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Abstract 
 

In calorimetry and particularly in heat capacity measurements, different characteristic 

relaxation time constants may perturb the experiment which cannot be considered at 

thermodynamic equilibrium. In this case, thermodynamics of irreversible processes has to be 

taken into account and the calorimetric measurements must be considered as dynamic. In a 

temperature modulated experiment, such as ac-calorimetry, these non-equilibrium experiments 

give rise to the notion of frequency dependent complex heat capacity. In this paper, it is shown 

that for each irreversible process an experimental frequency dependent complex heat capacity 

can be inferred. Furthermore, we demonstrate rigorously that a same equality connects the 

imaginary part of these different complex heat capacities with the entropy produced during 

these irreversible processes. Finally, we claim that the presence of an imaginary part in the 

measured heat capacity always indicates that a certain amount of heat does not participate to 

the classical equilibrium heat capacity of the sample when measured over the observation time 

scale. 
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1.Introduction 

 

 It is well-known that calorimetric experiments can be perturbed by different parasitic 

relaxation time constants. These different time constants can alter the measurement in such a 

way that what we measure is not what we really believe. For example, in heat capacity 

measurements, one of the fundamental time constant is τext, the time constant of the 

adiabaticity. This is the external relaxation time constant of the temperature of the sample 

towards the constant temperature of the bath. If the time scale of the measurement is larger 

than this time constant, the calorimetric measurement cannot be considered as adiabatic (in a 

calorimetric sense and not in a thermodynamic sense) and heat has time to relax towards the 

thermal bath. A correction has thus to be taken into account considering the heat exchange 

coefficient in order to correctly derive the heat capacity of the sample. The second important 

relaxation time constant is still due to the non-equilibrium behaviour of the temperature of the 

whole sample. It is connected to the diffusion of heat within the body of the sample. What is 

thus the exact temperature of the whole sample when the thermal diffusivity is low? Suppose 

that in a modulated temperature calorimetric experiment the frequency of the input power is so 

high that at the other extremity of the sample the thermometer never oscillates. We can 

understand that, in this case, the exact heat capacity of the sample is never recorded. The third 

time constant that we want to consider in this article is the kinetic relaxation time constant of 

specific internal degrees of freedom of the sample. When heat is supplied to the sample in a 

fast way, some of these degrees of freedom have never time to absorb this quantity of heat over 

the time scale of the experiment. In this case, these degrees of freedom do not contribute to the 

heat capacity measured by the experimentalist. In modulated temperature measurements this 

particularity has provided the famous notion of frequency dependent complex heat capacity 

with a real and an imaginary part satisfying the Kramers-Kronig dispersion relations (see for 
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example, the following reviews and references therein [1-3]). This latter notion has been 

already investigated in the literature of calorimetry and we do not want to discuss this in details 

here. Nevertheless, we will recall that the imaginary part of the complex heat capacity is, in 

this case, also deeply connected to the entropy produced over one period of the temperature 

cycle. The last of these relaxation time constants that we want to address is not widely known 

and is linked to the relaxation of the thermal power due to finite velocity of the heat carriers. It 

involves a regime where the Fourier's law becomes inexact. 

 In this paper, we demonstrate that for each of this characteristic time constants, there is a 

different irreversible process where a different complex heat capacity can be inferred. In these 

four different cases, the imaginary part of these complex heat capacities is always connected to 

the entropy produced over one period of the temperature cycle during the irreversible process. 

The paper is composed of the following different sections involving each time one of the time 

constants aforementioned. Before going into the details of these different sections, we would 

like firstly, to explain what we want to say by "time scale of the measurement", which is 

another very important time constant in experimental calorimetry. 

 

 

2. Time scale of the measurement 

 

The time scale of the measurement is the smallest characteristic time interval during 

which a physical parameter of a system is recorded by the experimentalist without any 

specific averaging. Over this time interval, an experimental point can be inferred. In classical 

calorimetric experiment, for example in differential scanning calorimetry (DSC), this time 

interval is the smallest finite time interval Δt during which an experimental heat capacity 

point (more precisely a differential heat flow point) is recorded. The measured heat capacity is 
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thus the natural averaging of the instantaneous heat capacity taken over this time interval. In 

modulated temperature measurements, this characteristic time is the period of the oscillating 

input thermal power. The influence on the measurement of the other time constants depends 

on the ratio of their own value as compared to this characteristic time scale. The time scale of 

the measurement is the reference against which the various time constants encountered in the 

calorimetric experiments have to be compared. Let us take a well-known example: when we 

consider the kinetic relaxation time constant due to slow structural change inside a sample or 

the slow advancement of a chemical reaction, the ratio of this time constant on the time scale 

of the measurement is called the Deborah number [4]: 

