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STOPPED DIFFUSION PROCESSES: OVERSHOOTS ANDBOUNDARY CORRECTIONBy Emmanuel Gobet and Stéphane MenozziENSIMAG-INP Grenoble,Université Denis Diderot Paris 7Abstra
t For a stopped di�usion pro
ess in a time dependentdomain, we obtain the asymptoti
s of the triplet exit time/exit po-sition/overshoot for the dis
retely stopped Euler s
heme. Here, theovershoot means the distan
e to the boundary of the pro
ess when itexits the domain. As a �rst 
onsequen
e of this result, we obtain anexpansion for the weak error. From the expansion and the sensitiv-ity of the underlying Diri
hlet problem with respe
t to the domain,we �nally derive a pro
edure to improve the 
onvergen
e by suitablyrestraining the domain.1. Introdu
tion.1.1. Statement of the problem. We 
onsider a d-dimensional di�usionpro
ess whose dynami
s is given by
Xt = x +

∫ t

0
b(s,Xs)ds +

∫ t

0
σ(s,Xs)dWs(1.1)where W is a standard d′-dimensional Brownian motion de�ned on a �lteredprobability spa
e (Ω,F , (Ft)t≥0, P) satisfying the usual 
onditions. The map-pings b and σ are Lips
hitz 
ontinuous in spa
e and lo
ally bounded in time,so that (1.1) has a unique strong solution. For a �xed deterministi
 time

T > 0 and a given bounded time dependent domain D ⊂]0, T [×R
d assumedto be smooth we de�ne τ := inf{t > 0 : (t,Xt) 6∈ D}. Note that τ is boundedby T . For x ∈ D0 := {y ∈ R

d : (0, y) ∈ ∂D\∂D ∩ (]0, T [×Rd)}, where ∂D isthe boundary of D, and given 
ontinuous fun
tions g, f, k : D̄ → R, we areinterested in estimating the quantity
Ex[g(τ,Xτ )Zτ +

∫ τ

0
Zsf(s,Xs)ds], Zs = exp(−

∫ s

0
k(r,Xr)dr),(1.2)where as usual Ex[.] := E[.|X0 = x] (resp. Px[.] := P[.|X0 = x]). The ap-proximation of su
h quantities is a well known issue in �nan
e, sin
e itAMS 2000 subje
t 
lassi�
ations: Primary 60J60;60H35;60-08Keywords and phrases: Stopped di�usion, Time dependent domain, Brownian over-shoot, Boundary sensitivity. 1



2 E. GOBET AND S. MENOZZIrepresents in this framework the pri
e of a barrier option, see e.g. Ander-sen and Brotherton-Rat
li�e [ABR96℄. Those quantities also arise throughthe Feynman-Ka
 representation of the solution of a paraboli
 PDE withCau
hy-Diri
hlet boundary 
onditions, see Costantini et al. [CGK06℄. They
an therefore also be related to problems of heat di�usion in time dependentdomains.We then 
hoose to approximate the expe
tation in (1.2) by Monte Carlosimulation. This approa
h is natural and espe
ially appropriate if the dimen-sion d is large. To this end we approximate the di�usion (1.1) by its Eulers
heme with time step ∆ > 0. De�ne ∀t ≥ 0, φ(t) := sup{ti := i∆, i ∈ N :
ti ≤ t < ti+1} and introdu
e

X∆
t = x +

∫ t

0
b(φ(s),X∆

φ(s))ds +

∫ t

0
σ(φ(s),X∆

φ(s))dWs.(1.3)We now asso
iate to (1.3) the dis
rete exit time τ∆ := inf{ti, i ∈ N∗ :
(ti,X

∆
ti ) 6∈ D}. Approximating the fun
tional Vτ := g(τ,Xτ )Zτ+

∫ τ
0 Zsf(s,Xs)

ds by
V ∆

τ∆ := g(τ∆,X∆
τ∆)Z∆

τ∆ +

∫ τ∆

0
Z∆

φ(s)f(φ(s),X∆
φ(s))dswith Z∆

t = e
−
∫ t

0
k(φ(r),X∆

φ(r)
)dr

,we introdu
e the quantity
Err(T,∆, g, f, k, x) = Ex[V ∆

τ∆ − Vτ ](1.4)that will be referred to as the weak error. Note that in V ∆
τ∆ , g is a.s. notevaluated on the boundary (g must be understood as a fun
tion de�ned ina neighborhood of ∂D). At �rst sight, this approximation 
an seem 
oarse.Anyhow, it does not a�e
t the 
onvergen
e rate and really redu
es the 
om-putational 
ost with respe
t to the alternative that would 
onsist in takingthe proje
tion on ∂D.Our main purpose is to expand the error (1.4) at the �rst order. A
tu-ally, the 
ru
ial tool is the asymptoti
s of the triplet exit time/exit posi-tion/overshoot for the Euler s
heme. Here, the overshoot means the distan
eto the boundary of the pro
ess when it exits the domain. In addition, weimprove the initial 
onvergen
e rate by a boundary 
orre
tion pro
edure.We mention that we 
ould also 
onsider the di�usion pro
ess dis
retelystopped: results below would remain the same.



OVERSHOOTS OF STOPPED DIFFUSIONS 31.2. Existing results and 
ontribution of the paper. Up to now, the be-havior of (1.4) had mainly been analyzed for 
ylindri
al domains, in thekilled 
ase, without sour
e and potential terms (i.e. when the error writes
Err(T,∆, g, 0, 0, x) = E[g(X∆

T )1τ∆>T ] − E[g(XT )1τ>T ] := E). Let us �rstmention the work of Broadie et al. [BGK97℄, who �rst derived the 
orre
tionpro
edure of Se
tion 2 in the one dimensional geometri
 Brownian motionsetting (Bla
k and S
holes model). In [Gob00℄ and [GM04℄, it had beenshown that, under some (hypo)ellipti
ity 
onditions on the 
oe�
ients andsome smoothness of the domain and the 
oe�
ients, E was lower and upperbounded at order 1/2 w.r.t. the time step ∆. Also, an expansion result forthe killed Brownian motion in a 
one as well as the asso
iated 
orre
tionpro
edure are available in [Men06℄.All these works emphasize that the 
ru
ial quantity to 
ontrol in orderto obtain an expansion is the overshoot above the spatial boundary of thedis
rete pro
ess. In the Brownian one-dimensional framework su
h 
ontrolsgo ba
k to Siegmund [Sie79℄ and Siegmund and Yuh [SY82℄. We manage toextend their results to obtain the asymptoti
 distribution of the overshootof the Euler s
heme, see Se
tions 2 and 3. Con
erning the asymptoti
s ofthe overshoot of sto
hasti
 pro
esses, let us mention the works of Alsmeyer[Als94℄ or Fuh and Lai [FL01℄ for ergodi
 Markov 
hains and Doney andKyprianou for Lévy pro
esses [DK06℄. These works are all based on renewalarguments.Our results about the overshoot 
ombined to sharp te
hniques of erroranalysis, allow us to derive an expansion of the form Err(T,∆, g, f, k, x) =
C
√

∆+ o(∆) in the very general framework of stopped pro
esses in time de-pendent domains. Some su�
ient assumptions 
an be formulated in terms ofthe uniform ellipti
ity of σ and some smoothness properties for D, b, σ, g, f, k.From a numeri
al viewpoint, error expansions are the �rst step for a pro-
edure that aims to improve the 
onvergen
e. A very popular one is theRomberg extrapolation, see [TT90℄. Using the re
ent results of Costantiniet al. [CGK06℄ 
on
erning the sensitivity of the Diri
hlet problem w.r.t. theboundary, we propose an alternative simulation pro
edure that 
onverges as
o(
√

∆). Namely, sin
e the dis
rete stopping yields an overestimation of theexa
t stopping (see Boyle and Lau [BL94℄, Baldi [Bal95℄, [GM04℄) we stopthe dis
rete pro
ess when it leaves a suitable smaller domain. Furthermore,this te
hnique does not require any re�nement of the time step. Therefore,it does not in
rease the empiri
al varian
e for the asso
iated Monte Carloestimator as for the Romberg extrapolation.Let us �nally mention that under some quite usual assumptions the previ-ous results about the error expansion and 
orre
tion still hold in the station-



4 E. GOBET AND S. MENOZZIary setting, see Se
tion 4, whi
h also seems to be new. Numeri
al appli
ationsare left to further works.1.3. Outline of the paper. Notations and assumptions used throughoutthe paper are stated in Se
tion 1.4. In Se
tion 2 we give our main results
on
erning the asymptoti
s of the overshoot, the error expansion and theboundary 
orre
tion. These results are proved in Se
tion 3, whi
h is thete
hni
al 
ore of the paper. Eventually, Se
tion 4 deals with the stationaryextension of our results. We still manage to obtain an expansion and a 
or-re
tion for ellipti
 PDEs. Some te
hni
al results are postponed in Appendix.1.4. General notation and assumptions.1.4.1. Mis
ellaneous.
• Di�erentiation. For smooth fun
tions g(t, x), we denote by ∂β

x g(t, x) thederivative of g w.r.t. x a

ording to the multi-index β, whereas the timederivative of g is denoted by ∂tg(t, x). The notation ∇g(t, x) stands for theusual gradient w.r.t. x (as a row ve
tor) and the Hessian matrix of g (w.r.t.the spa
e variable x) is denoted by Hg(t, x).The se
ond order linear operator L below stands for the in�nitesimal gener-ator of the di�usion pro
ess X in (1.1):(1.5) Lg(t, x) = ∇g(t, x)b(t, x) +
1

2
Tr(Hg(t, x)[σσ∗](t, x)).

• Metri
. The Eu
lidean norm is denoted by | · |.We set Bd(x, ǫ) for the usual Eu
lidean d-dimensional open ball with 
enter
x and radius ǫ and d(x,C) for the Eu
lidean distan
e of a point x to a 
losedset C.
• Fun
tions. For an open set D′ ⊂ R × R

d and l ∈ N, C⌊ l
2
⌋,l(D′) (resp.

