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Abstract

For a stopped diffusion process in a multidimensional time-dependent domain D, we
propose and analyse a new procedure consisting in simulating the process with an
Euler scheme with step size ∆ and stopping it at discrete times (i∆)i∈N∗ in a mod-
ified domain, whose boundary has been appropriately shifted. The shift is locally
in the direction of the inward normal n(t, x) at any point (t, x) on the parabolic
boundary of D, and its amplitude is equal to 0.5826(...)|n∗σ|(t, x)

√
∆ where σ stands

for the diffusion coefficient of the process. The procedure is thus extremely easy to
use. In addition, we prove that the rate of convergence w.r.t. ∆ for the associ-
ated weak error is higher than without shifting, generalizing previous results by
[BGK97] obtained for the one dimensional Brownian motion. For this, we establish
in full generality the asymptotics of the triplet exit time/exit position/overshoot for
the discretely stopped Euler scheme. Here, the overshoot means the distance to the
boundary of the process when it exits the domain. Numerical experiments support
these results.
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1 Introduction

1.1 Statement of the problem

We consider a d-dimensional diffusion process whose dynamics is given by

Xt = x +
∫ t

0
b(s, Xs)ds +

∫ t

0
σ(s, Xs)dWs (1.1)

where W is a standard d′-dimensional Brownian motion defined on a filtered
probability space (Ω,F , (Ft)t≥0, P) satisfying the usual conditions. The map-
pings b and σ are Lipschitz continuous in space and locally bounded in time, so
that (1.1) has a unique strong solution. We consider (Dt)t≥0, a time-dependent
family of smooth bounded domains of R

d, that is also smooth with respect
to t (we refer to paragraph 1.5.2 for a precise definition). See Figure 1. For a
fixed deterministic time T > 0, this defines a time-space domain

D =
⋃

0<t<T

{t} × Dt = {(t, x) : 0 < t < T, x ∈ Dt} ⊂]0, T [×R
d.

Cylindrical domains are specific cases of time-dependent domains of the form
D =]0, T [×D, where D is a usual domain of R

d (Dt = D for any t). Time-
dependent domains in dimension d = 1 are typically of the form D = {(t, x) :
0 < t < T, ϕ1(t) < x < ϕ2(t)} for two functions ϕ1 and ϕ2 (the time-varying
boundaries).

D0

Dt
DT

time
t0 T

R
d

Figure 1. Time space domain and its time-sections.

Now, set τ := inf{t > 0 : Xt 6∈ Dt}, then τ ∧T is the first exit time of (s, Xs)s

from the time-space domain D. Given continuous functions g, f, k : D̄ → R,
we are interested in estimating the quantity

Ex[g(τ ∧ T, Xτ∧T )Zτ∧T +
∫ τ∧T

0
Zsf(s, Xs)ds], Zs = exp(−

∫ s

0
k(r, Xr)dr), (1.2)

where as usual Ex[.] := E[.|X0 = x] (resp. Px[.] := P[.|X0 = x]). The approxi-
mation of such quantities is a well known issue in finance, since it represents in
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this framework the price of a barrier option, see e.g. Andersen and Brotherton-
Ratcliffe [ABR96]. These quantities also arise through the Feynman-Kac rep-
resentation of the solution of a parabolic PDE with Cauchy-Dirichlet boundary
conditions, see Costantini et al. [CGK06]. They can therefore also be related
to problems of heat diffusion in time-dependent domains.

We then choose to approximate the expectation in (1.2) by Monte Carlo sim-
ulation. This approach is natural and especially relevant compared to deter-
ministic methods if the dimension d is large. To this end we approximate the
diffusion (1.1) by its Euler scheme with time step ∆ > 0 and discretization
times (ti = i∆ = iT/m)i≥0 (m ∈ N∗ so that tm = T ). For t ≥ 0, define
φ(t) = ti for ti ≤ t < ti+1 and introduce

X∆
t = x +

∫ t

0
b(φ(s), X∆

φ(s))ds +
∫ t

0
σ(φ(s), X∆

φ(s))dWs. (1.3)

We now associate to (1.3) the discrete exit time τ∆ := inf{ti > 0 : X∆
ti

/∈ Dti}.
Approximating the functional Vτ := g(τ ∧ T, Xτ∧T )Zτ∧T +

∫ τ∧T
0 Zsf(s, Xs) ds

by

V ∆
τ∆ := g(τ∆ ∧ T, X∆

τ∆∧T )Z∆
τ∆∧T +

∫ τ∆∧T

0
Z∆

φ(s)f(φ(s), X∆
φ(s))ds

with Z∆
t = e

−
∫ t

0
k(φ(r),X∆

φ(r)
)dr

,

we introduce the quantity

Err(T, ∆, g, f, k, x) = Ex[V
∆
τ∆ − Vτ ] (1.4)

that will be referred to as the weak error.

Note that in V ∆
τ∆ , on {τ∆ ≤ T} g is a.s. not evaluated on the side part

⋃

0≤t≤T{t}×∂Dt of the boundary (g must be understood as a function defined
in a neighborhood of the boundary). At first sight, this approximation can
seem coarse. Anyhow, it does not affect the convergence rate and really reduces
the computational cost with respect to the alternative that would consist in
taking the projection on ∂D. It is a commonly observed phenomenon that
the error is positive when g is positive (overestimation of Ex(Vτ )), because
we neglect the possible exits between two discrete times: see Boyle and Lau
[BL94], Baldi [Bal95], Gobet and Menozzi [GM04]. In addition, it is known
that the error is of order ∆1/2: see [GM04] for lower bound results, see [GM07]
for upper bounds in the more general case of It processes. But so far, the
derivation of an error expansion Ex[V

∆
τ∆ − Vτ ] = C

√
∆ + o(

√
∆) had not been

established: this is one of the intermediary results of the current work (see
Theorem 4).

Our goal goes beyond this result, by designing a simple and very efficient
improved procedure. We propose to stop the Euler scheme at its exit of a
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Figure 2. The boundary ∂Dt and the smaller domain D∆
t .

smaller domain in order to compensate the underestimation of exits and to
achieve an error of order o(

√
∆). The smaller domain is defined by its time-

section

D∆
t = {x ∈ Dt : d(x, ∂Dt) > c0

√
∆|n∗σ(t, x)|}

where n(t, x) is the inward normal vector at the closest point of x on the
boundary ∂Dt, see Figures 2 and 3 for details 1 . We shall interpret |n∗σ(t, x)| as
the noise amplitude along the normal direction to the boundary. The constant
c0 is defined later in (2.1) and equals approximatively 0.5826(. . .). Thus, the
associated exit time of the Euler scheme is given by

τ̂∆ = inf{ti > 0 : X∆
ti
6∈ D∆

ti
} ≤ τ∆.

The new Monte Carlo scheme consists in simulating independent realizations
of

V ∆
τ̂∆ = g(τ̂∆ ∧ T, X∆

τ̂∆∧T )Z∆
τ̂∆∧T +

∫ τ̂∆∧T

0
Z∆

φ(s)f(φ(s), X∆
φ(s))ds

and averaging them out to get an estimator of the required quantity Ex(Vτ ).
Our main result (Theorem 5) is that the asymptotic bias w.r.t. ∆ is signifi-
cantly improved:

Ex[V
∆
τ̂∆ − Vτ ] = o(

√
∆)

(instead of C
√

∆ + o(
√

∆) before). This improvement has been already es-
tablished in the case of the one-dimensional Brownian motion [BGK97] in the
context of computational finance, exploiting heavily the connection with Gaus-
sian random walks and some explicit computations available in the Brownian
motion case.

1 the closest point of x may not be unique for points x far from ∂Dt. But since
the above definition of D∆

t involves only points close to the boundary, this does not
make any difference.
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1.2 Contribution of the paper

To achieve the results in the current very general framework, we combine
several ingredients (which correspond to the main steps of the proofs).

(1) We first expand the error Ex[V
∆
τ∆ − Vτ ] related to the use of the dis-

crete Euler scheme in the domain D. Although this issue deserved many
studies in the literature, the expansion results are new. We prove that it
relies on the study of the weak convergence of the triplet (exit time, posi-
tion at exit time, renormalized overshoot at exit time), that is (τ∆, X∆

τ∆ ,
∆−1/2d(X∆

τ∆ , ∂Dτ∆)), as ∆ goes to 0. This weak convergence result is cru-
cial in this work and it is new (see Theorem 3).
Then, combining this with sharp techniques of error analysis, we derive
an expansion of the form Err(T, ∆, g, f, k, x) = C

√
∆ + o(∆) in the very

general framework of stopped diffusions in time-dependent domains.
(2) Second, we analyse the impact of the boundary shifting, in the continuous

time problem (see paragraph 2.3.2). This is related to the differentiability
of Ex(Vτ ) w.r.t. the boundary and it has been addressed in [CGK06]. We
apply directly their results. Then, we obtain the global error estimate of
the boundary correction procedure (Theorem 5).

We mention that the previous results about the error expansion and correction
still hold in the stationary setting, see Section 4, which also seems to be new.
A numerical application is discussed in Section 5. Complementary tests are
presented in [Gob09], showing that the boundary correction procedure is very
generic and seems to work without Markovian property for X. This feature
will be investigated in further research.

Let us finally mention that we could also consider the diffusion process dis-
cretely stopped: expansion and correction results below would remain the
same.

1.3 Comparison with results in literature

Up to now, the behavior of (1.4) had mainly been analysed for cylindrical
domains, in the killed case, without source and potential terms (i.e. when
the error writes Err(T, ∆, g, 0, 0, x) = Ex[g(X∆

T )1τ∆>T ]−Ex[g(XT )1τ>T ]). Let
us first mention the work of Broadie et al. [BGK97], who first derived the
boundary shifting procedure in the one dimensional geometric Brownian mo-
tion setting (Black and Scholes model). In [Gob00] and [GM04], it had been
shown that, under some (hypo)ellipticity conditions on the coefficients and
some smoothness of the domain and the coefficients, Err(T, ∆, g, 0, 0, x) was
lower and upper bounded at order 1/2 w.r.t. the time-step ∆. Also, an expan-
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sion result for the killed Brownian motion in a cone as well as the associated
correction procedure are available in [Men06].

All these works emphasize that the crucial quantity to analyse in order to
obtain an expansion is the overshoot above the spatial boundary of the dis-
crete process. In the Brownian one-dimensional framework such analysis goes
back to Siegmund [Sie79] and Siegmund and Yuh [SY82]. Also a non linear
renewal theory for random walk, i.e. for a curved boundary, had been de-
veloped by Siegmund and al., see [Sie85] and references therein, Woodroofe
[Woo82] and Zhang [Zha88]. We manage to extend their results to obtain the
asymptotic distribution of the overshoot of the Euler scheme, see Sections 2
and 3. Concerning the asymptotics of the overshoot of stochastic processes, let
us mention the works of Alsmeyer [Als94] or Fuh and Lai [FL01] for ergodic
Markov chains and Doney and Kyprianou for Lvy processes [DK06]. These
works are all based on renewal arguments.

Finally, for simulating stopped diffusions we also mention the alternative tech-
nique based on Random Walks on Spheres. This method allows to derive a
bound for the weak error associated to the approximation of E[Vτ ] in the ellip-
tic setting for a cylindrical domain, see Milstein [Mil97]. The same approach
has also been exploited to obtain some strong error or pathwise bounds for a
bounded time-space cylindrical domain, see Milstein and Tretyakov [MT99].
Recently, Deaconu and Lejay [DL06] have developed similar algorithms, but
based on random walks on rectangles. However, computationally speaking,
our approach is presumably more direct.

1.4 Outline of the paper

Notations and assumptions used throughout the paper are stated in Section
1.5. In Section 2 we give our main results concerning the asymptotics of the
overshoot, the error expansion and the boundary correction. These results
are proved in Section 3, which is the technical core of the paper. Eventually,
Section 4 deals with the stationary extension of our results. We still manage to
obtain an expansion and a correction for elliptic PDEs. Some technical results
are postponed to the Appendix.

1.5 General notation and assumptions

1.5.1 Miscellaneous

• Differentiation. For smooth functions g(t, x), we denote by ∂β
xg(t, x) the
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derivative of g w.r.t. x according to the multi-index β, whereas the time-
derivative of g is denoted by ∂tg(t, x). The notation ∇g(t, x) stands for the
usual gradient w.r.t. x (as a row vector) and the Hessian matrix of g (w.r.t.
the space variable x) is denoted by Hg(t, x).
The second order linear operator Lt below stands for the infinitesimal gener-
ator of the diffusion process X in (1.1) at time t :

Ltg(t, x) = ∇g(t, x)b(t, x) +
1

2
Tr(Hg(t, x)[σσ∗](t, x)). (1.5)

• Metric. The Euclidean norm is denoted by | · |.
We set Bd(x, ǫ) for the usual Euclidean d-dimensional open ball with center x
and radius ǫ and d(x, C) for the Euclidean distance of a point x to a closed set
C. The r-neighborhood of C is denoted by VC(r) = {x : d(x, C) ≤ r} (r ≥ 0).

