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STOPPED DIFFUSION PROCESSES: OVERSHOOTS AND
BOUNDARY CORRECTION

By EMMANUEL GOBET AND STEPHANE MENOZZI
ENSIMAG-INP Grenoble, Université Denis Diderot Paris 7

Abstract For a stopped diffusion process in a time dependent
domain, we obtain the asymptotics of the triplet exit time/exit po-
sition /overshoot for the discretely stopped Euler scheme. Here, the
overshoot means the distance to the boundary of the process when it
exits the domain. As a first consequence of this result, we obtain an
expansion for the weak error. From the expansion and the sensitiv-
ity of the underlying Dirichlet problem with respect to the domain,
we finally derive a procedure to improve the convergence by suitably
restraining the domain.

1. Introduction.

1.1. Statement of the problem. We consider a d-dimensional diffusion
process whose dynamics is given by

t t
(1.1) X, :m—l—/ b(s,Xs)ds+/ o (s, X,)dW,
0 0

where W is a standard d’-dimensional Brownian motion defined on a filtered
probability space (€2, F, (F)>0, P) satisfying the usual conditions. The map-
pings b and ¢ are Lipschitz continuous in space and locally bounded in time,
so that (1.1) has a unique strong solution. For a fixed deterministic time
T > 0 and a given bounded time dependent domain D 0,7 [xR? assumed
to be smooth we define 7 := inf{t > 0 : (¢, X;) &€ D}. Note that 7 is bounded
by T. For x € Dy := {y € R : (0,y) € 9D\0D N (]0, T[xR%)}, where D is
the boundary of D, and given continuous functions g, f,k : D — R, we are
interested in estimating the quantity

(1.2) Ex[g(T,XT)ZT+/()T Z.f(s, X.)ds), Zs :exp(—/osk(r,Xr)dr),

where as usual E,[.] := E[.|Xo = 2| (vesp. P,[.] := P[.|Xo = z]). The ap-
proximation of such quantities is a well known issue in finance, since it
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2 E. GOBET AND S. MENOZZI

represents in this framework the price of a barrier option, see e.g. Ander-
sen and Brotherton-Ratcliffe [ABR96]. Those quantities also arise through
the Feynman-Kac representation of the solution of a parabolic PDE with
Cauchy-Dirichlet boundary conditions, see Costantini et al. [CGKO06]. They
can therefore also be related to problems of heat diffusion in time dependent
domains.

We then choose to approximate the expectation in (1.2) by Monte Carlo
simulation. This approach is natural and especially appropriate if the dimen-
sion d is large. To this end we approximate the diffusion (1.1) by its Euler
scheme with time step A > 0. Define V¢ > 0, ¢(t) := sup{t; := iA, i € N :
t; <t <tiy1} and introduce

A t A t A
(13 XP =t [ 600, Xq)ds+ [ o(0ls), X5 )W,

We now associate to (1.3) the discrete exit time 72 := inf{t;, i € N* :
(ti, X£) € D}. Approximating the functional V; := g(7, X;)Z;+ ] Zsf(s, Xs)
ds by

TA
VA = g(rA X8 ZA + [ Z3, (0ls), X5 )ds
0

T

t
with 72 = ¢~ Jo KOO XG)dr

we introduce the quantity

(1.4) Err(T, A, g, f, k,x) = B, [VA — V]

that will be referred to as the weak error. Note that in VTAA, g is a.s. not
evaluated on the boundary (g must be understood as a function defined in
a neighborhood of 9D). At first sight, this approximation can seem coarse.
Anyhow, it does not affect the convergence rate and really reduces the com-
putational cost with respect to the alternative that would consist in taking
the projection on 0D.

Our main purpose is to expand the error (1.4) at the first order. Actu-
ally, the crucial tool is the asymptotics of the triplet exit time/exit posi-
tion/overshoot for the Euler scheme. Here, the overshoot means the distance
to the boundary of the process when it exits the domain. In addition, we
improve the initial convergence rate by a boundary correction procedure.