C⌊ l
2
⌋,l(D′)) is the spa
e of 
ontinuous fun
tions f de�ned on D′ with 
ontin-uous derivatives ∂β

x∂j
t f for |β| + 2j ≤ l (resp. de�ned in a neighborhood of

D′). Also, for a = l+θ, θ ∈]0, 1], l ∈ N, we denote by Ha(D′) (resp. Ha(D̄′))the Bana
h spa
e of fun
tions of 
lass C⌊ l
2
⌋,l(D′) (resp. C⌊ l

2
⌋,l(D̄′) ) having lthspa
e derivatives uniformly θ-Hölder 
ontinuous and ⌊l/2⌋ time derivativesuniformly (a/2 − ⌊l/2⌋)-Hölder 
ontinuous, see Lieberman [Lie96℄, p. 46 fordetails. We may simply write C⌊ l

2
⌋,l or Ha when D′ = R × R

d.
• Floating 
onstants. As usual, we use the same symbol C for all �nite, non-negative 
onstants whi
h appear in our 
omputations : they may depend on
D, T, b, σ, g, f, k but they will not depend on ∆ or x. We reserve the notation
c for 
onstants also independent of T , g, f and k. Other possible dependen
es



OVERSHOOTS OF STOPPED DIFFUSIONS 5will be expli
itly indi
ated.In the following Opol(∆) (resp. O(∆)) stands for every quantity R(∆) su
hthat ∀k ∈ N, for some C > 0, one has |R(∆)| ≤ C∆k (resp. |R(∆)| ≤ C∆)(uniformly in the starting point x).1.4.2. Time-spa
e domains. In the sequel D stands for a bounded time-spa
e domain in ]0, T [×R
d (T is a �xed terminal time). Let

D0 =
{

x : (0, x) ∈ ∂D\∂D ∩ (]0, T [×Rd)
}

,

DT =
{

x : (T, x) ∈ ∂D\∂D ∩ (]0, T [×Rd)
}

.

D0 and DT are open sets and we assume that they are nonempty domainsthat 
oin
ide with the interior of their 
losure (
f. [Fri64℄, Se
tion 3.2). Weassume also (
f. again [Fri64℄, Se
tion 3.2) that the time se
tion of D,(1.6) Dt = {x : (t, x) ∈ D}, t ∈]0, T [,is a domain that 
oin
ides with the interior of its 
losure, for every t ∈]0, T [.Regularity assumptions on the domain D will be formulated in terms ofHölder spa
es with time-spa
e variables (see [Lie96℄ p.46 and [Fri64℄ Se
tion3.2). Namely, we say that the domain D is of 
lass Ha, a ≥ 1 if for everyboundary point (t0, x0) ∈ ∂D ∩ (]0, T [×Rd), there exists a neighborhood
]t0, t0 + ε2

0[×Bd(x0, ε0), an index i ∈ [[1, d]] and a fun
tion ϕ0 ∈ Ha(]t0, t0 +
ε2
0[×Bd−1(x

1
0, ..., x

i−1
0 , xi+1

0 , ..., xd
0), ε0) s.t.

∂D ∩ (]0, T [×Rd)∩]t0, t0 + ε2
0[×Bd(x0, ε0)

:= {(t, x) ∈ (]t0, t0 + ε2
0[∩[0, T ]) × Bd(x0, ε0)

: xi = ϕ0(t, x1, ..., xi−1, xi+1, ..., xd)}.In the following we freely use the notations of [Lie96℄.If D is of 
lass H2, all domains Dt, for t ∈ [0, T ], satisfy the uniforminterior and exterior sphere 
ondition with the same radius r0. Moreover(see [Lie96℄, Se
tion X.3), the signed spatial distan
e F , given by
F (t, x) =

{

−d(x, ∂Dt), for x ∈ Dc
t , d(x, ∂Dt) ≤ r0, 0 < t < T,

d(x, ∂Dt), for x ∈ Dt, d(x, ∂Dt) ≤ r0, 0 < t < T,belongs to H2 ({(t, x) : 0 < t < T, d(x, ∂Dt) < r0}) and ∇F (t, x) is the unitinward normal ve
tor to Dt at π∂Dt(x) the nearest point to x in ∂Dt. F 
anbe extended as a H2([0, T ] × R
d) fun
tion, preserving the sign.In the following we denote ∀r ∈ R

+, by V∂D(r) := {(t, x) ∈ [0, T ] × R
d :

d(x, ∂Dt) ≤ r} a neighborhood of size r of the so 
alled side.



6 E. GOBET AND S. MENOZZI1.4.3. Di�usion pro
esses stopped at the boundary. We spe
ify the prop-erties of the 
oe�
ients (b, σ) in (1.1) with assumption(Aθ) (with θ ∈]0, 1])1. Smoothness. b and σ are fun
tions of 
lass H1+θ.2. Uniform ellipti
ity. For some a0 > 0, it holds ξ∗[σσ∗](t, x)ξ ≥
a0|ξ|2 for any (t, x, ξ) ∈ [0, T ] × R

d × R
d.We also introdu
e assumption (A′

θ) for whi
h 2. is repla
ed by the weakerassumption2'. Uniform non 
hara
teristi
 boundary. For some r0 > 0 there exists
a0 > 0 s.t. ∇F (t, x)[σσ∗](t, x)∇F (t, x) ≥ a0 for any (t, x) ∈ V∂D(r0).The asymptoti
 results 
on
erning the overshoot hold true under (A′

θ), seeSe
tion 2.1.We mention that the additional smoothness of b and σ w.r.t. the timevariable is required for the 
onne
tion with PDEs. In the following we usethe supers
ript t, x to indi
ate the usual Markovian dependen
e, i.e. ∀s ≥
t, Xt,x

s = x +
∫ s
t b(u,Xt,x

u )du +
∫ s
t σ(u,Xt,x

u )dWu. Now let(1.7) τ t,x := inf{s > t : Xt,x
s /∈ Ds} = inf{s > t : (s,Xt,x

s ) /∈ D}be the �rst exit time of Xt,x
s from Ds or, equivalently, the �rst exit time ofthe time-spa
e pro
ess (s,Xt,x

s )s∈[t,T ] from the domain D. Note that τ t,x isbounded by T . For fun
tionals of the pro
ess X stopped at the exit from D,of the form(1.8)
u(t, x) = E

[

g(τ t,x,Xt,x
τ t,x)e−

∫ τt,x

t
k(r,Xt,x

r )dr+

∫ τ t,x

t
e−
∫ s

t
k(r,Xt,x

r )drf(s,Xt,x
s )ds

]

,we now re
all (see [CGK06℄) that the Feynman-Ka
 representation holds inthe time-spa
e domain. Introdu
e the paraboli
 boundary PD = ∂D\{0} ×
D0.Proposition 1.1 [Feynman-Ka
's formula and a priori estimates on
u℄Assume (Aθ), D ∈ H1, k ∈ Hθ, f ∈ Hθ and g ∈ C0,0 with θ ∈]0, 1[. Then,there is a unique solution of 
lass C1,2(D) ∩ C0,0(D) to(1.9) {

∂tu + Lu − ku + f = 0 in D,
u = g on PD,and it is given by (1.8).In addition, if for some θ ∈]0, 1[, D is of 
lass H1+θ, g ∈ H1+θ then u ∈
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H1+θ. In parti
ular ∇u exists and is θ-Hölder 
ontinuous up to the boundary.Eventually, for D ∈ H3+θ, k, f ∈ H1+θ, g ∈ H3+θ satisfying the �rst order
ompatibility 
ondition (∂t + L − k)g(T, x) + f(T, x)|x∈∂DT

= 0, then thefun
tion u belongs to H3+θ.Proof. The �rst two existen
e and uniqueness result for (1.9) are respe
tivelyimplied by Theorems 5.9 and 5.10 and Theorem 6.45 in Lieberman, [Lie96℄.The probabilisti
 representation is then a usual veri�
ation argument, see e.g.Appendix B.1 in [CGK06℄. The additional smoothness 
an be derived fromexer
i
e 4.5 Chapter IV in [Lie96℄ or Theorem 12, Chapter 3 in [Fri64℄. �2. Main Results.2.1. Controls 
on
erning the overshoot. The overshoot is asso
iated tothe distan
e of the pro
ess to the boundary, when it exits the domain. To bepre
ise, we use F the signed distan
e fun
tion and we 
onsider the quantity
F (ti,X

∆
ti ). It remains positive for ti < τ∆, and at time ti = τ∆, it be
omesnon positive. The overshoot is thus de�ned by F−(τ∆,X∆

τ∆). Sin
e F isLips
hitz 
ontinuous in time and spa
e, it is easy to see that F−(τ∆,X∆
τ∆)is of order √

∆ (in Lp-norm for instan
e). Thus, it is natural to study theasymptoti
s of the res
aled overshoot
∆−1/2F−(τ∆,X∆

τ∆).Adapting the proof of Proposition 6 in [GM04℄ to our time dependent
ontext, see also the Proof of Proposition 4.2 for a simpler version, one hasthe following proposition.Proposition 2.1 (Tightness of the overshoot) Assume (A′

θ), and that
D is of 
lass H2. Then, for some c > 0 one has

sup
∆>0,s∈[0,T ]

Ex[exp(c[∆−1/2F−(s ∧ τ∆,X∆
s∧τ∆)]2)] < +∞.It is quite plain to prove by pathwise 
onvergen
e of X∆ towards X that

(τ∆,X∆
τ∆) 
onverges in probability to (τ,Xτ ). The next theorem also in
ludesthe res
aled overshoot.Theorem 2.2 (Joint limit laws asso
iated to the overshoot) Assume(A′

θ), and that D is of 
lass H2. Let ϕ be a 
ontinuous fun
tion with 
ompa
tsupport. For all t ∈ [0, T ], x ∈ D0, y ≥ 0,
Ex[1τ∆≤tZ

∆
τ∆ϕ(X∆

τ∆)1F−(τ∆,X∆
τ∆

)≥y
√

∆] −→
∆→0

Ex
[

1τ≤tZτϕ(Xτ )
(

1 − H(y/|σ∗∇F (τ,Xτ )|))]



