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STOPPED DIFFUSION PROCESSES: OVERSHOOTS ANDBOUNDARY CORRECTIONBy Emmanuel Gobet and Stéphane MenozziENSIMAG-INP Grenoble,Université Denis Diderot Paris 7Abstrat For a stopped di�usion proess in a time dependentdomain, we obtain the asymptotis of the triplet exit time/exit po-sition/overshoot for the disretely stopped Euler sheme. Here, theovershoot means the distane to the boundary of the proess when itexits the domain. As a �rst onsequene of this result, we obtain anexpansion for the weak error. From the expansion and the sensitiv-ity of the underlying Dirihlet problem with respet to the domain,we �nally derive a proedure to improve the onvergene by suitablyrestraining the domain.1. Introdution.1.1. Statement of the problem. We onsider a d-dimensional di�usionproess whose dynamis is given by
Xt = x +

∫ t

0
b(s,Xs)ds +

∫ t

0
σ(s,Xs)dWs(1.1)where W is a standard d′-dimensional Brownian motion de�ned on a �lteredprobability spae (Ω,F , (Ft)t≥0, P) satisfying the usual onditions. The map-pings b and σ are Lipshitz ontinuous in spae and loally bounded in time,so that (1.1) has a unique strong solution. For a �xed deterministi time

T > 0 and a given bounded time dependent domain D ⊂]0, T [×R
d assumedto be smooth we de�ne τ := inf{t > 0 : (t,Xt) 6∈ D}. Note that τ is boundedby T . For x ∈ D0 := {y ∈ R

d : (0, y) ∈ ∂D\∂D ∩ (]0, T [×Rd)}, where ∂D isthe boundary of D, and given ontinuous funtions g, f, k : D̄ → R, we areinterested in estimating the quantity
Ex[g(τ,Xτ )Zτ +

∫ τ

0
Zsf(s,Xs)ds], Zs = exp(−

∫ s

0
k(r,Xr)dr),(1.2)where as usual Ex[.] := E[.|X0 = x] (resp. Px[.] := P[.|X0 = x]). The ap-proximation of suh quantities is a well known issue in �nane, sine itAMS 2000 subjet lassi�ations: Primary 60J60;60H35;60-08Keywords and phrases: Stopped di�usion, Time dependent domain, Brownian over-shoot, Boundary sensitivity. 1



2 E. GOBET AND S. MENOZZIrepresents in this framework the prie of a barrier option, see e.g. Ander-sen and Brotherton-Ratli�e [ABR96℄. Those quantities also arise throughthe Feynman-Ka representation of the solution of a paraboli PDE withCauhy-Dirihlet boundary onditions, see Costantini et al. [CGK06℄. Theyan therefore also be related to problems of heat di�usion in time dependentdomains.We then hoose to approximate the expetation in (1.2) by Monte Carlosimulation. This approah is natural and espeially appropriate if the dimen-sion d is large. To this end we approximate the di�usion (1.1) by its Eulersheme with time step ∆ > 0. De�ne ∀t ≥ 0, φ(t) := sup{ti := i∆, i ∈ N :
ti ≤ t < ti+1} and introdue

X∆
t = x +

∫ t

0
b(φ(s),X∆

φ(s))ds +

∫ t

0
σ(φ(s),X∆

φ(s))dWs.(1.3)We now assoiate to (1.3) the disrete exit time τ∆ := inf{ti, i ∈ N∗ :
(ti,X

∆
ti ) 6∈ D}. Approximating the funtional Vτ := g(τ,Xτ )Zτ+

∫ τ
0 Zsf(s,Xs)

ds by
V ∆

τ∆ := g(τ∆,X∆
τ∆)Z∆

τ∆ +

∫ τ∆

0
Z∆

φ(s)f(φ(s),X∆
φ(s))dswith Z∆

t = e
−
∫ t

0
k(φ(r),X∆

φ(r)
)dr

,we introdue the quantity
Err(T,∆, g, f, k, x) = Ex[V ∆

τ∆ − Vτ ](1.4)that will be referred to as the weak error. Note that in V ∆
τ∆ , g is a.s. notevaluated on the boundary (g must be understood as a funtion de�ned ina neighborhood of ∂D). At �rst sight, this approximation an seem oarse.Anyhow, it does not a�et the onvergene rate and really redues the om-putational ost with respet to the alternative that would onsist in takingthe projetion on ∂D.Our main purpose is to expand the error (1.4) at the �rst order. Atu-ally, the ruial tool is the asymptotis of the triplet exit time/exit posi-tion/overshoot for the Euler sheme. Here, the overshoot means the distaneto the boundary of the proess when it exits the domain. In addition, weimprove the initial onvergene rate by a boundary orretion proedure.We mention that we ould also onsider the di�usion proess disretelystopped: results below would remain the same.



OVERSHOOTS OF STOPPED DIFFUSIONS 31.2. Existing results and ontribution of the paper. Up to now, the be-havior of (1.4) had mainly been analyzed for ylindrial domains, in thekilled ase, without soure and potential terms (i.e. when the error writes
Err(T,∆, g, 0, 0, x) = E[g(X∆

T )1τ∆>T ] − E[g(XT )1τ>T ] := E). Let us �rstmention the work of Broadie et al. [BGK97℄, who �rst derived the orretionproedure of Setion 2 in the one dimensional geometri Brownian motionsetting (Blak and Sholes model). In [Gob00℄ and [GM04℄, it had beenshown that, under some (hypo)elliptiity onditions on the oe�ients andsome smoothness of the domain and the oe�ients, E was lower and upperbounded at order 1/2 w.r.t. the time step ∆. Also, an expansion result forthe killed Brownian motion in a one as well as the assoiated orretionproedure are available in [Men06℄.All these works emphasize that the ruial quantity to ontrol in orderto obtain an expansion is the overshoot above the spatial boundary of thedisrete proess. In the Brownian one-dimensional framework suh ontrolsgo bak to Siegmund [Sie79℄ and Siegmund and Yuh [SY82℄. We manage toextend their results to obtain the asymptoti distribution of the overshootof the Euler sheme, see Setions 2 and 3. Conerning the asymptotis ofthe overshoot of stohasti proesses, let us mention the works of Alsmeyer[Als94℄ or Fuh and Lai [FL01℄ for ergodi Markov hains and Doney andKyprianou for Lévy proesses [DK06℄. These works are all based on renewalarguments.Our results about the overshoot ombined to sharp tehniques of erroranalysis, allow us to derive an expansion of the form Err(T,∆, g, f, k, x) =
C
√

∆+ o(∆) in the very general framework of stopped proesses in time de-pendent domains. Some su�ient assumptions an be formulated in terms ofthe uniform elliptiity of σ and some smoothness properties for D, b, σ, g, f, k.From a numerial viewpoint, error expansions are the �rst step for a pro-edure that aims to improve the onvergene. A very popular one is theRomberg extrapolation, see [TT90℄. Using the reent results of Costantiniet al. [CGK06℄ onerning the sensitivity of the Dirihlet problem w.r.t. theboundary, we propose an alternative simulation proedure that onverges as
o(
√

∆). Namely, sine the disrete stopping yields an overestimation of theexat stopping (see Boyle and Lau [BL94℄, Baldi [Bal95℄, [GM04℄) we stopthe disrete proess when it leaves a suitable smaller domain. Furthermore,this tehnique does not require any re�nement of the time step. Therefore,it does not inrease the empirial variane for the assoiated Monte Carloestimator as for the Romberg extrapolation.Let us �nally mention that under some quite usual assumptions the previ-ous results about the error expansion and orretion still hold in the station-



4 E. GOBET AND S. MENOZZIary setting, see Setion 4, whih also seems to be new. Numerial appliationsare left to further works.1.3. Outline of the paper. Notations and assumptions used throughoutthe paper are stated in Setion 1.4. In Setion 2 we give our main resultsonerning the asymptotis of the overshoot, the error expansion and theboundary orretion. These results are proved in Setion 3, whih is thetehnial ore of the paper. Eventually, Setion 4 deals with the stationaryextension of our results. We still manage to obtain an expansion and a or-retion for ellipti PDEs. Some tehnial results are postponed in Appendix.1.4. General notation and assumptions.1.4.1. Misellaneous.
• Di�erentiation. For smooth funtions g(t, x), we denote by ∂β

x g(t, x) thederivative of g w.r.t. x aording to the multi-index β, whereas the timederivative of g is denoted by ∂tg(t, x). The notation ∇g(t, x) stands for theusual gradient w.r.t. x (as a row vetor) and the Hessian matrix of g (w.r.t.the spae variable x) is denoted by Hg(t, x).The seond order linear operator L below stands for the in�nitesimal gener-ator of the di�usion proess X in (1.1):(1.5) Lg(t, x) = ∇g(t, x)b(t, x) +
1

2
Tr(Hg(t, x)[σσ∗](t, x)).

• Metri. The Eulidean norm is denoted by | · |.We set Bd(x, ǫ) for the usual Eulidean d-dimensional open ball with enter
x and radius ǫ and d(x,C) for the Eulidean distane of a point x to a losedset C.
• Funtions. For an open set D′ ⊂ R × R

d and l ∈ N, C⌊ l
2
⌋,l(D′) (resp.