We mention that we could also consider the diffusion process discretely
stopped: results below would remain the same.
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1.2. Ezisting results and contribution of the paper. Up to now, the be-
havior of (1.4) had mainly been analyzed for cylindrical domains, in the
killed case, without source and potential terms (i.e. when the error writes
Err(T, A, g,0,0,2) = Elg(X™)1,a-7] — Elg(X7)1,s7] := &). Let us first
mention the work of Broadie et al. [BGK97], who first derived the correction
procedure of Section 2 in the one dimensional geometric Brownian motion
setting (Black and Scholes model). In [Gob00] and [GMO04], it had been
shown that, under some (hypo)ellipticity conditions on the coefficients and
some smoothness of the domain and the coefficients, £ was lower and upper
bounded at order 1/2 w.r.t. the time step A. Also, an expansion result for
the killed Brownian motion in a cone as well as the associated correction
procedure are available in [Men06].

All these works emphasize that the crucial quantity to control in order
to obtain an expansion is the overshoot above the spatial boundary of the
discrete process. In the Brownian one-dimensional framework such controls
go back to Siegmund [Sie79] and Siegmund and Yuh [SY82]. We manage to
extend their results to obtain the asymptotic distribution of the overshoot
of the Euler scheme, see Sections 2 and 3. Concerning the asymptotics of
the overshoot of stochastic processes, let us mention the works of Alsmeyer
[Als94] or Fuh and Lai [FLO1] for ergodic Markov chains and Doney and
Kyprianou for Lévy processes [DK06]. These works are all based on renewal
arguments.

Our results about the overshoot combined to sharp techniques of error
analysis, allow us to derive an expansion of the form Err(T, A, g, f, k,x) =
CVA + o(A) in the very general framework of stopped processes in time de-
pendent domains. Some sufficient assumptions can be formulated in terms of
the uniform ellipticity of o and some smoothness properties for D, b, 0, g, f, k.

From a numerical viewpoint, error expansions are the first step for a pro-
cedure that aims to improve the convergence. A very popular one is the
Romberg extrapolation, see [TT90]. Using the recent results of Costantini
et al. [CGKO06]| concerning the sensitivity of the Dirichlet problem w.r.t. the
boundary, we propose an alternative simulation procedure that converges as
o(v/A). Namely, since the discrete stopping yields an overestimation of the
exact stopping (see Boyle and Lau [BL94], Baldi [Bal95], [GM04]) we stop
the discrete process when it leaves a suitable smaller domain. Furthermore,
this technique does not require any refinement of the time step. Therefore,
it does not increase the empirical variance for the associated Monte Carlo
estimator as for the Romberg extrapolation.

Let us finally mention that under some quite usual assumptions the previ-
ous results about the error expansion and correction still hold in the station-
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ary setting, see Section 4, which also seems to be new. Numerical applications
are left to further works.

1.3. OQutline of the paper. Notations and assumptions used throughout
the paper are stated in Section 1.4. In Section 2 we give our main results
concerning the asymptotics of the overshoot, the error expansion and the
boundary correction. These results are proved in Section 3, which is the
technical core of the paper. Eventually, Section 4 deals with the stationary
extension of our results. We still manage to obtain an expansion and a cor-
rection for elliptic PDEs. Some technical results are postponed in Appendix.

1.4. General notation and assumptions.

1.4.1. Miscellaneous.

e Differentiation. For smooth functions g(t,z), we denote by 92¢(t,z) the
derivative of g w.r.t. « according to the multi-index 3, whereas the time
derivative of g is denoted by 0;g(t,x). The notation Vg(t,z) stands for the
usual gradient w.r.t. « (as a row vector) and the Hessian matrix of g (w.r.t.
the space variable x) is denoted by Hg(t,x).

The second order linear operator L below stands for the infinitesimal gener-
ator of the diffusion process X in (1.1):

(1.5) Lg(t,z) = Vg(t,x)b(t,z) + %Tr(Hg(t,x)[aa*](t,x)).

e Metric. The Euclidean norm is denoted by | - |.

