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Abstract. We study the boundary value problem −div((|∇u|p1(x)−2 + |∇u|p2(x)−2)∇u) = λ|u|q(x)−2u in Ω,

u = 0 on ∂Ω, where Ω is a bounded domain in R
N with smooth boundary, λ is a positive real number, and the

continuous functions p1, p2, and q satisfy 1 < p2(x) < q(x) < p1(x) < N and maxy∈Ω q(y) < Np2(x)
N−p2(x) for any

x ∈ Ω. The main result of this paper establishes the existence of two positive constants λ0 and λ1 with λ0 ≤ λ1

such that any λ ∈ [λ1,∞) is an eigenvalue, while any λ ∈ (0, λ0) is not an eigenvalue of the above problem.
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1 Introduction and preliminary results

In this paper we are concerned with the study of the eigenvalue problem











−div((|∇u|p1(x)−2 + |∇u|p2(x)−2)∇u) = λ|u|q(x)−2u, for x ∈ Ω

u = 0, for x ∈ ∂Ω ,
(1)

where Ω ⊂ R
N (N ≥ 3) is a bounded domain with smooth boundary, λ > 0 is a real number, and p1,

p2, q are continuous functions on Ω.

The study of eigenvalue problems involving operators with variable exponents growth conditions

has captured a special attention in the last few years. This is in keeping with the fact that operators

which arise in such kind of problems, like the p(x)-Laplace operator (i.e., div(|∇u|p(x)−2∇u), where p(x)

is a continuous positive function), are not homogeneous and thus, a large number of techniques which
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can be applied in the homogeneous case (when p(x) is a positive constant) fail in this new setting. A

typical example is the Lagrange multiplier theorem, which does not apply to the eigenvalue problem











−div(|∇u|p(x)−2∇u) = λ|u|q(x)−2u, for x ∈ Ω

u = 0, for x ∈ ∂Ω ,
(2)

where Ω ⊂ R
N is a bounded domain. This is due to the fact that the associated Rayleigh quotient is

not homogeneous, provided both p and q are not constant.

On the other hand, problems like (2) have been largely considered in the literature in the recent

years. We give in what follows a concise but complete image of the actual stage of research on this

topic.

• In the case when p(x) = q(x) on Ω, Fan, Zhang and Zhao [8] established the existence of infinitely

many eigenvalues for problem (2) by using an argument based on the Ljusternik-Schnirelmann critical

point theory. Denoting by Λ the set of all nonnegative eigenvalues, Fan, Zhang and Zhao showed that

Λ is discrete, supΛ = +∞ and they pointed out that only under special conditions, which are somehow

connected with a kind of monotony of the function p(x), we have inf Λ > 0 (this is in contrast with the

case when p(x) is a constant; then, we always have inf Λ > 0).

• In the case when minx∈Ω q(x) < minx∈Ω p(x) and q(x) has a subcritical growth Mihăilescu and

Rădulescu [12] used the Ekeland’s variational principle in order to prove the existence of a continuous

family of eigenvalues which lies in a neighborhood of the origin.

• In the case when maxx∈Ω p(x) < minx∈Ω q(x) and q(x) has a subcritical growth a mountain-pass

argument, similar with those used by Fan and Zhang in the proof of Theorem 4.7 in [7], can be applied

in order to show that any λ > 0 is an eigenvalue of problem (2).

• In the case when maxx∈Ω q(x) < minx∈Ω p(x) it can be proved that the energy functional associated

to problem (2) has a nontrivial minimum for any positive λ large enough (see Theorem 4.7 in [7]).

Clearly, in this case the result in [12] can be also applied. Consequently, in this situation there exist

two positive constants λ⋆ and λ⋆⋆ such that any λ ∈ (0, λ⋆) ∪ (λ⋆⋆,∞) is an eigenvalue of problem (2).

In this paper we study problem (1) under the following assumptions:

1 < p2(x) < min
y∈Ω

q(y) ≤ max
y∈Ω

q(y) < p1(x) < N, ∀ x ∈ Ω (3)

and

max
y∈Ω

q(y) <
Np2(x)

N − p2(x)
, ∀ x ∈ Ω . (4)

Thus, the case considered here is different from all the cases studied before. In this new situation we

will show the existence of two positive constants λ0 and λ1 with λ0 ≤ λ1 such that any λ ∈ [λ1,∞) is

an eigenvalue of problem (1) while any λ ∈ (0, λ0) is not an eigenvalue of problem (1). An important
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consequence of our study is that, under hypotheses (3) and (4), we have

inf
u∈W

1,p1(x)
0 (Ω)\{0}

∫

Ω

1

p1(x)
|∇u|p1(x) dx +

∫

Ω

1

p2(x)
|∇u|p2(x) dx

∫

Ω

1

q(x)
|u|q(x) dx

> 0 .