• Functions. For an open set D′ ⊂ R × R
d and l ∈ N, C⌊ l

2
⌋,l(D′) (resp.

C⌊ l
2
⌋,l(D′)) is the space of continuous functions f defined on D′ with con-

tinuous derivatives ∂β
x∂j

t f for |β| + 2j ≤ l (resp. defined in a neighborhood of
D′). Also, for a = l + θ, θ ∈]0, 1], l ∈ N, we denote by Ha(D′) (resp. Ha(D̄′))

the Banach space of functions of C⌊ l
2
⌋,l(D′) (resp. C⌊ l

2
⌋,l(D̄′) ) having lth space

derivatives uniformly θ-Hlder continuous and ⌊l/2⌋ time-derivatives uniformly
(a/2 − ⌊l/2⌋)-Hlder continuous, see Lieberman [Lie96], p. 46 for details. We

may simply write C⌊ l
2
⌋,l or Ha when D′ = R × R

d.
• Floating constants. As usual, we use the same symbol C for all finite, non-
negative constants which appear in our computations : they may depend on
D, T, b, σ, g, f, k but they will not depend on ∆ or x. We reserve the notation
c for constants also independent of T , g, f and k. Other possible dependences
will be explicitly indicated.
In the following Opol(∆) (resp. O(∆)) stands for every quantity R(∆) such
that, for any k ∈ N one has |R(∆)| ≤ Ck∆

k (resp. |R(∆)| ≤ C∆) for a
constant Ck > 0 (uniformly in the starting point x).

1.5.2 Time-space domains

Below, we introduce some usual notations for such domains (see e.g. [Fri64],
[Lie96]). In what follows, for any t ≥ 0, Dt is a non empty bounded domain
of R

d, that coincides with the interior of its closure (see [Fri64], Section 3.2).
We then define the time-space domain by D :=

⋃

0<t<T{t} × Dt ⊂]0, T [×R
d,

see Figure 1.

Regularity assumptions on the domain D will be formulated in terms of Hölder
spaces with time-space variables (see [Lie96] p.46 and [Fri64] Section 3.2).
Namely, we say that the domain D is of class Ha, a ≥ 1 if for every boundary
point (t0, x0) ∈ ⋃

0≤t≤T{t} × ∂Dt, there exists a neighborhood ]t0 − ε2
0, t0 +

ε2
0[×Bd(x0, ε0), an index 1 ≤ i ≤ d and a function ϕ0 ∈ Ha(]t0 − ε2

0, t0 +
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ε2
0[×Bd−1((x

1
0, ..., x

i−1
0 , xi+1

0 , ..., xd
0), ε0) s.t.

{

∪0≤t≤T {t} × ∂Dt

}

∩
{

]t0 − ε2
0, t0 + ε2

0[×Bd(x0, ε0)
}

:= {(t, x) ∈ (]t0 − ε2
0, t0 + ε2

0[∩[0, T ]) × Bd(x0, ε0) :

xi = ϕ0(t, x1, ..., xi−1, xi+1, ..., xd)}.

If D is of class H2, all domains Dt, for t ∈ [0, T ], satisfy the uniform interior
and exterior sphere condition with the same radius r0 > 0. Moreover, the
signed spatial distance F , given by

F (t, x) =











−d(x, ∂Dt), for x ∈ Dc
t , d(x, ∂Dt) ≤ r0, 0 ≤ t ≤ T,

d(x, ∂Dt), for x ∈ Dt, d(x, ∂Dt) ≤ r0, 0 ≤ t ≤ T,

belongs to H2 ({(t, x) : 0 ≤ t ≤ T, d(x, ∂Dt) < r0}) (see [Lie96], Section X.3)
and n(t, x) = [∇F ]∗(t, x) is the unit inward normal vector to Dt at π∂Dt(x)
the nearest point to x in ∂Dt (see Figure 3). The function F can be extended
as a H2([0, T ] × R

d) function, preserving the sign (see [Lie96], Section X.3).

1.5.3 Diffusion processes stopped at the boundary

We specify the properties of the coefficients (b, σ) in (1.1) with assumption

(Aθ) (with θ ∈]0, 1])
1. Smoothness. The functions b and σ are in H1+θ.
2. Uniform ellipticity. For some a0 > 0, it holds ξ∗[σσ∗](t, x)ξ ≥ a0|ξ|2 for

any (t, x, ξ) ∈ [0, T ] × R
d × R

d.

We mention that the additional smoothness of b and σ w.r.t. the time variable
is required for the connection with PDEs. We also introduce assumption (A

′

θ)
for which 2. is replaced by the weaker assumption

2’. Uniform non characteristic boundary. For some r0 > 0 there exists a0 >
0 s.t. ∇F (t, x)[σσ∗](t, x)∇F (t, x)∗ ≥ a0 for any (t, x) ∈ ⋃

0≤t≤T{t} ×
V∂Dt(r0).

The asymptotic results concerning the overshoot hold true under (A
′

θ), see
Section 2.1. In the following we use the superscript t, x to indicate the usual
Markovian dependence, i.e. ∀s ≥ t, X t,x

s = x+
∫ s
t b(u, X t,x

u )du+
∫ s
t σ(u, X t,x

u )dWu.
Now let

τ t,x := inf{s > t : X t,x
s /∈ Ds} (1.6)
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be the first exit time of X t,x
s from Ds. For functionals of the process X stopped

at the exit from D, of the form

u(t, x) =E

[

g(τ t,x ∧ T, X t,x
τ t,x∧T )e−

∫ τt,x
∧T

t
k(r,Xt,x

r )dr

+
∫ τ t,x∧T

t
e−
∫ s

t
k(r,Xt,x

r )drf(s, X t,x
s )ds

]

, (1.7)

we now recall (see [CGK06]) that the Feynman-Kac representation holds in the
time-space domain. Introduce the parabolic boundary PD = ∂D\[{0}×D0].

Proposition 1 [Feynman-Kac’s formula and a priori estimates on u]

Assume (Aθ), D ∈ H1, k ∈ Hθ, f ∈ Hθ and g ∈ C0,0 with θ ∈]0, 1[. Then,
there is a unique solution in C1,2(D) ∩ C0,0(D) to











∂tu + Ltu − ku + f = 0 in D,

u = g on PD,
(1.8)

and it is given by (1.7).
In addition, if for some θ ∈]0, 1[, D is of class H1+θ, g ∈ H1+θ then u ∈ H1+θ.
In particular ∇u exists and is θ-Hlder continuous up to the boundary.
Eventually, for D ∈ H3+θ, k, f ∈ H1+θ, g ∈ H3+θ satisfying the first order
compatibility condition (∂t + LT − k)g(T, x) + f(T, x)|x∈∂DT

= 0, then the
function u belongs to H3+θ.

Proof. The first two existence and uniqueness result for (1.8) are respectively
implied by Theorems 5.9 and 5.10 and Theorem 6.45 in Lieberman, [Lie96].
The probabilistic representation is then a usual verification argument, see e.g.
Appendix B.1 in [CGK06]. The additional smoothness can be derived from
exercise 4.5 Chapter IV in [Lie96] or Theorem 12, Chapter 3 in [Fri64]. 2

2 Main Results

2.1 Controls concerning the overshoot

The overshoot is the distance of the discretely killed process to the boundary,
when it exits the domain by its side. To be precise, we use F the signed
distance function and we consider the quantity F (ti, X

∆
ti

). It remains positive
for ti < τ∆, and at time ti = τ∆, it becomes non positive. Additionally,
under the ellipticity assumption, the above inequality is strict: F (τ∆, X∆

τ∆) < 0
a.s.. The overshoot is thus defined by F−(τ∆, X∆

τ∆). Also, since F is in H2
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(and therefore Lipschitz continuous in time and space), it is easy to see that
F−(τ∆, X∆

τ∆) is of order
√

∆ (in Lp-norm for instance). Thus, it is natural to
study the asymptotics of the rescaled overshoot

∆−1/2F−(τ∆, X∆
τ∆).

Adapting the proof of Proposition 6 in [GM04] to our time-dependent context,
see also the proof of Proposition 15 for a simpler version, one has the following
proposition.

Proposition 2 (Tightness of the overshoot) Assume (A
′

θ), and that D
is of class H2. Then, for some c > 0 one has

sup
∆>0,s∈[0,T ]

Ex[exp(c[∆−1/2F−(s ∧ τ∆, X∆
s∧τ∆)]2)] < +∞.

It is quite plain to prove, by pathwise convergence of X∆ towards X on com-
pact sets, that (τ∆ ∧T, X∆

τ∆∧T ) converges in probability to (τ ∧T, Xτ∧T ). The
next theorem also includes the rescaled overshoot.

Theorem 3 (Joint limit laws associated to the overshoot) Assume (A
′

θ),
and that D is of class H2. Let ϕ be a continuous function with compact support.
For all t ∈ [0, T ], x ∈ D0, y ≥ 0,

Ex[1τ∆≤tZ
∆
τ∆ϕ(X∆

τ∆)1F−(τ∆,X∆
τ∆

)≥y
√

∆] −→
∆→0

Ex

[

1τ≤tZτϕ(Xτ )
(

1 − H(y/|∇Fσ(τ, Xτ)|)
)]

with H(y) := (E0[sτ+ ])−1
∫ y
0 P0[sτ+ > z]dz and s0 := 0, ∀n ≥ 1, sn :=

∑n
i=1 Gi,

the Gi being i.i.d. standard centered normal variables, τ+ := inf{n ≥ 0 : sn >
0}.

In other words, (τ∆, X∆
τ∆ , ∆−1/2F−(τ∆, X∆

τ∆)) weakly converges to
(τ, Xτ , |∇Fσ(τ, Xτ)|Y ) where Y is a random variable independent of (τ, Xτ ),
and which cumulative function is equal to H . Actually, Y has the asymptotic
law of the renormalized Brownian overshoot. In the following analysis, the
mean of the overshoot is an important quantity and it is worth noting that

one has E(Y ) =
E0[s2

τ+ ]

2E0[sτ+ ]
:= c0. One knows from [Sie79] that

c0 = −ζ(1/2)√
2π

= 0.5826... (2.1)

The above theorem is the crucial tool in the derivation of our main results.
The proof is given in Section 3.1.
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2.2 Error expansion and boundary correction

For notational convenience introduce for x ∈ D0,

u(D) = Ex(g(τ ∧ T, Xτ∧T )Zτ∧T +
∫ τ∧T

0
Zsf(s, Xs)ds),

u∆(D) = Ex(g(τ∆ ∧ T, X∆
τ∆∧T )Z∆

τ∆∧T +
∫ τ∆∧T

0
Z∆

φ(s)f(φ(s), X∆
φ(s))ds).

Theorem 4 (First order expansion) Under (Aθ), for a domain of class
H2, g ∈ H1+θ, k, f ∈ H1+θ and for ∆ small enough

Err(T, ∆, g, f, k, x) = u∆(D) − u(D)

= c0

√
∆Ex(1τ≤T Zτ (∇u −∇g)(τ, Xτ) · ∇F (τ, Xτ)|∇Fσ(τ, Xτ)|) + o(

√
∆),

where c0 is defined in (2.1).

Define now a smaller domain D∆ ⊂ D, which time-section is given by D∆
t =

{x ∈ Dt : d(x, ∂Dt) > c0

√
∆|∇Fσ(t, x)|}, see Figure 2. Introduce the exit

time of the Euler scheme from this smaller domain: τ̂∆ = inf{ti > 0 : X∆
ti

6∈
D∆

ti
} ≤ τ∆. The boundary correction procedure consists in simulating

g(τ̂∆ ∧ T, X∆
τ̂∆∧T )Z∆

τ̂∆∧T +
∫ τ̂∆∧T

0
Z∆

φ(s)f(φ(s), X∆
φ(s))ds. (2.2)

As above, we do not compute any projection on the boundary. We denote the
expectation of (2.2) by u∆(D∆). One has:

Theorem 5 (Boundary correction) Under the assumptions of Theorem 4,
if we additionally suppose ∇F (., .)|∇Fσ(., .)| is in C1,2, then one has:

u∆(D∆) − u(D) = o(
√

∆).

The additional assumption is due to technical considerations to ensure that
the modified domain D∆ is also of class H2. It is automatically fulfilled for
domains of class C3 and σ in C1,2.