C⌊ l
2
⌋,l(D′)) is the spae of ontinuous funtions f de�ned on D′ with ontin-uous derivatives ∂β

x∂j
t f for |β| + 2j ≤ l (resp. de�ned in a neighborhood of

D′). Also, for a = l+θ, θ ∈]0, 1], l ∈ N, we denote by Ha(D′) (resp. Ha(D̄′))the Banah spae of funtions of lass C⌊ l
2
⌋,l(D′) (resp. C⌊ l

2
⌋,l(D̄′) ) having lthspae derivatives uniformly θ-Hölder ontinuous and ⌊l/2⌋ time derivativesuniformly (a/2 − ⌊l/2⌋)-Hölder ontinuous, see Lieberman [Lie96℄, p. 46 fordetails. We may simply write C⌊ l

2
⌋,l or Ha when D′ = R × R

d.
• Floating onstants. As usual, we use the same symbol C for all �nite, non-negative onstants whih appear in our omputations : they may depend on
D, T, b, σ, g, f, k but they will not depend on ∆ or x. We reserve the notation
c for onstants also independent of T , g, f and k. Other possible dependenes



OVERSHOOTS OF STOPPED DIFFUSIONS 5will be expliitly indiated.In the following Opol(∆) (resp. O(∆)) stands for every quantity R(∆) suhthat ∀k ∈ N, for some C > 0, one has |R(∆)| ≤ C∆k (resp. |R(∆)| ≤ C∆)(uniformly in the starting point x).1.4.2. Time-spae domains. In the sequel D stands for a bounded time-spae domain in ]0, T [×R
d (T is a �xed terminal time). Let

D0 =
{

x : (0, x) ∈ ∂D\∂D ∩ (]0, T [×Rd)
}

,

DT =
{

x : (T, x) ∈ ∂D\∂D ∩ (]0, T [×Rd)
}

.

D0 and DT are open sets and we assume that they are nonempty domainsthat oinide with the interior of their losure (f. [Fri64℄, Setion 3.2). Weassume also (f. again [Fri64℄, Setion 3.2) that the time setion of D,(1.6) Dt = {x : (t, x) ∈ D}, t ∈]0, T [,is a domain that oinides with the interior of its losure, for every t ∈]0, T [.Regularity assumptions on the domain D will be formulated in terms ofHölder spaes with time-spae variables (see [Lie96℄ p.46 and [Fri64℄ Setion3.2). Namely, we say that the domain D is of lass Ha, a ≥ 1 if for everyboundary point (t0, x0) ∈ ∂D ∩ (]0, T [×Rd), there exists a neighborhood
]t0, t0 + ε2

0[×Bd(x0, ε0), an index i ∈ [[1, d]] and a funtion ϕ0 ∈ Ha(]t0, t0 +
ε2
0[×Bd−1(x

1
0, ..., x

i−1
0 , xi+1

0 , ..., xd
0), ε0) s.t.

∂D ∩ (]0, T [×Rd)∩]t0, t0 + ε2
0[×Bd(x0, ε0)

:= {(t, x) ∈ (]t0, t0 + ε2
0[∩[0, T ]) × Bd(x0, ε0)

: xi = ϕ0(t, x1, ..., xi−1, xi+1, ..., xd)}.In the following we freely use the notations of [Lie96℄.If D is of lass H2, all domains Dt, for t ∈ [0, T ], satisfy the uniforminterior and exterior sphere ondition with the same radius r0. Moreover(see [Lie96℄, Setion X.3), the signed spatial distane F , given by
F (t, x) =

{

−d(x, ∂Dt), for x ∈ Dc
t , d(x, ∂Dt) ≤ r0, 0 < t < T,

d(x, ∂Dt), for x ∈ Dt, d(x, ∂Dt) ≤ r0, 0 < t < T,belongs to H2 ({(t, x) : 0 < t < T, d(x, ∂Dt) < r0}) and ∇F (t, x) is the unitinward normal vetor to Dt at π∂Dt(x) the nearest point to x in ∂Dt. F anbe extended as a H2([0, T ] × R
d) funtion, preserving the sign.In the following we denote ∀r ∈ R

+, by V∂D(r) := {(t, x) ∈ [0, T ] × R
d :

d(x, ∂Dt) ≤ r} a neighborhood of size r of the so alled side.



6 E. GOBET AND S. MENOZZI1.4.3. Di�usion proesses stopped at the boundary. We speify the prop-erties of the oe�ients (b, σ) in (1.1) with assumption(Aθ) (with θ ∈]0, 1])1. Smoothness. b and σ are funtions of lass H1+θ.2. Uniform elliptiity. For some a0 > 0, it holds ξ∗[σσ∗](t, x)ξ ≥
a0|ξ|2 for any (t, x, ξ) ∈ [0, T ] × R

d × R
d.We also introdue assumption (A′

θ) for whih 2. is replaed by the weakerassumption2'. Uniform non harateristi boundary. For some r0 > 0 there exists
a0 > 0 s.t. ∇F (t, x)[σσ∗](t, x)∇F (t, x) ≥ a0 for any (t, x) ∈ V∂D(r0).The asymptoti results onerning the overshoot hold true under (A′

θ), seeSetion 2.1.We mention that the additional smoothness of b and σ w.r.t. the timevariable is required for the onnetion with PDEs. In the following we usethe supersript t, x to indiate the usual Markovian dependene, i.e. ∀s ≥
t, Xt,x

s = x +
∫ s
t b(u,Xt,x

u )du +
∫ s
t σ(u,Xt,x

u )dWu. Now let(1.7) τ t,x := inf{s > t : Xt,x
s /∈ Ds} = inf{s > t : (s,Xt,x

s ) /∈ D}be the �rst exit time of Xt,x
s from Ds or, equivalently, the �rst exit time ofthe time-spae proess (s,Xt,x

s )s∈[t,T ] from the domain D. Note that τ t,x isbounded by T . For funtionals of the proess X stopped at the exit from D,of the form(1.8)
u(t, x) = E

[

g(τ t,x,Xt,x
τ t,x)e−

∫ τt,x

t
k(r,Xt,x

r )dr+

∫ τ t,x

t
e−
∫ s

t
k(r,Xt,x

r )drf(s,Xt,x
s )ds

]

,we now reall (see [CGK06℄) that the Feynman-Ka representation holds inthe time-spae domain. Introdue the paraboli boundary PD = ∂D\{0} ×
D0.Proposition 1.1 [Feynman-Ka's formula and a priori estimates on
u℄Assume (Aθ), D ∈ H1, k ∈ Hθ, f ∈ Hθ and g ∈ C0,0 with θ ∈]0, 1[. Then,there is a unique solution of lass C1,2(D) ∩ C0,0(D) to(1.9) {

∂tu + Lu − ku + f = 0 in D,
u = g on PD,and it is given by (1.8).In addition, if for some θ ∈]0, 1[, D is of lass H1+θ, g ∈ H1+θ then u ∈



OVERSHOOTS OF STOPPED DIFFUSIONS 7
H1+θ. In partiular ∇u exists and is θ-Hölder ontinuous up to the boundary.Eventually, for D ∈ H3+θ, k, f ∈ H1+θ, g ∈ H3+θ satisfying the �rst orderompatibility ondition (∂t + L − k)g(T, x) + f(T, x)|x∈∂DT

= 0, then thefuntion u belongs to H3+θ.Proof. The �rst two existene and uniqueness result for (1.9) are respetivelyimplied by Theorems 5.9 and 5.10 and Theorem 6.45 in Lieberman, [Lie96℄.The probabilisti representation is then a usual veri�ation argument, see e.g.Appendix B.1 in [CGK06℄. The additional smoothness an be derived fromexerie 4.5 Chapter IV in [Lie96℄ or Theorem 12, Chapter 3 in [Fri64℄. �2. Main Results.2.1. Controls onerning the overshoot. The overshoot is assoiated tothe distane of the proess to the boundary, when it exits the domain. To bepreise, we use F the signed distane funtion and we onsider the quantity
F (ti,X

∆
ti ). It remains positive for ti < τ∆, and at time ti = τ∆, it beomesnon positive. The overshoot is thus de�ned by F−(τ∆,X∆

τ∆). Sine F isLipshitz ontinuous in time and spae, it is easy to see that F−(τ∆,X∆
τ∆)is of order √

∆ (in Lp-norm for instane). Thus, it is natural to study theasymptotis of the resaled overshoot
∆−1/2F−(τ∆,X∆

τ∆).Adapting the proof of Proposition 6 in [GM04℄ to our time dependentontext, see also the Proof of Proposition 4.2 for a simpler version, one hasthe following proposition.Proposition 2.1 (Tightness of the overshoot) Assume (A′

θ), and that
D is of lass H2. Then, for some c > 0 one has

sup
∆>0,s∈[0,T ]

Ex[exp(c[∆−1/2F−(s ∧ τ∆,X∆
s∧τ∆)]2)] < +∞.It is quite plain to prove by pathwise onvergene of X∆ towards X that

(τ∆,X∆
τ∆) onverges in probability to (τ,Xτ ). The next theorem also inludesthe resaled overshoot.Theorem 2.2 (Joint limit laws assoiated to the overshoot) Assume(A′

θ), and that D is of lass H2. Let ϕ be a ontinuous funtion with ompatsupport. For all t ∈ [0, T ], x ∈ D0, y ≥ 0,
Ex[1τ∆≤tZ

∆
τ∆ϕ(X∆

τ∆)1F−(τ∆,X∆
τ∆

)≥y
√

∆] −→
∆→0

Ex
[

1τ≤tZτϕ(Xτ )
(

1 − H(y/|σ∗∇F (τ,Xτ )|))]



8 E. GOBET AND S. MENOZZIwith H(y) := (E0[sτ+ ])−1
∫ y
0 dzP0[sτ+ > z] and s0 := 0,∀n ≥ 1, sn :=

∑n
i=1 Gi, the Gi being i.i.d. standard entered normal variables, τ+ :=

inf{n ≥ 0 : sn > 0}.In other words, (τ∆,X∆
τ∆ ,∆−1/2F−(τ∆,X∆

τ∆)) weakly onverges to
(τ,Xτ , |σ∗∇F (τ,Xτ )|Y ) where Y is a random variable independent of (τ,Xτ ),and whih umulative funtion is equal to H. Atually, Y has the asymptotilaw of the renormalized Brownian overshoot. In the following analysis, themean of the overshoot is an important quantity and it is worth noting thatone has E(Y ) =

