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We study the boundary value problem -div((|∇u| p1(x)-2 + |∇u| p2(x)-2 )∇u) = λ|u| q(x)-2 u in Ω, u = 0 on ∂Ω, where Ω is a bounded domain in R N with smooth boundary, λ is a positive real number, and the continuous functions p 1 , p 2 , and q satisfy 1 < p 2 (x) < q(x) < p 1 (x) < N and max y∈Ω q(y) < N p2(x) N -p2(x) for any x ∈ Ω. The main result of this paper establishes the existence of two positive constants λ 0 and λ 1 with λ 0 ≤ λ 1 such that any λ ∈ [λ 1 , ∞) is an eigenvalue, while any λ ∈ (0, λ 0 ) is not an eigenvalue of the above problem.

Introduction and preliminary results

In this paper we are concerned with the study of the eigenvalue problem      -div((|∇u| p 1 (x)-2 + |∇u| p 2 (x)-2 )∇u) = λ|u| q(x)-2 u, for x ∈ Ω u = 0, for x ∈ ∂Ω ,

where Ω ⊂ R N (N ≥ 3) is a bounded domain with smooth boundary, λ > 0 is a real number, and p 1 , p 2 , q are continuous functions on Ω.

The study of eigenvalue problems involving operators with variable exponents growth conditions has captured a special attention in the last few years. This is in keeping with the fact that operators which arise in such kind of problems, like the p(x)-Laplace operator (i.e., div(|∇u| p(x)-2 ∇u), where p(x) is a continuous positive function), are not homogeneous and thus, a large number of techniques which can be applied in the homogeneous case (when p(x) is a positive constant) fail in this new setting. A typical example is the Lagrange multiplier theorem, which does not apply to the eigenvalue problem      -div(|∇u| p(x)-2 ∇u) = λ|u| q(x)-2 u, for x ∈ Ω u = 0, for x ∈ ∂Ω ,

where Ω ⊂ R N is a bounded domain. This is due to the fact that the associated Rayleigh quotient is not homogeneous, provided both p and q are not constant.

On the other hand, problems like [START_REF] Chen | Functionals with p(x)-growth in image processing[END_REF] have been largely considered in the literature in the recent years. We give in what follows a concise but complete image of the actual stage of research on this topic.

• In the case when p(x) = q(x) on Ω, Fan, Zhang and Zhao [START_REF] Fan | Eigenvalues of p(x)-Laplacian Dirichlet problem[END_REF] established the existence of infinitely many eigenvalues for problem (2) by using an argument based on the Ljusternik-Schnirelmann critical point theory. Denoting by Λ the set of all nonnegative eigenvalues, Fan, Zhang and Zhao showed that Λ is discrete, sup Λ = +∞ and they pointed out that only under special conditions, which are somehow connected with a kind of monotony of the function p(x), we have inf Λ > 0 (this is in contrast with the case when p(x) is a constant; then, we always have inf Λ > 0).

• In the case when min x∈Ω q(x) < min x∈Ω p(x) and q(x) has a subcritical growth Mihȃilescu and Rȃdulescu [START_REF] Mihȃilescu | On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent[END_REF] used the Ekeland's variational principle in order to prove the existence of a continuous family of eigenvalues which lies in a neighborhood of the origin.

• In the case when max x∈Ω p(x) < min x∈Ω q(x) and q(x) has a subcritical growth a mountain-pass argument, similar with those used by Fan and Zhang in the proof of Theorem 4.7 in [START_REF] Fan | Existence of solutions for p(x)-Laplacian Dirichlet problem[END_REF], can be applied in order to show that any λ > 0 is an eigenvalue of problem (2).

• In the case when max x∈Ω q(x) < min x∈Ω p(x) it can be proved that the energy functional associated to problem (2) has a nontrivial minimum for any positive λ large enough (see Theorem 4.7 in [START_REF] Fan | Existence of solutions for p(x)-Laplacian Dirichlet problem[END_REF]). Clearly, in this case the result in [START_REF] Mihȃilescu | On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent[END_REF] can be also applied. Consequently, in this situation there exist two positive constants λ ⋆ and λ ⋆⋆ such that any λ ∈ (0, λ ⋆ ) ∪ (λ ⋆⋆ , ∞) is an eigenvalue of problem [START_REF] Chen | Functionals with p(x)-growth in image processing[END_REF].