2.3 Proof of Theorems 4 and 5

2.3.1 Error expansion

By usual weak convergence arguments, Theorem 4 is a direct consequence
of Proposition 2 (tightness), Theorem 3 (joint limit laws associated to the

11



overshoot) and Theorem 6 below.

Theorem 6 (First order approximation) Under the assumptions of The-
orem 4, one has

u∆(D) − u(D) = o(
√

∆)+

Ex(1τ∆≤T Z∆
τ∆(∇u −∇g)(τ∆, π∂D

τ∆
(X∆

τ∆)) · ∇F (τ∆, X∆
τ∆)F−(τ∆, X∆

τ∆)).

Remark 7 In the above statement, we use projections on a non convex set,
which needs a clarification. With the notation of Section 1.5.2, introduce τ r0 :=
inf{s > 0 : X∆

s /∈ VDs(r0)}. For s ∈ [0, τ r0 ] the projection πD̄s
(X∆

s ) is uniquely
defined by

πD̄s
(X∆

s ) = X∆
s + (∇F )∗(s, X∆

s )F−(s, X∆
s ), (2.3)

see Figure 3. Large deviation arguments (see Lemma 8 below) also give Px[τ
r0 ≤

τ∆ ≤ T ] = Opol(∆). Thus, in the following, for s ≥ τ r0, πD̄s
(X∆

s ) and
π∂Ds(X

∆
s ) denote an arbitrary point on ∂Ds. This choice yields an exponen-

tially small contribution in our estimates.

x
{

π∂Dt(x) = yx

F−(t, x)
n(t, y) = [∇F ]∗(t, x)

Figure 3. Orthogonal projection π∂Dt(x) of x /∈ Dt onto the bound-
ary ∂Dt and the related signed distance F (t, x). Here F (t, x) < 0 and
d(x, ∂Dt) = |F (t, x)| = F−(t, x).

Proof. Denote e∆ := u∆(D) − u(D) the above error. Write now

e∆ =Ex[g(τ∆ ∧ T, X∆
τ∆∧T )Z∆

τ∆∧T − g(τ∆ ∧ T, πD̄
τ∆∧T

(X∆
τ∆∧T ))Z∆

τ∆∧T ]

+
{

Ex[g(τ∆ ∧ T, πD̄
τ∆∧T

(X∆
τ∆∧T ))Z∆

τ∆∧T +
∫ τ∆∧T

0
Z∆

φ(s)f(φ(s), X∆
φ(s))ds]

− u(0, X∆
0 )
}

:=e∆
1 + e∆

2 .

12



We introduce here the projection for the error analysis. From (2.3) and Propo-
sition 2, a Taylor expansion yields

e∆
1 = − Ex[1τ∆≤T Z∆

τ∆∇g(τ∆, π∂D
τ∆

(X∆
τ∆)) · ∇F (τ∆, X∆

τ∆)F−(τ∆, X∆
τ∆)]

+ O(∆(1+θ)/2). (2.4)

In the following, we write U
E
= V (resp U

E

≤ V ) when the equality between U
and V holds in mean up to a Opol(∆) (resp. Ex(U) ≤ Ex(V ) + Opol(∆)). We
also use the notation U = O(V ) between two random variables U and V if
for a constant C, one has |U | ≤ C|V |. Because g(τ∆ ∧ T, πD̄

τ∆∧T
(X∆

τ∆∧T )) =

u(τ∆ ∧ T, πD̄
τ∆∧T

(X∆
τ∆∧T )), we can write a telescopic summation:

e∆
2

E
=
(

∑

0≤ti<τ∆∧T

u(ti+1, πD̄ti+1
(X∆

ti+1
))Z∆

ti+1

− u(ti, πD̄ti
(X∆

ti
))Z∆

ti
+ Z∆

ti
f(ti, X

∆
ti

)∆
)

1τr0>τ∆∧T

E
=
(

∑

0≤ti<T

1ti<τ∆

[

u(ti+1, πD̄ti+1
(X∆

ti+1
))Z∆

ti+1

−u(ti, X
∆
ti

)Z∆
ti

+ Z∆
ti

f(ti, X
∆
ti

)∆
])

1τr0>τ∆∧T

since for ti < τ∆, X∆
ti

∈ Dti and thus πD̄ti
(X∆

ti
) = X∆

ti
. To proceed, the

key idea is to introduce on the event {ti < τ∆}, the partition {F (ti, X
∆
ti

) ∈
(0, 2∆

1
2
(1−ε)]} ∪ {F (ti, X

∆
ti

) > 2∆
1
2
(1−ε)} := Aε

ti
∪ (Aε

ti
)C , ε > 0. This allows to

split the cases for which X∆
ti

is close or not to the boundary ∂Dti . Lemma 8

ensures that (X∆
s )s∈[ti,ti+1] stayed in B(X∆

ti
, ∆

1
2
(1−ε)) with a probability expo-

nentially close to one. Then, on (Aε
ti
)C , the smoothness of the domain yields

1(Aε
ti

)C P[X∆
ti+1

∈ Dti+1
|Fti] = 1 − O(exp(−c∆−ε)), see Proposition 19 for a

proof of this claim. On the other hand, on Aε
ti
, X∆

ti
is sufficiently close to the

boundary to make the contribution of the overshoot at time ti+1 significant
for the error analysis. Write:

e∆
2

E
=
(

∑

0≤ti<T

1ti<τ∆

{

1Aε
ti

[

u(ti+1, πD̄ti+1
(X∆

ti+1
))Z∆

ti+1

−u(ti, X
∆
ti

)Z∆
ti

+ Z∆
ti

f(ti, X
∆
ti

)∆
]

+ 1(Aε
ti

)C1∀s∈[ti,ti+1], X∆
s ∈B(X∆

ti
,∆

1
2
(1−ε))

[

u(ti+1, X
∆
ti+1

)Z∆
ti+1

−u(ti, X
∆
ti

)Z∆
ti

+ Z∆
ti

f(ti, X
∆
ti

)∆
]})

1τr0>τ∆∧T := e∆
21 + e∆

22. (2.5)

Let us first deal with e∆
21. In our framework, u is (1 + θ)/2-Hölder continuous

in time and ∇u is θ-Hölder continuous in space on a neighborhood of D. A

13



Taylor expansion at order one and the equality (2.3) give

e∆
21

E
=
(

∑

0≤ti<T

1ti<τ∆1Aε
ti

[

Z∆
ti
∇u(ti, X

∆
ti

) · ∇F (ti+1, X
∆
ti+1

)F−(ti+1, X
∆
ti+1

)

+O(|F−(ti+1, X
∆
ti+1

)|1+θ) + O(|X∆
ti+1

− X∆
ti
|1+θ) + O(∆

1+θ
2 )
])

1τr0>τ∆∧T

E
=
(

1τ∆≤T Z∆
τ∆∇u(τ∆, X∆

τ∆) · ∇F (τ∆, X∆
τ∆)F−(τ∆, X∆

τ∆)

+
∑

0≤ti<T

1ti<τ∆1Aε
ti

[

O(|F−(ti+1, X
∆
ti+1

)|1+θ) + O(|X∆
ti+1

− X∆
ti
|1+θ)

+ O(|X∆
ti+1

− X∆
ti
|θF−(ti+1, X

∆
ti+1

)) + O(∆
1+θ
2 )
])

1τr0>τ∆∧T

where we used once again Lemma 8 for the last equality. Standard arguments
yield E[|X∆

ti+1
−X∆

ti
|p|Fti] = O(∆

p
2 ) for any p > 0 and E[|F−(ti+1, X

∆
ti+1

)|p|Fti] =

E[|F−(ti+1, X
∆
ti+1

) − F−(ti, X
∆
ti

)|p|Fti] = O(∆
p
2 ) on {ti < τ∆}. Thus, we can

now rewrite

e∆
21

E
=
(

1τ∆≤T Z∆
τ∆∇u(τ∆, π∂D

τ∆
(X∆

τ∆)) · ∇F (τ∆, X∆
τ∆)F−(τ∆, X∆

τ∆)
)

1τr0>τ∆∧T

+ e∆
211,

e∆
211

E
=
(

∑

0≤ti<T

1ti<τ∆1Aε
ti
O(∆

1+θ
2 )
)

1τr0>τ∆∧T .

To handle e∆
211 the idea is to use the occupation time formula and some sharp

estimates concerning the local time of (F (s, X∆
s ))s≤T∧τ∆ in a neighborhood of

the boundary. We have

|e∆
211|

E

≤ C∆
1+θ
2

(

∆−1
∫ T∧τ∆

0
1F (φ(t),X∆

φ(t)
)∈[0,2∆1/2(1−ε)]dt

)

1τr0>τ∆∧T

E

≤ C∆
1+θ
2

(

∆−1
∫ T∧τ∆

0
1F (t,X∆

t )∈[−∆1/2(1−ε) ,3∆1/2(1−ε)]dt

)

1τr0>τ∆∧T

E

≤ C∆
1+θ
2

(

∆−1
∫ 3∆1/2(1−ε)

−∆1/2(1−ε)
Ly

T∧τ∆(F (., X∆
. ))dy

)

1τr0>τ∆∧T ,

where we have used Lemma 8 at the second equality and the uniform ellipticity
assumption for the last one. Now an easy adaptation of the proof of Lemma
17 [GM04] to our time-dependent domain framework gives

E[Ly
T∧τ∆(F (., X∆

. ))] ≤ C(|y|+ ∆
1
2 ). (2.6)

Thus, one has |e∆
211|

E

≤ C∆
1+θ
2

− ε
2 = o(∆

1
2 ) for ε small enough. Hence, the above

estimates and Lemma 8 give

e∆
21

E
=
(

1τ∆≤T Z∆
τ∆∇u(τ∆, π∂D

τ∆
(X∆

τ∆)) · ∇F (τ∆, X∆
τ∆)F−(τ∆, X∆

τ∆)
)

+ o(∆
1
2 ).

(2.7)
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Let us now turn to e∆
22. If g ∈ H3+θ (which implies u ∈ H3+θ in view of Propo-

sition 1), the term e∆
22 can be handled with somehow standard techniques.

Namely Taylor like expansions in the spirit of Talay and Tubaro [TT90]. For
simplicity we handle e∆

22 under the previous smoothness assumption on g and
u. The proof under weaker assumptions (g ∈ H1+θ), that involves sharp esti-
mates on possibly exploding derivatives of u near the boundary, is postponed
to the Appendix. We recall that

e∆
22

E
=
(

∑

0≤ti<T

1ti<τ∆1(Aε
ti

)C1∀s∈[ti,ti+1], X∆
s ∈B(X∆

ti
,∆

1
2 (1−ε))

[

u(ti+1, X
∆
ti+1

)Z∆
ti+1

−u(ti, X
∆
ti

)Z∆
ti

+ Z∆
ti

f(ti, X
∆
ti

)∆
])

1τr0>τ∆∧T

For all (s, y) ∈ D introduce the operators Ls,y : C1,2(D) → C(D), ϕ 7→
((t, x) 7→ Ls,yϕ(t, x) = ∇ϕ(t, x)b(s, y) + 1

2
Tr[Hϕ(t, x)[σσ∗](s, y)]). Recalling

that ∂tu(ti, X
∆
ti

) + Lti,X∆
ti
u(ti, X

∆
ti

)− ku(ti, X
∆
ti

) + f(ti, X
∆
ti

) = 0, Itô’s formula

gives

e∆
22

E
=
(

∑

0≤ti<T

1ti<τ∆1(Aε
ti

)C1
∀s∈[ti,ti+1], X∆

s ∈B(X∆
ti

,∆
1
2 (1−ε))

[

∫ ti+1

ti
(Z∆

s − Z∆
ti

)(∂s + Lti,X∆
ti
− k(ti, X

∆
ti

))u(s, X∆
s )ds

+ Z∆
ti

∫ ti+1

ti

[(

∂s + Lti,X∆
ti
− k(ti, X

∆
ti

)
)

u(s, X∆
s )

−
(

∂s + Lti,X∆
ti
− k(ti, X

∆
ti

)
)

u(ti, X
∆
ti

))
]

ds

+ Mti,ti+1

])

1τr0>τ∆∧T , (2.8)

where for all v ∈ [ti, ti+1], Mti,v :=
∫ v

ti
Z∆

s ∇u(s, X∆
s )σ(ti, X

∆
ti

)dWs is a square-

integrable martingale term. Note that in this definition, in whole generality,
Mti,v is not stopped at the exit time τti := inf{s ≥ ti : X∆

s 6∈ Ds}. If τti ≤ ti+1

(which happens with exponentially small probability on (Aε
ti
)C), the term

∇u(s, X∆
s ), s ∈ [τti , ti+1] in Mti,ti+1

has to be understood as the smooth exten-
sion of ∇u to the whole space. In particular this extension remains bounded.
Now, we derive from Lemma 8