8 E. GOBET AND S. MENOZZIwith H(y) := (E0[sτ+ ])−1
∫ y
0 dzP0[sτ+ > z] and s0 := 0,∀n ≥ 1, sn :=

∑n
i=1 Gi, the Gi being i.i.d. standard 
entered normal variables, τ+ :=

inf{n ≥ 0 : sn > 0}.In other words, (τ∆,X∆
τ∆ ,∆−1/2F−(τ∆,X∆

τ∆)) weakly 
onverges to
(τ,Xτ , |σ∗∇F (τ,Xτ )|Y ) where Y is a random variable independent of (τ,Xτ ),and whi
h 
umulative fun
tion is equal to H. A
tually, Y has the asymptoti
law of the renormalized Brownian overshoot. In the following analysis, themean of the overshoot is an important quantity and it is worth noting thatone has E(Y ) =

E0[s2
τ+ ]

2E0[sτ+ ] := c0. One knows from [Sie79℄ that(2.1) c0 = −ζ(1/2)√
2π

= 0.5823...The above theorem is the 
ru
ial tool in the derivation of our main results.The proof is given in Se
tion 3.1.2.2. Error expansion and boundary 
orre
tion. For notational 
onvenien
eintrodu
e for x ∈ D0,
u(D) = Ex(g(τ,Xτ )Zτ +

∫ τ

0
Zsf(s,Xs)ds),

u∆(D) = Ex(g(τ∆,X∆
τ∆)Z∆

τ∆ +

∫ τ∆

0
Z∆

φ(s)f(φ(s),X∆
φ(s))ds).Theorem 2.3 (First order expansion) Under (Aθ), for a domain of 
lass

H2, g ∈ H1+θ, k, f ∈ H1+θ and for ∆ small enough
Err(T,∆, g, f, k, x) = u∆(D) − u(D)

= c0

√
∆Ex(1τ<T Zτ (∇u −∇g)(τ,Xτ ) · ∇F (τ,Xτ )|σ∗∇F (τ,Xτ )|) + o(

√
∆),where c0 is de�ned in (2.1).De�ne now a smaller domain D∆ ⊂ D, whi
h time se
tion is given by D∆

t =
{x ∈ Dt : d(x, ∂Dt) > c0

√
∆|σ∗∇F (t, x)|}. Introdu
e the exit time of theEuler s
heme from this smaller domain: τ̂∆ = inf{ti ≥ 0 : (ti,X

∆
ti ) 6∈ D∆} ≤

τ∆. The boundary 
orre
tion pro
edure 
onsists in simulating
g(τ̂∆,X∆

τ̂∆)Z∆
τ̂∆ +

∫ τ̂∆

0
Z∆

φ(s)f(φ(s),X∆
φ(s))ds.(2.2)As above, we do not 
ompute any proje
tion on the boundary. We denotethe expe
tation of (2.2) by u∆(D∆). One has:



OVERSHOOTS OF STOPPED DIFFUSIONS 9Theorem 2.4 (Boundary 
orre
tion) Under the assumptions of Theo-rem 2.3, if we additionally suppose ∇F (t, x)|σ∗∇F (t, x)| is of 
lass C1,2,then one has:
u∆(D∆) − u(D) = o(

√
∆).The additional assumption is due to te
hni
al 
onsiderations in [CGK06℄. Itis automati
ally ful�lled for domains of 
lass C3 and σ in C1,2.2.3. Proof of Theorems 2.3 and 2.4.2.3.1. Error expansion. By usual weak 
onvergen
e arguments, Theorem2.3 is a dire
t 
onsequen
e of Proposition 2.1 (tightness), Theorem 2.2 (jointlimit laws asso
iated to the overshoot) and Theorem 2.5 below.Theorem 2.5 (First order approximation) Under the assumptions ofTheorem 2.3

u∆(D) − u(D) = o(
√

∆)+

Ex(1τ∆≤T Z∆
τ∆(∇u −∇g)(τ∆, π∂D

τ∆
(X∆

τ∆)) · ∇F (τ∆,X∆
τ∆)F−(τ∆,X∆

τ∆)).Remark 2.6 In the above statement, we use proje
tions on a non 
onvexset, whi
h needs a 
lari�
ation. With the notation of Se
tion 1.4.2, introdu
e
τ r0 := inf{s > 0 : (s,X∆

s ) 6∈ D ∪ V∂D(r0)}. For s ∈ [0, τ r0 ] the proje
tion
πD̄s

(X∆
s ) is uniquely de�ned by

πD̄s
(X∆

s ) = X∆
s + F−(s,X∆

s )∇F (s,X∆
s ).(2.3)Large deviation arguments (see Lemma 3.1 below) also give Px[τ r0 ≤ τ∆] =

Opol(∆). Thus, in the following, for s ≥ τ r0, πD̄s
(X∆

s ) and π∂Ds(X
∆
s ) denotean arbitrary point on ∂Ds. This 
hoi
e yields an exponentially small 
ontri-bution in our estimates.Proof. Denote e∆ the above error. Write now

e∆ = Ex[g(τ∆,X∆
τ∆)Z∆

τ∆ − g(τ∆, πD̄
τ∆

(X∆
τ∆))Z∆

τ∆ ]

+ Ex[g(τ∆, πD̄
τ∆

(X∆
τ∆))Z∆

τ∆ +

∫ τ∆

0
Z∆

φ(s)f(φ(s),X∆
φ(s))ds] − u(0,X∆

0 )

:= e∆
1 + e∆

2 .We introdu
e here the proje
tion for the error analysis. From (2.3), a se
ondorder Taylor expansion and standard 
omputations yield
e∆
1 = − Ex[1τ∆≤T Z∆

τ∆∇g(τ∆, π∂D
τ∆

(X∆
τ∆)) · ∇F (τ∆,X∆

τ∆)F−(τ∆,X∆
τ∆)]

+ O(∆).(2.4)
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larity we assume for the rest of the proof that u ∈ H3+θ. Su�
ient
onditions to have su
h a smoothness are provided in Proposition 1.1. Theproof under the assumptions of Theorem 2.3 is presented in Appendix.Now, in order to isolate the overshoot F− in e∆
2 , we use a Taylor formulaup to order 3. This is a more dire
t approa
h than the It�-Tanaka expansionin [GM04℄ that also yields some lo
al time terms.In the following, we write U

E
= V (resp U

E

≤ V ) when the equality between
U and V holds in mean up to a Opol(∆) (resp. Ex(U) ≤ Ex(V ) + Opol(∆)).One has:
e∆
2

E
=

(

∑

0≤ti<τ∆

u(ti+1, πD̄ti+1
(X∆

ti+1
))Z∆

ti+1
− u(ti, πD̄ti

(X∆
ti ))Z∆

ti + Z∆
ti f(ti,X

∆
ti )∆

)

1τr0>τ∆
E
=
(

∑

0≤ti<T

1ti<τ∆

[

u(ti+1, πD̄ti+1
(X∆

ti+1
))Z∆

ti+1
− u(ti,X

∆
ti )Z∆

ti

+Z∆
ti f(ti,X

∆
ti )∆

]

)

1τr0>τ∆sin
e for ti < τ∆, X∆
ti ∈ Dti and thus πD̄ti

(X∆
ti ) = X∆

ti . Exploiting (2.3),writing Z∆
ti+1

= Z∆
ti (1 − k(ti,X

∆
ti )∆) + O(∆2) and performing a Taylor ex-pansion of u at point (ti,X

∆
ti ) ∈ D (where u is smooth), one gets

e∆
2

E
=
(

∑

0≤ti<T

1ti<τ∆

[

∆ × Z∆
ti (∂tu + Lu − ku + f)(ti,X

∆
ti )(2.5)

+ Z∆
ti ∇u(ti,X

∆
ti ) · ∇F (ti+1,X

∆
ti+1

)F−(ti+1,X
∆
ti+1

)(2.6)
+ O(|F−(ti+1,X

∆
ti+1

)||X∆
ti+1

− X∆
ti |) + O(|F−(ti+1,X

∆
ti+1

)|2)
](2.7)

+ O(∆3/2+θ/2) + O(|Wti+1 − Wti |3+θ)
)

1τr0>τ∆ .(2.8)The 
ontribution (2.5) equals 0 owing to the PDE. Both remainder terms in(2.8) are of order O(∆3/2+θ/2), and 
ontribute to the sum as O(∆1/2+θ/2) =
o(
√

∆). Finally, regarding (2.7), de�ning τti := inf{s ≥ ti : (s,X∆
s ) 6∈ D}one has

∑

0≤ti<T

1ti<τ∆ |F−(ti+1,X
∆
ti+1

)|2 E
=

∑

0≤ti<T

1ti<τ∆1τti<ti+1 |F−(ti+1,X
∆
ti+1

)|2

E

≤ C∆
∑

0≤ti<T

1ti<τ∆1τti≤ti+1
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E

≤ C∆
∑

0≤ti<T

1ti<τ∆1X∆
ti+1

/∈Dti+1

E
= C∆1τ∆≤T

E
= O(∆),where the last but one inequality is obtained adapting the proof of Lemma16 in [GM04℄ to time dependent domains.In the same way, one has ∑0≤ti<T 1ti<τ∆ |F−(ti+1,X

∆
ti+1

)||X∆
ti+1

− X∆
ti |

E
=

O(∆).Re
alling (2.4), to get the expe
ted result, it remains in (2.6) to approximate
Z∆

ti ∇u(tti ,X
∆
ti ) by Z∆

ti+1
∇u(ti+1, π∂Dti+1

(X∆
ti+1

)), whi
h is done as before, upto an extra additional error of order O(∆). �2.3.2. Boundary Corre
tion. One has
u∆(D∆) − u(D) = [u∆(D∆) − u(D∆)] + [u(D∆) − u(D)](2.9)1. The �rst 
ontribution in (2.9) has been previously analyzed, ex
eptthat the domain D∆ depends on ∆. It is equal to c0