In this paper we study problem (1) under the following assumptions:

1 < p 2 (x) < min y∈Ω q(y) ≤ max y∈Ω q(y) < p 1 (x) < N, ∀ x ∈ Ω (3) 
and max

y∈Ω q(y) < N p 2 (x) N -p 2 (x) , ∀ x ∈ Ω . (4) 
Thus, the case considered here is different from all the cases studied before. In this new situation we will show the existence of two positive constants λ 0 and λ 1 with λ 0 ≤ λ 1 such that any λ ∈ [λ 1 , ∞) is an eigenvalue of problem (1) while any λ ∈ (0, λ 0 ) is not an eigenvalue of problem [START_REF] Acerbi | Gradient estimates for the p(x)-Laplacean system[END_REF]. An important consequence of our study is that, under hypotheses (3) and (4), we have inf

u∈W 1,p 1 (x) 0 (Ω)\{0} Ω 1 p 1 (x) |∇u| p 1 (x) dx + Ω 1 p 2 (x) |∇u| p 2 (x) dx Ω 1 q(x) |u| q(x) dx > 0 .
That fact is proved by using the Lagrange Multiplier Theorem. The absence of homogeneity will be balanced by the fact that assumptions (3) and (4) yield lim

u p 1 (x) →0 Ω 1 p 1 (x) |∇u| p 1 (x) dx + Ω 1 p 2 (x) |∇u| p 2 (x) dx Ω 1 q(x) |u| q(x) dx = ∞ and lim u p 1 (x) →∞ Ω 1 p 1 (x) |∇u| p 1 (x) dx + Ω 1 p 2 (x) |∇u| p 2 (x) dx Ω 1 q(x) |u| q(x) dx = ∞ ,
where • p 1 (x) stands for the norm in the variable exponent Sobolev space W 1,p 1 (x) 0

(Ω).

We start with some preliminary basic results on the theory of Lebesgue-Sobolev spaces with variable exponent. For more details we refer to the book by Musielak [START_REF] Musielak | Orlicz Spaces and Modular Spaces[END_REF] and the papers by Edmunds et al. [START_REF] Edmunds | On L p(x) norms[END_REF][START_REF] Edmunds | Density of smooth functions in W k,p(x) (Ω)[END_REF][START_REF] Edmunds | Sobolev embedding with variable exponent[END_REF], Kovacik and Rákosník [START_REF] Kováčik | On spaces L p(x) and W 1,p(x)[END_REF], Mihȃilescu and Rȃdulescu [START_REF] Mihȃilescu | A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids[END_REF][START_REF] Mihȃilescu | Existence and multiplicity of solutions for quasilinear nonhomogeneous problems: an Orlicz-Sobolev space setting[END_REF], and Samko and Vakulov [START_REF] Samko | Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators[END_REF].

Set

C + (Ω) = {h; h ∈ C(Ω), h(x) > 1 for all x ∈ Ω}.
For any h ∈ C + (Ω) we define

h + = sup x∈Ω h(x) and h -= inf x∈Ω h(x).
For any p ∈ C + (Ω), we define the variable exponent Lebesgue space

L p(x) (Ω) = u; u is a measurable real-valued function such that Ω |u(x)| p(x) dx < ∞ .
We define on this space the Luxemburg norm by

|u| p(x) = inf µ > 0; Ω u(x) µ p(x) dx ≤ 1 . Let L p ′ (x) (Ω) denote the conjugate space of L p(x) (Ω), where 1/p(x) + 1/p ′ (x) = 1. For any u ∈ L p(x) (Ω) and v ∈ L p ′ (x) (Ω) the Hölder type inequality Ω uv dx ≤ 1 p -+ 1 p ′ -|u| p(x) |v| p ′ (x) (5) 
holds true. An important role in manipulating the generalized Lebesgue-Sobolev spaces is played by the modular of the L p(x) (Ω) space, which is the mapping ρ p(x) : L p(x) (Ω) → R defined by