Ex[
(

∑

0≤ti<T

1ti<τ∆1(Aε
ti

)C1∀s∈[ti,ti+1], X∆
s ∈B(X∆

ti
,∆

1
2
(1−ε))

Mti,ti+1

])

1τr0>τ∆∧T ]

= Ex[
∑

0≤ti<T

1ti<τ∆1(Aε
ti

)CMti,ti+1
] + Opol(∆) = Opol(∆).
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We can thus neglect the contribution of the martingale terms in (2.8). We now
develop the other quantities in (2.8) with Taylor integral formulas to derive

∫ ti+1

ti
(Z∆

s − Z∆
ti

)(∂s + Lti,X∆
ti
− k(ti, X

∆
ti

))u(s, X∆
s )ds

=O
(

∆2(|u|∞ + |∇u|∞ + |∂tu|∞ + |D2u|∞)
)

,
∫ ti+1

ti
(∂tu(s, X∆

s ) − ∂tu(ti, X
∆
ti

))ds

=
∫ ti+1

ti
∇∂tu(ti, X

∆
ti

)σ(ti, X
∆
ti

)(Ws − Wti)ds

+ O
(

∆1+ 1+θ
2 [∂tu]t, 1+θ

2
+ ∆2|∇∂tu|∞ + ∆ sup

s∈[ti,ti+1]
|X∆

s − X∆
ti
|1+θ[∇∂tu]x,θ

)

,

∫ ti+1

ti
(Lti,X∆

ti
u(s, X∆

s ) − Lti,X∆
ti
u(ti, X

∆
ti

))ds

=
∫ ti+1

ti
〈Hu(ti, X

∆
ti

)σ(ti, X
∆
ti

)(Ws − Wti), b(ti, X
∆
ti

)〉ds

+
1

2

∫ ti+1

ti
Tr
(

(D3u(ti, X
∆
ti

)σ(ti, X
∆
ti

)(Ws − Wti)) · a(ti, X
∆
ti

)
)

ds

+ O
(

∆2{|D2u|∞ + |D3u|∞ + |∂t∇u|∞} + ∆1+ 1+θ
2 [D2u]t, 1+θ

2

+ ∆|D3u|∞ sup
s∈[ti,ti+1]

|X∆
s − X∆

ti
|2 + ∆ sup

s∈[ti,ti+1]
|X∆

s − X∆
ti
|1+θ[D3u]x,θ

)

,

k(ti, X
∆
ti

)
∫ ti+1

ti
(u(s, X∆

s ) − u(ti, X
∆
ti

))ds

=k(ti, X
∆
ti

)
∫ ti+1

ti
∇u(ti, X

∆
ti

)σ(ti, X
∆
ti

)(Ws − Wti)ds

+ O
(

∆2(|∂tu|∞ + |∇u|∞) + ∆|D2u|∞ sup
s∈[ti,ti+1]

|X∆
s − X∆

ti
|2
)

, (2.9)

where [·]t,α, [·]x,α, α ∈ (0, 1] denote respectively the Hölder norms of order α
in time and space (see Chapter IV Section 1 p. 46 in [Lie96] for a precise
definition).

Hence, bringing together our estimates and exploiting the relations between
the spatial and time derivatives for u (through the PDE), from (2.8) and (2.9)
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we derive

e∆
22

E
=
(

∑

0≤ti<T

1ti<τ∆1(Aε
ti

)C1∀s∈[ti,ti+1], X∆
s ∈B(X∆

ti
,∆

1
2
(1−ε))

[

O
(

∆2{1 + |u|∞ + |∇u|∞ + |D2u|∞ + |D3u|∞}
)

+ O
(

∆1+ 1+θ
2 {1 + |u|∞ + |∇u|∞ + |D2u|∞ + |D3u|∞ + [D2u]t, 1+θ

2
}
)

+ O
(

∆ sup
s∈[ti,ti+1]

|X∆
s − X∆

ti
|1+θ{1 + |u|∞ + |∇u|∞ + |D2u|∞ + |D3u|∞ + [D3u]x,θ}

)

+ O
(

∆ sup
s∈[ti,ti+1]

|X∆
s − X∆

ti
|2{|D2u|∞ + |D3u|∞}

)

+ M̄ti,ti+1

])

1τr0>τ∆∧T , (2.10)

where M̄ti,ti+1
denotes the sum of the terms involving the Brownian increment

(Ws − Wti)s∈[ti,ti+1] in the above equations (2.9). Under our current assump-
tion, i.e. u ∈ H3+θ, all the norms appearing in (2.10) and all the derivatives
appearing in the (M̄ti,ti+1

)0≤ti<T are bounded. Hence,

1ti<τ∆1(Aε
ti

)C E[1∀s∈[ti,ti+1], X∆
s ∈B(X∆

ti
,∆

1
2 (1−ε))

M̄ti,ti+1
1τr0>τ∆∧T |Fti ]

=1ti<τ∆1(Aε
ti

)C E[M̄ti,ti+1
|Fti] + Opol(∆) = Opol(∆), (2.11)

|e∆
22|

E

≤C∆
1+θ
2 . (2.12)

Plug (2.7) and (2.12) into (2.5). The statement is derived from (2.4) and (2.5).
We specify in the Appendix how to complete the proof from a sharper version
of (2.10) deriving from (2.8), when g ∈ H1+θ. 2

2.3.2 Boundary Correction

One has

u∆(D∆) − u(D) = [u∆(D∆) − u(D∆)] + [u(D∆) − u(D)]. (2.13)

(1) The first contribution in (2.13) has been previously analysed in Theorem
4, except that the domain D∆ depends on ∆. We can show that it is equal
to c0

√
∆E(1τ≤T Zτ (∇u−∇g)(τ, Xτ) · ∇F (τ, Xτ)|∇Fσ(τ, Xτ )|) + o(

√
∆).

We briefly sketch the proof of this assertion, which is done in two steps.
For this, set û∆ = u(D∆) for the solution of the PDE in the domain D∆.
• Step 1. It is well known that all PDE estimates depend only on bounds

on the derivatives of the level set functions (ϕ0) arising in the definition
of the time-dependent domains (see section 1.5.2), and on the bounds
on the derivatives of data g, f and k. Hence, since D∆ is a small per-
turbation of class H2 (because ∇F |∇Fσ| has this regularity) of the
domain D of class H2, all PDE estimates on û∆ remain locally uni-
form w.r.t. ∆. In addition, û∆ and its gradient converge uniformly to
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u and ∇u. This argumentation allows us to state that the first order
approximation theorem holds:

u∆(D∆) − u(D∆) = o(
√

∆)+

Ex(1τ̂∆≤T Z∆
τ̂∆(∇u −∇g)(τ̂∆, π∂D∆

τ̂∆
(X∆

τ̂∆)) · ∇F̂∆(τ̂∆, X∆
τ̂∆)[F̂∆]−(τ̂∆, X∆

τ̂∆)),

where F̂∆ and τ̂∆ are respectively the signed distance to the side of D∆

and the related discrete exit time.
• Step 2. The second step is to prove that the analogous version of

Theorem 3 holds, with τ̂∆ instead of τ∆. Actually, a careful reading of
its proof shows that it is indeed the case, without modification.

(2) Finally, the last term in (2.13) is related to the sensitivity of a Dirichlet
problem with respect to the domain. By an application of Theorem 2.2 in
[CGK06] with Θ(t, x) = −c0∇F (t, x)|∇Fσ(t, x)| (in C1,2), one gets that
this contribution equals

−c0

√
∆E(1τ≤T Zτ (∇u −∇g)(τ, Xτ) · ∇F (τ, Xτ)|∇Fσ(τ, Xτ )|) + o(

√
∆).

This proves that the new procedure has an error o(
√

∆). 2

3 Technical results concerning the overshoot

This section is devoted to the proof of Theorem 3. We first state some useful
auxiliary results.

Lemma 8 (Bernstein’s inequality) Assume (Aθ-1). Consider two stop-
ping times S, S ′ upper bounded by T with 0 ≤ S ′ − S ≤ Θ ≤ T . Then for any
p ≥ 1, there are some constants c > 0 and C := C((Aθ-1) , T ), such that for
any η ≥ 0, one has a.s:

P[ sup
t∈[S,S′]

|X∆
t − X∆

S | ≥ η
∣

∣

∣ FS] ≤C exp

(

−c
η2

Θ

)

,

E[ sup
t∈[S,S′]

|X∆
t − X∆

S |p
∣

∣

∣ FS] ≤CΘp/2.

For a proof of the first inequality we refer to Chapter 3, §3 in [RY99]. The last
inequality easily follows from the first one or from the BDG inequalities.

Lemma 9 (Convergence of exit time) Assume (A
′

θ) and that the domain
is of class H2. The following convergences hold in probability:

(1) lim∆→0 τ∆ ∧ T = τ ∧ T ;
(2) lim∆→0 X∆

τ∆∧T = Xτ∧T ;
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(3) lim∆→0 supt≤T |X∆
φ(t) − Xt| = 0.

The proof of the first two assertions in the case of space-time domain is analo-
gous to the case of cylindrical domain (see [GM05]) and thus left to the reader.
The last convergence is standard.

The following results are key tools to prove Theorem 3. A similar version is
proved in [Sie79], but here, we additionally prove the uniform convergence.

Lemma 10 (Asymptotic independence of the overshoot and the dis-
crete exit time). Let W be a standard one dimensional BM. Put x > 0 and
consider the domain D :=]0, T [×]−∞, x[. With the notation of Section 2, for
any ε > 0 we have

lim
∆−→0

sup
t∈[0,T ],y≥0,x≥∆1/2−ε

∣

∣

∣P0[τ
∆ ≤ t, (Wτ∆ − x) ≤ y

√
∆] − P0[τ ≤ t]H(y)

∣

∣

∣ = 0.

(3.1)

If the Euler scheme starts close to the boundary at a small distance d, its
discrete exit likely occurs after a time roughly equal to d2. This feature is
quantified in the above lemma.

Lemma 11 Assume (A
′

θ), and that the domain is of class H2. Let 0 < β <
α < 1/2. For all η > 0, there exists C := Cη > 0 s.t. for ∆ small enough,
∀s ∈ ∆N ∩ [0, T ] and ∀x ∈ V∂Ds(∆

α) ∩ Ds, one has

P[τ∆ ∧ T ≥ ∆2β |X∆
s = x] ≤ C(∆α−β−η + ∆β),

where τ∆ := inf{ti > s : X∆
ti

/∈ Dti}.

Lemma 12 Assume (A
′

θ), and that the domain is of class H2. There exists
C > 0, such that ∀s ∈ ∆N ∩ [0, T ], ∀x ∈ Ds, ∀t ∈ [s, T ] and ∀b ≥ a ≥ 0, one
has

P[τ∆ ≤ t, ∆−1/2F−(τ∆, X∆
τ∆) ∈ [a, b]|X∆

s = x] ≤C
(

(b − a) + ∆1/4
)

where τ∆ is shifted as in the previous lemma.

The proof of these three lemmas is postponed to Section 3.2.

We mention that if σσ∗ is uniformly elliptic, Lemma 12 is valid without the
∆1/4 (see the proof for details). In that case, it means that the law of the
renormalized overshoot is absolutely continuous w.r.t. the Lebesgue measure
on R

+, with a bounded density. This is also true at the limit, in view of
Theorem 3.
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3.1 Proof of Theorem 3

Consider first the case D =]0, T [×D where D is a half space. The theorem
in the case of BM is then a direct consequence of Lemma 10. Now to deal
with the Euler scheme, we introduce a first neighborhood whose distance to
the boundary goes to 0 with ∆ at a speed lower than ∆1/2 (below, the speed
is tuned by a parameter α, see Figure 4). The characteristic exit time for a
starting point in this neighborhood is short (Lemma 11), thus the diffusion
coefficients are somehow constant and we are almost in the BM framework.
Also, a second localization w.r.t. to the hitting time of this neighborhood guar-
antees that up to a rescaling we are far enough from the boundary to apply
the renewal arguments needed for the asymptotic law of the overshoot (this is
tuned by another parameter ε, see Figure 4).
For a more general time-space domain of class H2 two additional tools are
used: a time-space change of chart and a local half space approximation of the
domain by some tangent hyperplane.
For notational convenience, we assume from now on that the time-section do-
mains (Dt)t∈[0,T ] are convex so that π∂Dt is always uniquely defined on Dc

t . To
handle the case of general H2 domains, an additional localization procedure
similar to the one of Theorem 6 is needed. We leave it to the reader.
For the sake of clarity, we also assume k ≡ 0 (Z ≡ 1). This is an easy simpli-
fication since owing to Lemma 9, Z∆

τ∆∧T converges to Zτ∧T in L1.