√
∆E(1τ<T Zτ (∇u−

∇g)(τ,Xτ ) · ∇F (τ,Xτ )|σ∗∇F (τ,Xτ )|) + o(
√

∆).2. Finally, the last term is related to the sensitivity of a Diri
hlet prob-lem with respe
t to the domain. By an appli
ation of Theorem 2.2 in[CGK06℄ with Θ(t, x) = −c0∇F (t, x)|σ∗∇F (t, x)| (in C1,2), one getsthat this 
ontribution equals
−c0

√
∆E(1τ<T Zτ (∇u−∇g)(τ,Xτ )·∇F (τ,Xτ )|σ∗∇F (τ,Xτ )|)+o(

√
∆).This proves that the new pro
edure has an error o(

√
∆). �3. Te
hni
al results 
on
erning the overshoot. This se
tion is de-voted to the proof of Theorem 2.2. We �rst state some useful auxiliary results.Lemma 3.1 (Bernstein's inequality) Assume (Aθ-1). Consider two stop-ping times S, S′ upper bounded by T with 0 ≤ S′−S ≤ Θ ≤ T . Then for any

p ≥ 1, there are some 
onstants c > 0 and C := C((Aθ-1) , Θ), su
h thatfor any η ≥ 0, one has a.s:
P[ sup

t∈[S,S′]
|X∆

t − X∆
S | ≥ η

∣

∣ FS ] ≤C exp

(

−c
η2

Θ

)

,

E[ sup
t∈[S,S′]

|X∆
t − X∆

S |p
∣

∣ FS ] ≤CΘp/2.For a proof of the �rst inequality we refer to Chapter 3, �3 in [RY99℄. Thelast inequality easily follows from the �rst one or from the BDG inequalities.



12 E. GOBET AND S. MENOZZILemma 3.2 (Convergen
e of exit time) Assume (A′

θ) and that the do-main is of 
lass H2. The following 
onvergen
es hold in probability:1. lim∆→0 τ∆ = τ ;2. lim∆→0 X∆
τ∆ = Xτ ;3. lim∆→0 supt≤T |X∆

φ(t) − Xt| = 0.The proof of the �rst two assertions in the 
ase of spa
e-time domain isanalogous to the 
ase of 
ylindri
al domain (see [GM05℄) and thus left to thereader. The last 
onvergen
e is standard.The following results are key tools to prove Theorem 2.2.Lemma 3.3 (Asymptoti
 independen
e of the overshoot and thedis
rete exit time). Let W be a standard one dimensional BM. Put x > 0and 
onsider the domain D :=]0, T [×]−∞, x[. With the notation of Se
tion2, for any ε > 0 we have
lim

∆−→0
sup

t∈[0,T ],y≥0,x≥∆1/2−ε

∣

∣

∣P0[τ
∆ ≤ t, (Wτ∆ − x) ≤ y

√
∆] − P0[τ ≤ t]H(y)

∣

∣

∣ = 0.

(3.1)Lemma 3.4 Assume (A′

θ), and that the domain is of 
lass H2. Let 0 < β <
α < 1/2. For all η > 0, there exists C := Cη > 0 s.t. for ∆ small enough,
∀(s, x) ∈ V∂D(∆α) ∩ D̄ (s ∈ ∆N),

P[τ∆ ≥ ∆2β |X∆
s = x] ≤ C(∆α−β−η + ∆β),where τ∆ := inf{ti > s : (ti,X

∆
ti ) 6∈ D}.Lemma 3.5 Assume (A′

θ), and that the domain is of 
lass H2. There exists
C > 0, su
h that ∀(s, x) ∈ D with s ∈ ∆N, ∀t ≥ s and ∀b ≥ a ≥ 0,

P[τ∆ ≤ t,∆−1/2F−(τ∆,X∆
τ∆) ∈ [a, b]|X∆

s = x] ≤C
(

(b − a) + ∆1/4)where τ∆ is shifted as in the previous lemma.The proof of these three lemmas is postponed to Se
tion 3.2.We mention that if σσ∗ is uniformly ellipti
, Lemma 3.5 is valid withoutthe ∆1/4. See the proof for details.3.1. Proof of Theorem 2.2. Consider �rst the 
ase D =]0, T [×D where Dis a half spa
e. The theorem in the 
ase of BM is then a dire
t 
onsequen
e ofLemma 3.3. Now to deal with the Euler s
heme, we introdu
e a neighborhoodwhose distan
e to the boundary goes to 0 with ∆ at a speed lower than ∆1/2.The 
hara
teristi
 exit time for a starting point in this neighborhood is short,
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oe�
ients are somehow 
onstant and we are almost inthe BM framework. Also, the lo
alization w.r.t. to the hitting time of thisneighborhood guarantees that up to a res
aling we are far enough from theboundary to apply the renewal arguments needed for the overshoot.For a more general time-spa
e domain of 
lass H2 two additional tools areused: a time-spa
e 
hange of 
hart and a lo
al half spa
e approximation ofthe domain by some tangent hyperplane.For notational 
onvenien
e, we assume from now on that the time se
tiondomains (Dt)t∈[0,T ] are 
onvex so that π∂Dt is always uniquely de�ned on
Dc

t . To handle the 
ase of general H2 domains, an additional lo
alizationpro
edure similar to the one of Theorem 2.5 is needed.For the sake of 
larity, we also assume k ≡ 0 (Z ≡ 1). This is an easysimpli�
ation sin
e owing to Lemma 3.2, Z∆
τ∆ 
onverges to Zτ in L1.Step 1: lo
alization. For α < 1/2 spe
i�ed later on, de�ne τ∆α :=

inf{ti ≥ 0 : F (ti,X
∆
ti ) ≤ ∆α} ≤ τ∆. We aim at studying the 
onvergen
e of

Ψ∆(t, x, y) := Ex[1τ∆≤t,F (τ∆,X∆
τ∆

)−≥y
√

∆ϕ(X∆
τ∆)]and for this, we de�ne for all 0 ≤ s ≤ t ≤ T (s ∈ ∆N), (x̃, y) ∈ R

d × R
+

Ψ∆(s, t, x̃, y) :=P[τ∆ ≤ t, F (τ∆,X∆
τ∆)− ≥ y

√
∆|X∆

s = x̃],

∀ε ∈]0, 1/2[, A(t, α, ε) :={τ∆α < τ∆, τ∆α < t, F (τ∆α ,X∆
τ∆α ) ≥ ∆1/2−ε}.In the de�nition of Ψ∆, τ∆ has to be understood as the shifted exit time

inf{ti > s : (ti,X
∆
ti ) 6∈ D}. By Lemma 3.1, Px[τ

∆ = τ∆α ≤ t] + Px[τ∆α <

t, F (τ∆α ,X∆
τ∆α ) < ∆1/2−ε] = Opol(∆) for any ε > 0 s.t. α < 1/2 − ε. Hen
e,

Ψ∆(t, x, y) =Ex[1A(t,α,ε),F (τ∆,X∆
τ∆

)−≥y
√

∆ϕ(X∆
τ∆)] + Opol(∆)

=Ex[1A(t,α,ε),F (τ∆,X∆
τ∆

)−≥y
√

∆(ϕ(X∆
τ∆) − ϕ(X∆

τ∆α ))]

+ Ex[1A(t,α,ε)ϕ(X∆
τ∆α )Ψ∆(τ∆α , t,X∆

τ∆α , y)] + Opol(∆).The �rst term in the right hand side above 
onverges to 0, using the 
onver-gen
e in probability of |X∆
τ∆ −X∆

τ∆α | to 0 (analogously to Lemma 3.2). Thisgives(3.2) Ψ∆(t, x, y) = Ex[1A(t,α,ε)ϕ(X∆
τ∆α )Ψ∆(τ∆α , t,X∆

τ∆α , y)] + o(1).It remains to study the 
onvergen
e of Ψ∆(.).Step 2: di�usion with frozen 
oe�
ients. Denote τ∆α := s̃, X∆
τ∆α :=

x̃. Conditionally to Fs̃, introdu
e now the one dimensional pro
ess (Ys)s≥s̃,
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Ys = F (s̃, x̃)+(∇F ·σ)(s̃, x̃)(Ws−Ws̃). Note that we do not take into a

ountthe drift part in the frozen pro
ess. From the next lo
alization pro
edure, ityields a negligible term. Sin
e Y has 
onstant 
oe�
ients, we apply belowLemma 3.3 to handle the overshoot of Y w.r.t. R

+∗. De�ne τ∆,Y := inf{ti ≥
s̃ : Yti ≤ 0} and rewrite

Ψ∆(s̃, t, x̃, y) := ΨC
∆(s̃, t, x̃, y) + R∆(s̃, t, x̃, y),(3.3)

ΨC
∆(s̃, t, x̃, y) := Ps̃,x̃[τ

∆,Y ≤ t, (Yτ∆,Y )− ≥ y
√

∆].From (A′

θ-2') that guarantees that Y has a non degenerate varian
e andLemma 3.3, one gets
sup

(s̃,x̃)∈Aα,ε

|ΨC
∆(s̃, t, x̃, y) − Ps̃,x̃[τ

∆,Y ≤ t](1 − H(y/|(σ∗∇F )(s̃, x̃)|))| −→
∆→0

0,where Aα,ε :=
(

V∂D(∆α)\V∂D(∆1/2−ε)
) ∩ D. Plug now this identity in (3.3)to obtain with the same uniformity

Ψ∆(s̃, t, x̃, y) =Ps̃,x̃[τ∆,Y ≤ t](1 − H(y/|(σ∗∇F )(s̃, x̃)|))
+ R∆(s̃, t, x̃, y) + o(1).(3.4)Step 3. Control of the rests. We now show that R∆(s̃, t, x̃, y) = o(1)where the rest is still uniform for (s̃, x̃) ∈ Aα,ε. Write �rst:

|R∆|(s̃, t, x̃, y) ≤ R1
∆(s̃, t, x̃)