 

D = τ/Δt  (1) 

 

This typical ratio is used to characterize the difference between a liquid and a glassy state. For 

infinitely fast time scale of the measurement all is frozen ( +∞→D ) and nothing has time to 

move, we observe a frozen-in solid. On the contrary, under an observation time scale which 

tends to the infinity all is in movement and we observe a liquid ( 0→D ). In calorimetric 

modulated temperature experiments, the Deborah number ωτ, appears in the denominator of 

the frequency dependent complex heat capacity. 

 

 

3. External thermal relaxation time constant of the temperature 

 

3.1. Definition. 
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Let us consider the figure 1, where a classical finite thermodynamic system with a heat 

capacity C is linked via a heat exchange coefficient K to a thermal bath with a constant 

temperature T0. The macroscopic thermodynamic system is a sample under calorimetric 

investigation. Its temperature is well defined and in this section we consider that its thermal 

diffusivity is infinite. The external thermal relaxation time constant of the temperature of the 

system defines the temperature of equilibrium as compared to that of the heat bath. It 

represents the time constant necessary for the heat to relax towards the heat sink. At 

thermodynamic equilibrium the temperature of the system equals precisely those of the bath. 

On the other hand, the temperature of the system can be constant and different from the 

temperature of the bath when stationary conditions are fulfilled. The system is then in a 

constant non-equilibrium state often called a stationary steady-state. The ratio of the external 

thermal time constant on the time scale of the measurement defines the condition of 

adiabaticity of the measurement. According to the value of this ratio, the calorimetric 

experiment may be realized in an adiabatic manner or not. The calorimetric experiment is 

adiabatic (in a calorimetric sense and not in a thermodynamic sense) if there is not heat 

exchanged between the sample and the heat bath, other than the quantity of heat supplied to 

(or released from) the sample by the experimentalist during the time scale of the 

measurement. If the experiment is not adiabatic, heat has time to flow away from the sample 

during this characteristic time. Subsequently, during this time scale the temperature of the 

sample relaxes exponentially. This adiabaticity time constant is defined by: 

 

τext = C/K            (2) 

 

C is the heat capacity of the sample and K the coefficient of heat exchange. 
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3.2. Principle of the ac-calorimetry method. 

 

 In this section we shall briefly recall the principle of the ac-calorimetry method which will 

serve as a model for our demonstration, although all the developments made in this paper can 

be applied with more or less complications to all other dynamic calorimetric methods. 

An input thermal power acdc PPtP +=)(  constituted by a dc and an ac term is supplied to 

the system. In the stationary regime, the temperature response is composed by a dc and an ac 

component:  

 

⎪⎩

⎪
⎨
⎧

−=

=−=Δ

)](exp[*

0
0

ϕωδ tiTT
K
PTTT

acac

dcdc           (3) 

 

The star indicates complex notations of the oscillating variables used here for the sake of 

calculus simplicity (for example the exact oscillating temperature of the system is the real part 

of *
acT : )cos()Re( * ϕωδ −== tTTT acacac ). Tdc is the mean constant dc temperature of the 

sample, T0 is the constant temperature of the bath, δTac is the amplitude of the oscillating 

temperature, ω is the angular frequency and ϕ is the phase between the oscillating 

temperature and the input oscillating heat flow with a phase taken by convention equal to 

zero: 

 

)exp(0
* tiPPac ω=            (4) 
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When the period ωπ /2  is the only characteristic time involved in the measurement, the heat 

capacity is simply: 

 

acac

ac

ac

ac
mes T

P
Ti

P
dtdT

PC
ωδω

0
*

*

*

*

/
===          (5) 

 

with a phase lag of π/2 between the thermal power and the temperature. 