We set Bg(x,¢€) for the usual Euclidean d-dimensional open ball with center
x and radius € and d(z, C) for the Euclidean distance of a point x to a closed
set C.

e Functions. For an open set D' C R x R? and | € N, CL%JJ(D’) (resp.
C L%J’l(ﬁ)) is the space of continuous functions f defined on D’ with contin-
uous derivatives 929 f for |8 4+ 2j < I (resp. defined in a neighborhood of
D’). Also, for a = 1+6, 6 €]0,1], | € N, we denote by H,(D’) (resp. Hy(D'))
the Banach space of functions of class C L%J’Z(D' ) (resp. C L%J’l(@' ) ) having [*h
space derivatives uniformly #-Hélder continuous and [I/2] time derivatives
uniformly (a/2 — [I/2])-Hélder continuous, see Lieberman [Lie96], p. 46 for
details. We may simply write ¢l or H, when D' =R x R%.

e Floating constants. As usual, we use the same symbol C for all finite, non-
negative constants which appear in our computations : they may depend on
D, T,b,0,q, f, k but they will not depend on A or z. We reserve the notation
¢ for constants also independent of T, g, f and k. Other possible dependences
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will be explicitly indicated.
In the following Opy(A) (resp. O(A)) stands for every quantity R(A) such
that Vk € N, for some C' > 0, one has |R(A)| < CAF (resp. |[R(A)| < CA)

(uniformly in the starting point z).

1.4.2. Time-space domains. In the sequel D stands for a bounded time-
space domain in ]0, T[xR? (T is a fixed terminal time). Let

Dy = {x . (0,z) € 9D\OD N (]O,T[de)} ,

Dr = {z: (T,2) € 9D\0D N (J0, T[xR7) }

Dy and Dy are open sets and we assume that they are nonempty domains
that coincide with the interior of their closure (cf. [Fri64], Section 3.2). We
assume also (cf. again [Fri64], Section 3.2) that the time section of D,

(1.6) Dy={z: (t,z) €D},  t€0,T],

is a domain that coincides with the interior of its closure, for every t €]0, 7.

Regularity assumptions on the domain D will be formulated in terms of
Holder spaces with time-space variables (see [Lie96] p.46 and [Fri64| Section
3.2). Namely, we say that the domain D is of class H,, a > 1 if for every
boundary point (tg,z9) € D N (]0,T[xR%), there exists a neighborhood
Jto, to + €3[x Ba(zo,€0), an index i € [1,d] and a function ¢y € H,(Jto, to +

e3[xBg_1(z}, ..., xffl, x6+1, ), g0) 8.t

9D N (J0, T[xR)Nto, to + e2[x By(zo, £0)
= {(t,w) € (]to,to + Eg[ﬁ[O,T]) x Bg(zo,€0)

Xy = (po(t,.%’l, ey Li—15 Tj+41, ...,.’Bd)}.

In the following we freely use the notations of [Lie96].

If D is of class Hy, all domains Dy, for ¢t € [0,7], satisfy the uniform
interior and exterior sphere condition with the same radius ry. Moreover
(see [Lie96], Section X.3), the signed spatial distance F', given by

F(t,z) = —d(x,0Dy), forx € D, d(z,0D;) <rg, 0 <t <T,
) d(w,0Dy), for € Dy, d(x,0D;) <719, 0 <t < T,

belongs to Hy ({(t,2) : 0 <t < T, d(x,0D;) < 19}) and VF(t,z) is the unit
inward normal vector to D; at mop, () the nearest point to x in 9D;. F' can
be extended as a Hy([0,T] x R?) function, preserving the sign.

In the following we denote Vr € R, by Vyp(r) := {(t,z) € [0,T] x R? :
d(x,0D;) < r} a neighborhood of size r of the so called side.
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1.4.3. Diffusion processes stopped at the boundary. We specify the prop-
erties of the coefficients (b,0) in (1.1) with assumption

(Ap) (with 0 €]0,1))
1. Smoothness. b and o are functions of class Hyg.