+ Ps̃,x̃[τ
∆ ≤ t, F (τ∆,X∆

τ∆)− ≥ y
√

∆, (Yτ∆,Y )− < y
√

∆, τ∆ = τ∆,Y ]

+ Ps̃,x̃[τ
∆ ≤ t, F (τ∆,X∆

τ∆)− < y
√

∆, (Yτ∆,Y )− ≥ y
√

∆, τ∆ = τ∆,Y ](3.5)with R1
∆(s̃, t, x̃) ≤ Ps̃,x̃[τ

∆ ≤ t, τ∆ 6= τ∆,Y ] + Ps̃,x̃[τ∆,Y ≤ t, τ∆ 6= τ∆,Y ] :=
(R11

∆ + R12
∆ )(s̃, t, x̃). Let y∆ be a given positive fun
tion of the time step s.t.

y∆ →
∆→0

0 spe
i�ed later on.On the event {τ∆ = τ∆,Y , |Yτ∆,Y −F (τ∆,Y ,X∆
τ∆,Y )| ≤ y∆

√
∆} the 
onditions

F (τ∆,X∆
τ∆)− ≥ y

√
∆ and (Yτ∆,Y )− < y

√
∆ imply ∆−1/2(Yτ∆,Y )− ∈ [y −

y∆, y) (resp. (Yτ∆,Y )− ≥ y
√

∆ and F (τ∆,X∆
τ∆)− < y

√
∆ imply ∆−1/2(Yτ∆,Y )−

∈ [y, y + y∆)). Hen
e,
|R∆(s̃, t, x̃, y)| ≤ (R1

∆ + R2
∆)(s̃, t, x̃)

+ Ps̃,x̃[τ
∆,Y ≤ t,∆−1/2(Yτ∆,Y )− ∈ [y − y∆, y + y∆), τ∆ = τ∆,Y ]

:= (R1
∆ + R2

∆)(s̃, t, x̃) + R3
∆(s̃, t, x̃, y),
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∆(s̃, t, x̃) := 2Ps̃,x̃[τ∆,Y ≤ t, τ∆ = τ∆,Y , |Yτ∆,Y − F (τ∆,Y ,X∆

τ∆,Y )| >

y∆

√
∆].Term R3

∆(s̃, t, x̃, y). From Lemma 3.5 applied to the pro
ess with frozen 
o-e�
ients, one gets
R3

∆(s̃, t, x̃, y) ≤ C(y∆ + ∆1/4).(3.6)Term R2
∆(s̃, t, x̃). Introdu
e for 0 < β < α < 1/2, τ∆β := inf{s ≥ s̃ :

|X∆
s − x̃| ≥ ∆β} ∧ (s̃ + ∆δ), δ := 2β + γ, γ > 0. One has

|R2
∆(s̃, t, x̃)| ≤ 2

(

Ps̃,x̃[τ∆,Y ≤ t, τ∆ = τ∆,Y , τ∆ < τ∆β ,

|Yτ∆,Y − F (τ∆,Y ,X∆
τ∆,Y )| > y∆

√
∆] + Ps̃,x̃[τ∆ ≥ τ∆β , τ∆ ≤ t]

)

:= (R21
∆ + R22

∆ )(s̃, t, x̃).Let us �rst deal with R21
∆ (s̃, t, x̃). One has

R21
∆ (s̃, t, x̃) ≤
2∆−1y−2

∆ Es̃,x̃[1τ∆<τ
∆β ,τ∆,Y ≤t,τ∆=τ∆,Y |Yτ∆,Y − F (τ∆,Y ,X∆

τ∆,Y )|2].(3.7)Note that sin
e D is of 
lass H2, F has the same regularity, i.e. it is uniformlyLips
hitz 
ontinuous in time and its �rst spa
e derivatives are uniformly Lip-s
hitz 
ontinuous in spa
e. Thus, assuming up to a regularization pro
edurethat F ∈ C1,2([0, T ] × R
d), It�'s formula yields for all t ≥ s̃,

F (t,X∆
t ) = F (s̃, x̃) +

∫ t

s̃
∇F (s,X∆

s ) · dX∆
s

+

∫ t

s̃

(

∂sF (s,X∆
s ) +

1

2
tr(HF (s,X∆

s )σσ∗(φ(s),X∆
φ(s)))

)

ds

:= F (s̃, x̃) +

∫ t

s̃
∇F (s,X∆

s ) · σ(φ(s),X∆
φ(s))dWs + R∆

F (s̃, t, x̃)(3.8)
= Yt + R∆

F (s̃, t, x̃) +

∫ t

s̃

(

σ∗(φ(s),X∆
φ(s))∇F (s,X∆

s ) − σ∗∇F (s̃, x̃)
) · dWs.From (A′

θ-1) and the assumptions on D one derives |R∆
F |(s̃, t, x̃) ≤ C(t− s̃).Thus, for a given stopping time s̃ ≤ U ≤ τ∆β , the working assumptions (i.e.smoothness of σ, F ), standard 
omputations and the BDG inequalities yield

E[|F (U,X∆
U ) − YU |2] ≤ C(∆2β+δ + ∆δ(1+θ)).



16 E. GOBET AND S. MENOZZIFrom (3.7) and the above 
ontrol with U = τ∆,Y ∧ τ∆β , one obtains
R21

∆ (s̃, t, x̃) ≤ Cy−2
∆ ∆−1(∆2β+δ + ∆δ(1+θ)).(3.9)Let us now 
ontrol R22

∆ (s̃, t, x̃). From Lemmas 3.1 and 3.4, for any η > 0 wewrite
R22

∆ (s̃, t, x̃) ≤ Ps̃,x̃[τ∆β < s̃ + ∆δ] + Ps̃,x̃[τ
∆ ≥ s̃ + ∆δ]1s̃+∆δ≤t

≤ C
(

exp
(

−c∆2β−δ
)

+ ∆α−η−δ/2 + ∆δ/2).(3.10)Take now α =
1+ θ

2
2(1+θ) < 1/2, η = θ

16(θ+1) , γ = 1
8(1+θ) , y∆ = ∆θ/16. Che
kthat for δ = 2β +γ = 2α−4η, one has δ = 1+θ/4

1+θ , β = 7/8+θ/4
2(1+θ) < α, 3η < α.Thus, R22

∆ (s̃, t, x̃) = O(∆η). In addition, y−2
∆ ∆δ(1+θ)−1 = ∆θ/8, y−2

∆ ∆2β+δ−1 =
O(∆1/(8(1+θ))). Hen
e, from (3.9) and (3.10)

R2
∆(s̃, t, x̃) ≤ C

(

∆1/(8(1+θ)) + ∆θ/8 + ∆θ/(16(θ+1))) ≤ C∆θ/32.(3.11)Term R1
∆(s̃, t, x̃).We give an upper bound for R11

∆ (s̃, t, x̃). The term R12
∆ (s̃, t, x̃)
an be handled in the same way. From the previous 
ontrol on R22

∆ (s̃, t, x̃)and for the previous parameters, one gets
R11

∆ (s̃, t, x̃) = Ps̃,x̃[τ∆ ≤ t, τ∆ 6= τ∆,Y , τ∆ < τ∆β ] + O(∆η)

= Ps̃,x̃[τ∆ ≤ t, τ∆ > τ∆,Y , τ∆ < τ∆β ]

+ Ps̃,x̃[τ
∆ ≤ t, τ∆ < τ∆,Y , τ∆ < τ∆β ] + O(∆η).Note that,

R11
∆ (s̃, t, x̃) ≤ Ps̃,x̃[τ∆,Y ≤ t,∆−1/2(Yτ∆,Y )− ≤ y∆]+

Ps̃,x̃[τ∆ ≤ t, τ∆,Y < τ∆, τ∆ < τ∆β ,∆−1/2|Yτ∆,Y − F (τ∆,Y ,X∆
τ∆,Y )| ≥ y∆]

+ Ps̃,x̃[τ
∆ ≤ t, τ∆,Y > τ∆, τ∆ < τ∆β ,∆−1/2|Yτ∆ − F (τ∆,X∆

τ∆)| ≥ y∆]

+ Ps̃,x̃[τ
∆ ≤ t,∆−1/2F (τ∆,X∆

τ∆)− ≤ y∆] + C∆η,for the previous fun
tion (y∆)∆>0. Sin
e we 
ould obtain the same type ofbound for R12
∆ (s̃, t, x̃), from Lemma 3.5 and following the 
omputations thatgave (3.9) we derive for the previous set of parameters

R1
∆(s̃, t, x̃) ≤ C(y−2

∆ ∆−1(∆2β+δ + ∆δ(1+θ)) + ∆η + y∆ + ∆1/4) ≤ C∆θ/32.

(3.12)



OVERSHOOTS OF STOPPED DIFFUSIONS 17From (3.12), (3.11), (3.6) we �nally obtain R∆(s̃, t, x̃, y) = O(∆θ/32) = o(1).The rest is uniform w.r.t. (s̃, x̃, y) ∈ Aα,ε × R
+.Step 4. Final step. Plug the previous results in (3.4). We derive from (3.2)

Ψ∆(t, x, y) = Ex[1A(t,α,ε)ϕ(X∆
τ∆α )

× Pτ∆α ,X∆
τ∆α

[τ∆,Y ≤ t](1 − H(y/|σ∗∇F (τ∆α ,X∆
τ∆α )|))] + o(1).The previous 
ontrols on R1

∆(s̃, t, x̃), R22
∆ (s̃, t, x̃) give

Ψ∆(t, x, y) = Ex[1τ∆α<tPτ∆α ,X∆
τ∆α

[τ∆ ≤ t, τ∆β > τ∆]

ϕ(X∆
τ∆α )(1 − H(y/|σ∗∇F (τ∆α ,X∆

τ∆α )|))] + o(1).Under (A′

θ), by 
ontinuity arguments and Lemma 3.1 we eventually get
Ψ∆(t, x, y) = Ex[1τ∆≤tϕ(X∆

τ∆)(1 − H(y/|σ∗∇F (τ∆,X∆
τ∆)|))] + o(1).Now, Lemma 3.2 gives

Ψ∆(t, x, y) →
∆→0

Ex[1τ≤tϕ(Xτ )(1 − H(y/|σ∗∇F (τ,Xτ )|))].