 

 

3.3. Complex heat capacity 

 

When the heat exchange coefficient cannot be neglected in the measurement (no adiabatic 

measurement) the temperature of the sample obeys in this case to the following differential 

equation: 

 

)()( 0TTK
dt
dTCtP −+=           (6) 

 

Considering only the oscillating part of this equation in the stationary regime (the dc part is 

given in the equation (3)) the equation can be transformed in: 

 

K
PTT ac

acacext

*
** =+τ            (7) 

 

In the stationary regime, the resolution of this equation gives directly the oscillating 

temperature: 
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We observe the appearance of the adiabaticity ratio, ωτext, on the denominator which is a 

direct indication of the strength of the calorimetric adiabaticity of the measurement. This 

equation simply means that the oscillating temperature is the sum of two perpendicular 

components. An experimental complex heat capacity can be derived from the definition (5): 

 

"'*

*

iCCKiC
i

CiK
Ti

PC
ac

ac
mes −=−=

+
==

ωω
ω

ω
   (9) 

 

Therefore, considering only the adiabaticity time constant, the measured heat capacity is a 

complex number. The real part of the complex heat capacity is the heat capacity of the 

sample. The imaginary part has the dimension of a heat capacity. In fact it is a thermal 

conductance by unit of angular frequency. It is linked to the heat lost over the time scale of 

the measurement. As we have mentioned before, its value depends directly on the ratio of the 

thermal relaxation time on the time scale of the measurement, ωτext. This is however an 

irreversible thermodynamics process because heat flows out of the sample irreversibly. 

 

 

3.4. Entropy production 

 

 When the adiabaticity time constant plays a role, the sample can not be regarded as a 

thermally insulated thermodynamic system. Hence, the heat bath (or thermal bath) has to be 

taken into consideration in the balance of the entropy produced during this thermodynamic 
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non-equilibrium process (see figure 2). We are in presence of a single thermodynamic system 

composed by two homogeneous discrete sub-systems. One is the sample and the other the 

heat bath. A thermodynamic sub-system is homogeneous if there is no gradient of intensive 

parameters wherein. Exchanges of extensive parameters between each sub-system are simply 

due to differences of intensive parameters such as the pressure (volume exchange), the 

chemical potential (matter exchange) and evidently the temperature (heat exchange). For 

homogeneous discrete sub-systems the calculus of the entropy produced in the entire system 

due to exchange of extensive parameters between each sub-part are thus very simple. In the 

present case, the entropy produced in the entire system (sample + bath) is only due to the 

exchange of heat between the sample and the heat bath (see figure 3).  

 In the following, we assume that the stationary conditions are fulfilled. That is to say, the 

dc temperature has reached a constant value Tdc (or this value varies so slowly that its rate can 

be neglected). This value corresponds to the dc temperature of the stationary steady non-

equilibrium state. Since the temperature of the system is the sum of a dc and an ac component, 

the entropy production can be separated in two contributions. The dc part is due to the mean 

constant heat flux exchanged between the sample and the bath. There is a dc temperature 

gradient between the sample and the bath (see fig. 4). It is the reason why a stationary non-

equilibrium steady-state is reached at the level of the sample. The ac term is linked to the heat 

loss towards the bath due only to the oscillatory part of the temperature. Let us see how these 

two terms can appear and can be separated. Let us envisage the case of a thermal power 

supplied to the sample (see fig. 4). Thus, the temperature of the sample is greater than those of 

the heat bath, T = Tdc + Tac > T0. Hence, since it has enough time, heat relaxes irreversibly 

from the sample to the heat sink. 

 From the figure 5, the amount of heat involved in the ac-calorimetry experiment can be 

separated in two different types. At the level of the sample, there is external heat exchanged 



 10

between the sample and the surroundings (dQe
S) due to the heat flow supplied by the 

experimentalist, and an internal heat exchange due to the relaxation towards the bath (dQi
S). 

At the level of the bath, there is only an internal heat exchange flowing from the sample 

(dQi
B). Obviously, we have the two following relations: 

 

dQS = dQe
S + dQi

S           (10)  

 

which is just the expression of the conservation of energy at the level of the sample, and 

where dQe
S is positive if heat is supplied to the sample from the outside world, and dQi

S is 

negative because heat flows from the hot to the cold points. We have also: 

 

dQi
S + dQi

B = 0           (11) 

 

which simply means that what is released from the sample is taken by the bath. Afterwards, 

considering the entire system “sample-bath”, the total entropy variation is written: 
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This expression can be separated in two contributions. One is external and must be positive or 

negative depending on either heat is supplied to the sample or released from the sample by the 

experimentalist. The other contribution is definitely positive and called internal entropy 

variation inside the system. It is only this contribution which is connected to the irreversible 

process due to the heat flow from the sample towards the heat bath.  