2. Uniform ellipticity. For some ag > 0, it holds &*[oo*](t, ) >
al¢f? for any (t,2,€) € [0,T] x R x R

We also introduce assumption (A;) for which 2. is replaced by the weaker
assumption

2°. Uniform non characteristic boundary. For some rqg > 0 there exists
ap > 0 s.t. VF(t,z)[oc*|(t,2)VF(t,x) > ag for any (¢t,x) € Vap(ro).

The asymptotic results concerning the overshoot hold true under (A/@), see
Section 2.1.

We mention that the additional smoothness of b and o w.r.t. the time
variable is required for the connection with PDEs. In the following we use
the superscript ¢, to indicate the usual Markovian dependence, i.e. Vs >
t, Xb* =2+ [7b(u, XE")du + [ o(u, X5*)dW,,. Now let

(1.7) % = inf{s >t : X" ¢ D,} = inf{s >t : (s, X1") ¢ D}

be the first exit time of X% from Dy or, equivalently, the first exit time of
the time-space process (s,ngx)se[t,T] from the domain D. Note that 757 is
bounded by T'. For functionals of the process X stopped at the exit from D,
of the form

(1.8)
Tt,z - Tt’x s "
ult, x) = Eg(r"*, X557 )e™ [T kX )dr+/ o JU R XS ¢ (s, X5)ds],
t

we now recall (see [CGKO06]) that the Feynman-Kac representation holds in
the time-space domain. Introduce the parabolic boundary PD = 9D\{0} x
Do.

Proposition 1.1 [Feynman-Kac’s formula and a priori estimates on
ul

Assume (Ay), DeHy, ke Hy, f e Hy and g G_CO’O with 6 €]0,1[. Then,
there is a unique solution of class C12(D) N C*%(D) to

(1.9) {Btu—l—Lu—k:u—i-f:O in D,

Uu=g on PD,

and it is given by (1.8).
In addition, if for some 0 €]0,1[, D is of class Hiyp, g € Hy19 then u €
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Hi 9. In particular Vu ezists and is 0-Hdélder continuous up to the boundary.
Eventually, for D € Hs g, k, f € Hi1g, g € Hs g satisfying the first order
compatibility condition (0; + L — k)g(T,z) + f(T,x)|zcop, = 0, then the
function u belongs to Hsyg.

Proof. The first two existence and uniqueness result for (1.9) are respectively
implied by Theorems 5.9 and 5.10 and Theorem 6.45 in Lieberman, [Lie96].
The probabilistic representation is then a usual verification argument, see e.g.
Appendix B.1 in [CGKO06|. The additional smoothness can be derived from
exercice 4.5 Chapter IV in [Lie96] or Theorem 12, Chapter 3 in [Fri64]. O

2. Main Results.

2.1. Controls concerning the overshoot. The overshoot is associated to
the distance of the process to the boundary, when it exits the domain. To be
precise, we use F' the signed distance function and we consider the quantity
F(ti,Xﬁ). It remains positive for ¢; < 72, and at time ¢; = 72, it becomes
non positive. The overshoot is thus defined by F~ (72, X TAA). Since F' is
Lipschitz continuous in time and space, it is easy to see that F~ (72, X TAA)
is of order v/A (in Ly-norm for instance). Thus, it is natural to study the
asymptotics of the rescaled overshoot

AR (2 XA).

Adapting the proof of Proposition 6 in [GMO04] to our time dependent
context, see also the Proof of Proposition 4.2 for a simpler version, one has
the following proposition.

Proposition 2.1 (Tightness of the overshoot) Assume (Ay), and that
D is of class Hy. Then, for some ¢ > 0 one has

sup  Eglexp(c][A™Y2F~ (s A T2, XSA/\TA):I2):| < ~00.
A>0,s€[0,T

It is quite plain to prove by pathwise convergence of X towards X that

(72, X%, converges in probability to (7, X-). The next theorem also includes
the rescaled overshoot.