�3.2. Proof of Lemmas 3.3, 3.4 and 3.5.Proof of Lemma 3.3. We shall insist on the dependen
e of the exit timeswith respe
t to x, by setting τ∆ := inf{s ∈ ∆N∗ : Ws ≥ x} := τ∆
x andanalogously for τ = τx.Our proof relies on the following 
onvergen
e (see equation (19) in Sieg-mund [Sie79℄): if we set (for any y, z ≥ 0)

D(z, y) = P0[Wτ∆
z
− z ≤ y

√
∆] − H(y),then

lim
z∆−1/2→+∞

|D(z, y)| = 0.Using the monotoni
ity and the uniform 
ontinuity of H(y), Dini's Theoremyields that the above limit is a
tually uniform with respe
t to y ≥ 0. Itfollows(3.13) sup
y≥0,z∈[∆1/2−ε/3,∞)

|D(z, y)| →
∆→0

0.



18 E. GOBET AND S. MENOZZIBy similar monotoni
ity arguments,(3.14) sup
x≥0,t≥0

|P0(τ
∆
x > t) − P0(τx > t)| →

∆→0
0.We 
an now pro
eed to the proof. First, note that if x/
√

t ≥ ∆−ε/3 → +∞as ∆ → 0, P0(τ
∆
x > t) and P0(τx > t) are both Opol(∆). Thus, the di�eren
ein Lemma 3.3 
onverges to 0 as ∆ → 0.Suppose now that x/

√
t ≤ ∆−ε/3, hen
e √

t ≥ x∆ε/3 ≥ ∆1/2−2ε/3, andwrite for t ∈ ∆N∗

P := P0[τ
∆
x > t,Wτ∆

x
− x ≤ y

√
∆]

=

∫ +∞

0
dzqx,∆

t (0, x − z)P0[Wτ∆
z
− z ≤ y

√
∆]where qx,∆

t denotes the transition density of the dis
retely killed Brow-nian motion. Introdu
e the partition R
+ = {z ∈ [0,∆1/2−ε/3)} ∪ {z ∈

[∆1/2−ε/3,+∞)}. Then,
P = R +

∫ +∞

∆1/2−ε/3
qx,∆
t (0, x − z)D(z, y)dz + P0[τ

∆
x > t]H(y)where |R| ≤ 2P0[Wt ∈ [x−∆1/2−ε/3, x]] ≤ 2√

2πt
∆1/2−ε/3 ≤ 2√

2π
∆ε/3. Finally,taking advantage of the estimates (3.13) and (3.14) readily 
ompletes ourproof. �Proof of Lemma 3.4. We take s = 0 for notational simpli
ity. Introdu
e

τ∆β := inf{t ≥ 0 : (t,X∆
t ) 6∈ V∂D(∆β)} and for γ > 0 write from Lemma 3.1and the notation of (3.8) (up to the same regularization pro
edure 
on
erning

F )
Px[τ

∆ ≥ ∆2β] =Px[ inf
i∈[[0,∆2β−1]]

F (0, x) +

∫ ti

0
∇F (s,X∆

s ) · σ(φ(s),X∆
φ(s))dWs

+ R∆
F (0, ti, x) ≥ 0, τ∆β ≥ ∆2β+γ ] + Opol(∆) := Q,where under the assumptions of the Lemma, |R∆

F (0, ti, x)| ≤ Cti. For a given
r > 0, 
onsider the event Ar = {∃s ≤ T : |X∆

s − X∆
φ(s)| ≥ r} where thein
rements of X∆ between two 
lose times are large: by Lemma 3.1, it hasan exponentially small probability. Hen
e, if we set

Mu :=

∫ u

0
∇F (s,X∆

s ) · σ(φ(s),X∆
φ(s))dWs := B<M>u, t̃i = 〈M〉ti ,

B is a standard Brownian motion (on a possibly enlarged probability spa
e)owing to the Dambis, Dubbins-S
hwarz Theorem, 
f. Theorem V.1.7 in [RY99℄.



OVERSHOOTS OF STOPPED DIFFUSIONS 19In addition, the above time 
hange is stri
tly in
reasing on the set Ac
r and

〈M〉t − 〈M〉s ≥ (t − s)a0/2 (t ≥ s) up to taking r small enough, be
ause(A′

α-2) is in for
e. It readily follows that
Q ≤Px[ inf

i∈[[0,∆2β+γ−1]]
Mti + Cti ≥ −∆α, τ∆β ≥ ∆2β+γ ] + Opol(∆)

≤Px[ inf
i∈[[0,∆2β+γ−1]]

Bt̃i
+ 2Ca−1

0 t̃i ≥ −∆α, τ∆β ≥ ∆2β+γ ,Ac
r] + Opol(∆)

≤Px[ inf
i∈[[0,∆2β+γ−1]]

Bt̃i
+ 2Ca−1

0 t̃i ≥ −∆α, τ∆β ≥ ∆2β+γ ,

inf
s∈[0,〈M〉

∆2β+γ ]
Bs + 2Ca−1

0 s ≤ −∆α−ζ ,Ac
r] + Opol(∆)

+ Px[τ∆β ≥ ∆2β+γ , inf
s∈[0,〈M〉

∆2β+γ ]
Bs + 2Ca−1

0 s ≥ −∆α−ζ ,Ac
r],for ζ > 0. Thus, from Lemma 3.1 and standard 
ontrols

Q ≤ Px[∃i ∈ [[0,∆2β+γ−1]], sup
s∈[t̃i,t̃i+1]

|Bs − Bt̃i
+ 2Ca−1

0 (s − t̃i)| ≥ ∆α−ζ − ∆α,

τ∆β ≥ ∆2β+γ ] + Px[ inf
s∈[0,a0∆2β+γ/2]

Bs ≥ −∆α−ζ − C∆2β+γ ] + Opol(∆)

≤ Opol(∆) + C(∆α−ζ−β−γ/2 + ∆β+γ/2).Choose now γ, ζ s.t. (ζ + γ
2 ) = η > 0. The proof is 
omplete. �Proof of Lemma 3.5. Taking also s = 0 for notational 
onvenien
e, wewrite

P :=Px[τ∆ ≤ t,∆−1/2F−(τ∆,X∆
τ∆) ∈ [a, b]] ≤ Opol(∆)

+

⌊t/∆⌋
∑

i=1

Ex[1τ∆>ti−1
,1(ti−1,X∆

ti−1
)∈V∂D(r0)EFti−1

[1∆−1/2F (ti,X∆
ti

)−∈[a,b]]](3.15)using Lemma 3.1 for the last identity.A Taylor formula gives: F (ti,X
∆
ti ) = F (ti−1,X

∆
ti−1

)+Σti−1(Wti −Wti−1)+

R∆
ti−1,ti := Nti−1+R∆

ti−1,ti where Σti−1 = σ∗∇F (ti−1,X
∆
ti−1

), EFti−1
[|R∆

ti−1,ti |2]
≤ C∆2. Conditionally to Fti−1 , Nti−1 has a Gaussian distribution
N (F (ti−1,X

∆
ti−1

), ‖Σti−1‖2∆).Also, on the event (ti−1,X
∆
ti−1

) ∈ V∂D(r0), ‖Σti−1‖2∆ ≥ a0∆. Set Qi−1 :=
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PFti−1

[F (ti,X
∆
ti )− ∈ [a∆1/2, b∆1/2]]. We obtain

Qi−1 = PFti−1
[(Nti−1 + R∆

ti−1,ti)
− ∈ [a∆1/2, b∆1/2]]

≤ PFti−1
[Nti−1 ∈ [−b∆1/2 − ∆3/4,−a∆1/2 + ∆3/4]]

+ PFti−1
[|R∆

ti−1,ti | ≥ ∆3/4,X∆
ti 6∈ Dti ]

≤ PFti−1
[Nti−1 ∈ [−∆1/2(b + ∆1/4),−∆1/2(a − ∆1/4)]]

+ C∆1/4 exp

(

−c
d(X∆

ti−1
, ∂Dti−1)

2

∆

)using the Cau
hy-S
hwarz inequality and Lemma 3.1 for the last inequality.Hen
e, we derive from (3.15)
P ≤

⌊t/∆⌋
∑

i=1

Ex[1τ∆>ti−1,(ti−1,X∆
ti−1

)∈V∂D(r0)

(

C∆1/4 exp

(

−c
d(X∆

ti−1
, ∂Dti−1)

2

∆

)

+

∫ −∆1/2(a−∆1/4)

−∆1/2(b+∆1/4)
exp

(

−
(y − F (ti−1,X

∆
ti−1

))2

2‖Σti−1‖2∆

)

dy

(2π∆)1/2‖Σti−1‖

)

]

+ Opol(∆) ≤ C(b − a + ∆1/4)∆−1
∫ t

0
dsEx[1τ∆>φ(s),(φ(s),X∆

φ(s)
)∈V∂D(r0)

× exp

(

−c
d(X∆

φ(s), ∂Dφ(s))
2

∆

)

] + Opol(∆).Following the proof of Lemma 10 in [GM04℄, mainly based on the appli
ationof the o

upation time formula for the distan
e pro
ess F (s,X∆
s ), one 
anshow that the above integral is bounded by C∆. This 
ompletes the proof.