That fact is proved by using the Lagrange Multiplier Theorem. The absence of homogeneity will be

balanced by the fact that assumptions (3) and (4) yield

lim
‖u‖p1(x)→0

∫

Ω

1

p1(x)
|∇u|p1(x) dx +

∫

Ω

1

p2(x)
|∇u|p2(x) dx

∫

Ω

1

q(x)
|u|q(x) dx

= ∞

and

lim
‖u‖p1(x)→∞

∫

Ω

1

p1(x)
|∇u|p1(x) dx +

∫

Ω

1

p2(x)
|∇u|p2(x) dx

∫

Ω

1

q(x)
|u|q(x) dx

= ∞ ,

where ‖ · ‖p1(x) stands for the norm in the variable exponent Sobolev space W
1,p1(x)
0 (Ω).

We start with some preliminary basic results on the theory of Lebesgue–Sobolev spaces with variable

exponent. For more details we refer to the book by Musielak [14] and the papers by Edmunds et al.

[4, 5, 6], Kovacik and Rákosńık [10], Mihăilescu and Rădulescu [11, 13], and Samko and Vakulov [16].

Set

C+(Ω) = {h; h ∈ C(Ω), h(x) > 1 for all x ∈ Ω}.

For any h ∈ C+(Ω) we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

For any p ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω) =

{

u; u is a measurable real-valued function such that

∫

Ω
|u(x)|p(x) dx < ∞

}

.

We define on this space the Luxemburg norm by

|u|p(x) = inf

{

µ > 0;

∫

Ω

∣

∣

∣

∣

u(x)

µ

∣

∣

∣

∣

p(x)

dx ≤ 1

}

.

Let Lp
′
(x)(Ω) denote the conjugate space of Lp(x)(Ω), where 1/p(x) + 1/p

′

(x) = 1. For any u ∈

Lp(x)(Ω) and v ∈ Lp
′
(x)(Ω) the Hölder type inequality

∣

∣

∣

∣

∫

Ω
uv dx

∣

∣

∣

∣

≤

(

1

p−
+

1

p′−

)

|u|p(x)|v|p′ (x) (5)
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holds true.

An important role in manipulating the generalized Lebesgue-Sobolev spaces is played by the modular

of the Lp(x)(Ω) space, which is the mapping ρp(x) : Lp(x)(Ω) → R defined by

ρp(x)(u) =

∫

Ω
|u|p(x) dx.

If (un), u ∈ Lp(x)(Ω) then the following relations hold true

|u|p(x) > 1 ⇒ |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x) (6)

|u|p(x) < 1 ⇒ |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x) (7)

|un − u|p(x) → 0 ⇔ ρp(x)(un − u) → 0. (8)

Next, we define W
1,p(x)
0 (Ω) as the closure of C∞

0 (Ω) under the norm

‖u‖p(x) = |∇u|p(x).

The space W
1,p(x)
0 (Ω) is a separable and reflexive Banach space. We note that if s ∈ C+(Ω) and

s(x) < p⋆(x) for all x ∈ Ω then the embedding W
1,p(x)
0 (Ω) →֒ Ls(x)(Ω) is compact and continuous,

where p⋆(x) = Np(x)
N−p(x) if p(x) < N or p⋆(x) = +∞ if p(x) ≥ N .

For applications of Sobolev spaces with variable exponent we refer to Acerbi and Mingione [1],

Chen, Levine and Rao [2], Diening [3], Halsey [9], Ruzicka [15], and Zhikov [18]).

2 The main result

Since p2(x) < p1(x) for any x ∈ Ω it follows that W
1,p1(x)
0 (Ω) is continuously embedded in W

1,p2(x)
0 (Ω).

Thus, a solution for a problem of type (1) will be sought in the variable exponent space W
1,p1(x)
0 (Ω).