 Let us now envision this latter term in details: 
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The two temperature differences ΔTdc and Tac have been neglected as compared to T0 (recall 

that in ac-calorimetry T = Tdc + Tac = T0 + ΔTdc + Tac). Subsequently, the instantaneous rate 

of production of entropy is: 

 

2
0

)(
T

TT
dt

dQ
dt

Sd acdc
S
ii

i
+Δ

−==σ          (14) 

 

In ac-calorimetry from Sullivan and Seidel work [5], it is well-known that the heat flux 

exchanged between the sample and the heat bath via the heat exchange coefficient K is the 

sum of two components, a dc and an ac term included in the second term of the right-hand 

side of (6): 

 

acdc

S
i KTTK

dt
dQ

+Δ=−           (15) 

 

Consequently the entropy production takes the following expression: 

 

2
2

0

)( acdci TT
T
K

+Δ=σ            (16) 

 

which can be separated in two components. The first is a dc component: 
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This term represents the constant and continuous entropy produced inside the system due to 

the dc constant heat flow between the sample and the heat bath in the stationary regime. This 

heat flow is exactly compensated by the dc thermal power supplied by the experimentalist to 

the sample, maintaining it in a non-equilibrium stationary state. The second term is the sum of 

two oscillatory terms (one oscillates at the frequency of the input power and the second at 

twice the frequency): 
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This term is the instantaneous entropy production due to the oscillatory component of the 

sample temperature relaxing towards the bath. Now, if we take the average of this entropy 

production over one period of the temperature cycle, then it remains only the contribution of 

the twice frequency oscillating term: 
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With the equation (9) of the complex heat capacity we have: 

 

''
2

0

C
T
Tacac

i ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

δπσ            (20) 

 



 13

Hence, in one period of the temperature modulation there is positive creation of entropy due 

to oscillatory heat exchange between the sample and the heat bath, which is proportional to 

the imaginary part of the experimental frequency dependent complex heat capacity. To be 

more precise, knowing that the modulus of the oscillating temperature can be expressed as: 

 

mes
ac C

PT
ω

δ 0=            (21) 

 

and also that the amount of heat involved per half-period of the oscillating cycle is: 

 

ω
ωδ 04/

4/ 00 2)cos( PdttPQ
T

T
== ∫−          (22) 

 

then over one period of the temperature oscillation (20) can be expressed as follows: 
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Hence, the entropy produced irreversibly per period of the temperature modulation due to 

oscillatory exchange of heat between the sample and the thermal bath is directly proportional 

to the imaginary part of the complex impedance of the measurement. During this period of 

time, we can say that heat is lost (dissipated, absorbed) because it does not contribute to the 

measurement of the usual heat capacity of the sample. All this last formula have been already 

derived by different authors who start in deriving the entropy at thermodynamic equilibrium 

to the second order term in the oscillatory temperature [2, 6, 7]. Nevertheless, as it was 

clarified in a recent paper [3], this derivation has nothing to do with the well-known classical 
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expression of the frequency dependent complex heat capacity where internal degrees of 

freedom are involved (see the last section). Here, this approach concerns the ac-calorimetry 

case, but the TMDSC method will be envisaged under the same point of view in a 

forthcoming publication. Indeed, in TMDSC method the condition of adiabaticity is basically 

not fulfilled, because generally heat is directly supplied to the sample from the heat bath via 

the heat exchange coefficient K. 

 

 

4. Internal thermal relaxation time constant of the temperature 

 

4.1. Definition. 

 

As in the previous section, this thermal time constant is also related to the thermal 

disequilibrium of the sample. In this case, the thermodynamic system that we have to consider 

is only composed by the sample which is thermally insulated from the heat bath (the condition 

of adiabaticity is supposed to be respected). The ratio of this thermal time constant on the time 

scale of the measurement defines the condition of homogeneity of the temperature of the 

sample. That is to say, according to the value of this ratio, the temperature may be or may not 

be the same anywhere and at any time within the sample. The calorimetric experiment fulfils 

the condition of temperature homogeneity of the sample if during the time scale of the 

measurement heat is not diffused (or absorbed) along the spatial dimensions of the sample. If 

the requirement is not fulfilled, heat is lost along the path linking the hot point (generally the 

heater) and the cold point of the sample (usually the thermometer). In this case, as in all 

diffusion phenomena, the temperature measured at the level of the thermometer relaxes 

exponentially over a spatial dimension. Let us point out that not only the finite value of the 
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diffusivity of the sample medium is a limiting factor, but also all the thermal interfaces 