E0[s2
τ+ ]

2E0[sτ+ ] := c0. One knows from [Sie79℄ that(2.1) c0 = −ζ(1/2)√
2π

= 0.5823...The above theorem is the ruial tool in the derivation of our main results.The proof is given in Setion 3.1.2.2. Error expansion and boundary orretion. For notational onvenieneintrodue for x ∈ D0,
u(D) = Ex(g(τ,Xτ )Zτ +

∫ τ

0
Zsf(s,Xs)ds),

u∆(D) = Ex(g(τ∆,X∆
τ∆)Z∆

τ∆ +

∫ τ∆

0
Z∆

φ(s)f(φ(s),X∆
φ(s))ds).Theorem 2.3 (First order expansion) Under (Aθ), for a domain of lass

H2, g ∈ H1+θ, k, f ∈ H1+θ and for ∆ small enough
Err(T,∆, g, f, k, x) = u∆(D) − u(D)

= c0

√
∆Ex(1τ<T Zτ (∇u −∇g)(τ,Xτ ) · ∇F (τ,Xτ )|σ∗∇F (τ,Xτ )|) + o(

√
∆),where c0 is de�ned in (2.1).De�ne now a smaller domain D∆ ⊂ D, whih time setion is given by D∆

t =
{x ∈ Dt : d(x, ∂Dt) > c0

√
∆|σ∗∇F (t, x)|}. Introdue the exit time of theEuler sheme from this smaller domain: τ̂∆ = inf{ti ≥ 0 : (ti,X

∆
ti ) 6∈ D∆} ≤

τ∆. The boundary orretion proedure onsists in simulating
g(τ̂∆,X∆

τ̂∆)Z∆
τ̂∆ +

∫ τ̂∆

0
Z∆

φ(s)f(φ(s),X∆
φ(s))ds.(2.2)As above, we do not ompute any projetion on the boundary. We denotethe expetation of (2.2) by u∆(D∆). One has:



OVERSHOOTS OF STOPPED DIFFUSIONS 9Theorem 2.4 (Boundary orretion) Under the assumptions of Theo-rem 2.3, if we additionally suppose ∇F (t, x)|σ∗∇F (t, x)| is of lass C1,2,then one has:
u∆(D∆) − u(D) = o(

√
∆).The additional assumption is due to tehnial onsiderations in [CGK06℄. Itis automatially ful�lled for domains of lass C3 and σ in C1,2.2.3. Proof of Theorems 2.3 and 2.4.2.3.1. Error expansion. By usual weak onvergene arguments, Theorem2.3 is a diret onsequene of Proposition 2.1 (tightness), Theorem 2.2 (jointlimit laws assoiated to the overshoot) and Theorem 2.5 below.Theorem 2.5 (First order approximation) Under the assumptions ofTheorem 2.3

u∆(D) − u(D) = o(
√

∆)+

Ex(1τ∆≤T Z∆
τ∆(∇u −∇g)(τ∆, π∂D

τ∆
(X∆

τ∆)) · ∇F (τ∆,X∆
τ∆)F−(τ∆,X∆

τ∆)).Remark 2.6 In the above statement, we use projetions on a non onvexset, whih needs a lari�ation. With the notation of Setion 1.4.2, introdue
τ r0 := inf{s > 0 : (s,X∆

s ) 6∈ D ∪ V∂D(r0)}. For s ∈ [0, τ r0 ] the projetion
πD̄s

(X∆
s ) is uniquely de�ned by

πD̄s
(X∆

s ) = X∆
s + F−(s,X∆

s )∇F (s,X∆
s ).(2.3)Large deviation arguments (see Lemma 3.1 below) also give Px[τ r0 ≤ τ∆] =

Opol(∆). Thus, in the following, for s ≥ τ r0, πD̄s
(X∆

s ) and π∂Ds(X
∆
s ) denotean arbitrary point on ∂Ds. This hoie yields an exponentially small ontri-bution in our estimates.Proof. Denote e∆ the above error. Write now

e∆ = Ex[g(τ∆,X∆
τ∆)Z∆

τ∆ − g(τ∆, πD̄
τ∆

(X∆
τ∆))Z∆

τ∆ ]

+ Ex[g(τ∆, πD̄
τ∆

(X∆
τ∆))Z∆

τ∆ +

∫ τ∆

0
Z∆

φ(s)f(φ(s),X∆
φ(s))ds] − u(0,X∆

0 )

:= e∆
1 + e∆

2 .We introdue here the projetion for the error analysis. From (2.3), a seondorder Taylor expansion and standard omputations yield
e∆
1 = − Ex[1τ∆≤T Z∆

τ∆∇g(τ∆, π∂D
τ∆

(X∆
τ∆)) · ∇F (τ∆,X∆

τ∆)F−(τ∆,X∆
τ∆)]

+ O(∆).(2.4)



10 E. GOBET AND S. MENOZZIFor larity we assume for the rest of the proof that u ∈ H3+θ. Su�ientonditions to have suh a smoothness are provided in Proposition 1.1. Theproof under the assumptions of Theorem 2.3 is presented in Appendix.Now, in order to isolate the overshoot F− in e∆
2 , we use a Taylor formulaup to order 3. This is a more diret approah than the It�-Tanaka expansionin [GM04℄ that also yields some loal time terms.In the following, we write U

E
= V (resp U

E

≤ V ) when the equality between
U and V holds in mean up to a Opol(∆) (resp. Ex(U) ≤ Ex(V ) + Opol(∆)).One has:
e∆
2

E
=

(

∑

0≤ti<τ∆

u(ti+1, πD̄ti+1
(X∆

ti+1
))Z∆

ti+1
− u(ti, πD̄ti

(X∆
ti ))Z∆

ti + Z∆
ti f(ti,X

∆
ti )∆

)

1τr0>τ∆
E
=
(

∑

0≤ti<T

1ti<τ∆

[

u(ti+1, πD̄ti+1
(X∆

ti+1
))Z∆

ti+1
− u(ti,X

∆
ti )Z∆

ti

+Z∆
ti f(ti,X

∆
ti )∆

]

)

1τr0>τ∆sine for ti < τ∆, X∆
ti ∈ Dti and thus πD̄ti

(X∆
ti ) = X∆

ti . Exploiting (2.3),writing Z∆
ti+1

= Z∆
ti (1 − k(ti,X

∆
ti )∆) + O(∆2) and performing a Taylor ex-pansion of u at point (ti,X

∆
ti ) ∈ D (where u is smooth), one gets

e∆
2

E
=
(

∑

0≤ti<T

1ti<τ∆

[

∆ × Z∆
ti (∂tu + Lu − ku + f)(ti,X

∆
ti )(2.5)

+ Z∆
ti ∇u(ti,X

∆
ti ) · ∇F (ti+1,X

∆
ti+1

)F−(ti+1,X
∆
ti+1

)(2.6)
+ O(|F−(ti+1,X

∆
ti+1

)||X∆
ti+1

− X∆
ti |) + O(|F−(ti+1,X

∆
ti+1

)|2)
](2.7)

+ O(∆3/2+θ/2) + O(|Wti+1 − Wti |3+θ)
)

1τr0>τ∆ .(2.8)The ontribution (2.5) equals 0 owing to the PDE. Both remainder terms in(2.8) are of order O(∆3/2+θ/2), and ontribute to the sum as O(∆1/2+θ/2) =
o(
√

∆). Finally, regarding (2.7), de�ning τti := inf{s ≥ ti : (s,X∆
s ) 6∈ D}one has

∑

0≤ti<T

1ti<τ∆ |F−(ti+1,X
∆
ti+1

)|2 E
=

∑

0≤ti<T

1ti<τ∆1τti<ti+1 |F−(ti+1,X
∆
ti+1

)|2

E

≤ C∆
∑

0≤ti<T

1ti<τ∆1τti≤ti+1
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E

≤ C∆
∑

0≤ti<T

1ti<τ∆1X∆
ti+1

/∈Dti+1

E
= C∆1τ∆≤T

E
= O(∆),where the last but one inequality is obtained adapting the proof of Lemma16 in [GM04℄ to time dependent domains.In the same way, one has ∑0≤ti<T 1ti<τ∆ |F−(ti+1,X

∆
ti+1

)||X∆
ti+1

− X∆
ti |

E
=

O(∆).Realling (2.4), to get the expeted result, it remains in (2.6) to approximate
Z∆

ti ∇u(tti ,X
∆
ti ) by Z∆

ti+1
∇u(ti+1, π∂Dti+1

(X∆
ti+1

)), whih is done as before, upto an extra additional error of order O(∆). �2.3.2. Boundary Corretion. One has
u∆(D∆) − u(D) = [u∆(D∆) − u(D∆)] + [u(D∆) − u(D)](2.9)1. The �rst ontribution in (2.9) has been previously analyzed, exeptthat the domain D∆ depends on ∆. It is equal to c0

√
∆E(1τ<T Zτ (∇u−

∇g)(τ,Xτ ) · ∇F (τ,Xτ )|σ∗∇F (τ,Xτ )|) + o(
√

∆).2. Finally, the last term is related to the sensitivity of a Dirihlet prob-lem with respet to the domain. By an appliation of Theorem 2.2 in[CGK06℄ with Θ(t, x) = −c0∇F (t, x)|σ∗∇F (t, x)| (in C1,2), one getsthat this ontribution equals
−c0

√
∆E(1τ<T Zτ (∇u−∇g)(τ,Xτ )·∇F (τ,Xτ )|σ∗∇F (τ,Xτ )|)+o(

√
∆).This proves that the new proedure has an error o(

√
∆). �3. Tehnial results onerning the overshoot. This setion is de-voted to the proof of Theorem 2.2. We �rst state some useful auxiliary results.Lemma 3.1 (Bernstein's inequality) Assume (Aθ-1). Consider two stop-ping times S, S′ upper bounded by T with 0 ≤ S′−S ≤ Θ ≤ T . Then for any

p ≥ 1, there are some onstants c > 0 and C := C((Aθ-1) , Θ), suh thatfor any η ≥ 0, one has a.s:
P[ sup

t∈[S,S′]
|X∆

t − X∆
S | ≥ η

∣

∣ FS ] ≤C exp

(

−c
η2

Θ

)

,

E[ sup
t∈[S,S′]

|X∆
t − X∆

S |p
∣

∣ FS ] ≤CΘp/2.For a proof of the �rst inequality we refer to Chapter 3, �3 in [RY99℄. Thelast inequality easily follows from the �rst one or from the BDG inequalities.