ρ p(x) (u) = Ω |u| p(x) dx.
If (u n ), u ∈ L p(x) (Ω) then the following relations hold true

|u| p(x) > 1 ⇒ |u| p - p(x) ≤ ρ p(x) (u) ≤ |u| p + p(x) (6) 
|u| p(x) < 1 ⇒ |u| p + p(x) ≤ ρ p(x) (u) ≤ |u| p - p(x) (7) 
|u n -u| p(x) → 0 ⇔ ρ p(x) (u n -u) → 0. ( 8 
)
Next, we define W 1,p(x) 0

(Ω) as the closure of C ∞ 0 (Ω) under the norm

u p ( x) = |∇u| p(x) .
The space W 1,p(x) 0

(Ω) is a separable and reflexive Banach space. We note that if s ∈ C + (Ω) and s(x) < p ⋆ (x) for all x ∈ Ω then the embedding W

1,p(x) 0 (Ω) ֒→ L s(x) (Ω) is compact and continuous, where p ⋆ (x) = N p(x) N -p(x) if p(x) < N or p ⋆ (x) = +∞ if p(x) ≥ N .
For applications of Sobolev spaces with variable exponent we refer to Acerbi and Mingione [START_REF] Acerbi | Gradient estimates for the p(x)-Laplacean system[END_REF], Chen, Levine and Rao [START_REF] Chen | Functionals with p(x)-growth in image processing[END_REF], Diening [START_REF] Diening | Theoretical and Numerical Results for Electrorheological Fluids[END_REF], Halsey [START_REF] Halsey | Electrorheological fluids[END_REF], Ruzicka [START_REF] Ruzicka | Electrorheological Fluids: Modeling and Mathematical Theory[END_REF], and Zhikov [START_REF] Zhikov | Averaging of functionals in the calculus of variations and elasticity[END_REF]).

The main result

Since p 2 (x) < p 1 (x) for any x ∈ Ω it follows that W

1,p 1 (x) 0 (Ω) is continuously embedded in W 1,p 2 (x) 0
(Ω). Thus, a solution for a problem of type (1) will be sought in the variable exponent space W 1,p 1 (x) 0

(Ω). We say that λ ∈ R is an eigenvalue of problem (1) if there exists u ∈ W

1,p 1 (x) 0 (Ω) \ {0} such that Ω (|∇u| p 1 (x)-2 + |∇u| p 2 (x)-2 )∇u∇v dx -λ Ω |u| q(x)-2 uv dx = 0 , for all v ∈ W 1,p 1 (x) 0
(Ω). We point out that if λ is an eigenvalue of problem (1) then the corresponding eigenfunction u ∈ W 1,p 1 (x) 0

(Ω) \ {0} is a weak solution of problem [START_REF] Acerbi | Gradient estimates for the p(x)-Laplacean system[END_REF]. Define

λ 1 := inf u∈W 1,p 1 (x) 0 (Ω)\{0} Ω 1 p 1 (x) |∇u| p 1 (x) dx + Ω 1 p 2 (x) |∇u| p 2 (x) dx Ω 1 q(x)
|u| q(x) dx .

Our main result is given by the following theorem.

Theorem 1. Assume that conditions (3) and ( 4) are fulfilled. Then λ 1 > 0. Moreover, any λ ∈ [λ 1 , ∞) is an eigenvalue of problem [START_REF] Acerbi | Gradient estimates for the p(x)-Laplacean system[END_REF]. Furthermore, there exists a positive constant λ 0 such that λ 0 ≤ λ 1 and any λ ∈ (0, λ 0 ) is not an eigenvalue of problem (1).