Step 1: preliminary localization. For α < 1/2 specified later on, define
τ∆α := inf{ti > 0 : F (ti, X

∆
ti

) ≤ ∆α} ≤ τ∆. We aim at studying the conver-
gence of

Ψ∆(t, x, y) := Ex[1τ∆≤t,F−(τ∆,X∆
τ∆

)≥y
√

∆ϕ(X∆
τ∆)]

and for this, we define for all 0 ≤ s ≤ t < T (s ∈ ∆N), (x̃, y) ∈ R
d × R

+

Ψ∆(s, t, x̃, y) :=P[τ∆ ≤ t, F−(τ∆, X∆
τ∆) ≥ y

√
∆|X∆

s = x̃],

A(t, α, ε) :={τ∆α < τ∆, τ∆α < t, F (τ∆α, X∆
τ∆α ) ≥ ∆1/2−ε}.

Here, ε is a fixed parameter in ]0, 1/2[, such that α < 1/2 − ε (take ε =
(α + 1/2)/2 for instance).
In the definition of Ψ∆, τ∆ has to be understood as the shifted exit time
inf{ti > s : X∆

ti
/∈ Dti}. By Lemma 8, Px[τ

∆ = τ∆α ≤ t] + Px[τ∆α <

t, F (τ∆α, X∆
τ∆α ) < ∆1/2−ε] = Opol(∆) using α < 1/2 − ε. Hence,

Ψ∆(t, x, y) =Ex[1A(t,α,ε),F−(τ∆,X∆
τ∆

)≥y
√

∆ϕ(X∆
τ∆)1τ∆≤t] + Opol(∆)

=Ex[1A(t,α,ε),F−(τ∆,X∆
τ∆

)≥y
√

∆(ϕ(X∆
τ∆) − ϕ(X∆

τ∆α ))1τ∆≤t]

+ Ex[1A(t,α,ε)ϕ(X∆
τ∆α )Ψ∆(τ∆α , t, X∆

τ∆α , y)] + Opol(∆).

The first term in the right hand side above converges to 0, using the conver-
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gence in probability of |X∆
τ∆∧T −X∆

τ∆α∧T | to 0 (analogously to Lemma 9). This
gives

Ψ∆(t, x, y) = Ex[1A(t,α,ε)ϕ(X∆
τ∆α )Ψ∆(τ∆α, t, X∆

τ∆α , y)] + o(1). (3.2)

t0 T

R
d

time

∂D
}∆ 1

2
−ε
}

∆α

Figure 4. The two localization neighborhoods with α < 1
2 − ε.

Let us comment again these two localisations. That with ∆α enables us to
freeze the coefficients of the Euler scheme, because the exit time is likely close
to the initial time. That with ∆1/2−ε ensures that it starts far enough from the
boundary to induce the limiting behavior of the overshoot. This right balance
regarding the distance of the initial point to the boundary is crucial. The final
choice of α (and thus ε) depends on the regularity θ of the coefficients b and
σ.
Now, it remains to study the convergence of Ψ∆(.).

Step 2: diffusion with frozen coefficients. Denote τ∆α := s̃, X∆
τ∆α := x̃.

Conditionally to Fs̃, introduce now the one dimensional process (Ys)s≥s̃, Ys =
F (s̃, x̃) + (∇Fσ)(s̃, x̃)(Ws − Ws̃). Note that we do not take into account the
drift part in the frozen process. From the next localization procedure, it yields
a negligible term. Since Y has constant coefficients, we apply below Lemma 10
to handle the overshoot of Y w.r.t. R

+∗. Define τ∆,Y := inf{ti > s̃ : Yti ≤ 0}
and rewrite

Ψ∆(s̃, t, x̃, y) := ΨC
∆(s̃, t, x̃, y) + R∆(s̃, t, x̃, y), (3.3)

ΨC
∆(s̃, t, x̃, y) := Ps̃,x̃[τ

∆,Y ≤ t, (Yτ∆,Y )− ≥ y
√

∆].

From (A
′

θ-2’) that guarantees that Y has a non degenerate variance and
Lemma 10, one gets

sup
(s̃,x̃)∈Aα,ε

|ΨC
∆(s̃, t, x̃, y) − Ps̃,x̃[τ

∆,Y ≤ t](1 − H(y/|(∇Fσ)(s̃, x̃)|))| −→
∆→0

0,

where Aα,ε := {(t, x) : 0 ≤ t ≤ T, x ∈ V∂Dt(∆α)\V∂Dt(∆
1/2−ε)}. Plug now this

identity in (3.3) to obtain with the same uniformity

Ψ∆(s̃, t, x̃, y) =Ps̃,x̃[τ
∆,Y ≤ t](1 − H(y/|(∇Fσ)(s̃, x̃)|)) + R∆(s̃, t, x̃, y) + o(1).

(3.4)

Step 3: control of the rests. We now show that R∆(s̃, t, x̃, y) = o(1) where
the rest is still uniform for (s̃, x̃) ∈ Aα,ε. This part is long and technical. First,
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decomposing the space using the events {τ∆ = τ∆,Y }, {F−(τ∆, X∆
τ∆) ≥ y

√
∆},

{(Yτ∆,Y )− ≥ y
√

∆} and their complementary events, write:

|R∆(s̃, t, x̃, y)| ≤ R1
∆(s̃, t, x̃)

+ Ps̃,x̃[τ
∆ ≤ t, F−(τ∆, X∆

τ∆) ≥ y
√

∆, (Yτ∆,Y )− < y
√

∆, τ∆ = τ∆,Y ]

+ Ps̃,x̃[τ
∆ ≤ t, F−(τ∆, X∆

τ∆) < y
√

∆, (Yτ∆,Y )− ≥ y
√

∆, τ∆ = τ∆,Y ] (3.5)

with R1
∆(s̃, t, x̃) ≤ Ps̃,x̃[τ

∆ ≤ t, τ∆ 6= τ∆,Y ] + Ps̃,x̃[τ
∆,Y ≤ t, τ∆ 6= τ∆,Y ] :=

(R11
∆ + R12

∆ )(s̃, t, x̃). Let y∆ be a given positive function of the time-step s.t.
y∆ →

∆→0
0 specified later on.

On the event {τ∆ = τ∆,Y , |Yτ∆,Y − F (τ∆,Y , X∆
τ∆,Y )| ≤ y∆

√
∆}, the conditions

F−(τ∆, X∆
τ∆) ≥ y

√
∆ and (Yτ∆,Y )− < y

√
∆ imply ∆−1/2(Yτ∆,Y )− ∈ [y−y∆, y).

Similarly, (Yτ∆,Y )− ≥ y
√

∆ and F−(τ∆, X∆
τ∆) < y

√
∆ imply ∆−1/2(Yτ∆,Y )−

∈ [y, y + y∆). Hence, by setting

R2
∆(s̃, t, x̃) := 2Ps̃,x̃[τ

∆,Y ≤ t, τ∆ = τ∆,Y , |Yτ∆,Y − F (τ∆,Y , X∆
τ∆,Y )| > y∆

√
∆],

R3
∆(s̃, t, x̃, y) := Ps̃,x̃[τ

∆,Y ≤ t, ∆−1/2(Yτ∆,Y )− ∈ [y − y∆, y + y∆), τ∆ = τ∆,Y ],

we obtain R∆(s̃, t, x̃, y)| ≤ (R1
∆ + R2

∆)(s̃, t, x̃) + R3
∆(s̃, t, x̃, y).

Term R3
∆(s̃, t, x̃, y). From Lemma 12 applied to the process with frozen coef-

ficients, one gets

R3
∆(s̃, t, x̃, y) ≤ C(y∆ + ∆1/4). (3.6)

Term R2
∆(s̃, t, x̃). Let us explain the leading ideas of the estimates below.

Usually, it is easy to prove inequalities like |Yt − F (t, X∆
t )|L2 = O(∆1/2) (for

a fixed t), but this not enough to control R2
∆. To achieve our goal, we take

advantage of the fact that the time t is the stopping time τ∆,Y which is likely
close to s̃. Thus, Yτ∆,Y − F (τ∆,Y , X∆

τ∆,Y ) should be much smaller that ∆1/2 in
L2-norm.
Introduce for 0 < β < α < 1/2, τ∆β := inf{s > s̃ : |X∆

s − x̃| ≥ ∆β} ∧ (s̃ +
∆δ), δ := 2β + γ, γ > 0. Clearly, one has

|R2
∆(s̃, t, x̃)| ≤2Ps̃,x̃

[

τ∆,Y ≤ t, τ∆ = τ∆,Y , τ∆ < τ∆β ,

|Yτ∆,Y − F (τ∆,Y , X∆
τ∆,Y )| > y∆

√
∆
]

+ 2Ps̃,x̃[τ
∆ ≥ τ∆β , τ∆ ≤ t]

:=(R21
∆ + R22

∆ )(s̃, t, x̃).

Let us first deal with R21
∆ (s̃, t, x̃). By the Markov inequality, one has

R21
∆ (s̃, t, x̃) ≤ 2∆−1y−2

∆ Es̃,x̃

[

1τ∆<τ
∆β ,τ∆,Y ≤t,τ∆=τ∆,Y |Yτ∆,Y − F (τ∆,Y , X∆

τ∆,Y )|2
]

.

(3.7)

Note that since D is of class H2, F has the same regularity, i.e. it is uniformly
Lipschitz continuous in time, its first space derivatives are uniformly Lipschitz
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continuous in space and 1/2-Hlder continuous in time. Thus, assuming up to
a regularization procedure that F ∈ C1,2([0, T ] × R

d), It’s formula yields for
all t ≥ s̃,

F (t, X∆
t ) =F (s̃, x̃) +

∫ t

s̃
∇F (s, X∆

s )dX∆
s

+
∫ t

s̃

(

∂sF (s, X∆
s ) +

1

2
Tr(HF (s, X∆

s )σσ∗(φ(s), X∆
φ(s)))

)

ds

:=F (s̃, x̃) +
∫ t

s̃
∇F (s, X∆

s )σ(φ(s), X∆
φ(s))dWs + R∆

F (s̃, t, x̃) (3.8)

=Yt + R∆
F (s̃, t, x̃) +

∫ t

s̃

(

∇F (s, X∆
s )σ(φ(s), X∆

φ(s)) − [∇Fσ](s̃, x̃)
)

dWs.

From (A
′

θ-1) and the assumptions on D one derives |R∆
F |(s̃, t, x̃) ≤ C(t − s̃).

Thus, for any given stopping time U ∈ [s̃, τ∆β ], the working assumptions (i.e.
smoothness of σ, F ) and standard computations yield

E[|F (U, X∆
U ) − YU |2] ≤ C(∆2β+δ + ∆δ(1+θ)).

From (3.7) and the above control with U = τ∆,Y ∧ τ∆β , one obtains

R21
∆ (s̃, t, x̃) ≤ Cy−2

∆ ∆−1(∆2β+δ + ∆δ(1+θ)). (3.9)

Let us now control R22
∆ (s̃, t, x̃). From Lemmas 8 and 11, for any η > 0 we write

R22
∆ (s̃, t, x̃) ≤ Ps̃,x̃[τ∆β < s̃ + ∆δ] + Ps̃,x̃[τ

∆ ∧ t ≥ s̃ + ∆δ]

≤ Cη

(

exp
(

−c∆2β−δ
)

+ ∆α−η−δ/2 + ∆δ/2
)

. (3.10)

Take now α =
1+ θ

2

2(1+θ)
< 1/2, η = θ

16(θ+1)
, γ = 1

8(1+θ)
, y∆ = ∆θ/16. Check that

for δ = 2β + γ = 2α − 4η, one has δ = 1+θ/4
1+θ

, β = 7/8+θ/4
2(1+θ)

< α, 3η < α.

Thus, R22
∆ (s̃, t, x̃) = O(∆η). In addition, y−2

∆ ∆δ(1+θ)−1 = ∆θ/8, y−2
∆ ∆2β+δ−1 =

O(∆1/(8(1+θ))). Hence, from (3.9) and (3.10)

R2
∆(s̃, t, x̃) ≤ C

(

∆1/(8(1+θ)) + ∆θ/8 + ∆θ/(16(θ+1))
)

≤ C∆θ/32. (3.11)

Term R1
∆(s̃, t, x̃). We give an upper bound for R11

∆ (s̃, t, x̃). The term R12
∆ (s̃, t, x̃)

can be handled in the same way. From the previous control on R22
∆ (s̃, t, x̃) and

for the previous parameters, one gets

R11
∆ (s̃, t, x̃) =Ps̃,x̃[τ

∆ ≤ t, τ∆ 6= τ∆,Y , τ∆ < τ∆β ] + O(∆η)

=Ps̃,x̃[τ
∆ ≤ t, τ∆ > τ∆,Y , τ∆ < τ∆β ]

+ Ps̃,x̃[τ
∆ ≤ t, τ∆ < τ∆,Y , τ∆ < τ∆β ] + O(∆η).