We say that λ ∈ R is an eigenvalue of problem (1) if there exists u ∈ W
1,p1(x)
0 (Ω) \ {0} such that

∫

Ω
(|∇u|p1(x)−2 + |∇u|p2(x)−2)∇u∇v dx − λ

∫

Ω
|u|q(x)−2uv dx = 0 ,

for all v ∈ W
1,p1(x)
0 (Ω). We point out that if λ is an eigenvalue of problem (1) then the corresponding

eigenfunction u ∈ W
1,p1(x)
0 (Ω) \ {0} is a weak solution of problem (1).

Define

λ1 := inf
u∈W

1,p1(x)
0 (Ω)\{0}

∫

Ω

1

p1(x)
|∇u|p1(x) dx +

∫

Ω

1

p2(x)
|∇u|p2(x) dx

∫

Ω

1

q(x)
|u|q(x) dx

.

Our main result is given by the following theorem.
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Theorem 1. Assume that conditions (3) and (4) are fulfilled. Then λ1 > 0. Moreover, any λ ∈ [λ1,∞)

is an eigenvalue of problem (1). Furthermore, there exists a positive constant λ0 such that λ0 ≤ λ1 and

any λ ∈ (0, λ0) is not an eigenvalue of problem (1).

Proof. Let E denote the generalized Sobolev space W
1,p1(x)
0 (Ω). We denote by ‖ · ‖ the norm on

W
1,p1(x)
0 (Ω) and by ‖ · ‖1 the norm on W

1,p2(x)
0 (Ω).

Define the functionals J , I, J1, I1 : E → R by

J(u) =

∫

Ω

1

p1(x)
|∇u|p1(x) dx +

∫

Ω

1

p2(x)
|∇u|p2(x) dx,

I(u) =

∫

Ω

1

q(x)
|u|q(x) dx,

J1(u) =

∫

Ω
|∇u|p1(x) dx +

∫

Ω
|∇u|p2(x) dx,

I1(u) =

∫

Ω
|u|q(x) dx.

Standard arguments imply that J, I ∈ C1(E, R) and for all u, v ∈ E,

〈J
′

(u), v〉 =

∫

Ω
(|∇u|p1(x)−2 + |∇u|p2(x)−2)∇u∇v dx,

〈I
′

(u), v〉 =

∫

Ω
|u|q(x)−2uv dx.

We split the proof of Theorem 1 into four steps.

• Step 1. We show that λ1 > 0.

Since for any x ∈ Ω we have p1(x) > q+ ≥ q(x) ≥ q− > p2(x) we deduce that for any u ∈ E,

2(|∇u(x)|p1(x) + |∇u(x)|p2(x)) ≥ |∇u(x)|q
+

+ |∇u(x)|q
−

and

|u(x)|q
+

+ |u(x)|q
−

≥ |u(x)|q(x).

Integrating the above inequalities we find

2

∫

Ω
(|∇u|p1(x) + |∇u|p2(x)) dx ≥

∫

Ω
(|∇u|q

+
+ |∇u|q

−

) dx, ∀ u ∈ E (9)

and
∫

Ω
(|u|q

+
+ |u|q

−

) dx ≥

∫

Ω
|u|q(x) dx, ∀ u ∈ E. (10)

By Sobolev embeddings, there exist positive constants λq+ and λq− such that

∫

Ω
|∇u|q

+
dx ≥ λq+

∫

Ω
|u|q

+
dx, ∀ u ∈ W 1,q+

0 (Ω) (11)
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and
∫

Ω
|∇u|q

−

dx ≥ λq−

∫

Ω
|u|q

−

dx, ∀ u ∈ W 1,q−

0 (Ω). (12)

Using again the fact that q− ≤ q+ < p1(x) for any x ∈ Ω we deduce that E is continuously embedded

in W 1,q+

0 (Ω) and in W 1,q−

0 (Ω). Thus, inequalities (11) and (12) hold true for any u ∈ E.

Using inequalities (11), (12) and (10) it is clear that there exists a positive constant µ such that
∫

Ω
(|∇u|q

+
+ |∇u|q

−

) dx ≥ µ

∫

Ω
|u|q(x) dx, ∀ u ∈ E. (13)

Next, inequalities (13) and (9) yield
∫

Ω
(|∇u|p1(x) + |∇u|p2(x)) dx ≥

µ

2

∫

Ω
|u|q(x) dx, ∀ u ∈ E. (14)

By relation (14) we deduce that

λ0 = inf
v∈E\{0}

J1(v)

I1(v)
> 0 (15)

and thus,

J1(u) ≥ λ0I1(u), ∀ u ∈ E. (16)

The above inequality yields

p+
1 · J(u) ≥ J1(u) ≥ λ0I1(u) ≥ λ0I(u) ∀ u ∈ E. (17)

The last inequality assures that λ1 > 0 and thus, step 1 is verified.

