16]. This ends the
proof

V. NUMERICAL SIMULATIONS

In this section, some simulation results are given. The
nominal parameters of the quad-rotor are as in [20]

J1 = J2 = 1.25Ns2/rad J3 = 2.5Ns2/rad
kr = 2.923×10−3 m = 2kg
k1 = k2 = k3 = 0.01Ns/m
k4 = k5 = k6 = 0.012Ns/rad l = 0.2
g = 9.81m/s2m ϖ̄ = 604rad/s2

(34)

These numerical values are used in the normalized model
(5). The initial state of the translational subsystem are
[x(0),y(0),z(0)] = [2,2,2] with zero linear velocity and
[θ(0),φ(0),ψ(0)] = [π

2 , π

2 , π

4 ] with zero angular velocities.
The maximum bounds of r̄x, r̄y, r̄z, v̄θ , v̄φ , and v̄ψ can be
calculated from the relation between the normalized bounds
and the real bounds and the maximum rotor’s speed ϖ̄

(equations (2), (3) and (6)). The numerical values used for
the tuning parameters in the expressions of the control inputs
are as follows: εψ = 1, βθ = βφ = 0.04, εθ = εφ = 0.9,
εx = 0.3, εy = 0.3 and εz = 0.9. The evolution of the states
of translational subsystem is plotted on Fig.3 and Fig.4. The
variations of the states of the rotational subsystem are plotted
on Fig.5 and Fig.6. The bounded control inputs proposed in
this paper are given in Fig.7. Finally, Fig.8 shows the path
followed by the helicopter in three dimensions.
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Fig. 3. Position of the normalized quad-rotor helicopter with drag
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ż

ẏ

Fig. 4. Linear velocities of the normalized quad-rotor helicopter with drag
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Fig. 7. Bounded inputs applied to the normalized quad-rotor helicopter
with drag

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a global stabilization of a quad-rotor he-
licopter is presented. It is an under-actuated system with
six degrees of freedom and only four inputs. The system
is divided into two subsystems: rotational and translational.
The control scheme is based on the cascaded design for
nonlinear systems. To respect the boundedness of the control
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Fig. 5. Orientation of the normalized quad-rotor helicopter with drag
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Fig. 6. Angular velocities of the normalized quad-rotor helicopter with
drag

inputs while respecting the simplicity of the controls, the
proposed control design exploits the technique based on
the sum of saturating functions. For the future work, the
proposed approach will be implemented on the platform
of Fig.1 to check the practical applicability of the control
law. This approach will be compared with other control
schemes such as the nonlinear model predictive control or
backstepping. As far as the authors know, the proposed
approach is by far the simplest and the more suitable for
embedded implementation.

APPENDIX I
THE SATURATION FUNCTION

Let σM(.) be the following twice-differentiable function
bounded between +M and −M parameterized by 0 < α < 1
defined as follows

σM(s)=



−M si s <−1−α

p1(s) = a1s2 +b1s+ c1 si s ∈ [−M−α,−M +α[
s si s ∈ [−M +α,M +α]
p2(s) = a2s2 +b2s− c2 si s ∈ ]M−α,M +α]
+M si s > 1+α

(35)
with a1 = −a2 = 1

4α
, b1 = b2 = 1

2 + M
2α

, c1 = −M + α

2 +
b1M− a1(M2 + α2) and c2 = M− α

2 − b2M− a2(M2 + α2)



Fig. 8. 3D trajectory of the four-rotor helicopter

to insure the twice differentiability of σM . In this paper, we
apply σM(·) (M is omitted if M = 1) with the saturation level
M = 1 (M is omitted if M = 1). Note that when α → 0, σ(·)
tends to the classical saturation function sat(·) = sign(·)| · |.

APPENDIX II
BOUNDEDNESS OF η1d AND η3d AND THEIR RESPECTIVE

TIME DERIVATIVES

The first and second time derivatives of η1d and η3d are:

η̇1d = ṙx(1+rz)−rx ṙz
(1+rz)2+r2

x

η̈1d = r̈x(1+rz)−rx r̈z
(1+rz)2+r2

x

− 2(ṙx(1+rz)−rx ṙz)((1+rz)ṙz+rx ṙx)
((1+rz)2+r2

x )2

η̇3d =
−ṙy
√

(1+rz)2+r2
x +ry

(
ṙxrx+(1+rz)ṙz√

(1+rz)2+r2x

)
u2

η̈3d = −r̈y
√

r2
x +(1+rz)2

u2

+ ry[ṙxrx+(ṙx)2+(ṙz)2+(1+rz)r̈z][r2
x +(1+rz)2]

u2(r2
x +(1+rz)2)3/2

− ry(ṙxrx+(1+rz)ṙz)2

u2(r2
x +(1+rz)2)3/2

where, rx, ry, and rz are:

ṙx = r̄x
εx+ε2

x
(−εxw1σ̇(p2)− ε2

x (εx p2 +w1)σ̇(εx p1 + p2))

ṙy = r̄y
εy+ε2

y
(−εyw2σ̇(p4)− ε2

y (εy p4 +w2)σ̇(εy p3 + p4))

ṙz = r̄z
εz+ε2

z
(−εzw3σ̇(p6)− ε2

z (εz p6 +w3)σ̇(εz p5 + p6))

and
w1 = ucosη3 sinη1
w2 = −usinη3
w3 = −1+ucosη3 cosη1

The first derivatives of rx, ry and rz are composed of bounded
terms: σ(.) is twice differentiable and this ensures the
boundedness of σ̇ and σ̈ and w1, w2 and w3 are products
of bounded trigonometric functions and u (also bounded).
Consequently, η̇1d and η̇3d are bounded. For η̈1d and η̈3d ,

the same reasoning can be applied with the application of
the result proved in [21] for the global stabilization of the
PVTOL aircraft rotational dynamics. Note that reducing r̄x,
r̄y and r̄z also reduces the bounds on η̈1d and η̈3d , that is on
uθd and uφd .
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