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Global stabilization of a four rotor helicopter with bounded inputs

This paper proposes a global asymptotic stabilizing control law for a quad-rotor helicopter with bounded inputs. The proposed control design exploits the technique based on the sum of saturating functions and is based on the global stabilization of multiple integrators with bounded inputs. The positiveness of the thrust and the boundedness of the control inputs are taken into account. Numerical simulations show the effectiveness of the proposed controller.

I. INTRODUCTION

The control and design of mini aerial robots have received much attention within the automatic control community throughout the last decade. This interest was motivated by the enormous military and civil applications of such vehicles accompanied with the technological progress in sensors, actuators, processors and power storage devices. Within mini aerial robots, the quad-rotor helicopter (also known as the X-4 flyer) that is a helicopter with four fixed rotors and is one of the most interesting architecture because of its mechanical simplicity. Moreover, this under-actuated dynamical system is characterized by the payload augmentation and a high maneuverability [START_REF] Altug | Control of a quadrotor helicopter using visual feedback[END_REF]. The complete model of this quad-rotor has been the subject of several papers (see for instance [START_REF] Bouabdallah | Design and control of an indoor micro quadrotor[END_REF], [START_REF] Mckerrow | Modelling the dragonflyer four-rotor helicopter[END_REF] or [START_REF] Pounds | Design of a four-rotor aerial robot[END_REF]). Fig. 1 depicts the quad-rotor developed at gipsalab in Grenoble within the "Drone" project.

Fig. 1. The quad-rotor helicopter prototype of the gipsa-lab Different control schemes have been explored. For the quad-rotor's rotational dynamics, PID and LQ control techniques are studied in [START_REF] Bouabdallah | PID vs LQ control techniques applied to an indoor micro quadrotor[END_REF]. Sliding mode control is utilized in [START_REF] Bouabdallah | Backstepping and sliding-mode techniques applied to an indoor micro quadrotor[END_REF] and [START_REF] Xu | Sliding mode control of a quadrotor helicopter[END_REF]. Backstepping control is also applied to stabilize the orientation (limiting it to small values) and the height of the quad-rotor helicopter in [START_REF] Guenard | Dynamic modeling and intuitive control strategy for an X4-flyer[END_REF]. These approaches, focused on the rotational dynamics, do not consider neither the boundedness and the positiveness of the thrust nor the translational dynamics of the quad-rotor helicopter. In fact, actuators saturation has a significant effect on the overall stability of the aircraft [START_REF] Dornheim | Report pinpoints factors leading to YF-22 crash[END_REF]. To overcome this constraint, several tools have been introduced for analyzing and controlling linear and sometimes also nonlinear systems with bounded inputs. However, strategies to handle actuators constraints for autonomous UAV's (Unmanned Aerial Vehicles) are very few. In [START_REF] Lauvdal | Stabilization of a pitch axis flight control experiment with input rate saturation[END_REF], a gain scheduling approach is applied to stabilize a pitch axis flight in presence of input rate saturation. The proposed approach is based on recent results on stabilization of linear systems by means of nonlinear bounded feedbacks [START_REF] Marchand | Global stabilization of multiple integrators with bounded controls[END_REF], [START_REF] Sussmann | A general result on the stabilization of linear systems using bounded controls[END_REF], [START_REF] Teel | A non-linear small gain theorem for the analysis of control systems with saturation[END_REF], [START_REF] Teel | Global stabilization and restricted tracking for multiple integrators with bounded controls[END_REF]. Nested saturation algorithms first proposed by [START_REF] Teel | Global stabilization and restricted tracking for multiple integrators with bounded controls[END_REF] has already been used in [START_REF] Kendoul | Nonlinear control for systems with bounded inputs: Real-time embedded control applied to UAVs[END_REF] extending results previously given in [START_REF] Castillo | Real-time stabilization and tracking of a four-rotor mini rotorcraft[END_REF] for the quadrotor helicopter. In these works, the model is obtained via a Lagrange approach assuming that yaw angle does not affect the translational dynamics of the system which is clearly an approximation of the real behavior. Furthermore, the control law proposed in [START_REF] Kendoul | Nonlinear control for systems with bounded inputs: Real-time embedded control applied to UAVs[END_REF] is limited to the rotational dynamics and to the helicopter's altitude contrary to the present paper where the attitude and the position in three dimensions is addressed. In addition, the control of the helicopter's thrust is not bounded since it is obtained after a feedback linearization with the assumption of the boundedness of the pitch and roll angles.