• Step 2. We show that λ1 is an eigenvalue of problem (1).

Lemma 1. The following relations hold true:

lim
‖u‖→∞

J(u)

I(u)
= ∞ (18)

and

lim
‖u‖→0

J(u)

I(u)
= ∞. (19)

Proof. Since E is continuously embedded in Lq±(Ω) it follows that there exist two positive constants

c1 and c2 such that

‖u‖ ≥ c1 · |u|q+ , ∀ u ∈ E (20)

and

‖u‖ ≥ c2 · |u|q− , ∀ u ∈ E. (21)

For any u ∈ E with ‖u‖ > 1 by relations (6), (10), (20), (21) we infer

J(u)

I(u)
≥

‖u‖p−1

p+
1

|u|q
+

q+ + |u|q
−

q−

q−

≥

‖u‖p−1

p+
1

c−q+

1 ‖u‖q+
+ c−q−

2 ‖u‖q−

q−

.
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Since p−1 > q+ ≥ q−, passing to the limit as ‖u‖ → ∞ in the above inequality we deduce that relation

(18) holds true.

Next, let us remark that since p1(x) > p2(x) for any x ∈ Ω, the space W
1,p1(x)
0 (Ω) is continuously

embedded in W
1,p2(x)
0 (Ω). Thus, if ‖u‖ → 0 then ‖u‖1 → 0.

The above remarks enable us to affirm that for any u ∈ E with ‖u‖ < 1 small enough we have

‖u‖1 < 1.

On the other hand, since (4) holds true we deduce that W
1,p2(x)
0 (Ω) is continuously embedded in

Lq±(Ω). It follows that there exist two positive constants d1 and d2 such that

‖u‖1 ≥ d1 · |u|q+ , ∀ u ∈ W
1,p2(x)
0 (Ω) (22)

and

‖u‖1 ≥ d2 · |u|q− , ∀ u ∈ W
1,p2(x)
0 (Ω). (23)

Thus, for any u ∈ E with ‖u‖ < 1 small enough, relations (7), (10), (22), (23) imply

J(u)

I(u)
≥

∫

Ω |∇u|p2(x) dx

p+
2

|u|q
+

q+ + |u|q
−

q−

q−

≥

‖u‖
p
+
2

1

p+
2

d−q+

1 ‖u‖q+

1 + d−q−

2 ‖u‖q−

1

q−

.

Since p+
2 < q− ≤ q+, passing to the limit as ‖u‖ → 0 (and thus, ‖u‖1 → 0) in the above inequality we

deduce that relation (19) holds true. The proof of Lemma 1 is complete. �

Lemma 2. There exists u ∈ E \ {0} such that J(u)
I(u) = λ1.

Proof. Let {un} ⊂ E \ {0} be a minimizing sequence for λ1, that is,

lim
n→∞

J(un)

I(un)
= λ1 > 0. (24)

By relation (18) it is clear that {un} is bounded in E. Since E is reflexive it follows that there exists

u ∈ E such that un converges weakly to u in E. On the other hand, similar arguments as those used

in the proof of Lemma 3.4 in [11] show that the functional J is weakly lower semi-continuous. Thus,

we find

lim inf
n→∞

J(un) ≥ J(u). (25)

By relation (4) it follows that E is compactly embedded in Lq(x)(Ω). Thus, un converges strongly in

Lq(x)(Ω). Then, by relation (8) it follows that

lim
n→∞

I(un) = I(u). (26)

Relations (25) and (26) imply that if u 6≡ 0 then

J(u)

I(u)
= λ1.
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Thus, in order to conclude that the lemma holds true it is enough to show that u is not trivial. Assume

by contradiction the contrary. Then un converges weakly to 0 in E and strongly in Lq(x)(Ω). In other

words, we will have

lim
n→∞

I(un) = 0. (27)

Letting ǫ ∈ (0, λ1) be fixed by relation (24) we deduce that for n large enough we have

|J(un) − λ1I(un)| < ǫI(un),

or

(λ1 − ǫ)I(un) < J(un) < (λ1 + ǫ)I(un).