(thermal contacts) encountered between the hot source and the thermometer are limiting 

factors for a perfect internal temperature equilibrium of the sample. Let us now enter in the 

general treatment of complex heat capacity measured in diffusive media. 

 

 

4.2. Semi-infinite diffusive medium 

 

Generally, the case of semi-infinite diffusive medium is the simplest and pedagogical 

example to treat diffusion of heat from the Fourier's law in oscillatory regime. Here we used 

this model for simplicity keeping in mind the objective that we want to reach, but the more 

complicated ac-calorimetry case is treated in the appendix. Let a semi-infinite homogeneous 

medium thermally coupled to a thermal bath of constant temperature T0 (cf. figure 6). Let us 

suppose a heater supplying an ac thermal power *
acP  at the "free face" of the system at the 

origin of the one dimensional spatial axis (x = 0). In the oscillatory regime and forgetting the 

dc term for simplicity, the oscillatory temperature at a distance x from the heater obeys to the 

diffusion equation: 

 

2
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=

∂
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where D is the thermal diffusivity of the medium: 

 

c
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ρ
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where k is the thermal conductivity, ρ is the density and c is the bulk specific heat. The ac 

stationary solution of this spatio-temporal variables equation is [8]: 
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where 0Tδ  is the amplitude of the oscillating temperature at the origin, and λ is the 

characteristic diffusion length of the temperature within the sample: 

 

ω
λ D2
=             (27) 

 

The phase 4/π−  is due to the boundary condition )exp(0 tiPP ω=  at 0=x . The Fourier's 

law establishes the relation between the heat flux propagating inside the sample and the 

temperature gradient at a distance x from the origin:  
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In the oscillatory and stationary regimes this heat flux is: 
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where P0 is the amplitude of the alternative power at the origin which is linked to 0Tδ  by the 

following equation: 
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Now, integrating the diffusion equation (24) from 0 to the infinity (semi-infinite medium) we 

obtain: 
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which gives: 
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(32) 

where λρλ cSC =  is a characteristic heat capacity obtained on a characteristic volume given 

by the product of the surface S of the sample and the characteristic diffusion length λ. The 

natural definition of an experimental complex heat capacity is in this case: 
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          (33) 

 

This complex heat capacity can be deduced for example from such an experiment realized 

with a thermometer placed at the same location than those of the heater. It is worth noticing 

that this expression is valid at any position x along the x-dimension of the sample, because the 
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ratio of the thermal power on the temperature time derivative is independent of x. With (32) it 

yields to: 

 

)1(
21

iC
i

CCmes −=
+

= λλ           (34) 

 

It has to be remarked that in the case of diffusive semi-infinite medium, the heat capacity 

which can be inferred from an oscillating temperature experiment with a heater placed at the 

top of the sample, and a thermometer located at any distance x from this side, is equal to half 

of the heat capacity calculated from a volume of the homogeneous sample represented by the 

surface S and the characteristic thermal diffusion length λ. This heat capacity can be measured 

equally from the in-phase or the out-of-phase oscillating temperature component. It is well-

known that the relaxation time constant involved in these types of situations is approximately: 

 

D
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With (26) we have: 
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2

int λ
ωτ L

≈             (36) 

 

Consequently the heat capacity measured in this latter experiment can be expressed as 

follows: 
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intωτλ
CC ≈             (37) 

 

where C is the heat capacity due to the entire volume of the sample. 

 

 

4.3. Entropy production 

 

 The instantaneous entropy production by unit of volume resulting from the irreversible 

aspect of the propagation of heat in diffusive media is given by: 
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This formula is derived again from the product of the thermodynamic force 2
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the linear regime of validity of the Fourier's law, with the thermodynamic induced flux, the 

heat flux (see (28)). Multiplying by the constant surface S and integrating from zero to the 

infinity, it gives the instantaneous rate of production of entropy in the entire volume:  
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Taking the time average of this latter expression over one period of the temperature cycle 

gives:  
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In the appendix, we show also the validity of this relation in the particular case of ac-

calorimetry in diffusive regime. We can assume that this expression is also valid for any kind 

of diffusive experiments with any types of sample with complicated spatial geometry.  