In this paper, the asymptotic stabilization of both rotational and translational dynamics is considered. The proposed bounded control law is based on the global stabilization of multiple integrators with bounded control of [START_REF] Sussmann | A general result on the stabilization of linear systems using bounded controls[END_REF], [START_REF] Marchand | Improving the performance of nonlinear stabilization of multiple integrators with bounded controls[END_REF]. It is a simple control law with a very low computational cost which is crucial in real-time applications with limited embedded capabilities. The boundedness of all the control inputs of the quad-rotor helicopter is considered in addition to the positiveness of the thrust. The proposed control law is generalization of a previous result [START_REF] Hably | Positive Systems[END_REF] obtained for the global stabilization of the PVTOL (Planar Vertical Take-Off and Landing) aircraft with bounded control. The PVTOL aircraft is the natural restriction of a V/STOL (Vertical/Short Take-Off and Landing) aircraft to a jet-borne maneuver in a vertical-lateral plane [START_REF] Lin | Robust hovering control of a PVTOL aircraft[END_REF].

This paper is organized as follows. In section II, a brief description of the quad-rotor helicopter is given. The control law design is presented in section III and its stability is proved in section IV. Numerical simulations are provided in section V.

II. THE QUAD-ROTOR HELICOPTER MODEL

The quad-rotor helicopter developed at gipsa-lab's has four fixed-pitch rotors mounted at the four ends of a simple cross frame. Given that the front and rear motors rotate counterclockwise while the other two rotate clockwise, gyroscopic effects and aerodynamic torques tend to cancel in trimmed flight. The thrust force is the sum of the vertical thrusts of each rotor. Pitch movement θ is obtained by increasing (reducing) the speed of the rear motor while reducing (increasing) the speed of the front motor. The roll movement φ is obtained similarly using the lateral motors. The yaw movement ψ is obtained by increasing (decreasing) the speed of the front and rear motors while decreasing (increasing) the speed of the lateral motors. This should be done while keeping the total thrust constant. 

                   ẍ = u 1 (cos φ sin θ cos ψ + sin φ sin ψ) -k 1 m ẋ ÿ = u 1 (cos φ sin θ sin ψ -sin φ cos ψ) -k 2 m ẏ z = -g + u 1 (cos φ cos θ ) -k 3 m ż θ = lu 2 -l k 4 J 1 θ φ = lu 3 -l k 5 J 2 φ ψ = u 4 -k 6 J 3 ψ (1) with u 1 = (F 1 + F 2 + F 3 + F 4 )/m u 2 = (F 1 -F 3 )/J 1 u 3 = (-F 2 + F 4 )/J 2 u 4 = C(F 1 -F 2 + F 3 -F 4 )/J 3 (2) 
x, y and z are the position coordinates of the centre of mass of the helicopter in a fixed inertial frame. The angles φ , θ and ψ represent respectively the roll, pitch and yaw angles. l is the distance from one rotor to the centre of mass of the helicopter. J 1,2,3 are the moment of inertia with respect to the axes and C is the force-to-moment scaling factor. {k i } i=1,...,6 are the drag coefficients. m is the mass of the quad-rotor helicopter and g is the gravitational acceleration.

The {u i } i=1,...,4 are direct functions of the generated thrusts {F i } i=1,...,4 that can be controlled with local loops (low level inner control loops). Therefore, the {u i } i=1,...,4 's can directly be taken as control inputs. u 1 is the sum of the thrusts F 1,2,3,4 produced by each rotor. u 2 , u 3 an u 4 are respectively the pitch, the roll and the yaw inputs. Each generated thrust F i is related to the rotational speed ϖ i of the corresponding rotor by the thrust coefficient k r by the following equation:

F i = k r ϖ 2 i i = 1, 2, 3, 4 (3) 
In practical application like the one treated in this paper, the rotor's rotational speed is bounded. As a result, the control inputs must be bounded as follows