Then, splitting the first probability according to ∆−1/2(Yτ∆,Y )− ≤ y∆ or not,
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and the second one according to ∆−1/2F−(τ∆, X∆
τ∆) ≤ y∆ or not, we obtain

R11
∆ (s̃, t, x̃)

≤
(

Ps̃,x̃[τ
∆,Y ≤ t, ∆−1/2(Yτ∆,Y )− ≤ y∆]

+ Ps̃,x̃[τ
∆ ≤ t, τ∆ > τ∆,Y , τ∆ < τ∆β , ∆−1/2|Yτ∆,Y − F (τ∆,Y , X∆

τ∆,Y )| ≥ y∆]
)

+
(

Ps̃,x̃[τ
∆ ≤ t, τ∆ < τ∆,Y , τ∆ < τ∆β , ∆−1/2|Yτ∆ − F (τ∆, X∆

τ∆)| ≥ y∆]

+ Ps̃,x̃[τ
∆ ≤ t, ∆−1/2F−(τ∆, X∆

τ∆) ≤ y∆]
)

+ C∆η,

for the previous function (y∆)∆>0. Since we could obtain the same type of
bound for R12

∆ (s̃, t, x̃), from Lemma 12 and following the computations that
gave (3.9) we derive for the previous set of parameters

R1
∆(s̃, t, x̃) ≤ C(y−2

∆ ∆−1(∆2β+δ + ∆δ(1+θ)) + ∆η + y∆ + ∆1/4) ≤ C∆θ/32.
(3.12)

From (3.12), (3.11), (3.6) we finally obtain R∆(s̃, t, x̃, y) = O(∆θ/32) = o(1).
The rest is uniform w.r.t. (s̃, x̃, y) ∈ Aα,ε × R

+.
Step 4. Final step. Plug the previous results in (3.4). We derive from (3.2)

Ψ∆(t, x, y) = Ex[1A(t,α,ε)ϕ(X∆
τ∆α )

× Pτ∆α ,X∆
τ∆α

[τ∆,Y ≤ t](1 − H(y/|∇Fσ(τ∆α, X∆
τ∆α )|))] + o(1).

Moreover, note that taking y = 0 in the previous controls gives immediately

Ps̃,x̃(τ
∆,Y ≤ t) − Ps̃,x̃(τ

∆ ≤ t) = o(1)

uniformly in (s̃, x̃) ∈ Aα,ε. Thus, we finally obtain

Ψ∆(t, x, y) = Ex[1A(t,α,ε)ϕ(X∆
τ∆α )1τ∆≤t(1 − H(y/|∇Fσ(τ∆α, X∆

τ∆α )|))] + o(1).

Under continuity arguments as in step 1 (localization), we eventually get

Ψ∆(t, x, y) = Ex[1τ∆≤tϕ(X∆
τ∆)(1 − H(y/|∇Fσ(τ∆, X∆

τ∆)|))] + o(1).

We complete the proof using Lemma 9:

Ψ∆(t, x, y) →
∆→0

Ex[1τ≤tϕ(Xτ )(1 − H(y/|∇Fσ(τ, Xτ)|))].

2

3.2 Proof of Lemmas 10, 11 and 12
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Proof of Lemma 10. We shall insist on the dependence of the exit times with
respect to x, by setting τ∆ := inf{ti = i∆ > 0 : Wti ≥ x} := τ∆

x and
analogously for τ = τx. Our proof relies on the following convergence (see
equation (19) in Siegmund [Sie79]): if we set (for any y, z ≥ 0)

D(z, y) = P0[Wτ∆
z
− z ≤ y

√
∆] − H(y),

then

lim
z∆−1/2→+∞

|D(z, y)| = 0.

Using the monotonicity and the uniform continuity of H(y), Dini’s Theorem
yields that the above limit is actually uniform with respect to y ≥ 0. It follows

sup
y≥0, z∈[∆1/2−ε/3,∞)

|D(z, y)| →
∆→0

0. (3.13)

Additionnally, we have

sup
x≥0, t∈[∆1−4ε/3,T ]

|P0(τ
∆
x > t) − P0(τx > t)| →

∆→0
0. (3.14)

To prove this, we apply Theorem 3.4 in [Avi07] which states that

sup
x∈R

E|1M<x − 1M̂<x| ≤ 3(sup
m∈R

fM(m)‖M − M̂‖Lp)
p

p+1

for any p > 0 and for any random variables M and M̂ , such that M has a
bounded density fM(.). Now, consider M = sups≤t Ws and M̂ = sups=i∆≤t Ws.

The density of M is bounded by 2/
√

2πt. On the other hand, Lemma 6 in
[AGP95] gives ‖M − M̂‖Lp ≤ Cp(T )∆1/2. Hence, we get for t ≥ ∆1−4ε/3,

|P0(τ
∆
x > t) − P0(τx > t)| ≤ E|1M̂<x − 1M<x| ≤ Cp(T )∆

2εp
3(p+1) ,

which leads to (3.14).

We can now proceed to the proof of Lemma 10, assuming that x ≥ ∆1/2−ε.
First, note that if x/

√
t ≥ ∆−ε/3 → +∞ as ∆ → 0, P0(τ

∆
x ≤ t) and P0(τx ≤ t)

are both Opol(∆). Thus, the difference in Lemma 10 converges to 0 as ∆ → 0.

Suppose now that x/
√

t ≤ ∆−ε/3, hence
√

t ≥ x∆ε/3 ≥ ∆1/2−2ε/3, and write
for t ∈ ∆N∗

P := P0[τ
∆
x > t, Wτ∆

x
− x ≤ y

√
∆] =

∫ +∞

0
qx,∆
t (0, x − z)P0[Wτ∆

z
− z ≤ y

√
∆]dz

where qx,∆
t (., .) denotes the transition density of the Brownian motion dis-

cretely killed at level x. Introduce the partition R
+ = [0, ∆1/2−ε/3)∪[∆1/2−ε/3, +∞).
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Then,

P = R +
∫ +∞

∆1/2−ε/3
qx,∆
t (0, x − z)D(z, y)dz + P0[τ

∆
x > t]H(y)

where |R| ≤ 2P0[Wt ∈ [x − ∆1/2−ε/3, x]] ≤ 2√
2πt

∆1/2−ε/3 ≤ 2√
2π

∆ε/3 since√
t ≥ ∆1/2−2ε/3. Finally, taking advantage of the estimates (3.13) and (3.14)

readily completes our proof. 2

Proof of Lemma 11. We take s = 0 for notational simplicity. Introduce τ∆β :=
inf{t ≥ 0 : X∆

t /∈ V∂Dt(∆
β)} and for γ > 0 write from Lemma 8 and the

notation of (3.8) (up to the same regularization procedure concerning F )

Px[τ
∆ ∧ T ≥ ∆2β ] =Px[ inf

0≤i≤∆2β−1

(

F (0, x) +
∫ ti

0
∇F (s, X∆

s )σ(φ(s), X∆
φ(s))dWs

+ R∆
F (0, ti, x)

)

≥ 0, τ∆β ≥ ∆2β+γ] + Opol(∆) := Q,

where under the assumptions of the Lemma, |R∆
F (0, ti, x)| ≤ Cti and F (0, x) ≤

∆α. For a given r > 0, consider the event Ar = {∃s ≤ T : |X∆
s − X∆

φ(s)| ≥ r}
where the increments of X∆ between two close times are large: by Lemma 8,
it has an exponentially small probability. Hence, if we set

Mu :=
∫ u

0
∇F (s, X∆

s )σ(φ(s), X∆
φ(s))dWs := B〈M〉u , t̃i = 〈M〉ti ,

B is a standard Brownian motion (on a possibly enlarged probability space)
owing to the Dambis, Dubbins-Schwarz Theorem, cf. Theorem V.1.7 in [RY99].
In addition, the above time change is strictly increasing on the set Ac

r and
〈M〉t − 〈M〉s ≥ (t − s)a0/2 (t ≥ s) up to taking r small enough, because
(A

′

α-2) is in force. It readily follows that

Q ≤Px[ inf
0≤i≤∆2β+γ−1

(Mti + Cti) ≥ −∆α, τ∆β ≥ ∆2β+γ ] + Opol(∆)

≤Px[ inf
0≤i≤∆2β+γ−1

(Bt̃i + 2Ca−1
0 t̃i) ≥ −∆α, τ∆β ≥ ∆2β+γ,Ac

r] + Opol(∆)

≤Px[ inf
0≤i≤∆2β+γ−1

(Bt̃i + 2Ca−1
0 t̃i) ≥ −∆α, τ∆β ≥ ∆2β+γ,

inf
0≤s≤〈M〉

∆2β+γ

(Bs + 2Ca−1
0 s) ≤ −∆α−ζ ,Ac

r] + Opol(∆)

+ Px[τ∆β ≥ ∆2β+γ, inf
0≤s≤〈M〉

∆2β+γ

(Bs + 2Ca−1
0 s) ≥ −∆α−ζ ,Ac

r],

for ζ > 0. Thus, from Lemma 8 and standard controls

Q ≤ Px[∃i : 0 ≤ i ≤ ∆2β+γ−1, sup
s∈[t̃i,t̃i+1]

|Bs − Bt̃i + 2Ca−1
0 (s − t̃i)| ≥ ∆α−ζ − ∆α,

τ∆β ≥ ∆2β+γ ] + Px[ inf
0≤s≤a0∆2β+γ/2

Bs ≥ −∆α−ζ − C∆2β+γ ] + Opol(∆)

≤ Opol(∆) + C(∆α−ζ−β−γ/2 + ∆β+γ/2).
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Choose now γ, ζ s.t. (ζ + γ
2
) = η > 0. The proof is complete. 2

Proof of Lemma 12. Taking also s = 0 for notational convenience, we write

P :=Px[τ
∆ ≤ t, ∆−1/2F−(τ∆, X∆

τ∆) ∈ [a, b]] ≤ Opol(∆)

+
⌊t/∆⌋
∑

i=1

Ex[1τ∆>ti−1,X∆
ti−1

∈V∂Dti−1
(r0)PFti−1

[∆−1/2F−(ti, X
∆
ti

) ∈ [a, b]]]

(3.15)

using Lemma 8 for the last identity.
A Taylor formula gives: F (ti, X

∆
ti

) = F (ti−1, X
∆
ti−1

) + Σti−1
(Wti − Wti−1

) +

R∆
ti−1,ti

:= Nti−1
+ R∆

ti−1,ti
where Σti−1

= ∇Fσ(ti−1, X
∆
ti−1

), EFti−1
[|R∆

ti−1,ti
|2] ≤

C∆2. Conditionally to Fti−1
, Nti−1

has a Gaussian distribution
N (F (ti−1, X

∆
ti−1

), ‖Σti−1
‖2∆).

In addition, on the event X∆
ti−1

∈ V∂Dti−1 (r0), ‖Σti−1
‖2∆ ≥ a0∆ and we obtain

Qi−1 :=PFti−1
[F−(ti, X

∆
ti

) ∈ [a∆1/2, b∆1/2]]

=PFti−1
[(Nti−1

+ R∆
ti−1,ti

)− ∈ [a∆1/2, b∆1/2]]

≤PFti−1
[Nti−1

∈ [−b∆1/2 − ∆3/4,−a∆1/2 + ∆3/4]]

+ PFti−1
[|R∆

ti−1,ti
| ≥ ∆3/4, X∆

ti
/∈ Dti ]

≤PFti−1
[Nti−1

∈ [−∆1/2(b + ∆1/4),−∆1/2(a − ∆1/4)]]

+ C∆1/4 exp

(

−c
d(X∆

ti−1
, ∂Dti−1

)2

∆

)

using the Cauchy-Schwarz inequality and Lemma 8 for the last inequality.
Hence, we derive from (3.15)

P ≤
⌊t/∆⌋
∑

i=1

Ex[1τ∆>ti−1,X∆
ti−1

∈V∂Dti−1
(r0)

(

C∆1/4 exp

(

−c
d(X∆

ti−1
, ∂Dti−1

)2

∆

)

+
∫ −∆1/2(a−∆1/4)

−∆1/2(b+∆1/4)
exp

(

−
(y − F (ti−1, X

∆
ti−1

))2

2‖Σti−1
‖2∆

)

dy

(2π∆)1/2‖Σti−1
‖

)

] + Opol(∆).

We now upper bound the above integral on the event {τ∆ > ti−1} ⊂ {F (ti−1, X
∆
ti−1

) >
0}.

• If y ≤ 0, clearly one has (y − F (ti−1, X
∆
ti−1

))2 ≥ F 2(ti−1, X
∆
ti−1

).