 

 

5. Internal thermal relaxation time constant of the heat flux 

 

5.1. Beyond the Fourier's law 

 

 Some specific situations can happen in which the Fourier's law is not valid anymore. As a 

matter of fact, Fourier's law yields to a paradoxical infinite speed of propagation of heat in a 

medium. In fact, when the ratio of the absolute temperature on the mean free path of the heat 

carriers becomes small as compared to the temperature gradient, the Fourier's law goes out of 

its domain of validity [9]: 

 

⇒>>
∂
∂

lx
T

T
11 Fourier is not valid         (41) 

 

where l is the mean free path of the heat carriers. This particular situation can be reached 

theoretically and experimentally in studies of propagation of heat in non-homogeneous 

diffusive media [10]. Anyway, the discussion on the domain of validity of the Fourier's law 

seems to be still opened. For instance, let us suppose that a modulated calorimetric 
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experiment is realized in such a situation. A supplementary term, taking into account the 

relaxation time constant τ of the heat flux (relaxation of the heat carriers) has to be added to 

the classical Fourier's law. This yields to the Vernotte-Cattaneo equation [11, 12]: 

 

TK
dt
dQ

dt
Qd

sΔ=+
&

τ            (42) 

 

It is straightforward to see that the classical Fourier's law, where Ks is the internal thermal 

conductance of a sample, is found when this relaxation time constant becomes negligible. The 

equation (42) is a first order linear equation ensuring that once again the treatment is realized 

in the vicinity of thermodynamic equilibrium. As usual, the temperature variation ΔT in (42) 

is written: 

 

00 TTTTTT acdc −+=−=Δ           (43) 

 

If we write 
dt
dQP =  the heat flux, then at equilibrium 0=P&  and 0=acT  and we recover the 

Fourier's law: 

 

)( 00 TTKP dcs −=            (44) 

 

In order to consider disequilibrium around this constant dc situation (stationary condition), the 

Vernotte-Cattaneo equation can more explicitly be written: 

 

acsTKPP =+δτδ &            (45) 
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where 0)( PtPP −=δ  is the little departure of P around its constant equilibrium value P0. The 

resolution of (42) in complex notations and under stationary conditions yields to: 

 

ωτ
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TKP acs

+
=

1

*
*            (46) 

 

Let us remark that the heat flux propagating inside the sample is the sum of two oscillating 

components with a phase difference of π/2. A part of the thermal power is dispersed, and the 

other part is absorbed due to the relaxation of the heat carriers inside the sample. From this 

last result, a different perspective might be to consider a complex thermal conductance inside 

the sample.  

 

 

5.2. Complex heat capacity 

 

 Starting with the definition (5) of the complex heat capacity we obtain: 
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Consequently, just beyond the Fourier's law the imaginary part of the frequency dependent 

complex heat capacity is: 
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5.3. Entropy production 

 

 Let us start with the same definition (17) of the rate of production of entropy as a product 

of a thermodynamic force by the induced thermodynamic flux: 
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This time, the induced thermodynamic flux is just given by (46) and we obtain (in complex 

notations): 
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The dc rate of production of entropy which maintains the system in a non-equilibrium quasi-

stationary state is found again (see equation (15)) 
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This time, the permanent heat flux is flowing inside the sample from the hot source towards 

the cold source, and the internal thermal conductance across the sample replaces the heat leak 

of the non-adiabatic case. For the ac part, all the other oscillating terms are either terms 

modulated at the frequency ω or terms expressed as a product of two oscillating terms in 



 24

quadrature, apart for one term which oscillates at twice the frequency. When the net entropy 

produced over the time scale of the experiment is calculated by taking the time integral over 

one cycle, only this latter term contributes. It is straightforward to see that this term is: 
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5. Kinetic relaxation time constant of internal degrees of freedom 

 

 When a particular internal degree of freedom is suddenly perturbed by a temperature 

variation, it relaxes following a characteristic kinetic relaxation time constant. This 

characteristic time is the cause of the so-called frequency dependent complex heat capacity or 

generalized calorimetric susceptibility [13, 14]. This later thermodynamic complex quantity is 

known for a long time ago. The frequency dependent complex heat capacity appears at the 

beginning of the 20th century in the field of ultrasonic absorption on diluted gas. Then this 

notation was refund later in the field of chemical relaxation and after used a lot in the famous 

calorimetric experiments of Birge and Nagel with the so-called 3ω calorimetric method. We 

would just like recall here in a summary the important physical aspect of this unusual 

thermodynamic quantity [1-3]. 