�Remark 3.6 Finally, we mention that if σσ∗ is uniformly ellipti
, the rest
R∆

ti−1,ti 
an be avoided and the result 
an be stated without the 
ontribution
∆1/4. Indeed, we 
an dire
tly exploit that the Euler s
heme has 
onditionally anon degenerate Gaussian distribution and usual 
hanges of 
hart asso
iatedto a parametrization of the boundary (see e.g. [Gob00℄) give the expe
tedresult.4. Extension to the stationary 
ase.4.1. Framework. In this se
tion we assume that the 
oe�
ients in (1.1)are time independent and that the mappings b, σ are uniformly Lips
hitz
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ontinuous, i.e. (Xt)t≥0 is the unique strong solution of
Xt = x +

∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dWs, t ≥ 0, x ∈ R

d.For a bounded domain D ⊂ R
d, and given fun
tions f, g, k : D̄ → R, we areinterested in estimating

u(x) := Ex[g(Xτ )Zτ +

∫ τ

0
f(Xs)Zsds], Zs = exp(−

∫ s

0
k(Xr)dr),(4.1)where τ := inf{t ≥ 0 : Xt 6∈ D}.Adapting freely the previous notations for Hölder spa
es to the ellipti
setting, introdu
e for θ ∈]0, 1[:(Aθ) 1. Smoothness of the 
oe�
ients. b, σ ∈ H1+θ.2. Uniform ellipti
ity. For some a0 > 0, ∀(x, ξ) ∈ R

d×R
d, ξ∗σσ∗(x)ξ

≥ a0|ξ|2.(Dθ) Smoothness of the domain. The bounded domain D is of 
lass H2.(Cθ) Other 
oe�
ients. The boundary data g ∈ H1+θ, f, k ∈ H1+θ and
k ≤ 0.Note that under (Aθ) and sin
e D is bounded, Lemma 3.1 Chapter III of[Fre85℄ yields supx∈D̄ Ex[τ ] < ∞. Thus, (4.1) is well de�ned under our 
urrentassumptions.From Theorem 6.13, the �nal notes of Chapter 6 in [GT98℄ and Theorem2.1 Chapter II in Freidlin [Fre85℄, the Feynman-Ka
 representation in ourellipti
 setting writesProposition 4.1 (Ellipti
 Feynman-Ka
's formula and estimates)Assume (Aθ), (Dθ), (Cθ) are in for
e. Then, there is a unique solution of
lass H1+θ ∩ C2(D) to

{

Lu − ku + f = 0, in D,
u|∂D = g

(4.2)and it is given by (4.1).In the following we denote by F (x) the signed spatial distan
e to the bound-ary ∂D. Under (Dθ), D satis�es the exterior and interior uniform sphere
ondition with radius r0 > 0 and F ∈ H2(V∂D(r0)) where V∂D(r0) := {x ∈
R

d : d(x, ∂D) ≤ r0}. Also, F 
an be extended to a H2 fun
tion preservingthe sign. For more details on the distan
e fun
tion, we refer to Appendix14.6 in [GT98℄.



22 E. GOBET AND S. MENOZZI4.2. Tools and results. Below, we keep the previous notations 
on
erningthe Euler s
heme. We also use the symbol C for nonnegative 
onstants thatmay depend on D, b, σ, g, f, k but not on ∆ or x. We reserve the notation cfor 
onstants also independent of D, g, f, k. Let us now state the main resultsof Se
tion 2 in our 
urrent framework.Proposition 4.2 (Tightness of the overshoot) Assume (Aθ-2), and that
D is of 
lass H2. Then, for some c > 0,

sup
∆>0

Ex[exp(c[∆−1/2F−(X∆
τ∆)]2)] < +∞.From the proof of Theorem 2.2 and Theorem 4.2 in Gobet and Maire [GM05℄we derive:Theorem 4.3 (Joint limit laws asso
iated to the overshoot) Assume(Aθ), and that D is of 
lass H2. Let ϕ be a 
ontinuous fun
tion with 
ompa
tsupport. With the notation of Theorem 2.2, for all x ∈ D, y ≥ 0,

Ex[Z∆
τ∆ϕ(X∆

τ∆)1F−(X∆
τ∆)≥y

√
∆] −→

∆→0
Ex
[

Zτϕ(Xτ )
(

1 − H(y/|σ∗∇F (Xτ )|)
)]

.4.3. Error expansion and boundary 
orre
tion. For notational 
onvenien
eintrodu
e for x ∈ D,
u(D) = Ex(g(Xτ )Zτ +

∫ τ

0
Zsf(Xs)ds),

u∆(D) = Ex(g(X∆
τ∆)Z∆

τ∆ +

∫ τ∆

0
Z∆

φ(s)f(X∆
φ(s))ds).The se
ond quantity is well de�ned a

ording to Theorem 4.2 in Gobet andMaire [GM05℄ that states

∀p ≥ 1, lim sup
∆→0

sup
x∈D̄

Ex[(τ∆)p] < ∞.(4.3)Theorem 4.4 (First order expansion) Under (Aθ), (Dθ), (Cθ), for ∆small enough and with the notation of Theorem 2.3
Err(∆, g, f, k, x) = u∆(D) − u(D)

= c0

√
∆Ex(Zτ (∇u −∇g)(Xτ ) · ∇F (Xτ )|σ∗∇F (Xτ )|) + o(

√
∆).De�ne now D∆ = {x ∈ D : d(x, ∂D) > c0

√
∆|σ∗∇F (x)|}. Introdu
e τ̂∆ =

inf{ti ≥ 0 : X∆
ti ∈ D∆}. Set

u∆(D∆) = Ex[g(X∆
τ̂∆)Z∆

τ̂∆ +

∫ τ̂∆

0
Z∆

φ(s)f(X∆
φ(s))ds].One has:
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orre
tion) Under (Aθ), (Dθ), (Cθ) and as-suming additionally ∇F (x)|σ∗∇F (x)| is of 
lass C2, then for ∆ small enoughone has
u∆(D∆) − u(D) = o(

√
∆).4.4. Proofs. Note 
arefully that all the 
onstants appearing in the erroranalysis for the paraboli
 
ase have at most linear growth w.r.t the �xed�nal time T . Equation (4.3) allows to 
ontrol uniformly the integrability ofthese 
onstants in our 
urrent framework. Thus, sin
e the arguments remainthe same, we only give below sket
hes of the proofs.Proof of Proposition 4.2. It is su�
ient to prove that there exist 
onstants

c̃ > 0 and C s.t. ∀A ≥ 0, sup∆>0 Px[F
−(X∆

τ∆) ≥ A∆1/2] ≤ C exp(−c̃A2).Then any 
hoi
e of c < c̃ is valid. For x ∈ D, we write
P := Px[F−(X∆

τ∆) ≥ A∆1/2]

=
∑

i∈N∗

E[1τ∆>ti−1
1τ∆

ti−1
<ti

P[F−(X∆
ti ) ≥ A∆1/2|Fτ∆

ti−1

]]where τ∆
ti−1

:= inf{s ≥ ti−1 : X∆
s 6∈ D}. From Lemma 3.1, we get

P ≤ C exp(−c̃A2)
∑

i∈N∗

P[τ∆ > ti−1, τ
∆
ti−1

< ti].Lemma 16 from [GM04℄ remains valid under our 
urrent assumptions andyields P ≤ C exp(−c̃A2)
∑

i∈N∗ E[1τ∆>ti−1
(P[X∆

ti 6∈ D] + Opol(∆))]. From(4.3), Px[τ
∆ < ∞] = 1. Sin
e ∑i∈N∗ Px[τ∆ > ti−1] = ∆−1

Ex[τ∆], we alsoderive from (4.3) and the previous upper bound on P that P ≤ C exp(−c̃A2)whi
h 
on
ludes the proof. �Proof of Theorem 4.4. Similarly to the proof of Theorem 2.5 we suppose�rst that u ∈ H3+θ. The general 
ase 
an be dedu
ed as in the paraboli

ase using suitable S
hauder estimates, given in the �nal notes of Chapter 6in [GT98℄, see also our Appendix.In this simpli�ed setting, we obtain
Err(∆, g, f, k, x)

E
= − Z∆

τ∆∇g(π∂D(X∆
τ∆))∇F (X∆

τ∆)F−(X∆
τ∆)+

(

∑

i∈N

1ti<τ∆

[

∆ × Z∆
ti (Lu − ku + f)(X∆

ti )(4.4)
+ Z∆

ti ∇u(X∆
ti ) · ∇F (X∆

ti+1
)F−(X∆

ti+1
)(4.5)

+ O(|F−(X∆
ti+1

)||X∆
ti+1

− X∆
ti |) + O(|F−(X∆

ti+1
)|2)

](4.6)
+ O(∆3/2+θ/2) + O(|Wti+1 − Wti |3+θ)

)

1τr0>τ∆ .(4.7)
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ontribution (4.4) 
an
els owing to the PDE (4.2). The global 
ontribu-tion asso
iated to the remainders (4.7) 
an be bounded by C∆3/2+θ/2(∆−1
Ex[τ∆]).From (4.3), this quantity is a O(∆1/2+θ/2) = o(

√
∆). For (4.6) write

(

∑

i∈N

1ti<τ∆(|F−(X∆
ti+1

)||X∆
ti+1

− X∆
ti |) + |F−(X∆

ti+1
)|2)

E

≤ C∆
∑

i∈N

1ti<τ∆1τ∆
ti−1

≤ti+1

E

≤ C∆
∑

i∈N

1ti<τ∆1X∆
ti+1

6∈D
E
= C∆1τ∆<∞where we used Lemma 16 from [GM04℄ for the last inequality. Thus theglobal 
ontribution of this term is a O(∆). We eventually derive the resultas in Se
tion 2. �Theorem 4.5 
an be proved as Theorem 2.4, using a sensitivity resultanalogous to Theorem 2.2 in [CGK06℄ for ellipti
 problems, see e.g. Simon[Sim80℄.5. Con
lusion. In the paraboli
 setting, the error expansion, Theorem2.3, and the asso
iated 
orre
tion, Theorem 2.4, have been obtained un-der �usual� assumptions from a PDE viewpoint, see (Aθ). A natural ques-tion 
on
erns the possible extension of these results to a hypoellipti
 frame-work for a stopped di�usion with time dependent 
oe�
ients. The main toolneeded is the smoothness of the law of the di�usion. For 
oe�
ients that are

C1 in time, this point is dis
ussed in Cattiaux and Mesnager [CM02℄ for a
ylindri
al domain. Up to an extension of their results to time dependentdomains, our main results should in some sense remain valid. For the ellipti

ase, the extension of Theorems 4.4, 4.5 to a hypoellipti
 framework is open.Indeed, we strongly exploited some 
ontrols on the Euler s
heme in largetime, that are far from being easy to establish when the 
oe�
ients degen-erate. This will 
on
ern further resear
h. For PDE results in this framework,see [Bon69℄ for instan
e.To 
on
lude, we note that the boundary 
orre
tion pro
edure 
ould be atleast formally extended to general It� pro
esses of the form dXt = btdt +
σtdWt. In that 
ase, the smaller domain would be de�ned ω by ω repla
ing
σ∗(t, x)∇F (t, x) by σ∗

t∇F (t,Xt). Even if our 
urrent proof relies on Marko-vian properties, we 
onje
ture that the 
orre
tion should on
e again givea o(
√

∆) independently of the Markovian stru
ture. We mention that it isalready known [GM06℄ that the error asso
iated to the dis
rete sampling ofan exit time for a general It� pro
ess yields an error of order √∆ .