0 ≤ u 1 ≤ ū1 -ū2 ≤ u 2 ≤ ū2 -ū3 ≤ u 3 ≤ ū3 -ū4 ≤ u 4 ≤ ū4 (4)
where the ūi 's can directly be deduced from the maximum voltage of the electrical drives used giving a maximum rotation speed and consequently a maximum thrust that one rotor can generate. In the present work, the normalized model of the quad-rotor is considered and the quad-rotor system (1) then writes:

               ẍ = u(cos φ sin θ cos ψ + sin φ sin ψ) -k x ẋ ÿ = u(cos φ sin θ sin ψ -sin φ cos ψ) -k y ẏ z = -1 + u(cos φ cos θ ) -k z ż θ = v θ -k θ θ φ = v φ -k φ φ ψ = v ψ -k ψ ψ (5) with v θ = u 2 l, v φ = u 3 l, v ψ = u 4 u = u 1 g , k θ = lk 4 J 1 , k φ = lk 5 J 2 , k ψ = k 6 J 3 , k x = k 1 m , k y = k 2 m , k z = k 3 m (6)
Our objective is to design a bounded stabilization control law for system [START_REF] Castillo | Real-time stabilization and tracking of a four-rotor mini rotorcraft[END_REF]. For this we neglect the drag coefficients {k i } i=1,...,6 (or equivalently we consider the system only at low speeds). The system becomes:

               ẍ = u(cos φ sin θ cos ψ + sin φ sin ψ) ÿ = u(cos φ sin θ sin ψ -sin φ cos ψ) z = -1 + u(cos φ cos θ ) θ = v θ φ = v φ ψ = v ψ (7)
System (7) will be used for the design of bounded control inputs verifying

0 ≤ u ≤ ū := ū1 g -l ū2 =: -vθ ≤ v θ ≤ vθ := l ū2 -l ū3 =: -vφ ≤ v φ ≤ vφ := l ū3 -ū4 =: -vψ ≤ v ψ ≤ vψ := ū4 (8) 
but the obtained control law can be applied on the complete system with drag (5). The next section is devoted to the formulation of the control law.

III. FORMULATION OF THE CONTROL LAW

System ( 7) is clearly a cascade such that the evolution of the rotational dynamics is independent of the translational dynamics and since the translational dynamics depends on the angles. It is therefore natural to apply a cascaded design. The rotational dynamics will be first stabilized to a desired configuration (determined in the following) and, in the same time, the angles θ , φ , and ψ will be taken as fictitious inputs for the translational dynamics in addition to the bounded positive input u. Therefore, system ( 7) is decomposed into two subsystems. The first subsystem Σ t , composed of the three first equations, represents the translational dynamics in x, y and z. The second one Σ r , composed of the last three equations, represents the rotational motion.

Assume now that one can stabilize the yaw dynamics (that is ψ and ψ with v ψ as in [START_REF] Hably | Positive Systems[END_REF], then after a sufficiently long time, system (7) will behave like the system:

           ẍ = u cos φ sin θ ÿ = -u sin φ z = -1 + u cos φ cos θ θ = v θ φ = v φ (9)
Moreover, the right-hand side of (7) being bounded, the system can not diverge during that time. Therefore, finding bounded stabilizing control laws for [START_REF] Kendoul | Nonlinear control for systems with bounded inputs: Real-time embedded control applied to UAVs[END_REF] and for the yaw dynamics is equivalent to finding a bounded stabilizing control law for the quad-rotor helicopter [START_REF] Guenard | Dynamic modeling and intuitive control strategy for an X4-flyer[END_REF].

A. Stabilization of the yaw dynamics v ψ can be chosen as in [START_REF] Marchand | Global stabilization of multiple integrators with bounded controls[END_REF]:

v ψ = vψ ε ψ + ε 2 ψ (-ε ψ σ ( ψ) -ε 2 ψ σ (ε ψ ψ + ψ)) (10) 
where 0 < ε ψ < 1 is a free tuning parameter and σ (•) a saturation function as defined in Appendix I. This choice insures the asymptotic stabilization of (ψ, ψ) [START_REF] Marchand | Global stabilization of multiple integrators with bounded controls[END_REF].