Theorem 2.2 (Joint limit laws associated to the overshoot) Assume
(Alg), and that D is of class Hay. Let o be a continuous function with compact
support. For allt € [0,T], © € Dy, y > 0,

A A
Eo[lrac Ziao(X o)1 o (TA,XAA)Zy\/Z] A0

E, [1T§tZTQ0(XT) (1 - H(y/|U*VF(Ta XT)DH
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with H(y) = (Eo[s,+])7 [§ d2Po[s,+ > 2] and sp := 0,Yn > 1,5, =
G, the G' being i.i.d. standard centered normal variables, 7T :=
inf{n >0:s, > 0}.

In other words, (72, XTAA, AR (A, XTAA)) weakly converges to

(1, X7, |0*VF(1,X;)|Y) where Y is a random variable independent of (7, X,),
and which cumulative function is equal to H. Actually, Y has the asymptotic
law of the renormalized Brownian overshoot. In the following analysis, the
mean of the overshoot is an important quantity and it is worth noting that

82
one has E(Y) = ;EELO[[S% := ¢p. One knows from [Sie79] that
1/2
(2.1) co= WD 5893,

V2r

The above theorem is the crucial tool in the derivation of our main results.
The proof is given in Section 3.1.

2.2. Error expansion and boundary correction. For notational convenience
introduce for x € Dy,

u(D) = Balglr, X) 2 + [ Zuf (s, Xo)ds),
0
uAD) = Eofo(r X225 + [ 28, 1(0(0). X2)ds).

Theorem 2.3 (First order expansion) Under (Ay), for a domain of class
Hy, ge Hi g, k, f € Hi1g and for A small enough

Err(T, A, g, f,k,2) = u®(D) — u(D)

= coVAE,(1,<1Z,(Vu — Vg)(1, X;) - VF(7, X,)|[0c*VF(1, X;)|) + o(VA),

where ¢ is defined in (2.1).

Define now a smaller domain D? C D, which time section is given by DS =
{x € D; : d(z,0D;) > coV/A|lo*VF(t,z)|}. Introduce the exit time of the
Euler scheme from this smaller domain: #2 = inf{t; > 0: (¢;, X2) ¢ D2} <
75, The boundary correction procedure consists in simulating

'f-A
(2.2) g(72, X2 Z5% + Z50F(6(s), X510 )ds.
0

As above, we do not compute any projection on the boundary. We denote
the expectation of (2.2) by u®(D?). One has:
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Theorem 2.4 (Boundary correction) Under the assumptions of Theo-
rem 2.3, if we additionally suppose VF(t,z)|c*VE(t,z)| is of class C12,
then one has:
uA (D) — w(D) = o(VA).
The additional assumption is due to technical considerations in [CGKO06]. It
is automatically fulfilled for domains of class C3 and ¢ in C12.
2.3. Proof of Theorems 2.3 and 2.4.

2.3.1. Error expansion. By usual weak convergence arguments, Theorem
2.3 is a direct consequence of Proposition 2.1 (tightness), Theorem 2.2 (joint
limit laws associated to the overshoot) and Theorem 2.5 below.

Theorem 2.5 (First order approximation) Under the assumptions of
Theorem 2.3

u?(D) — u(D) = o(VA)+

Eo(1,acrZ25 (Vu— Vo) (T2, mop_, (X2W)) - V(T2 X2)F~ (7%, X2)).
Remark 2.6 In the above statement, we use projections on a non convex
set, which needs a clarification. With the notation of Section 1.4.2, introduce
770 = inf{s > 0 : (5, X2) & DU Vyp(rg)}. For s € [0,77°] the projection
Tp, (X2) is uniquely defined by
(2.3) T, (X8) = X2+ F (s, X2)VF(s, X2).

Large deviation arguments (see Lemma 3.1 below) also give P [t < 78] =
Opot(A). Thus, in the following, for s > 7, mp (X2) and Top,(X2) denote

S
an arbitrary point on 0Ds. This choice yields an exponentially small contri-

bution in our estimates.