12 E. GOBET AND S. MENOZZILemma 3.2 (Convergene of exit time) Assume (A′

θ) and that the do-main is of lass H2. The following onvergenes hold in probability:1. lim∆→0 τ∆ = τ ;2. lim∆→0 X∆
τ∆ = Xτ ;3. lim∆→0 supt≤T |X∆

φ(t) − Xt| = 0.The proof of the �rst two assertions in the ase of spae-time domain isanalogous to the ase of ylindrial domain (see [GM05℄) and thus left to thereader. The last onvergene is standard.The following results are key tools to prove Theorem 2.2.Lemma 3.3 (Asymptoti independene of the overshoot and thedisrete exit time). Let W be a standard one dimensional BM. Put x > 0and onsider the domain D :=]0, T [×]−∞, x[. With the notation of Setion2, for any ε > 0 we have
lim

∆−→0
sup

t∈[0,T ],y≥0,x≥∆1/2−ε

∣

∣

∣P0[τ
∆ ≤ t, (Wτ∆ − x) ≤ y

√
∆] − P0[τ ≤ t]H(y)

∣

∣

∣ = 0.

(3.1)Lemma 3.4 Assume (A′

θ), and that the domain is of lass H2. Let 0 < β <
α < 1/2. For all η > 0, there exists C := Cη > 0 s.t. for ∆ small enough,
∀(s, x) ∈ V∂D(∆α) ∩ D̄ (s ∈ ∆N),

P[τ∆ ≥ ∆2β |X∆
s = x] ≤ C(∆α−β−η + ∆β),where τ∆ := inf{ti > s : (ti,X

∆
ti ) 6∈ D}.Lemma 3.5 Assume (A′

θ), and that the domain is of lass H2. There exists
C > 0, suh that ∀(s, x) ∈ D with s ∈ ∆N, ∀t ≥ s and ∀b ≥ a ≥ 0,

P[τ∆ ≤ t,∆−1/2F−(τ∆,X∆
τ∆) ∈ [a, b]|X∆

s = x] ≤C
(

(b − a) + ∆1/4)where τ∆ is shifted as in the previous lemma.The proof of these three lemmas is postponed to Setion 3.2.We mention that if σσ∗ is uniformly ellipti, Lemma 3.5 is valid withoutthe ∆1/4. See the proof for details.3.1. Proof of Theorem 2.2. Consider �rst the ase D =]0, T [×D where Dis a half spae. The theorem in the ase of BM is then a diret onsequene ofLemma 3.3. Now to deal with the Euler sheme, we introdue a neighborhoodwhose distane to the boundary goes to 0 with ∆ at a speed lower than ∆1/2.The harateristi exit time for a starting point in this neighborhood is short,



OVERSHOOTS OF STOPPED DIFFUSIONS 13thus the di�usion oe�ients are somehow onstant and we are almost inthe BM framework. Also, the loalization w.r.t. to the hitting time of thisneighborhood guarantees that up to a resaling we are far enough from theboundary to apply the renewal arguments needed for the overshoot.For a more general time-spae domain of lass H2 two additional tools areused: a time-spae hange of hart and a loal half spae approximation ofthe domain by some tangent hyperplane.For notational onveniene, we assume from now on that the time setiondomains (Dt)t∈[0,T ] are onvex so that π∂Dt is always uniquely de�ned on
Dc

t . To handle the ase of general H2 domains, an additional loalizationproedure similar to the one of Theorem 2.5 is needed.For the sake of larity, we also assume k ≡ 0 (Z ≡ 1). This is an easysimpli�ation sine owing to Lemma 3.2, Z∆
τ∆ onverges to Zτ in L1.Step 1: loalization. For α < 1/2 spei�ed later on, de�ne τ∆α :=

inf{ti ≥ 0 : F (ti,X
∆
ti ) ≤ ∆α} ≤ τ∆. We aim at studying the onvergene of

Ψ∆(t, x, y) := Ex[1τ∆≤t,F (τ∆,X∆
τ∆

)−≥y
√

∆ϕ(X∆
τ∆)]and for this, we de�ne for all 0 ≤ s ≤ t ≤ T (s ∈ ∆N), (x̃, y) ∈ R

d × R
+

Ψ∆(s, t, x̃, y) :=P[τ∆ ≤ t, F (τ∆,X∆
τ∆)− ≥ y

√
∆|X∆

s = x̃],

∀ε ∈]0, 1/2[, A(t, α, ε) :={τ∆α < τ∆, τ∆α < t, F (τ∆α ,X∆
τ∆α ) ≥ ∆1/2−ε}.In the de�nition of Ψ∆, τ∆ has to be understood as the shifted exit time

inf{ti > s : (ti,X
∆
ti ) 6∈ D}. By Lemma 3.1, Px[τ

∆ = τ∆α ≤ t] + Px[τ∆α <

t, F (τ∆α ,X∆
τ∆α ) < ∆1/2−ε] = Opol(∆) for any ε > 0 s.t. α < 1/2 − ε. Hene,

Ψ∆(t, x, y) =Ex[1A(t,α,ε),F (τ∆,X∆
τ∆

)−≥y
√

∆ϕ(X∆
τ∆)] + Opol(∆)

=Ex[1A(t,α,ε),F (τ∆,X∆
τ∆

)−≥y
√

∆(ϕ(X∆
τ∆) − ϕ(X∆

τ∆α ))]

+ Ex[1A(t,α,ε)ϕ(X∆
τ∆α )Ψ∆(τ∆α , t,X∆

τ∆α , y)] + Opol(∆).The �rst term in the right hand side above onverges to 0, using the onver-gene in probability of |X∆
τ∆ −X∆

τ∆α | to 0 (analogously to Lemma 3.2). Thisgives(3.2) Ψ∆(t, x, y) = Ex[1A(t,α,ε)ϕ(X∆
τ∆α )Ψ∆(τ∆α , t,X∆

τ∆α , y)] + o(1).It remains to study the onvergene of Ψ∆(.).Step 2: di�usion with frozen oe�ients. Denote τ∆α := s̃, X∆
τ∆α :=

x̃. Conditionally to Fs̃, introdue now the one dimensional proess (Ys)s≥s̃,
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Ys = F (s̃, x̃)+(∇F ·σ)(s̃, x̃)(Ws−Ws̃). Note that we do not take into aountthe drift part in the frozen proess. From the next loalization proedure, ityields a negligible term. Sine Y has onstant oe�ients, we apply belowLemma 3.3 to handle the overshoot of Y w.r.t. R

+∗. De�ne τ∆,Y := inf{ti ≥
s̃ : Yti ≤ 0} and rewrite

Ψ∆(s̃, t, x̃, y) := ΨC
∆(s̃, t, x̃, y) + R∆(s̃, t, x̃, y),(3.3)

ΨC
∆(s̃, t, x̃, y) := Ps̃,x̃[τ

∆,Y ≤ t, (Yτ∆,Y )− ≥ y
√

∆].From (A′

θ-2') that guarantees that Y has a non degenerate variane andLemma 3.3, one gets
sup

(s̃,x̃)∈Aα,ε

|ΨC
∆(s̃, t, x̃, y) − Ps̃,x̃[τ

∆,Y ≤ t](1 − H(y/|(σ∗∇F )(s̃, x̃)|))| −→
∆→0

0,where Aα,ε :=
(

V∂D(∆α)\V∂D(∆1/2−ε)
) ∩ D. Plug now this identity in (3.3)to obtain with the same uniformity

Ψ∆(s̃, t, x̃, y) =Ps̃,x̃[τ∆,Y ≤ t](1 − H(y/|(σ∗∇F )(s̃, x̃)|))
+ R∆(s̃, t, x̃, y) + o(1).(3.4)Step 3. Control of the rests. We now show that R∆(s̃, t, x̃, y) = o(1)where the rest is still uniform for (s̃, x̃) ∈ Aα,ε. Write �rst:

|R∆|(s̃, t, x̃, y) ≤ R1
∆(s̃, t, x̃)

+ Ps̃,x̃[τ
∆ ≤ t, F (τ∆,X∆

τ∆)− ≥ y
√

∆, (Yτ∆,Y )− < y
√

∆, τ∆ = τ∆,Y ]