B. Stabilization of system (9)

Let p := (p 1 , p 2 , p 3 , p 4 , p 5 , p 6 ) = (x, ẋ, y, ẏ, z, ż) and η := (η 1 , η 2 , η 3 , η 4 ) = (θ , θ , φ , φ ) and rewrite the translational part Σ t and rotational part Σ r of (9) as follows:

Σ t :                ṗ1 = p 2 ṗ2 = u cos η 3 sin η 1 ṗ3 = p 4 ṗ4 = -u sin η 3 ṗ5 = p 6 ṗ6 = -1 + u cos η 3 cos η 1 Σ r :        η1 = η 2 η2 = v θ η3 = η 4 η4 = v φ (11)
The idea is to choose bounded controls v θ and v φ that drive η 1 and η 3 to desired angles η 1 d and η 3 d . With an appropriate choice of these target configuration, it will be possible to transform Σ t into three independent linear double integrators. For this, take:

η 1 d = arctan r x 1 + r z ( 12 
)
η 3 d = arctan -r y r 2 x + (1 + r z ) 2 (13) 
and choose as positive thrust u:

u = (1 + r z ) 2 + r 2 x + r 2 y ( 14 
)
where r x , r y and r z remain to be defined. Then Σ t becomes:

   p1 = r x p3 = r y p5 = r z (15) 
Following [START_REF] Marchand | Global stabilization of multiple integrators with bounded controls[END_REF], to insure that asymptotic stability of (15), we choose:

r x = rx ε x + ε 2 x (-ε x σ (p 2 ) -ε 2 x σ (ε x p 1 + p 2 )) (16) 
r y = ry

ε y + ε 2 y (-ε y σ (p 4 ) -ε 2 y σ (ε y p 3 + p 4 )) (17) 
r z = rz ε z + ε 2 z (-ε z σ (p 6 ) -ε 2 z σ (ε z p 5 + p 6 )) (18) 
where 0 < ε x,y,z < 1 are free tuning parameters, σ (•) is the saturation function defined in Appendix I and where the upper bounds rx , ry and rz are chosen such that:

ū = (1 + rz ) 2 + r2 x + r2 y ( 19 
)
Note that this implicitly implies that ū > 1 which is a natural constraint if one wants to compensate the effect of the gravity. And finally, to force η 1 and η 3 to converge to the desired angles η 1 d and η 3 d , one can take:

v θ = vθ β θ +ε θ +ε 2 θ σ β θ ( η1 d ) -ε θ σ (η 2 -η1 d ) -ε 2 θ σ (ε θ (η 1 -η 1 d ) + (η 2 -η1 d )) (20) 
v φ = vφ β φ +ε φ +ε 2 θ σ β φ ( η3 d ) -ε φ σ (η 4 -η3 d ) -ε 2 φ σ (ε φ (η 3 -η 3 d ) + (η 4 -η3 d )) (21) 
where, for any β > 0, σ β (.) := β σ (.) and where, as previously, 0 < ε θ ,φ < 1 are free tuning parameters.

C. Main result

The following theorem summarizes the above construction:

Theorem 1: Consider the quad-rotor helicopter system [START_REF] Guenard | Dynamic modeling and intuitive control strategy for an X4-flyer[END_REF] with input saturation bounds ū > 1 and vψ , vφ , vθ > 0. Then the thrust input u given by ( 14) with v ψ as in [START_REF] Lauvdal | Stabilization of a pitch axis flight control experiment with input rate saturation[END_REF], v θ as in [START_REF] Xu | Sliding mode control of a quadrotor helicopter[END_REF] and v φ as in [START_REF] Zavala | Global stabilization of a PVTOL aircraft with bounded inputs[END_REF] globally asymptotically stabilizes the quad-rotor helicopter normalized system to the origin. The next section is devoted its formal proof.

IV. PROOF OF STABILITY RESULTS

The stability results follow from the cascaded design. The following proof breaks up into three main steps. First, the asymptotic stability of the yaw dynamics is established. Then, it is proved that η 1 and η 3 converge to the desired angles η 1 d and η 3 d . Finally, the global asymptotic stability of Σ t is proved. The global asymptotic stability (GAS) of the overall system is then obtained by invoking [START_REF] Sontag | Remarks on stabilization and input-to-state stability[END_REF].

A. GAS of the yaw dynamics

This is a direct application of Theorem 1 in [START_REF] Marchand | Global stabilization of multiple integrators with bounded controls[END_REF].