 Firstly, a very important hypothesis necessary to understand well this concept is to assume 

that the system is in thermal equilibrium. That is to say that the first two studied previous 

thermal relaxation time constants do not play a role here. For ac-calorimetry experiments, 

mathematically this requirement implies the two following inequalities:  
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Experimentally the useful working frequency range is chosen in such a way that the system is 

in a stationary regime with external temperature equilibrium (adiabaticity conditions) and 

with internal temperature equilibrium (infinite thermal diffusivity and perfect thermal 

contact). Secondly, let us now observe a particular internal degree of freedom inside the 

sample. This internal degree of freedom generally contributes to the total heat capacity of the 

sample under study. That is to say, among the quantity of heat supplied to the sample by the 

experimentalist, this degree of freedom can absorb the necessary amount of heat which totally 

excites it, allowing the system to be in another equilibrium thermodynamic state (another 

sample configuration, another physical state, another chemical composition, another phase, 

etc…). However, if heat is supplied in a shorter time interval than the kinetic relaxation time 

constant of the degree of freedom, this degree does not contribute entirely to the equilibrium 

value of the measured heat capacity under the time scale of observation (because it is still 

relaxing). In this situation, the measured heat capacity is a non-equilibrium quantity which 

varies on time. The heat capacity becomes a dynamic quantity. On a strict thermodynamic 

point of view, the sample is out of equilibrium. As an example, the most well-known case of 

irreversible process is the case of chemical reactions where the internal degree of freedom is 

characterized by an internal parameter, or an order parameter, usually called degree of 

advance of the reaction or extent of the reaction. Over a given variation of the temperature of 

the sample in a given time interval, it is possible that the extent of the reaction can not reach 

its equilibrium value during this time scale because of the slow kinetic of the chemical 

reaction. Sometimes, the kinetic of the internal reorganization inside the sample is so slow, 

that the internal degree of freedom is completely frozen. The sample is thus completely 

frozen-in over the time scale of observation. At this level, from an original work of Prigogine 
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and Mazur [15], we have envisaged recently that during the relaxation of the order parameter 

characterizing the slow internal degree of freedom, a certain amount of heat is lost (or 

absorbed) along a virtual axis represented by the value of this order parameter [3]. 

Consequently, this amount of heat does not participate to the equilibrium part of the measured 

heat capacity, exactly in such a same way envisaged for irreversible heat diffusive effects and 

irreversible relaxation of heat carriers of the previous sections. Moreover, this relaxation is 

accompanied by a definite positive entropy production which, when it is averaged over the 

time scale of the experiment (positive entropy creation), is directly connected to the imaginary 

part of the complex heat capacity exactly in a same manner than in the case of non-

equilibrium temperature of the sample (non adiabaticity and non homogeneity of the 

temperature of the sample).  

 

 

6. Conclusion  

 

 When a time constant appears in modulated temperature calorimetric experiment, it has to 

be compared to the characteristic time scale of the experiment in order to see whether the 

experiment is reversible (at thermodynamic equilibrium) or irreversible (out of 

thermodynamic equilibrium). When this time constant cannot be neglected as compared to the 

time scale of observation, the heat capacity measurement becomes dynamic and the measured 

heat capacity becomes a complex number. For each time constant considered in this paper, it 

has been demonstrated that the imaginary part of the complex heat capacity is connected 

following exactly the same equality to the positive entropy produced over the time scale of 

observation. The presence of an imaginary part in the complex heat capacity indicates that a 

part of the total heat supplied to the system cannot totally excite the sum of the degrees of 
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freedom constituting the whole heat capacity of the system. In the case of the non-

adiabaticity, this amount of heat flows away from the sample via the heat leak. Since the 

imaginary part is inversely proportional to the thermal frequency, this effect is accentuated at 

low frequency. On the other hand, for all the others time constant considered (thermal 

diffusivity, finite velocity of the heat carriers, and slow internal degree of freedom), the higher 

is the thermal frequency, the bigger is this quantity of heat lost within the sample for the 

measurement of the static equilibrium heat capacity. 