Passing to the limit in the above inequalities and taking into account that relation (27) holds true we

find

lim
n→∞

J(un) = 0.

That fact combined with relation (8) implies that actually un converges strongly to 0 in E, i.e.

limn→∞ ‖un‖ = 0. By this information and relation (19) we get

lim
n→∞

J(un)

I(un)
= ∞,

and this is a contradiction. Thus, u 6≡ 0. The proof of Lemma 2 is complete. �

By Lemma 2 we conclude that there exists u ∈ E \ {0} such that

J(u)

I(u)
= λ1 = inf

w∈E\{0}

J(w)

I(w)
. (28)

Then, for any v ∈ E we have
d

dǫ

J(u + ǫv)

I(u + ǫv)
|ǫ=0 = 0 .

A simple computation yields

∫

Ω
(|∇u|p1(x)−2 + |∇u|p2(x)−2)∇u∇v dx · I(u) − J(u) ·

∫

Ω
|u|q(x)−2uv dx = 0, ∀ v ∈ E. (29)

Relation (29) combined with the fact that J(u) = λ1I(u) and I(u) 6= 0 implies the fact that λ1 is an

eigenvalue of problem (1). Thus, step 2 is verified.

• Step 3. We show that any λ ∈ (λ1,∞) is an eigenvalue of problem (1).

Let λ ∈ (λ1,∞) be arbitrary but fixed. Define Tλ : E → R by

Tλ(u) = J(u) − λI(u).

Clearly, Tλ ∈ C1(E, R) with

〈T
′

λ(u), v〉 = 〈J
′

(u), v〉 − λ〈I
′

(u), v〉, ∀ u ∈ E.

8



Thus, λ is an eigenvalue of problem (1) if and only if there exists uλ ∈ E \ {0} a critical point of Tλ.

With similar arguments as in the proof of relation (18) we can show that Tλ is coercive, i.e.

lim‖u‖→∞ Tλ(u) = ∞. On the other hand, as we have already remarked, similar arguments as those

used in the proof of Lemma 3.4 in [11] show that the functional Tλ is weakly lower semi-continuous.

These two facts enable us to apply Theorem 1.2 in [17] in order to prove that there exists uλ ∈ E a

global minimum point of Tλ and thus, a critical point of Tλ. In order to conclude that step 4 holds true

it is enough to show that uλ is not trivial. Indeed, since λ1 = infu∈E\{0}
J(u)
I(u) and λ > λ1 it follows that

there exists vλ ∈ E such that

J(vλ) < λI(vλ),

or

Tλ(vλ) < 0.

Thus,

inf
E

Tλ < 0

and we conclude that uλ is a nontrivial critical point of Tλ, or λ is an eigenvalue of problem (1). Thus,

step 3 is verified.

• Step 4. Any λ ∈ (0, λ0), where λ0 is given by (15), is not an eigenvalue of problem (1).

Indeed, assuming by contradiction that there exists λ ∈ (0, λ0) an eigenvalue of problem (1) it

follows that there exists uλ ∈ E \ {0} such that

〈J
′

(uλ), v〉 = λ〈I
′

(uλ), v〉, ∀ v ∈ E.

Thus, for v = uλ we find

〈J
′

(uλ), uλ〉 = λ〈I
′

(uλ), uλ〉,

that is,

J1(uλ) = λI1(uλ).

The fact that uλ ∈ E \ {0} assures that I1(uλ) > 0. Since λ < λ0, the above information yields

J1(uλ) ≥ λ0I1(uλ) > λI1(uλ) = J1(uλ).

Clearly, the above inequalities lead to a contradiction. Thus, step 4 is verified.

By steps 2, 3 and 4 we deduce that λ0 ≤ λ1. The proof of Theorem 1 is now complete. �

Remark 1. At this stage we are not able to deduce whether λ0 = λ1 or λ0 < λ1. In the latter case

an interesting question concerns the existence of eigenvalues of problem (1) in the interval [λ0, λ1). We

propose to the reader the study of these open problems.
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[5] D. E. Edmunds and J. Rákosńık, Density of smooth functions in W k,p(x)(Ω), Proc. Roy. Soc. London Ser. A 437

(1992), 229-236.
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