• If y ∈ (0, [∆1/2(∆1/4−a)]+), one has (y−F (ti−1, X
∆
ti−1

))2 ≥ 1
2
F 2(ti−1, X

∆
ti−1

)−
y2 ≥ 1

2
F 2(ti−1, X

∆
ti−1

) − ∆3/2.

Thus, we obtain that P is bounded by

C(b − a + ∆1/4)
⌊t/∆⌋
∑

i=1

Ex[1τ∆>ti−1,X∆
ti−1

∈V∂Dti−1
(r0) exp(−c

F 2(ti−1, X
∆
ti−1

)

∆
)] + Opol(∆).
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The end of the proof is now achieved by standard computations done in [GM04]
p. 212 to 217. We only mention the main steps and refer for the details to
the above reference. First, we replace the discrete sum on i by a continuous
integral, then we apply the occupation time formula to the distance process
(F (s, X∆

s ))s≤τ∆ using the non characteristic boundary condition, as in the
proof of Theorem 6:

P ≤C
(b − a + ∆1/4)

∆

∫ t

0
Ex[1τ∆>s,X∆

s ∈V∂Ds(r0) exp(−c
F 2(s, X∆

s )

∆
)]ds + Opol(∆)

≤C
(b − a + ∆1/4)

∆

∫ r0

−r0

exp(−c
y2

∆
)Ex[L

y
t∧τ∆(F (., X∆

. ))]dy + Opol(∆).

Then, we use (2.6) to obtain P ≤ C((b − a + ∆1/4) which is our claim. 2

Remark 13 Finally, we mention that if σσ∗ is uniformly elliptic, the rest
R∆

ti−1,ti
can be avoided and the result can be stated without the contribution

∆1/4. Indeed, we can directly exploit that the Euler scheme has conditionally a
non degenerate Gaussian distribution and usual changes of chart associated to
a parametrization of the boundary (see e.g. [Gob00]) give the expected result.

4 Extension to the stationary case

4.1 Framework

In this section we assume that the coefficients in (1.1) are time independent
and that the mappings b, σ are uniformly Lipschitz continuous, i.e. (Xt)t≥0 is
the unique strong solution of

Xt = x +
∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dWs, t ≥ 0, x ∈ R

d.

For a bounded domain D ⊂ R
d, and given functions f, g, k : D̄ → R, we are

interested in estimating

u(x) := Ex[g(Xτ )Zτ +
∫ τ

0
f(Xs)Zsds], Zs = exp(−

∫ s

0
k(Xr)dr), (4.1)

where τ := inf{t > 0 : Xt /∈ D}.

Adapting freely the previous notations for Hlder spaces to the elliptic setting,
introduce for θ ∈]0, 1]:

(Aθ) 1. Smoothness of the coefficients. b, σ ∈ H1+θ.
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2. Uniform ellipticity. For some a0 > 0, ∀(x, ξ) ∈ R
d × R

d, ξ∗σσ∗(x)ξ
≥ a0|ξ|2.

(D) Smoothness of the domain. The bounded domain D is of class H2.
(Cθ) Other coefficients. The boundary data g ∈ H1+θ, f, k ∈ H1+θ and k ≥ 0.

Note that under (Aθ) and since D is bounded, Lemma 3.1 Chapter III of
[Fre85] yields supx∈D̄ Ex[τ ] < ∞. Thus, (4.1) is well defined under our current
assumptions.

From Theorem 6.13, the final notes of Chapter 6 in [GT98] and Theorem 2.1
Chapter II in Freidlin [Fre85], the Feynman-Kac representation in our elliptic
setting writes

Proposition 14 (Elliptic Feynman-Kac’s formula and estimates)
Assume (Aθ), (D), (Cθ) are in force. Then, there is a unique solution in
H1+θ ∩ C2(D) to











Lu − ku + f = 0, in D,

u|∂D = g,
(4.2)

(where L stands for the infinitesimal generator of X) and the solution is given
by (4.1).

In the following we denote by F (x) the signed spatial distance to the bound-
ary ∂D. Under (D), D satisfies the exterior and interior uniform sphere con-
dition with radius r0 > 0 and F ∈ H2(V∂D(r0)) where V∂D(r0) := {x ∈ R

d :
d(x, ∂D) ≤ r0}. Also, F can be extended to a H2 function preserving the
sign. For more details on the distance function, we refer to Appendix 14.6 in
[GT98].

4.2 Tools and results

Below, we keep the previous notations concerning the Euler scheme. We also
use the symbol C for nonnegative constants that may depend on D, b, σ, g, f, k
but not on ∆ or x. We reserve the notation c for constants also independent
of D, g, f, k.

We recall a known result from Gobet and Maire [GM05] (Theorem 4.2) which
provides an uniform bound for the p-th moment of τ∆:

∀p ≥ 1, lim sup
∆→0

sup
x∈D̄

Ex[(τ
∆)p] < ∞. (4.3)

Let us now state the main results of Section 2 in our current framework.
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Proposition 15 (Tightness of the overshoot) Assume (Aθ-2), and that
D is of class H2. Then, for some c > 0,

sup
∆>0

Ex[exp(c[∆−1/2F−(X∆
τ∆)]2)] < +∞.

From the proof of Theorem 3 and the estimate (4.3) we derive:

Theorem 16 (Joint limit laws associated to the overshoot) Assume (Aθ),
and that D is of class H2. Let ϕ be a continuous function with compact sup-
port. With the notation of Theorem 3, for all x ∈ D, y ≥ 0,

Ex[Z
∆
τ∆ϕ(X∆

τ∆)1F−(X∆
τ∆

)≥y
√

∆] −→
∆→0

Ex

[

Zτϕ(Xτ )
(

1 − H(y/|∇Fσ(Xτ)|)
)]

.

4.3 Error expansion and boundary correction

For notational convenience introduce for x ∈ D,

u(D) = Ex(g(Xτ)Zτ +
∫ τ

0
Zsf(Xs)ds),

u∆(D) = Ex(g(X∆
τ∆)Z∆

τ∆ +
∫ τ∆

0
Z∆

φ(s)f(X∆
φ(s))ds).

The second quantity is well defined owing to (4.3).

Theorem 17 (First order expansion) Under (Aθ), (D), (Cθ), for ∆ small
enough and with the notation of Theorem 4

Err(∆, g, f, k, x) = u∆(D) − u(D)

= c0

√
∆Ex(Zτ (∇u −∇g)(Xτ) · ∇F (Xτ )|∇Fσ(Xτ)|) + o(

√
∆).

Define now D∆ = {x ∈ D : d(x, ∂D) > c0

√
∆|∇Fσ(x)|}. Introduce τ̂∆ =

inf{ti > 0 : X∆
ti
∈ D∆}. Set

u∆(D∆) = Ex[g(X∆
τ̂∆)Z∆

τ̂∆ +
∫ τ̂∆

0
Z∆

φ(s)f(X∆
φ(s))ds].

One has:

Theorem 18 (Boundary correction) Under (Aθ), (D), (Cθ) and assum-
ing additionally ∇F (.)|∇Fσ(.)| is in C2, then for ∆ small enough one has

u∆(D∆) − u(D) = o(
√

∆).
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4.4 Proofs

Note carefully that all the constants appearing in the error analysis for the
parabolic case have at most linear growth w.r.t the fixed final time T . Estimate
(4.3) allows to control uniformly the integrability of these constants in our
current framework. Thus, since the arguments remain the same, we only give
below sketches of the proofs.

Proof of Proposition 15. It is sufficient to prove that there exist constants c̃ > 0
and C s.t. ∀A ≥ 0, sup∆>0 Px[F

−(X∆
τ∆) ≥ A∆1/2] ≤ C exp(−c̃A2). Then any

choice of c < c̃ is valid. For x ∈ D, we write

P := Px[F
−(X∆

τ∆) ≥ A∆1/2]

=
∑

i∈N∗

E[1τ∆>ti−1
1τ∆

ti−1
<tiP[F−(X∆

ti
) ≥ A∆1/2|Fτ∆

ti−1
]]

where τ∆
ti−1

:= inf{s ≥ ti−1 : X∆
s /∈ D}. From Lemma 8, we get

P ≤ C exp(−c̃A2)
∑

i∈N∗

P[τ∆ > ti−1, τ
∆
ti−1

< ti].

Lemma 16 from [GM04] remains valid under our current assumptions and
yields

P ≤ C exp(−c̃A2)
∑

i∈N∗

E[1τ∆>ti−1
(P[X∆

ti
/∈ D|Fti−1

] + Opol(∆))].

On the one hand,
∑

i∈N∗ 1τ∆>ti−1
1X∆

ti
/∈D = 1τ∆<∞ = 1 owing to (4.3). On the

other hand, we have
∑

i∈N∗ Px[τ
∆ > ti−1] = ∆−1

Ex[τ
∆] ≤ C/∆ using (4.3)

again. Finally, we obtain that P ≤ C exp(−c̃A2) which concludes the proof. 2

Proof of Theorem 17. Similarly to the proof of Theorem 6 we suppose first
that u ∈ H3+θ. The general case can be deduced as in the parabolic case using
suitable Schauder estimates, given in the final notes of Chapter 6 in [GT98],
see also our Appendix.

In this simplified setting, keeping the notations introduced in the proof of
Theorem 6, we obtain

Err(∆, g, f, k, x)
E
= Z∆

τ∆(∇u −∇g)(π∂D(X∆
τ∆))∇F (X∆

τ∆)F−(X∆
τ∆)

+
(

∑

i∈N

1ti<τ∆

[

1Aε
ti
O(∆

1+θ
2 ) (4.4)

+1(Aε
ti

)C1
∀s∈[ti,ti+1],X∆

s ∈B(X∆
ti

,∆
1
2 (1−ε))

(u(X∆
ti+1

)Z∆
ti+1

− u(X∆
ti

)Z∆
ti

+Z∆
ti

f(X∆
ti

)∆)
])

1τr0>τ∆ . (4.5)

31



Since the constant in (2.6) depends linearly on time, the contribution associ-

ated to the remainder (4.4) can be bounded by C∆
3+θ−ε

2 ×(∆−1
Ex[τ

∆]). From

(4.3), this quantity is a O(∆
1+θ−ε

2 ) = o(∆
1
2 ) for ε small enough. Similarly to

(2.10) the term (4.5) can be bounded by

E

[(

∑

i∈N

1ti<τ∆1(Aε
ti

)CO(∆2{1 + |u|∞ + |∇u|∞ + |D2u|∞ + |D3u|∞}

+ ∆
3+θ
2 [D3u]x,θ)

)]

+ Opol(∆)

≤ C∆
1+θ
2 E[τ∆] = o(∆1/2).

We eventually derive the result as in Section 2. 2

Theorem 18 can be proved as Theorem 5, using a sensitivity result analogous
to Theorem 2.2 in [CGK06] for elliptic problems, see e.g. Simon [Sim80]. We
skip the details.

5 Numerical results

The numerical behavior of the correction of Theorem 5 had already been
illustrated for the killed case in Section 3 of [Men06]. Additional tests are
presented in [Gob09]. We now focus on the stopped case with the following
example. Take d = 3 and introduce the following diffusion process

dXt = b(Xt)dt + σ(Xt)dWt, ∀x ∈ R
3, b(x) = (x2 x3 x1)

∗ ,

σ(x) =















(1 + |x3|)1/2 0 0

1
2
(1 + |x1|)1/2

(

3
4

)1/2
(1 + |x1|)1/2 0

0 1
2
(1 + |x2|)1/2

(

3
4

)1/2
(1 + |x2|)1/2















,

(5.1)

and X0 to be specified later on. Set D = B(0, 2). We consider an elliptic
problem. Starting from a given function u(x) = x1x2x3 defined on D̄, we derive
the PDE of type (4.2) associated to (5.1) satisfied by u by taking g = u|∂D,
setting f = −Lu where L stands for the infinitesimal generator of X in (5.1)
and k = 0. One can easily check that −f(x) = x2

2x3 + x2
3x1 + x2

1x2 + 1
2
[x3(1 +

|x1|)1/2(1+|x3|)1/2+x1

(

3
4

)1/2
(1+|x1|)1/2(1+|x2|)1/2]. Thus we have an explicit

expression for the solution of (4.2).

For x0 s.t. (xi
0)1≤i≤3 ∈ {−.7,−.3, .3, .7}, we take NMC = 106 sample paths

for the Monte Carlo simulation and let ∆ vary in {.01, .05, .1}. For all the
computations, the size of the 95% confidence interval always varies in [1.5 ×
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10−3, 2× 10−3]. For the absolute value of the absolute and relative errors over
the 3 × 43 = 192 points of the spatial grid, we report the results in Table 1.
These results for the correction seem to indicate that the remainder o(∆1/2)
in Theorem 18 is actually a O(∆). This will concern further research.