 From the results obtained in this paper, we would like to ask an opened question:  

since the same fundamental relationship is obtained either for the time constant implied in the 

thermal equilibrium of the sample (thermal diffusivity and calorimetric adiabaticity) or for the 

non-equilibrium behaviour of slow internal degrees of freedom within the sample, may this 

remark give rise to a generalized definition of the temperature? May the heat capacity and 

particularly its imaginary part give rise to a more general definition of the temperature for 

systems out of thermodynamic equilibrium? 

 This work was realized in the team of "Thermodynamique des Petits Systèmes" and the 

"Pôle de Capteurs Thermométriques et Calorimétrie" of the Institut Néel. The authors would 

like to thank O. Bourgeois and H. Guillou for stimulating discussions and many corrections of 

the manuscript. 
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Appendix 

 

In general, in ac-calorimetry experiments, a sample of volume SLV =  is linked by a 

thermal conductance K to a thermal bath of constant temperature T0 (cf. figure 7). The heater 

is assumed to be located at the position 0=x  and the thermometer at the distance Lx =  from 

the heater on the sample as depicted in figure 7. 

The two boundary conditions necessary for the resolution of the Fourier's diffusion equation 

(see equation (24)) are in this case: 
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For this geometry, the stationary solution of the diffusion equation yields to: 
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with 
L
SkKs =  the internal thermal conductance inside the entire sample volume and the 

complex parameter a: 

 

)1( iLa +=α             (3) 

 

and the complex parameter θ : 
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αθ )1( i+=            (4) 

 

with  
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and SLcC ρ=  the total heat capacity of the sample. 

 

The complex heat capacity at the position 0=x  can be defined as follows: 
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where *
, LxacT =  is the oscillating temperature measured with the thermometer. 

From this definition, the imaginary part of the complex impedance of the measurement is 

calculated: 
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Considering that the experiment is realized at such a frequency than the sample is thermally 

insulated from the heat bath (adiabaticity condition), the latter equation is simplified by 

putting 0=K : 
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The entropy production is calculated within the entire sample by: 
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where the modulus of the oscillating temperature and the constant dc gradient across the 

sample are still together neglected before the bath temperature T0. The cc superscript on the 

second temperature gradient means the complex conjugation. 

 

The temperature gradient is obtained from (2): 
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Thus: 
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The entropy production is: 
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Taking the limit when K tends to zero (adiabaticity) and integrating over one half a period of 

the modulation (because of the complex conjugation) gives: 
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Figure 1: A simple classical finite thermodynamic system (a sample under calorimetric 

investigation) of heat capacity C at a temperature T is linked via a thermal conductance K to a 

thermal bath of constant temperature T0. 

 

Figure 2: The total system under interest is composed by two homogeneous sub systems, the 

sample and the heat bath, which are thermally coupled each other by the heat exchange 

coefficient K. 

 

Figure 3: The entropy produced inside the system is due to the exchange of heat between the 

two sub-systems with different temperatures. 

 

Figure 4: The thermodynamic system is represented beside a time versus temperature 

diagram. A dc constant temperature gradient is maintained between the system and the heat 

bath. Hence, a dc heat exchange of heat is established across the thermal link. Also an ac 

temperature component oscillates at the level of the sample. Hence, an ac heat exchange of 

heat is established across the thermal link. 

 

Figure 5: An amount of heat S
edQ  is supplied to the sample from the outside of the system by 

the experimentalist. Inside the system, the amount of heat which goes away from the sample 

via the heat exchange coefficient K is entirely captured by the thermal bath ( B
i

S
i dQdQ = ). 

 

Figure 6: A semi-infinite homogeneous medium is directly linked to a thermal bath of 

constant temperature. In a stationary condition, a heater supplied an ac thermal power at the 

top face of the medium located at the position 0=x . At a distance x from the top face, a 
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thermometer records the temperature. The thermal bath is located at an infinite distance from 

the heater. 

 

Figure 7: Typical situation of ac calorimetry experiment. A heater supplied an oscillating 

thermal power at a face of the sample and a thermometer records the temperature at the other 

face of the sample at a distance L from the heater. 
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