Proof. Let E denote the generalized Sobolev space W 1,p 1 (x) 0

(Ω). We denote by • the norm on W 1,p 1 (x) 0

(Ω) and by • 1 the norm on W 1,p 2 (x) 0

(Ω). Define the functionals J, I, J 1 , I 1 : E → R by

J(u) = Ω 1 p 1 (x) |∇u| p 1 (x) dx + Ω 1 p 2 (x) |∇u| p 2 (x) dx, I(u) = Ω 1 q(x) |u| q(x) dx, J 1 (u) = Ω |∇u| p 1 (x) dx + Ω |∇u| p 2 (x) dx, I 1 (u) = Ω |u| q(x) dx.
Standard arguments imply that J, I ∈ C 1 (E, R) and for all u, v ∈ E,

J ′ (u), v = Ω (|∇u| p 1 (x)-2 + |∇u| p 2 (x)-2 )∇u∇v dx, I ′ (u), v = Ω |u| q(x)-2 uv dx.
We split the proof of Theorem 1 into four steps. • Step 1. We show that λ 1 > 0.

Since for any x ∈ Ω we have p 1 (x) > q + ≥ q(x) ≥ q -> p 2 (x) we deduce that for any u ∈ E,

2(|∇u(x)| p 1 (x) + |∇u(x)| p 2 (x) ) ≥ |∇u(x)| q + + |∇u(x)| q - and |u(x)| q + + |u(x)| q -≥ |u(x)| q(x) .
Integrating the above inequalities we find 2

Ω (|∇u| p 1 (x) + |∇u| p 2 (x) ) dx ≥ Ω (|∇u| q + + |∇u| q -) dx, ∀ u ∈ E (9) 
and

Ω (|u| q + + |u| q -) dx ≥ Ω |u| q(x) dx, ∀ u ∈ E. ( 10 
)
By Sobolev embeddings, there exist positive constants λ q + and λ q -such that

Ω |∇u| q + dx ≥ λ q + Ω |u| q + dx, ∀ u ∈ W 1,q + 0 (Ω) (11) 
and

Ω |∇u| q -dx ≥ λ q - Ω |u| q -dx, ∀ u ∈ W 1,q - 0 (Ω). ( 12 
)
Using again the fact that q -≤ q + < p 1 (x) for any x ∈ Ω we deduce that E is continuously embedded in W 1,q + 0 (Ω) and in W 1,q - 0 (Ω). Thus, inequalities [START_REF] Mihȃilescu | A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids[END_REF] and ( 12) hold true for any u ∈ E. Using inequalities [START_REF] Mihȃilescu | A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids[END_REF], [START_REF] Mihȃilescu | On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent[END_REF] and [START_REF] Kováčik | On spaces L p(x) and W 1,p(x)[END_REF] it is clear that there exists a positive constant µ such that

Ω (|∇u| q + + |∇u| q -) dx ≥ µ Ω |u| q(x) dx, ∀ u ∈ E. (13) 
Next, inequalities ( 13) and [START_REF] Halsey | Electrorheological fluids[END_REF] yield

Ω (|∇u| p 1 (x) + |∇u| p 2 (x) ) dx ≥ µ 2 Ω |u| q(x) dx, ∀ u ∈ E. ( 14 
)
By relation [START_REF] Musielak | Orlicz Spaces and Modular Spaces[END_REF] we deduce that

λ 0 = inf v∈E\{0} J 1 (v) I 1 (v) > 0 ( 15 
)
and thus,

J 1 (u) ≥ λ 0 I 1 (u), ∀ u ∈ E. ( 16 
)
The above inequality yields

p + 1 • J(u) ≥ J 1 (u) ≥ λ 0 I 1 (u) ≥ λ 0 I(u) ∀ u ∈ E. (17) 
The last inequality assures that λ 1 > 0 and thus, step 1 is verified.

• Step 2. We show that λ 1 is an eigenvalue of problem (1).