PROOF. Denote e2 the above error. Write now

e =B [g(r®, X)) Z0 — g(r®, 7p_, (X28))ZA]

TA
+Eag(7%, mp_, (X2A))Z08 + /0 Z510F(6(s), X510 )ds] — u(0, X3*)
= elA + eZA.

We introduce here the projection for the error analysis. From (2.3), a second
order Taylor expansion and standard computations yield

et == Eu[l,acp ZAaVg(r® mop_ (X20)) - VF(r2, X5 F~ (7%, X5))
(24) +0(A).
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For clarity we assume for the rest of the proof that u € Hj,y. Sufficient
conditions to have such a smoothness are provided in Proposition 1.1. The
proof under the assumptions of Theorem 2.3 is presented in Appendix.
Now, in order to isolate the overshoot F'~ in €5, we use a Taylor formula
up to order 3. This is a more direct approach than the Ité6-Tanaka expansion

in [GMO04] that also yields some local time terms.

E
In the following, we write U Ly (resp U < V) when the equality between
U and V holds in mean up to a Op(A) (resp. E4(U) < Ex(V) 4+ Opar(A)).
One has:

E
s =

O<t'<7'A

A A AN 7 A
770 >7’A - Z ]‘t <A |: ’l+17 WDt 11 (Xti+1 ))Zti+1 - u(t“ Xti )Ztl
0<t;<T

+ZE [ (b, XE)A) 15

since for ¢; < 72, X{* € D, and thus mp, (X{) = X/ Exploiting (2.3),
writing Zﬁﬂ = Z£(1 — k(t;, X2)A) + O(A?) and performing a Taylor ex-
pansion of u at point (¢;, Xt?) € D (where u is smooth), one gets

@25 AE(Y 1,4 [A x Z20u+ Lu— ku+ f)(t:, X2)

0<t; <T
(2.6) + ZEVu(t, XE) - VF(tiH,XtAiH)F (t Z+1,X$+l)
(2.7) +O(|F™ (tit1, X ZH)HX fo1 — X2 + O(IF~ (tis1, Xﬁﬂ)\?)
(2'8) + O(A3/2+G/2) + O(|Wti+1 - Wti |3+0))17—T0 >TrA.

The contribution (2.5) equals 0 owing to the PDE. Both remainder terms in
(2.8) are of order O(A3/?19/2) and contribute to the sum as O(AY/2+0/2) =
o(v/A). Finally, regarding (2.7), defining 7, := inf{s > t; : (s, X2) ¢ D}
one has

E — A
Z 1t <TA ’F 2+17 t; +1)‘2 = Z lti<TA thi <ti+1’F (ti+17Xt¢+1)’2
0<t;<T 0<t;<T

E
<CA Z 1ti<TA17'ti§ti+1
0<t;<T
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E
S CA Z ]‘ti<7’A ]_XtAi+1 ¢,Dti+1
0<t; <T

ECALacr Z0(0),
where the last but one inequality is obtained adapting the proof of Lemma
16 in [GMO04] to time dependent domains.
In the same way, one has > g, .1 1ti<TA|F_(ti+1,X$+1)||X$+1 - X2 E
o(A).
Recalling (2.4), to get the expected result, it remains in (2.6) to approximate
ZEVul(ty,, X£) by Ztiqu(tHl, TDs,, (X$+1))’ which is done as before, up
to an extra additional error of order O(A). O

2.3.2. Boundary Correction. One has
(29)  «®(D?) —u(D) = [ (D) — u(D?)] + [u(D>) — u(D)]

1. The first contribution in (2.9) has been previously analyzed, except
that the domain D depends on A. It is equal to CQ\/KE(]_T<TZT(VU—
V) (1, X;) - VF(1, X;)|o*VF(r, X;)|) + o(v/A).