OVERSHOOTS OF STOPPED DIFFUSIONS 25APPENDIX A: PROOF OF THEOREM 2.5 IN THE GENERALSETTINGIn this se
tion, we detail how the proof of Se
tion 2 has to be modi�edunder the assumptions of Theorem 2.3, i.e. for g ∈ H1+θ and without 
om-patibility 
ondition so that u ∈ H1+θ.A.1. Preliminary notation and 
ontrols. Introdu
e the paraboli
distan
e pd: for (s, x), (t, y) ∈ D̄, pd((s, x), (t, y)) = max(|s− t|1/2, |x− y|).We also denote for a 
losed set A ∈ D̄ and (s, x) ∈ D, pd((s, x),A) theparaboli
 distan
e of (s, x) to A.Under our 
urrent assumptions, ∃C > 0, ∀(s, x) ∈ D,
|Hu(s, x)| + sup

α, |α|=3
|∂α

x u(s, x)| ≤ Cpd((s, x),PD ∩ {v ≥ s})−2,

sup
α,|α|=3, (t,y)∈D, (t,y)6=(s,x)

|∂α
x u(s, x) − ∂α

x u(t, y)|
pd((s, x), (t, y))θ

≤ C(pd((s, x),PD ∩ {v ≥ s}) ∧ pd((t, y),PD ∩ {v ≥ t})−2−θ,

sup
(t,x)∈D, t6=s

|∂tu(s, x) − ∂tu(t, x)|
|t − s|(1+θ)/2

≤ C(pd((s, x),PD ∩ {v ≥ s}) ∧ pd((t, x),PD ∩ {v ≥ t})−2−θ.(A.1)These inequalities are obtained with the interior S
hauder estimates for thePDEs satis�ed by the partial derivatives (∂xiu)i∈[[1,d]], see Theorem 4.9 in[Lie96℄.We �rst state an important proposition for the error analysis with possiblyexplosive 
ontrols as in (A.1) for the derivatives. Namely, under our 
urrentregularity assumptions, in order to perform a Taylor expansion we have towork with interior points s.t. the whole segment between these points belongsto the time spa
e domain, with the distan
e to the boundary uniformly lowerbounded along the segment. The proposition states that this is the 
ase ifthe points are "far enough" from the side of D.Proposition A.1 Assume D ∈ H2 and take ε ∈]0, 1[. For all (t, x) ∈ D̄ ∩
V∂D(r0/2) \V∂D (2∆1/2(1−ε)), where r0 is de�ned in Se
tion 1.4.2, t ≤ T −∆and ∀y ∈ B(x,∆1/2(1−ε)) ∩ D̄t+∆, one has

Iε(t, x, y,∆) := [(t, x), (t + ∆, y)] ∈ D̄,

∀(s, z) ∈ Iε(t, x, y,∆), F (s, z) ≥ 1

4
F (t, x)for ∆ small enough.The proof is postponed to the end of the Se
tion.



26 E. GOBET AND S. MENOZZIA.2. Error analysis. Re
all from the previous proof of Theorem 2.3that the main term to analyze is
e∆
2

E
=
(

∑

0≤ti<T−4∆1−ε

1ti<τ∆

[

u(ti+1, πD̄ti+1
(X∆

ti+1
))Z∆

ti+1
− u(ti,X

∆
ti )Z∆

ti

+Z∆
ti f(ti,X

∆
ti )∆

]

(1(ti,X∆
ti

)6∈V∂D(2∆1/2(1−ε)) + 1(ti,X∆
ti

)∈V∂D(2∆1/2(1−ε)))
)

1τr0>τ∆

+ e∆
23 := e∆

21 + e∆
22 + e∆

23,where E
= denotes an equality for the expe
tation up to a Opol(∆). The terms

e∆
21, e

∆
22, e

∆
23 are respe
tively asso
iated to the events for whi
h the (ti,X

∆
ti )iare far from the paraboli
 boundary of D, 
lose to its side and 
lose to itstop.Control of e∆

21. From Proposition A.1, Lemma 3.1 and (A.1), the point-wise θ-Hölder 
ontrols for the third spatial derivatives are bounded by C
×F (ti,X

∆
ti )−2−θ, as well the (1 + θ)/2-Hölder 
ontrols for the time deriva-tive. Hen
e, adapting the previous analysis of Se
tion 2, we get

|e∆
21|

E

≤ C
∑

0≤ti<T

1ti<τ∆

(

r−2−θ
0 (|Wti+1 − Wti |3+θ + ∆(3+θ)/2)

+ 12∆1/2(1−ε)≤F (ti,X∆
ti

)≤r0/2F (ti,X
∆
ti )−2−θ(|Wti+1 − Wti |3+θ + ∆(3+θ)/2)

)

.The terms involving r−2−θ
0 readily give a O(∆1/2+θ/2) = o(∆1/2). For theother terms, the key tool is the o

upation times formula asso
iated to somesharp 
ontrols from [GM04℄ for the expe
tation of the lo
al time (Ly

s(F (.,X∆
. ))

)

sat level y of the 
ontinuous semi-martingale distan
e pro
ess (F (s,X∆
s ))s.Indeed, an easy adaptation of the proof of Lemma 17 [GM04℄ to our timedependent domain framework gives(A.2) E[Ly

T∧τ∆(F (.,X∆
. ))] ≤ C(|y| +

√
∆).Thus, one has

|e∆
21|

E

≤ C∆1/2+θ/2
(
∫ T∧τ∆

0
1F (φ(t),X∆

φ(t)
)∈[2∆1/2(1−ε),r0/2]F (φ(t),X∆

φ(t))
−2−θdt + 1

)

E

≤ C∆1/2+θ/2
(
∫ T∧τ∆

0
1F (t,X∆

t )∈[∆1/2(1−ε) ,3r0/4]F (t,X∆
t )−2−θdt + 1

)

E

≤ C∆1/2+θ/2
(
∫ 3r0/4

∆1/2(1−ε)
y−2−θLy

T∧τ∆(F (.,X∆
. ))dy + 1

)

,



OVERSHOOTS OF STOPPED DIFFUSIONS 27using Lemma 3.1 for the last but one inequality, and the o

upation timeformula for F (t,X∆
t ) for the last one (re
all that σ is uniformly ellipti
).Finally using (A.2), one gets

|e∆
21| ≤ C∆1/2+θ/2

(

∫ 3r0/4

∆1/2(1−ε)
y−2−θ(y + ∆1/2)dy + 1

)

≤ C∆1/2+θε/2.Thus, e∆
21 is a o(∆1/2). This te
hnique will also be used for e∆

22.Control of e∆
22. A Taylor formula gives:

e∆
22

E
=

∑

0≤ti<T−4∆1−ε

1ti<τ∆,F (ti,X∆
ti

)∈]0,2∆1/2(1−ε)]

{

∇u(ti,X
∆
ti )(F−∇F )(ti+1,X

∆
ti+1

)

+
(

Z∆
ti f(ti,X

∆
ti )∆ + O(∆1/2+θ/2)

)

}

× 1τr0>τ∆ := e∆
221 + e∆

222.The term e∆
221 
orresponds to the overshoot. The term e∆

222 
an be 
ontrolledwith te
hniques similar to the ones used for e∆
21. Namely,

|e∆
222|

E

≤ C∆1/2+θ/2(∆−1
∫ T∧τ∆

0
1(φ(t),Xφ(t))∈V∂D(2∆1/2(1−ε))dt)

E

≤ C∆1/2+θ/2(∆−1
∫ T∧τ∆

0
1(t,X∆

t )∈V∂D(3∆1/2(1−ε))dt)

E

≤ C∆1/2+θ/2∆−1
∫ 3∆1/2(1−ε)

−3∆1/2(1−ε)
Ly

T∧τ∆(F (.,X∆
. ))dy

E

≤ C∆1/2+θ/2∆−1
∫ 3∆1/2(1−ε)

−3∆1/2(1−ε)
(|y| + ∆1/2)dy ≤ C∆1/2+θ/2−εwhi
h for ε small enough gives a o(∆1/2).Control of e∆

23. A Taylor formula gives the overshoot 
omponent for thetime steps between T − 4∆1−ε and T , and a O(∆1/2+θ/2−ε) = o(∆1/2) forthe other terms. This 
ompletes the proof. �Proof of Proposition A.1. Fix t ∈ [0, T − ∆]. For all λ ∈ [0, 1], let
s := t + λ∆, z :=x + λ(y − x).Sin
e F ∈ H2,

F (s, z) ≥F (t, x) − C∆ + λ〈∇F (t, x), y − x〉 − C∆1−ε.(A.3)Now 〈∇F (t, x), y−x〉 = F (t+∆, y)−F (t, x)+O(∆1−ε) whi
h plugged into(A.3) yields for ∆ small enough
F (s, z) ≥ F (t, x)(1 − λ) + λF (t + ∆, y) − C∆1−ε.Also, sin
e (t, x) 6∈ V∂D(2∆1/2(1−ε)), then, for ∆ small enough, F (t+∆, y) ≥

F (t, x)/3. The proof is 
omplete. �
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