Lemma 1. The following relations hold true:

lim u →∞ J(u) I(u) = ∞ ( 18 
)
and lim

u →0 J(u) I(u) = ∞. ( 19 
)
Proof. Since E is continuously embedded in L q ± (Ω) it follows that there exist two positive constants

c 1 and c 2 such that u ≥ c 1 • |u| q + , ∀ u ∈ E (20) and u ≥ c 2 • |u| q -, ∀ u ∈ E. ( 21 
)
For any u ∈ E with u > 1 by relations ( 6), ( 10), ( 20), (21) we infer

J(u) I(u) ≥ u p - 1 p + 1 |u| q + q + + |u| q - q - q - ≥ u p - 1 p + 1 c -q + 1 u q + + c -q - 2 u q - q - .
Since p - 1 > q + ≥ q -, passing to the limit as u → ∞ in the above inequality we deduce that relation (18) holds true.

Next, let us remark that since p 1 (x) > p 2 (x) for any x ∈ Ω, the space W 1,p 1 (x) 0

(Ω) is continuously embedded in W 1,p 2 (x) 0

(Ω). Thus, if u → 0 then u 1 → 0. The above remarks enable us to affirm that for any u ∈ E with u < 1 small enough we have u 1 < 1.

On the other hand, since (4) holds true we deduce that W 1,p 2 (x) 0

(Ω) is continuously embedded in L q ± (Ω). It follows that there exist two positive constants d 1 and d 2 such that

u 1 ≥ d 1 • |u| q + , ∀ u ∈ W 1,p 2 (x) 0 (Ω) (22) 
and

u 1 ≥ d 2 • |u| q -, ∀ u ∈ W 1,p 2 (x) 0 (Ω). (23) 
Thus, for any u ∈ E with u < 1 small enough, relations ( 7), ( 10), ( 22), (23) imply

J(u) I(u) ≥ Ω |∇u| p 2 (x) dx p + 2 |u| q + q + + |u| q - q - q - ≥ u p + 2 1 p + 2 d -q + 1 u q + 1 + d -q - 2 u q - 1 q - .
Since p + 2 < q -≤ q + , passing to the limit as u → 0 (and thus, u 1 → 0) in the above inequality we deduce that relation (19) holds true. The proof of Lemma 1 is complete.

Lemma 2. There exists u ∈ E \ {0} such that J(u) I(u) = λ 1 .
Proof. Let {u n } ⊂ E \ {0} be a minimizing sequence for λ 1 , that is,

lim n→∞ J(u n ) I(u n ) = λ 1 > 0. ( 24 
)
By relation [START_REF] Zhikov | Averaging of functionals in the calculus of variations and elasticity[END_REF] it is clear that {u n } is bounded in E. Since E is reflexive it follows that there exists u ∈ E such that u n converges weakly to u in E. On the other hand, similar arguments as those used in the proof of Lemma 3.4 in [START_REF] Mihȃilescu | A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids[END_REF] show that the functional J is weakly lower semi-continuous. Thus, we find lim inf

n→∞ J(u n ) ≥ J(u). (25) 
By relation (4) it follows that E is compactly embedded in L q(x) (Ω). Thus, u n converges strongly in L q(x) (Ω). Then, by relation [START_REF] Fan | Eigenvalues of p(x)-Laplacian Dirichlet problem[END_REF] it follows that

lim n→∞ I(u n ) = I(u). (26) 
Relations ( 25) and (26) imply that if u ≡ 0 then

J(u) I(u) = λ 1 .
Thus, in order to conclude that the lemma holds true it is enough to show that u is not trivial. Assume by contradiction the contrary. Then u n converges weakly to 0 in E and strongly in L q(x) (Ω). In other words, we will have lim n→∞

I(u n ) = 0. ( 27 
)
Letting ǫ ∈ (0, λ 1 ) be fixed by relation (24) we deduce that for n large enough we have

|J(u n ) -λ 1 I(u n )| < ǫI(u n ), or (λ 1 -ǫ)I(u n ) < J(u n ) < (λ 1 + ǫ)I(u n ).
Passing to the limit in the above inequalities and taking into account that relation ( 27) holds true we find lim n→∞ J(u n ) = 0.

That fact combined with relation [START_REF] Fan | Eigenvalues of p(x)-Laplacian Dirichlet problem[END_REF] implies that actually u n converges strongly to 0 in E, i.e. lim n→∞ u n = 0. By this information and relation (19) we get

lim n→∞ J(u n ) I(u n ) = ∞,
and this is a contradiction. Thus, u ≡ 0. The proof of Lemma 2 is complete.