B. GAS of η 1 -η 1 d and η 3 -η 3 d
For ψ = 0, subsystem Σ r is decomposed of two independent subsystems: Σ r θ related to θ and Σ r φ related to φ . The global asymptotic stability of Σ r θ is firstly considered.

Σ r θ : η1 = η 2 η2 = v θ (22) 
Let us first scale the system by taking A = β θ +ε θ +ε 2 θ vθ : and apply the change of coordinates (parametrized by ε θ determined later on):

y 1 = ε θ Aη 1 + Aη 2 y 2 = Aη 2 (23) to obtain ẏ1 = ε θ y 2 + u θ ẏ2 = u θ (24) 
where u θ = Av θ . Finally, let y

1 d := ε θ Aη 1 d + A η1 d , y 2 d := A η1 d and u θ d := A η1 d .
The control input u θ then rewrites:

u θ = σ β θ (u θ d ) -ε θ σ (y 2 -y 2 d ) -ε 2 θ σ (y 1 -y 1 d ) (25) 
Let us consider the Lyapunov function

V 2 = 1 2 (y 2 -y 2 d ) 2 . Then, V2 = (y 2 -y 2 d )( ẏ2 -ẏ2 d ) = (y 2 -y 2 d )(u θ -u θ d ).
Knowing that for all sufficiently small positive δ θ , there exists a finite time instant t δ θ such that for all t > t δ θ , u θ d is bounded as follows (see Appendix II for details):

u θ d = d 2 dt 2 arctan r x 1 + r z < δ θ (26) 
Therefore, if |y 2y 2 d | > 1 and

β θ + δ θ + ε 2 θ < ε θ , it follows that |σ β θ (u θ d ) -u θ d -ε 2 θ σ (y 1 -y 1 d )| < |ε θ σ (y 2 -y 2 d )| (27
) and therefore u θ -u θ d will be of opposite sign of σ (y 2 -y 2 d ) and hence of y 2y 2 d . This ensures that V2 < 0 and as a result, y 2y 2 d will join the interval [-1, 1] after a finite time t 1 > t δ θ and remains therein for all future t. During that time, invoking Lemma 4 of [START_REF] Marchand | Global stabilization of multiple integrators with bounded controls[END_REF], y 1y 1 d can not blow up. In [-1, 1], u θ takes the following form

u θ = σ β θ (u θ d ) -ε θ (y 2 -y 2 d ) -ε 2 θ σ (y 1 -y 1 d ) (28) 
From equation ( 24), ẏ1 can be written as

ẏ1 = ε θ y 2 d + u θ d + σ β θ (u θ d ) -ε 2 θ σ (y 1 -y 1 d ) -u θ d (29) Let us consider the Lyapunov function V 1 = 1 2 (y 1 -y 1 d ) 2 .
In the case where y 1 -

y 1 d is not in [-1, 1], imposing β θ + δ θ < ε 2
θ will insure the decrease of V 1 . Then as for (27) one has

|σ β θ (u θ d ) -u θ d | < |ε 2 θ σ (y 1 -y 1 d )| (30) 
which means that after a finite time t 2 > t 1 > t δ θ , y 1y 1 d will join the interval [-1, 1] where u θ writes:

u θ = σ β θ (u θ d ) -ε θ (y 2 -y 2 d ) -ε 2 θ (y 1 -y 1 d ) (31) 
β θ > δ θ is chosen, the control input u θ takes the following form

u θ = u θ d -ε θ (y 2 -y 2 d ) -ε 2 θ (y 1 -y 1 d ) (32)
∀t > t 2 , the error system is hence given by:

ẏ1 -ẏ1 d = -ε 2 θ (y 1 -y 1 d ) ẏ2 -ẏ2 d = -ε θ (y 2 -y 2 d ) -ε 2 θ (y 1 -y 1 d )
which clearly gives that η 1 (t) → η 1 d (t) as t → ∞. A similar proof can be applied on Σ r φ and to obtain η 3 (t) → η 3 d (t) as t → ∞. To sum up, the choice of β θ , β φ , δ θ , δ φ , ε θ and ε φ must verify the following conditions.