+ Ps̃,x̃[τ
∆ ≤ t, F (τ∆,X∆

τ∆)− < y
√

∆, (Yτ∆,Y )− ≥ y
√

∆, τ∆ = τ∆,Y ](3.5)with R1
∆(s̃, t, x̃) ≤ Ps̃,x̃[τ

∆ ≤ t, τ∆ 6= τ∆,Y ] + Ps̃,x̃[τ∆,Y ≤ t, τ∆ 6= τ∆,Y ] :=
(R11

∆ + R12
∆ )(s̃, t, x̃). Let y∆ be a given positive funtion of the time step s.t.

y∆ →
∆→0

0 spei�ed later on.On the event {τ∆ = τ∆,Y , |Yτ∆,Y −F (τ∆,Y ,X∆
τ∆,Y )| ≤ y∆

√
∆} the onditions

F (τ∆,X∆
τ∆)− ≥ y

√
∆ and (Yτ∆,Y )− < y

√
∆ imply ∆−1/2(Yτ∆,Y )− ∈ [y −

y∆, y) (resp. (Yτ∆,Y )− ≥ y
√

∆ and F (τ∆,X∆
τ∆)− < y

√
∆ imply ∆−1/2(Yτ∆,Y )−

∈ [y, y + y∆)). Hene,
|R∆(s̃, t, x̃, y)| ≤ (R1

∆ + R2
∆)(s̃, t, x̃)

+ Ps̃,x̃[τ
∆,Y ≤ t,∆−1/2(Yτ∆,Y )− ∈ [y − y∆, y + y∆), τ∆ = τ∆,Y ]

:= (R1
∆ + R2

∆)(s̃, t, x̃) + R3
∆(s̃, t, x̃, y),
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∆(s̃, t, x̃) := 2Ps̃,x̃[τ∆,Y ≤ t, τ∆ = τ∆,Y , |Yτ∆,Y − F (τ∆,Y ,X∆

τ∆,Y )| >

y∆

√
∆].Term R3

∆(s̃, t, x̃, y). From Lemma 3.5 applied to the proess with frozen o-e�ients, one gets
R3

∆(s̃, t, x̃, y) ≤ C(y∆ + ∆1/4).(3.6)Term R2
∆(s̃, t, x̃). Introdue for 0 < β < α < 1/2, τ∆β := inf{s ≥ s̃ :

|X∆
s − x̃| ≥ ∆β} ∧ (s̃ + ∆δ), δ := 2β + γ, γ > 0. One has

|R2
∆(s̃, t, x̃)| ≤ 2

(

Ps̃,x̃[τ∆,Y ≤ t, τ∆ = τ∆,Y , τ∆ < τ∆β ,

|Yτ∆,Y − F (τ∆,Y ,X∆
τ∆,Y )| > y∆

√
∆] + Ps̃,x̃[τ∆ ≥ τ∆β , τ∆ ≤ t]

)

:= (R21
∆ + R22

∆ )(s̃, t, x̃).Let us �rst deal with R21
∆ (s̃, t, x̃). One has

R21
∆ (s̃, t, x̃) ≤
2∆−1y−2

∆ Es̃,x̃[1τ∆<τ
∆β ,τ∆,Y ≤t,τ∆=τ∆,Y |Yτ∆,Y − F (τ∆,Y ,X∆

τ∆,Y )|2].(3.7)Note that sine D is of lass H2, F has the same regularity, i.e. it is uniformlyLipshitz ontinuous in time and its �rst spae derivatives are uniformly Lip-shitz ontinuous in spae. Thus, assuming up to a regularization proedurethat F ∈ C1,2([0, T ] × R
d), It�'s formula yields for all t ≥ s̃,

F (t,X∆
t ) = F (s̃, x̃) +

∫ t

s̃
∇F (s,X∆

s ) · dX∆
s

+

∫ t

s̃

(

∂sF (s,X∆
s ) +

1

2
tr(HF (s,X∆

s )σσ∗(φ(s),X∆
φ(s)))

)

ds

:= F (s̃, x̃) +

∫ t

s̃
∇F (s,X∆

s ) · σ(φ(s),X∆
φ(s))dWs + R∆

F (s̃, t, x̃)(3.8)
= Yt + R∆

F (s̃, t, x̃) +

∫ t

s̃

(

σ∗(φ(s),X∆
φ(s))∇F (s,X∆

s ) − σ∗∇F (s̃, x̃)
) · dWs.From (A′

θ-1) and the assumptions on D one derives |R∆
F |(s̃, t, x̃) ≤ C(t− s̃).Thus, for a given stopping time s̃ ≤ U ≤ τ∆β , the working assumptions (i.e.smoothness of σ, F ), standard omputations and the BDG inequalities yield

E[|F (U,X∆
U ) − YU |2] ≤ C(∆2β+δ + ∆δ(1+θ)).



16 E. GOBET AND S. MENOZZIFrom (3.7) and the above ontrol with U = τ∆,Y ∧ τ∆β , one obtains
R21

∆ (s̃, t, x̃) ≤ Cy−2
∆ ∆−1(∆2β+δ + ∆δ(1+θ)).(3.9)Let us now ontrol R22

∆ (s̃, t, x̃). From Lemmas 3.1 and 3.4, for any η > 0 wewrite
R22

∆ (s̃, t, x̃) ≤ Ps̃,x̃[τ∆β < s̃ + ∆δ] + Ps̃,x̃[τ
∆ ≥ s̃ + ∆δ]1s̃+∆δ≤t

≤ C
(

exp
(

−c∆2β−δ
)

+ ∆α−η−δ/2 + ∆δ/2).(3.10)Take now α =
1+ θ

2
2(1+θ) < 1/2, η = θ

16(θ+1) , γ = 1
8(1+θ) , y∆ = ∆θ/16. Chekthat for δ = 2β +γ = 2α−4η, one has δ = 1+θ/4

1+θ , β = 7/8+θ/4
2(1+θ) < α, 3η < α.Thus, R22

∆ (s̃, t, x̃) = O(∆η). In addition, y−2
∆ ∆δ(1+θ)−1 = ∆θ/8, y−2

∆ ∆2β+δ−1 =
O(∆1/(8(1+θ))). Hene, from (3.9) and (3.10)

R2
∆(s̃, t, x̃) ≤ C

(

∆1/(8(1+θ)) + ∆θ/8 + ∆θ/(16(θ+1))) ≤ C∆θ/32.(3.11)Term R1
∆(s̃, t, x̃).We give an upper bound for R11

∆ (s̃, t, x̃). The term R12
∆ (s̃, t, x̃)an be handled in the same way. From the previous ontrol on R22

∆ (s̃, t, x̃)and for the previous parameters, one gets
R11

∆ (s̃, t, x̃) = Ps̃,x̃[τ∆ ≤ t, τ∆ 6= τ∆,Y , τ∆ < τ∆β ] + O(∆η)

= Ps̃,x̃[τ∆ ≤ t, τ∆ > τ∆,Y , τ∆ < τ∆β ]

+ Ps̃,x̃[τ
∆ ≤ t, τ∆ < τ∆,Y , τ∆ < τ∆β ] + O(∆η).Note that,

R11
∆ (s̃, t, x̃) ≤ Ps̃,x̃[τ∆,Y ≤ t,∆−1/2(Yτ∆,Y )− ≤ y∆]+

Ps̃,x̃[τ∆ ≤ t, τ∆,Y < τ∆, τ∆ < τ∆β ,∆−1/2|Yτ∆,Y − F (τ∆,Y ,X∆
τ∆,Y )| ≥ y∆]

+ Ps̃,x̃[τ
∆ ≤ t, τ∆,Y > τ∆, τ∆ < τ∆β ,∆−1/2|Yτ∆ − F (τ∆,X∆

τ∆)| ≥ y∆]

+ Ps̃,x̃[τ
∆ ≤ t,∆−1/2F (τ∆,X∆

τ∆)− ≤ y∆] + C∆η,for the previous funtion (y∆)∆>0. Sine we ould obtain the same type ofbound for R12
∆ (s̃, t, x̃), from Lemma 3.5 and following the omputations thatgave (3.9) we derive for the previous set of parameters

R1
∆(s̃, t, x̃) ≤ C(y−2

∆ ∆−1(∆2β+δ + ∆δ(1+θ)) + ∆η + y∆ + ∆1/4) ≤ C∆θ/32.

(3.12)



OVERSHOOTS OF STOPPED DIFFUSIONS 17From (3.12), (3.11), (3.6) we �nally obtain R∆(s̃, t, x̃, y) = O(∆θ/32) = o(1).The rest is uniform w.r.t. (s̃, x̃, y) ∈ Aα,ε × R
+.Step 4. Final step. Plug the previous results in (3.4). We derive from (3.2)

Ψ∆(t, x, y) = Ex[1A(t,α,ε)ϕ(X∆
τ∆α )

× Pτ∆α ,X∆
τ∆α

[τ∆,Y ≤ t](1 − H(y/|σ∗∇F (τ∆α ,X∆
τ∆α )|))] + o(1).The previous ontrols on R1

∆(s̃, t, x̃), R22
∆ (s̃, t, x̃) give

Ψ∆(t, x, y) = Ex[1τ∆α<tPτ∆α ,X∆
τ∆α

[τ∆ ≤ t, τ∆β > τ∆]

ϕ(X∆
τ∆α )(1 − H(y/|σ∗∇F (τ∆α ,X∆

τ∆α )|))] + o(1).Under (A′

θ), by ontinuity arguments and Lemma 3.1 we eventually get
Ψ∆(t, x, y) = Ex[1τ∆≤tϕ(X∆

τ∆)(1 − H(y/|σ∗∇F (τ∆,X∆
τ∆)|))] + o(1).Now, Lemma 3.2 gives

Ψ∆(t, x, y) →
∆→0

Ex[1τ≤tϕ(Xτ )(1 − H(y/|σ∗∇F (τ,Xτ )|))].