By Lemma 2 we conclude that there exists u ∈ E \ {0} such that

J(u) I(u) = λ 1 = inf w∈E\{0} J(w) I(w) . (28) 
Then, for any v ∈ E we have d dǫ

J(u + ǫv) I(u + ǫv) | ǫ=0 = 0 .
A simple computation yields

Ω (|∇u| p 1 (x)-2 + |∇u| p 2 (x)-2 )∇u∇v dx • I(u) -J(u) • Ω |u| q(x)-2 uv dx = 0, ∀ v ∈ E. (29) 
Relation (29) combined with the fact that J(u) = λ 1 I(u) and I(u) = 0 implies the fact that λ 1 is an eigenvalue of problem (1). Thus, step 2 is verified.

• Step 3. We show that any λ ∈ (λ 1 , ∞) is an eigenvalue of problem (1). Let λ ∈ (λ 1 , ∞) be arbitrary but fixed. Define T λ : E → R by T λ (u) = J(u) -λI(u). Clearly, T λ ∈ C 1 (E, R) with T ′ λ (u), v = J ′ (u), v -λ I ′ (u), v , ∀ u ∈ E.
Thus, λ is an eigenvalue of problem (1) if and only if there exists u λ ∈ E \ {0} a critical point of T λ . With similar arguments as in the proof of relation [START_REF] Zhikov | Averaging of functionals in the calculus of variations and elasticity[END_REF] we can show that T λ is coercive, i.e. lim u →∞ T λ (u) = ∞. On the other hand, as we have already remarked, similar arguments as those used in the proof of Lemma 3.4 in [START_REF] Mihȃilescu | A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids[END_REF] show that the functional T λ is weakly lower semi-continuous. These two facts enable us to apply Theorem 1.2 in [START_REF] Struwe | Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems[END_REF] in order to prove that there exists u λ ∈ E a global minimum point of T λ and thus, a critical point of T λ . In order to conclude that step 4 holds true it is enough to show that u λ is not trivial. Indeed, since λ 1 = inf u∈E\{0} J(u) I(u) and λ > λ 1 it follows that there exists v λ ∈ E such that J(v λ ) < λI(v λ ), or T λ (v λ ) < 0.

Thus, inf E T λ < 0 and we conclude that u λ is a nontrivial critical point of T λ , or λ is an eigenvalue of problem (1). Thus, step 3 is verified.

• Step 4. Any λ ∈ (0, λ 0 ), where λ 0 is given by [START_REF] Ruzicka | Electrorheological Fluids: Modeling and Mathematical Theory[END_REF], is not an eigenvalue of problem [START_REF] Acerbi | Gradient estimates for the p(x)-Laplacean system[END_REF]. Indeed, assuming by contradiction that there exists λ ∈ (0, λ 0 ) an eigenvalue of problem (1) it follows that there exists u λ ∈ E \ {0} such that

J ′ (u λ ), v = λ I ′ (u λ ), v , ∀ v ∈ E.
Thus, for v = u λ we find J ′ (u λ ), u λ = λ I ′ (u λ ), u λ , that is, J 1 (u λ ) = λI 1 (u λ ).

The fact that u λ ∈ E \ {0} assures that I 1 (u λ ) > 0. Since λ < λ 0 , the above information yields J 1 (u λ ) ≥ λ 0 I 1 (u λ ) > λI 1 (u λ ) = J 1 (u λ ).

Clearly, the above inequalities lead to a contradiction. Thus, step 4 is verified.

By steps 2, 3 and 4 we deduce that λ 0 ≤ λ 1 . The proof of Theorem 1 is now complete.

Remark 1. At this stage we are not able to deduce whether λ 0 = λ 1 or λ 0 < λ 1 . In the latter case an interesting question concerns the existence of eigenvalues of problem (1) in the interval [λ 0 , λ 1 ). We propose to the reader the study of these open problems.