β θ + δ θ + ε 2 θ < ε θ β θ + δ θ < ε 2 θ δ θ < β θ β φ + δ φ + ε 2 φ < ε φ β φ + δ φ < ε 2 φ δ φ < β φ (33) 
C. GAS of the translational dynamics Subsystem Σ t , when η 1 (t) = η 1 d (t) and η 3 (t) = η 3 d (t), takes the form [START_REF] Pounds | Design of a four-rotor aerial robot[END_REF] and is therefore globally asymptotically stabilized by [START_REF] Sontag | Remarks on stabilization and input-to-state stability[END_REF][START_REF] Sussmann | A general result on the stabilization of linear systems using bounded controls[END_REF][START_REF] Teel | A non-linear small gain theorem for the analysis of control systems with saturation[END_REF] using Theorem 1 in [START_REF] Marchand | Global stabilization of multiple integrators with bounded controls[END_REF].

D. GAS of the overall system

Knowing that the solutions of Σ r are bounded, the Converging Input Bounded State (CIBS) property is fulfilled and the global asymptotic stability of Σ t and Σ r together is guaranteed for systems in cascade by [START_REF] Sontag | Remarks on stabilization and input-to-state stability[END_REF]. This ends the proof V. NUMERICAL SIMULATIONS In this section, some simulation results are given. The nominal parameters of the quad-rotor are as in [START_REF] Xu | Sliding mode control of a quadrotor helicopter[END_REF] 

J 1 = J 2 = 1.25Ns 2 /rad J 3 = 2.5Ns 2 /rad kr = 2.923 × 10 -3 m = 2kg k 1 = k 2 = k 3 = 0.01Ns/m k 4 = k 5 = k 6 = 0.012Ns/rad l = 0.2 g = 9.81m/s 2 m π = 604rad/s 2 (34) 
These numerical values are used in the normalized model [START_REF] Castillo | Real-time stabilization and tracking of a four-rotor mini rotorcraft[END_REF]. The initial state of the translational subsystem are [x(0), y(0), z(0)] = [2, 2, 2] with zero linear velocity and

[θ (0), φ (0), ψ(0)] = [ π 2 , π 2 , π 4 
] with zero angular velocities. The maximum bounds of rx , ry , rz , vθ , vφ , and vψ can be calculated from the relation between the normalized bounds and the real bounds and the maximum rotor's speed π (equations (2), ( 3) and ( 6)). The numerical values used for the tuning parameters in the expressions of the control inputs are as follows: ε ψ = 1, β θ = β φ = 0.04, ε θ = ε φ = 0.9, ε x = 0.3, ε y = 0.3 and ε z = 0.9. The evolution of the states of translational subsystem is plotted on Fig. 3 and Fig. 4. The variations of the states of the rotational subsystem are plotted on Fig. 5 and Fig. 6. The bounded control inputs proposed in this paper are given in Fig. 7. Finally, Fig. 8 shows the path followed by the helicopter in three dimensions. 

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a global stabilization of a quad-rotor helicopter is presented. It is an under-actuated system with six degrees of freedom and only four inputs. The system is divided into two subsystems: rotational and translational. The control scheme is based on the cascaded design for nonlinear systems. To respect the boundedness of the control inputs while respecting the simplicity of the controls, the proposed control design exploits the technique based on the sum of saturating functions. For the future work, the proposed approach will be implemented on the platform of Fig. 1 to check the practical applicability of the control law. This approach will be compared with other control schemes such as the nonlinear model predictive control or backstepping. As far as the authors know, the proposed approach is by far the simplest and the more suitable for embedded implementation.
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APPENDIX I THE SATURATION FUNCTION

Let σ M (.) be the following twice-differentiable function bounded between +M and -M parameterized by 0 < α < 1 defined as follows 

where, r x , r y , and r z are:

and

The first derivatives of r x , r y and r z are composed of bounded terms: σ (.) is twice differentiable and this ensures the boundedness of σ and σ and w 1 , w 2 and w 3 are products of bounded trigonometric functions and u (also bounded). Consequently, η1 d and η3 d are bounded. For η1 d and η3 d , the same reasoning can be applied with the application of the result proved in [START_REF] Zavala | Global stabilization of a PVTOL aircraft with bounded inputs[END_REF] for the global stabilization of the PVTOL aircraft rotational dynamics. Note that reducing rx , ry and rz also reduces the bounds on η1 d and η3 d , that is on u θ d and u φ d .