�3.2. Proof of Lemmas 3.3, 3.4 and 3.5.Proof of Lemma 3.3. We shall insist on the dependene of the exit timeswith respet to x, by setting τ∆ := inf{s ∈ ∆N∗ : Ws ≥ x} := τ∆
x andanalogously for τ = τx.Our proof relies on the following onvergene (see equation (19) in Sieg-mund [Sie79℄): if we set (for any y, z ≥ 0)

D(z, y) = P0[Wτ∆
z
− z ≤ y

√
∆] − H(y),then

lim
z∆−1/2→+∞

|D(z, y)| = 0.Using the monotoniity and the uniform ontinuity of H(y), Dini's Theoremyields that the above limit is atually uniform with respet to y ≥ 0. Itfollows(3.13) sup
y≥0,z∈[∆1/2−ε/3,∞)

|D(z, y)| →
∆→0

0.



18 E. GOBET AND S. MENOZZIBy similar monotoniity arguments,(3.14) sup
x≥0,t≥0

|P0(τ
∆
x > t) − P0(τx > t)| →

∆→0
0.We an now proeed to the proof. First, note that if x/
√

t ≥ ∆−ε/3 → +∞as ∆ → 0, P0(τ
∆
x > t) and P0(τx > t) are both Opol(∆). Thus, the di�erenein Lemma 3.3 onverges to 0 as ∆ → 0.Suppose now that x/

√
t ≤ ∆−ε/3, hene √

t ≥ x∆ε/3 ≥ ∆1/2−2ε/3, andwrite for t ∈ ∆N∗

P := P0[τ
∆
x > t,Wτ∆

x
− x ≤ y

√
∆]

=

∫ +∞

0
dzqx,∆

t (0, x − z)P0[Wτ∆
z
− z ≤ y

√
∆]where qx,∆

t denotes the transition density of the disretely killed Brow-nian motion. Introdue the partition R
+ = {z ∈ [0,∆1/2−ε/3)} ∪ {z ∈

[∆1/2−ε/3,+∞)}. Then,
P = R +

∫ +∞

∆1/2−ε/3
qx,∆
t (0, x − z)D(z, y)dz + P0[τ

∆
x > t]H(y)where |R| ≤ 2P0[Wt ∈ [x−∆1/2−ε/3, x]] ≤ 2√

2πt
∆1/2−ε/3 ≤ 2√

2π
∆ε/3. Finally,taking advantage of the estimates (3.13) and (3.14) readily ompletes ourproof. �Proof of Lemma 3.4. We take s = 0 for notational simpliity. Introdue

τ∆β := inf{t ≥ 0 : (t,X∆
t ) 6∈ V∂D(∆β)} and for γ > 0 write from Lemma 3.1and the notation of (3.8) (up to the same regularization proedure onerning

F )
Px[τ

∆ ≥ ∆2β] =Px[ inf
i∈[[0,∆2β−1]]

F (0, x) +

∫ ti

0
∇F (s,X∆

s ) · σ(φ(s),X∆
φ(s))dWs

+ R∆
F (0, ti, x) ≥ 0, τ∆β ≥ ∆2β+γ ] + Opol(∆) := Q,where under the assumptions of the Lemma, |R∆

F (0, ti, x)| ≤ Cti. For a given
r > 0, onsider the event Ar = {∃s ≤ T : |X∆

s − X∆
φ(s)| ≥ r} where theinrements of X∆ between two lose times are large: by Lemma 3.1, it hasan exponentially small probability. Hene, if we set

Mu :=

∫ u

0
∇F (s,X∆

s ) · σ(φ(s),X∆
φ(s))dWs := B<M>u, t̃i = 〈M〉ti ,

B is a standard Brownian motion (on a possibly enlarged probability spae)owing to the Dambis, Dubbins-Shwarz Theorem, f. Theorem V.1.7 in [RY99℄.



OVERSHOOTS OF STOPPED DIFFUSIONS 19In addition, the above time hange is stritly inreasing on the set Ac
r and

〈M〉t − 〈M〉s ≥ (t − s)a0/2 (t ≥ s) up to taking r small enough, beause(A′

α-2) is in fore. It readily follows that
Q ≤Px[ inf

i∈[[0,∆2β+γ−1]]
Mti + Cti ≥ −∆α, τ∆β ≥ ∆2β+γ ] + Opol(∆)

≤Px[ inf
i∈[[0,∆2β+γ−1]]

Bt̃i
+ 2Ca−1

0 t̃i ≥ −∆α, τ∆β ≥ ∆2β+γ ,Ac
r] + Opol(∆)

≤Px[ inf
i∈[[0,∆2β+γ−1]]

Bt̃i
+ 2Ca−1

0 t̃i ≥ −∆α, τ∆β ≥ ∆2β+γ ,

inf
s∈[0,〈M〉

∆2β+γ ]
Bs + 2Ca−1

0 s ≤ −∆α−ζ ,Ac
r] + Opol(∆)

+ Px[τ∆β ≥ ∆2β+γ , inf
s∈[0,〈M〉

∆2β+γ ]
Bs + 2Ca−1

0 s ≥ −∆α−ζ ,Ac
r],for ζ > 0. Thus, from Lemma 3.1 and standard ontrols

Q ≤ Px[∃i ∈ [[0,∆2β+γ−1]], sup
s∈[t̃i,t̃i+1]

|Bs − Bt̃i
+ 2Ca−1

0 (s − t̃i)| ≥ ∆α−ζ − ∆α,

τ∆β ≥ ∆2β+γ ] + Px[ inf
s∈[0,a0∆2β+γ/2]

Bs ≥ −∆α−ζ − C∆2β+γ ] + Opol(∆)

≤ Opol(∆) + C(∆α−ζ−β−γ/2 + ∆β+γ/2).Choose now γ, ζ s.t. (ζ + γ
2 ) = η > 0. The proof is omplete. �Proof of Lemma 3.5. Taking also s = 0 for notational onveniene, wewrite

P :=Px[τ∆ ≤ t,∆−1/2F−(τ∆,X∆
τ∆) ∈ [a, b]] ≤ Opol(∆)

+

⌊t/∆⌋
∑

i=1

Ex[1τ∆>ti−1
,1(ti−1,X∆

ti−1
)∈V∂D(r0)EFti−1

[1∆−1/2F (ti,X∆
ti

)−∈[a,b]]](3.15)using Lemma 3.1 for the last identity.A Taylor formula gives: F (ti,X
∆
ti ) = F (ti−1,X

∆
ti−1

)+Σti−1(Wti −Wti−1)+

R∆
ti−1,ti := Nti−1+R∆

ti−1,ti where Σti−1 = σ∗∇F (ti−1,X
∆
ti−1

), EFti−1
[|R∆

ti−1,ti |2]
≤ C∆2. Conditionally to Fti−1 , Nti−1 has a Gaussian distribution
N (F (ti−1,X

∆
ti−1

), ‖Σti−1‖2∆).Also, on the event (ti−1,X
∆
ti−1

) ∈ V∂D(r0), ‖Σti−1‖2∆ ≥ a0∆. Set Qi−1 :=
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PFti−1

[F (ti,X
∆
ti )− ∈ [a∆1/2, b∆1/2]]. We obtain

Qi−1 = PFti−1
[(Nti−1 + R∆

ti−1,ti)
− ∈ [a∆1/2, b∆1/2]]

≤ PFti−1
[Nti−1 ∈ [−b∆1/2 − ∆3/4,−a∆1/2 + ∆3/4]]

+ PFti−1
[|R∆

ti−1,ti | ≥ ∆3/4,X∆
ti 6∈ Dti ]

≤ PFti−1
[Nti−1 ∈ [−∆1/2(b + ∆1/4),−∆1/2(a − ∆1/4)]]

+ C∆1/4 exp

(

−c
d(X∆

ti−1
, ∂Dti−1)

2

∆

)using the Cauhy-Shwarz inequality and Lemma 3.1 for the last inequality.Hene, we derive from (3.15)
P ≤

⌊t/∆⌋
∑

i=1

Ex[1τ∆>ti−1,(ti−1,X∆
ti−1

)∈V∂D(r0)

(

C∆1/4 exp

(

−c
d(X∆

ti−1
, ∂Dti−1)

2

∆

)

+

∫ −∆1/2(a−∆1/4)

−∆1/2(b+∆1/4)
exp

(

−
(y − F (ti−1,X

∆
ti−1

))2

2‖Σti−1‖2∆

)

dy

(2π∆)1/2‖Σti−1‖

)

]

+ Opol(∆) ≤ C(b − a + ∆1/4)∆−1
∫ t

0
dsEx[1τ∆>φ(s),(φ(s),X∆

φ(s)
)∈V∂D(r0)

× exp

(

−c
d(X∆

φ(s), ∂Dφ(s))
2

∆

)

] + Opol(∆).Following the proof of Lemma 10 in [GM04℄, mainly based on the appliationof the oupation time formula for the distane proess F (s,X∆
s ), one anshow that the above integral is bounded by C∆. This ompletes the proof.