∆ Without correction In the corrected domain

.1 0.169 (199%) 0.0220 (24.4%)

.05 0.114 (133%) 0.0115 (13.1%)

.01 0.0471 (54.7%) 0.0026 (2.98%)

Table 1
Supremum of the absolute error for the Euler scheme (relative error in % in paren-
thesis)

In Tables 2 and 3, we also report the results obtained for the spatial points
x0 = (−.7, .3, .7) and x0 = (−.7, .7,−.7).

∆ Without correction In the corrected domain

.1 -.0913+/- .0019 -.1477 +/- .0016

.05 -.1051 +/- .0018 -.1465+/- .0016

.01 -.1282 +/- .0017 -.1476+/- .0016

Table 2
Estimated value at x0 = (−.7, .3, .7) (with 95% confidence interval). True value
u(x0) = −.147.

∆ Without correction In the corrected domain

.1 .5368 +/- .0019 .3866 +/- .0016

.05 .4648 +/- .0018 .3634 +/- .0016

.01 .3851 +/- .0016 .3473 +/- .0016

Table 3
Estimated value at x0 = (−.7, .7,−.7) (with 95% confidence interval). True value
u(x0) = .343.

Eventually, for the Monte Carlo method, taking x0 = (−.7, .3, .7) and the
previous values of ∆, in Figure 5 we plot − log(ErrMC) in function of − log(∆),

where ErrMC :=

{

1
MC

MC
∑

i=1

(

g(X∆,i
τ∆,i) +

∫ τ∆,i

0
f(X∆,i

φ(s))ds

)}

− u(x0). The curve

is quite close to a right line with slope 1/2 as it should from Theorem 17.
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Figure 5. Error for the Monte Carlo method (without correction) as a function of
∆, in logarithmic scales. Evaluation at x0 = (−.7, .3, .7).

6 Conclusion

We have proposed and analysed a boundary correction procedure to simulate
stopped/killed diffusion processes. This is valid for non-stationary and station-
ary problems, in time-dependent or time-independent domains. The resulting
scheme is elementary to implement and its numerical accuracy is very good
in our experiments. The proof relies on new asymptotic results regarding the
renormalized overshoots.
To conclude, we note that the boundary correction procedure is very generic
and could be at least formally extended to general It processes of the form
dXt = btdt + σtdWt. In that case, the smaller domain would be defined ω by
ω replacing ∇F (t, x)σ(t, x) by ∇F (t, Xt)σt. Even if our current proof relies
on Markovian properties, we conjecture that the correction should once again
give a o(

√
∆) independently of the Markovian structure. Numerical tests in

[Gob09] support this conjecture, which will be addressed mathematically in
further research.

A Proof of Theorem 6 in the general setting

In this section, we detail how the proof of Section 2 has to be modified under
the assumptions of Theorem 4, i.e. for g ∈ H1+θ and without compatibility
condition so that u ∈ H1+θ. Actually, u is smooth inside the domain but high
order derivatives may explode close to the boundary. These features have to
be accurately quantified to show that the induced singularities are integrable.
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A.1 Preliminary notation and controls

Introduce the parabolic distance pd: for (s, x), (t, y) ∈ D̄, pd((s, x), (t, y)) =
max(|s − t|1/2, |x − y|). We also denote for a closed set A ∈ D̄ and (s, x) ∈
D, pd((s, x),A) the parabolic distance of (s, x) to A. Note that pd((s, x),PD∩
{v ≥ s}) ≥ min(F (s, x),

√
T − s), so that we obtain the easy inequality:

1

pd((s, x),PD ∩ {v ≥ s}) ≤ 1

F (s, x)
+

1√
T − s

. (A.1)

Under our current assumptions, for some constant C > 0, we have

|D2u(s, x)| + |D3u(s, x)| ≤ Cpd((s, x),PD ∩ {v ≥ s})−2; (A.2)

for (t, y) 6= (s, x),
|D3u(s, x) − D3u(t, y)|

pd((s, x), (t, y))θ

≤ C[pd((s, x),PD ∩ {v ≥ s}) ∧ pd((t, y),PD ∩ {v ≥ t})]−2−θ; (A.3)

for t 6= s,
|D2u(s, x) − D2u(t, x)|

|t − s|(1+θ)/2

≤ C[pd((s, x),PD ∩ {v ≥ s}) ∧ pd((t, x),PD ∩ {v ≥ t})]−2−θ. (A.4)

The above constant C is uniform w.r.t. (s, x) ∈ D, (t, y) ∈ D or (t, x) ∈
D. These inequalities are obtained with the interior Schauder estimates for
the PDEs satisfied by the partial derivatives (∂xi

u)1≤i≤d, see Theorem 4.9 in
[Lie96].

We first state an important proposition for the error analysis with possibly
explosive controls as in (A.2)-(A.3)-(A.4) for the derivatives. Namely, under
our current regularity assumptions, in order to perform a Taylor expansion
we have to work with interior points located in small balls, which distance
to the boundary is uniformly bounded from below within the ball. The next
proposition states that this is the case if the ball centers are ”far enough” from
the side of D.

Proposition 19 Assume D ∈ H2 and take ε ∈]0, 1[. For all (t, x) ∈ D̄ ∩
V∂D(r0/2)\V∂D(2∆1/2(1−ε)) (r0 is defined in Section 1.5.2), one has for ∀y ∈
B(x, ∆1/2(1−ε)) and s ∈ [t, t + ∆]

F (s, y) ≥ 1

4
F (t, x)

for ∆ small enough (uniformly in t, x, s, y). In particular, y belongs to Ds.

Proof. Since F ∈ H2, one has

F (s, y) ≥F (t, x) − C∆ + 〈∇F (t, x), y − x〉 − C∆1−ε.
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The norm of ∇F (t, x) equals 1, since ∇F (t, x) is the unit inward normal
vector at the closest point of x on ∂Dt. Therefore, for ∆ small enough and
using 1

2
F (t, x) ≥ ∆

1
2
(1−ε), we have

F (s, y) ≥ F (t, x) − 3

2
∆

1
2
(1−ε) ≥ 1

4
F (t, x),

which is the expected inequality. 2

We are now in a position to deduce useful local upper bounds for the deriva-
tives of u and their Hölder-norms, under the assumptions of Theorem 6.

Corollary 20 Take ε ∈]0, 1[. There exists a constant C > 0 such that for ∆
small enough, for all (t, x) ∈ D̄\V∂D(2∆1/2(1−ε)), for all (y, z) ∈ B(x, ∆1/2(1−ε))
and (r, s) ∈ [t, t + ∆], we have

|D2u(s, y)|+ |D3u(s, y)| ≤ C

F 2(t, x)
+

C

T − t
; (A.5)

for y 6= z,
|D3u(s, y) − D3u(s, z)|

|y − z|θ ≤ C

F 2+θ(t, x)
+

C

(T − t)1+θ/2
; (A.6)

for r 6= s,
|D2u(r, y)− D2u(s, y)|

|r − s|(1+θ)/2
≤ C

F 2+θ(t, x)
+

C

(T − t)1+θ/2
. (A.7)

Proof. Note that if (t, x) ∈ D̄\V∂D(2∆1/2(1−ε)), we have T − t ≥ 4∆1−ε.
Estimate (A.5). In view of (A.2) and (A.1), the upper bound of |D2u(s, y)|+
|D3u(s, y)| is equal to C

F 2(s,y)
+ C

T−s
. On the one hand, by easy computations,

we prove

1

T − s
≤ 1

T − t

T − t

T − t − ∆
≤ 1

T − t

1

1 − ∆ε/4
≤ C

T − t

for ∆ small enough. On the other hand, we have

1

F (s, y)
≤ C

F (t, x)
.

Indeed, if x is far from Dt (and thus y far from Ds), both terms F (s, y) and
F (t, x) are bounded from above and from below. In the other case when (t, x) ∈
D̄∩V∂D(r0/2)\V∂D(2∆1/2(1−ε)), Proposition 19 yields F (s,y)

F (t,x)
≥ 1

4
. Therefore, the

upper bound (A.5) readily follows.
Estimates (A.6) and (A.7). They are proved following the same arguments,
the details of which are left to the reader. 2
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A.2 Error analysis

Recall from the previous proof of Theorem 6 that the main term to analyse is

e∆
22

E
=
(

∑

0≤ti<T

1ti<τ∆1(Aε
ti

)C1
∀s∈[ti,ti+1], X∆

s ∈B(X∆
ti

,∆
1
2 (1−ε))

[

u(ti+1, X
∆
ti+1

)Z∆
ti+1

−u(ti, X
∆
ti

)Z∆
ti

+ Z∆
ti

f(ti, X
∆
ti

)∆
])

1τr0>τ∆∧T

=
(

∑

0≤ti<T−4∆1−ε

· · ·
)

1τr0>τ∆∧T +
(

∑

T−4∆1−ε≤ti<T

· · ·
)

1τr0>τ∆∧T := e∆
221 + e∆

222,

where we have just splitted the summation on ti.

Control of e∆
221. The idea is to perform a stochastic expansion of u(ti+1, X

∆
ti+1

)Z∆
ti+1

−u(ti, X
∆
ti

)Z∆
ti

+Z∆
ti

f(ti, X
∆
ti

)∆ as in (2.8). Under our current assumptions, the
difference comes from the high-order derivatives that are no more uniformly
bounded or uniformly Hölder but only locally, with local estimates given in
Corollary 20. Thus, following the same computations that have led to (2.10),
we obtain

e∆
221

E
=
(

∑

0≤ti<T−4∆1−ε

1ti<τ∆1(Aε
ti

)C1∀s∈[ti,ti+1], X∆
s ∈B(X∆

ti
,∆

1
2
(1−ε))

[

O
(

(∆2 + ∆|X∆
s − X∆

ti
|2)( 1

F 2(ti, X∆
ti )

+
1

T − ti
)
)

+ O
(

(∆1+ 1+θ
2 + ∆|X∆

s − X∆
ti
|1+θ)(

1

F 2+θ(ti, X∆
ti )

+
1

(T − ti)1+θ/2
)
)

+ M̄ti,ti+1

])

1τr0>τ∆∧T . (A.8)

The derivatives appearing in (M̄ti,ti+1
)0≤ti<T (see equations (2.9) and (2.10))

are controlled by (A.5) on (Aε
ti
)C . The control of (2.11) remains valid for the

(M̄ti,ti+1
)0≤ti<T that yields a negligeable contribution. It follows that

|e∆
221|

E

≤ C∆
1+θ
2

(

∑

0≤ti<T−4∆1−ε

1ti<τ∆1
F (ti,X∆

ti
)≥2∆

1
2
(1−ε)∆

[

1

F 2+θ(ti, X
∆
ti )

+
1

(T − ti)1+θ/2

])

1τr0>τ∆∧T .

Standard computations show that

∆
1+θ
2

∑

0≤ti<T−4∆1−ε

∆

(T − ti)1+θ/2
≤ ∆

1+θ
2

∫ T−4∆1−ε+∆

0

dt

(T − t)1+θ/2
= O(∆

1
2
+ θε

2 ),

which implies

|e∆
221|

E

≤ C∆
1+θ
2

(

∫ T∧τ∆

0
1F (φ(t),X∆

φ(t)
)∈[2∆1/2(1−ε) ,r0/2]F (φ(t), X∆

φ(t))
−2−θdt

)

+O(∆
1
2
+ θε

2 ).
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Adapting the previous analysis of Section 2 for the term e∆
211, we get

|e∆
221|

E

≤ C∆
1+θ
2

(

∫ T∧τ∆

0
1F (t,X∆

t )∈[∆1/2(1−ε),3r0/4]F (t, X∆
t )−2−θdt

)

+ O(∆
1
2
+ θε

2 )

E

≤ C∆
1+θ
2

(

∫ 3r0/4

∆1/2(1−ε)
y−2−θLy

T∧τ∆(F (., X∆
. ))dy

)

+ O(∆
1
2
+ θε

2 ),

using Lemma 8 for the last but one inequality, and the occupation time formula
for F (t, X∆

t ) for the last one (recall that σ is uniformly elliptic).
Finally using (2.6), one gets

|e∆
221| ≤ C∆

1+θ
2

(

∫ 3r0/4

∆1/2(1−ε)
y−2−θ(y + ∆1/2)dy

)

+ O(∆
1
2
+ θε

2 ) ≤ C∆
1
2
+ θε

2 = o(∆1/2).

Control of e∆
222. Apply a Taylor formula with integral rest at order one in space.

The θ-Hölder continuity in space of ∇u and the (1+θ)/2-Hölder continuity in
time of u directly give a contribution in O(∆1/2+θ/2−ε) = o(∆1/2) for ε small
enough. This completes the proof. 2
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