2. Finally, the last term is related to the sensitivity of a Dirichlet prob-
lem with respect to the domain. By an application of Theorem 2.2 in
[CGKO06| with O(t,z) = —coVF(t,7)|c*VF(t,z)| (in C*?), one gets
that this contribution equals

—coVAE(1, o7 Z-(Vu—Vg) (1, X;)-VF (1, X,)|0*VF (1, X;)|)+o(VA).
This proves that the new procedure has an error o(v/A). O

3. Technical results concerning the overshoot. This section is de-
voted to the proof of Theorem 2.2. We first state some useful auxiliary results.

Lemma 3.1 (Bernstein’s inequality) Assume (Ay-1). Consider two stop-
ping times S, S" upper bounded by T with 0 < S'—S < © < T. Then for any
p > 1, there are some constants ¢ > 0 and C := C((Ap-1) , ©), such that
for any n > 0, one has a.s:

2
P[ sup |XtA — X§| >n | Fs| <Cexp (—c%) ,
te(S,S’]

E[ sup |XP — X§IP | Fs] <COP/2.
te(S,9]

For a proof of the first inequality we refer to Chapter 3, §3 in [RY99]. The
last inequality easily follows from the first one or from the BDG inequalities.
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Lemma 3.2 (Convergence of exit time) Assume (A,) and that the do-
main s of class Ho. The following convergences hold in probability:

1. limAHO TA =T
2. limA_,Q XTAA = XT,'
3. lima_o Supi<r ’Xf(t) - Xt‘ = 0.

The proof of the first two assertions in the case of space-time domain is
analogous to the case of cylindrical domain (see [GMO05]) and thus left to the
reader. The last convergence is standard.

The following results are key tools to prove Theorem 2.2.

Lemma 3.3 (Asymptotic independence of the overshoot and the
discrete exit time). Let W be a standard one dimensional BM. Put x > 0
and consider the domain D :=)0,T[X]| — oo, z[. With the notation of Section
2, for any € > 0 we have

(3.1)

Po[r® < t,(W,a —z) < yVA] — Po[r < t]H(y)‘ = 0.

lim sup
A—04c(0,1),y>02>A1/2-¢

Lemma 3.4 Assume (Ay), and that the domain is of class Hy. Let 0 < 3 <
a < 1/2. For all n > 0, there exists C := Cy > 0 s.t. for A small enough,
Y(s,z) € Vap(AY)ND (s € AN),

P[r2 > A% X2 = 2] < O(A*F~1 1 AP),
where T = inf{t; > s : (t;, X{) & D}.

Lemma 3.5 Assume (Alg), and that the domain is of class Hy. There exists
C >0, such that V(s,x) € D with s € AN, Vt > s and Vb > a > 0,

Plr® <t, A7Y2F~ (12, XA) € [a,0]| X2 = 2] <C((b— a) + AY4)

A

where T2 1is shifted as in the previous lemma.

The proof of these three lemmas is postponed to Section 3.2.
We mention that if oo™ is uniformly elliptic, Lemma 3.5 is valid without
the Al/4. See the proof for details.

3.1. Proof of Theorem 2.2. Consider first the case D =]0,T[x D where D
is a half space. The theorem in the case of BM is then a direct consequence of
Lemma 3.3. Now to deal with the Euler scheme, we introduce a neighborhood
whose distance to the boundary goes to 0 with A at a speed lower than A1/2.
The characteristic exit time for a starting point in this neighborhood is short,
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thus the diffusion coefficients are somehow constant and we are almost in
the BM framework. Also, the localization w.r.t. to the hitting time of this
neighborhood guarantees that up to a rescaling we are far enough from the
boundary to apply the renewal arguments needed for the overshoot.
For a more general time-space domain of class Hy two additional tools are
used: a time-space change of chart and a local half space approximation of
the domain by some tangent hyperplane.
For notational convenience, we assume from now on that the time section
domains (D¢).c(o,7) are convex so that myp, is always uniquely defined on
Dg. To handle the case of general Hs domains, an additional localization
procedure similar to the one of Theorem 2.5 is needed.
For the sake of clarity, we also assume k¥ = 0 (Z = 1). This is an easy
simplification since owing to Lemma 3.2, Z TAA converges to Z, in L.