�Remark 3.6 Finally, we mention that if σσ∗ is uniformly ellipti, the rest
R∆

ti−1,ti an be avoided and the result an be stated without the ontribution
∆1/4. Indeed, we an diretly exploit that the Euler sheme has onditionally anon degenerate Gaussian distribution and usual hanges of hart assoiatedto a parametrization of the boundary (see e.g. [Gob00℄) give the expetedresult.4. Extension to the stationary ase.4.1. Framework. In this setion we assume that the oe�ients in (1.1)are time independent and that the mappings b, σ are uniformly Lipshitz



OVERSHOOTS OF STOPPED DIFFUSIONS 21ontinuous, i.e. (Xt)t≥0 is the unique strong solution of
Xt = x +

∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dWs, t ≥ 0, x ∈ R

d.For a bounded domain D ⊂ R
d, and given funtions f, g, k : D̄ → R, we areinterested in estimating

u(x) := Ex[g(Xτ )Zτ +

∫ τ

0
f(Xs)Zsds], Zs = exp(−

∫ s

0
k(Xr)dr),(4.1)where τ := inf{t ≥ 0 : Xt 6∈ D}.Adapting freely the previous notations for Hölder spaes to the elliptisetting, introdue for θ ∈]0, 1[:(Aθ) 1. Smoothness of the oe�ients. b, σ ∈ H1+θ.2. Uniform elliptiity. For some a0 > 0, ∀(x, ξ) ∈ R

d×R
d, ξ∗σσ∗(x)ξ

≥ a0|ξ|2.(Dθ) Smoothness of the domain. The bounded domain D is of lass H2.(Cθ) Other oe�ients. The boundary data g ∈ H1+θ, f, k ∈ H1+θ and
k ≤ 0.Note that under (Aθ) and sine D is bounded, Lemma 3.1 Chapter III of[Fre85℄ yields supx∈D̄ Ex[τ ] < ∞. Thus, (4.1) is well de�ned under our urrentassumptions.From Theorem 6.13, the �nal notes of Chapter 6 in [GT98℄ and Theorem2.1 Chapter II in Freidlin [Fre85℄, the Feynman-Ka representation in ourellipti setting writesProposition 4.1 (Ellipti Feynman-Ka's formula and estimates)Assume (Aθ), (Dθ), (Cθ) are in fore. Then, there is a unique solution oflass H1+θ ∩ C2(D) to

{

Lu − ku + f = 0, in D,
u|∂D = g

(4.2)and it is given by (4.1).In the following we denote by F (x) the signed spatial distane to the bound-ary ∂D. Under (Dθ), D satis�es the exterior and interior uniform sphereondition with radius r0 > 0 and F ∈ H2(V∂D(r0)) where V∂D(r0) := {x ∈
R

d : d(x, ∂D) ≤ r0}. Also, F an be extended to a H2 funtion preservingthe sign. For more details on the distane funtion, we refer to Appendix14.6 in [GT98℄.



22 E. GOBET AND S. MENOZZI4.2. Tools and results. Below, we keep the previous notations onerningthe Euler sheme. We also use the symbol C for nonnegative onstants thatmay depend on D, b, σ, g, f, k but not on ∆ or x. We reserve the notation cfor onstants also independent of D, g, f, k. Let us now state the main resultsof Setion 2 in our urrent framework.Proposition 4.2 (Tightness of the overshoot) Assume (Aθ-2), and that
D is of lass H2. Then, for some c > 0,

sup
∆>0

Ex[exp(c[∆−1/2F−(X∆
τ∆)]2)] < +∞.From the proof of Theorem 2.2 and Theorem 4.2 in Gobet and Maire [GM05℄we derive:Theorem 4.3 (Joint limit laws assoiated to the overshoot) Assume(Aθ), and that D is of lass H2. Let ϕ be a ontinuous funtion with ompatsupport. With the notation of Theorem 2.2, for all x ∈ D, y ≥ 0,

Ex[Z∆
τ∆ϕ(X∆

τ∆)1F−(X∆
τ∆)≥y

√
∆] −→

∆→0
Ex
[

Zτϕ(Xτ )
(

1 − H(y/|σ∗∇F (Xτ )|)
)]

.4.3. Error expansion and boundary orretion. For notational onvenieneintrodue for x ∈ D,
u(D) = Ex(g(Xτ )Zτ +

∫ τ

0
Zsf(Xs)ds),

u∆(D) = Ex(g(X∆
τ∆)Z∆

τ∆ +

∫ τ∆

0
Z∆

φ(s)f(X∆
φ(s))ds).The seond quantity is well de�ned aording to Theorem 4.2 in Gobet andMaire [GM05℄ that states

∀p ≥ 1, lim sup
∆→0

sup
x∈D̄

Ex[(τ∆)p] < ∞.(4.3)Theorem 4.4 (First order expansion) Under (Aθ), (Dθ), (Cθ), for ∆small enough and with the notation of Theorem 2.3
Err(∆, g, f, k, x) = u∆(D) − u(D)

= c0

√
∆Ex(Zτ (∇u −∇g)(Xτ ) · ∇F (Xτ )|σ∗∇F (Xτ )|) + o(

√
∆).De�ne now D∆ = {x ∈ D : d(x, ∂D) > c0

√
∆|σ∗∇F (x)|}. Introdue τ̂∆ =

inf{ti ≥ 0 : X∆
ti ∈ D∆}. Set

u∆(D∆) = Ex[g(X∆
τ̂∆)Z∆

τ̂∆ +

∫ τ̂∆

0
Z∆

φ(s)f(X∆
φ(s))ds].One has:



OVERSHOOTS OF STOPPED DIFFUSIONS 23Theorem 4.5 (Boundary orretion) Under (Aθ), (Dθ), (Cθ) and as-suming additionally ∇F (x)|σ∗∇F (x)| is of lass C2, then for ∆ small enoughone has
u∆(D∆) − u(D) = o(

√
∆).4.4. Proofs. Note arefully that all the onstants appearing in the erroranalysis for the paraboli ase have at most linear growth w.r.t the �xed�nal time T . Equation (4.3) allows to ontrol uniformly the integrability ofthese onstants in our urrent framework. Thus, sine the arguments remainthe same, we only give below skethes of the proofs.Proof of Proposition 4.2. It is su�ient to prove that there exist onstants

c̃ > 0 and C s.t. ∀A ≥ 0, sup∆>0 Px[F
−(X∆

τ∆) ≥ A∆1/2] ≤ C exp(−c̃A2).Then any hoie of c < c̃ is valid. For x ∈ D, we write
P := Px[F−(X∆

τ∆) ≥ A∆1/2]

=
∑

i∈N∗

E[1τ∆>ti−1
1τ∆

ti−1
<ti

P[F−(X∆
ti ) ≥ A∆1/2|Fτ∆

ti−1

]]where τ∆
ti−1

:= inf{s ≥ ti−1 : X∆
s 6∈ D}. From Lemma 3.1, we get

P ≤ C exp(−c̃A2)
∑

i∈N∗

P[τ∆ > ti−1, τ
∆
ti−1

< ti].Lemma 16 from [GM04℄ remains valid under our urrent assumptions andyields P ≤ C exp(−c̃A2)
∑

i∈N∗ E[1τ∆>ti−1
(P[X∆

ti 6∈ D] + Opol(∆))]. From(4.3), Px[τ
∆ < ∞] = 1. Sine ∑i∈N∗ Px[τ∆ > ti−1] = ∆−1

Ex[τ∆], we alsoderive from (4.3) and the previous upper bound on P that P ≤ C exp(−c̃A2)whih onludes the proof. �Proof of Theorem 4.4. Similarly to the proof of Theorem 2.5 we suppose�rst that u ∈ H3+θ. The general ase an be dedued as in the paraboliase using suitable Shauder estimates, given in the �nal notes of Chapter 6in [GT98℄, see also our Appendix.In this simpli�ed setting, we obtain
Err(∆, g, f, k, x)

E
= − Z∆

τ∆∇g(π∂D(X∆
τ∆))∇F (X∆

τ∆)F−(X∆
τ∆)+

(

∑

i∈N

1ti<τ∆

[

∆ × Z∆
ti (Lu − ku + f)(X∆

ti )(4.4)
+ Z∆

ti ∇u(X∆
ti ) · ∇F (X∆

ti+1
)F−(X∆

ti+1
)(4.5)

+ O(|F−(X∆
ti+1

)||X∆
ti+1

− X∆
ti |) + O(|F−(X∆

ti+1
)|2)

](4.6)
+ O(∆3/2+θ/2) + O(|Wti+1 − Wti |3+θ)

)

1τr0>τ∆ .(4.7)



24 E. GOBET AND S. MENOZZIThe ontribution (4.4) anels owing to the PDE (4.2). The global ontribu-tion assoiated to the remainders (4.7) an be bounded by C∆3/2+θ/2(∆−1
Ex[τ∆]).From (4.3), this quantity is a O(∆1/2+θ/2) = o(

√
∆). For (4.6) write

(

∑

i∈N

1ti<τ∆(|F−(X∆
ti+1

)||X∆
ti+1

− X∆
ti |) + |F−(X∆

ti+1
)|2)

E

≤ C∆
∑

i∈N

1ti<τ∆1τ∆
ti−1

≤ti+1

E

≤ C∆
∑

i∈N

1ti<τ∆1X∆
ti+1

6∈D
E
= C∆1τ∆<∞where we used Lemma 16 from [GM04℄ for the last inequality. Thus theglobal ontribution of this term is a O(∆). We eventually derive the resultas in Setion 2. �Theorem 4.5 an be proved as Theorem 2.4, using a sensitivity resultanalogous to Theorem 2.2 in [CGK06℄ for ellipti problems, see e.g. Simon[Sim80℄.5. Conlusion. In the paraboli setting, the error expansion, Theorem2.3, and the assoiated orretion, Theorem 2.4, have been obtained un-der �usual� assumptions from a PDE viewpoint, see (Aθ). A natural ques-tion onerns the possible extension of these results to a hypoellipti frame-work for a stopped di�usion with time dependent oe�ients. The main toolneeded is the smoothness of the law of the di�usion. For oe�ients that are

C1 in time, this point is disussed in Cattiaux and Mesnager [CM02℄ for aylindrial domain. Up to an extension of their results to time dependentdomains, our main results should in some sense remain valid. For the elliptiase, the extension of Theorems 4.4, 4.5 to a hypoellipti framework is open.Indeed, we strongly exploited some ontrols on the Euler sheme in largetime, that are far from being easy to establish when the oe�ients degen-erate. This will onern further researh. For PDE results in this framework,see [Bon69℄ for instane.To onlude, we note that the boundary orretion proedure ould be atleast formally extended to general It� proesses of the form dXt = btdt +
σtdWt. In that ase, the smaller domain would be de�ned ω by ω replaing
σ∗(t, x)∇F (t, x) by σ∗

t∇F (t,Xt). Even if our urrent proof relies on Marko-vian properties, we onjeture that the orretion should one again givea o(
√

∆) independently of the Markovian struture. We mention that it isalready known [GM06℄ that the error assoiated to the disrete sampling ofan exit time for a general It� proess yields an error of order √∆ .



OVERSHOOTS OF STOPPED DIFFUSIONS 25APPENDIX A: PROOF OF THEOREM 2.5 IN THE GENERALSETTINGIn this setion, we detail how the proof of Setion 2 has to be modi�edunder the assumptions of Theorem 2.3, i.e. for g ∈ H1+θ and without om-patibility ondition so that u ∈ H1+θ.A.1. Preliminary notation and ontrols. Introdue the parabolidistane pd: for (s, x), (t, y) ∈ D̄, pd((s, x), (t, y)) = max(|s− t|1/2, |x− y|).We also denote for a losed set A ∈ D̄ and (s, x) ∈ D, pd((s, x),A) theparaboli distane of (s, x) to A.Under our urrent assumptions, ∃C > 0, ∀(s, x) ∈ D,
|Hu(s, x)| + sup

α, |α|=3
|∂α

x u(s, x)| ≤ Cpd((s, x),PD ∩ {v ≥ s})−2,

sup
α,|α|=3, (t,y)∈D, (t,y)6=(s,x)

|∂α
x u(s, x) − ∂α

x u(t, y)|
pd((s, x), (t, y))θ

≤ C(pd((s, x),PD ∩ {v ≥ s}) ∧ pd((t, y),PD ∩ {v ≥ t})−2−θ,

sup
(t,x)∈D, t6=s

|∂tu(s, x) − ∂tu(t, x)|
|t − s|(1+θ)/2

≤ C(pd((s, x),PD ∩ {v ≥ s}) ∧ pd((t, x),PD ∩ {v ≥ t})−2−θ.(A.1)These inequalities are obtained with the interior Shauder estimates for thePDEs satis�ed by the partial derivatives (∂xiu)i∈[[1,d]], see Theorem 4.9 in[Lie96℄.We �rst state an important proposition for the error analysis with possiblyexplosive ontrols as in (A.1) for the derivatives. Namely, under our urrentregularity assumptions, in order to perform a Taylor expansion we have towork with interior points s.t. the whole segment between these points belongsto the time spae domain, with the distane to the boundary uniformly lowerbounded along the segment. The proposition states that this is the ase ifthe points are "far enough" from the side of D.Proposition A.1 Assume D ∈ H2 and take ε ∈]0, 1[. For all (t, x) ∈ D̄ ∩
V∂D(r0/2) \V∂D (2∆1/2(1−ε)), where r0 is de�ned in Setion 1.4.2, t ≤ T −∆and ∀y ∈ B(x,∆1/2(1−ε)) ∩ D̄t+∆, one has

Iε(t, x, y,∆) := [(t, x), (t + ∆, y)] ∈ D̄,

∀(s, z) ∈ Iε(t, x, y,∆), F (s, z) ≥ 1

4
F (t, x)for ∆ small enough.The proof is postponed to the end of the Setion.



26 E. GOBET AND S. MENOZZIA.2. Error analysis. Reall from the previous proof of Theorem 2.3that the main term to analyze is
e∆
2

E
=
(

∑

0≤ti<T−4∆1−ε

1ti<τ∆

[

u(ti+1, πD̄ti+1
(X∆

ti+1
))Z∆

ti+1
− u(ti,X

∆
ti )Z∆

ti

+Z∆
ti f(ti,X

∆
ti )∆

]

(1(ti,X∆
ti

)6∈V∂D(2∆1/2(1−ε)) + 1(ti,X∆
ti

)∈V∂D(2∆1/2(1−ε)))
)

1τr0>τ∆

+ e∆
23 := e∆

21 + e∆
22 + e∆

23,where E
= denotes an equality for the expetation up to a Opol(∆). The terms

e∆
21, e

∆
22, e

∆
23 are respetively assoiated to the events for whih the (ti,X

∆
ti )iare far from the paraboli boundary of D, lose to its side and lose to itstop.Control of e∆

21. From Proposition A.1, Lemma 3.1 and (A.1), the point-wise θ-Hölder ontrols for the third spatial derivatives are bounded by C
×F (ti,X

∆
ti )−2−θ, as well the (1 + θ)/2-Hölder ontrols for the time deriva-tive. Hene, adapting the previous analysis of Setion 2, we get

|e∆
21|

E

≤ C
∑

0≤ti<T

1ti<τ∆

(

r−2−θ
0 (|Wti+1 − Wti |3+θ + ∆(3+θ)/2)

+ 12∆1/2(1−ε)≤F (ti,X∆
ti

)≤r0/2F (ti,X
∆
ti )−2−θ(|Wti+1 − Wti |3+θ + ∆(3+θ)/2)

)

.The terms involving r−2−θ
0 readily give a O(∆1/2+θ/2) = o(∆1/2). For theother terms, the key tool is the oupation times formula assoiated to somesharp ontrols from [GM04℄ for the expetation of the loal time (Ly

s(F (.,X∆
. ))

)

sat level y of the ontinuous semi-martingale distane proess (F (s,X∆
s ))s.Indeed, an easy adaptation of the proof of Lemma 17 [GM04℄ to our timedependent domain framework gives(A.2) E[Ly

T∧τ∆(F (.,X∆
. ))] ≤ C(|y| +

√
∆).Thus, one has

|e∆
21|

E

≤ C∆1/2+θ/2
(
∫ T∧τ∆

0
1F (φ(t),X∆

φ(t)
)∈[2∆1/2(1−ε),r0/2]F (φ(t),X∆

φ(t))
−2−θdt + 1

)

E

≤ C∆1/2+θ/2
(
∫ T∧τ∆

0
1F (t,X∆

t )∈[∆1/2(1−ε) ,3r0/4]F (t,X∆
t )−2−θdt + 1

)

E

≤ C∆1/2+θ/2
(
∫ 3r0/4

∆1/2(1−ε)
y−2−θLy

T∧τ∆(F (.,X∆
. ))dy + 1

)

,



OVERSHOOTS OF STOPPED DIFFUSIONS 27using Lemma 3.1 for the last but one inequality, and the oupation timeformula for F (t,X∆
t ) for the last one (reall that σ is uniformly ellipti).Finally using (A.2), one gets

|e∆
21| ≤ C∆1/2+θ/2

(

∫ 3r0/4

∆1/2(1−ε)
y−2−θ(y + ∆1/2)dy + 1

)

≤ C∆1/2+θε/2.Thus, e∆
21 is a o(∆1/2). This tehnique will also be used for e∆

22.Control of e∆
22. A Taylor formula gives:

e∆
22

E
=

∑

0≤ti<T−4∆1−ε

1ti<τ∆,F (ti,X∆
ti

)∈]0,2∆1/2(1−ε)]

{

∇u(ti,X
∆
ti )(F−∇F )(ti+1,X

∆
ti+1

)

+
(

Z∆
ti f(ti,X

∆
ti )∆ + O(∆1/2+θ/2)

)

}

× 1τr0>τ∆ := e∆
221 + e∆

222.The term e∆
221 orresponds to the overshoot. The term e∆

222 an be ontrolledwith tehniques similar to the ones used for e∆
21. Namely,

|e∆
222|

E

≤ C∆1/2+θ/2(∆−1
∫ T∧τ∆

0
1(φ(t),Xφ(t))∈V∂D(2∆1/2(1−ε))dt)

E

≤ C∆1/2+θ/2(∆−1
∫ T∧τ∆

0
1(t,X∆

t )∈V∂D(3∆1/2(1−ε))dt)

E

≤ C∆1/2+θ/2∆−1
∫ 3∆1/2(1−ε)

−3∆1/2(1−ε)
Ly

T∧τ∆(F (.,X∆
. ))dy

E

≤ C∆1/2+θ/2∆−1
∫ 3∆1/2(1−ε)

−3∆1/2(1−ε)
(|y| + ∆1/2)dy ≤ C∆1/2+θ/2−εwhih for ε small enough gives a o(∆1/2).Control of e∆

23. A Taylor formula gives the overshoot omponent for thetime steps between T − 4∆1−ε and T , and a O(∆1/2+θ/2−ε) = o(∆1/2) forthe other terms. This ompletes the proof. �Proof of Proposition A.1. Fix t ∈ [0, T − ∆]. For all λ ∈ [0, 1], let
s := t + λ∆, z :=x + λ(y − x).Sine F ∈ H2,

F (s, z) ≥F (t, x) − C∆ + λ〈∇F (t, x), y − x〉 − C∆1−ε.(A.3)Now 〈∇F (t, x), y−x〉 = F (t+∆, y)−F (t, x)+O(∆1−ε) whih plugged into(A.3) yields for ∆ small enough
F (s, z) ≥ F (t, x)(1 − λ) + λF (t + ∆, y) − C∆1−ε.Also, sine (t, x) 6∈ V∂D(2∆1/2(1−ε)), then, for ∆ small enough, F (t+∆, y) ≥

F (t, x)/3. The proof is omplete. �
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