Step 1: localization. For o < 1/2 specified later on, define 7ae :=
inf{t; > 0: F(t;, X) < A*} < 72. We aim at studying the convergence of

Ua(t,z,y) == Em[17A§t,F(TA7XAA)—Zy\/Z(P(XTAA )]
and for this, we define for all 0 < s <t < T (s € AN), (Z,y) € R x R*

\I’A(S,t,j,y) ::P[TA S t’F(TA’Xq—AA)i 2 y\/Z|XsA = j],
Ve €]0,1/2, A(t,o,€) :=={rae < 7% 7a0 <t F(ra0, X5y, ) > A€}

In the definition of W, 7 has to be understood as the shifted exit time
inf{t; > s : (ti,Xt?) ¢ D}. By Lemma, 3.1, P.[12 = 7aa < t] + Py[rac <
t,F(tae, X2,) < A/275] = Op(A) for any € > 0 s.t. o < 1/2 — e. Hence,
A
!pA(t’x’y) :EI[lA(t@,a),F(TAXTAA)*Zy\/ZSD(XTA)] + OPOZ(A)
A A
:EI[lA(t,a,a),F(TA,XTAA)*Zy\/Z(QD(XTA) - QD(XTAa ))]

+ Ex[lA(t,a,e)gp(XA )\IIA(TAO‘ L XTAAa ) y)] + Opol(A)'

TAX

The first term in the right hand side above converges to 0, using the conver-
gence in probability of [ X4, — XTAAQ | to 0 (analogously to Lemma 3.2). This
gives

(32)  ¥a(tz.y) = Ee[lagae (X ) Walrac, , X5, 9)] + o(1).

It remains to study the convergence of Wa (.).
Step 2: diffusion with frozen coefficients. Denote 7a« := 3, XTAM =

Z. Conditionally to Fj, introduce now the one dimensional process (Y5)s>3,
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Ys = F(8,2)+(VF-0)(5,%)(Ws—Ws5). Note that we do not take into account
the drift part in the frozen process. From the next localization procedure, it
yields a negligible term. Since Y has constant coefficients, we apply below
Lemma 3.3 to handle the overshoot of Y w.r.t. R**. Define 7Y := inf{t; >
5:Y;, <0} and rewrite

(3.3) UA(5,1,%,y) = UK(5,1,%,9) + Ra(5,1,7,),

From (AIO—2’) that guarantees that Y has a non degenerate variance and
Lemma 3.3, one gets

sup  |WK(5,1,2,y) — Pag[r™" < t](1 - H(y/|(c*VF)(5,2)]))] 0
(5,5)€Axe —0

where A%° := (Vap(AY)\Vap(A/272)) N D. Plug now this identity in (3.3)
to obtain with the same uniformity

Va(5,t,2,y) =Psslr™" < (1 - H(y/|(6"VF)(5,2)]))
(3.4) + Ra(5,t,2,y) +o(1).

Step 3. Control of the rests. We now show that Ra(S,t,2,y) = o(1)
where the rest is still uniform for (8, %) € A™°. Write first:

|Ra|(3,t,,y) < RA(5,t, %)
+ Pg,i“[TA < t’F(TAaXTAA)i > y\/K, (YTA,Y)i < y\/Z, TA = 7'A7Y]
(35) +Psalr™ <t,F(r® X)) <yVA, (Yoar)” > yVA, 7 = 4]
with RA(8,,8) < Pgglr® < t,7% # 78] 4 Pag[r™Y < 6,78 # 787] =

(R + RE)(3,t,7). Let ya be a given positive function of the time step s.t.
YA A—>0 0 specified later on.

On the event {72 = 78Y |V, ay —F(r8Y, XTAA,Y)] < yav/A} the conditions
F(r2,X5)” > yVA and (Yoay)™ < yVA imply A™V3(Yay)™ € [y —
yn,vy) (resp. (Y,ay)™ > yv/Aand F(72, XTAA)* < yVAimply A~V2(Y o ay)~
€ [y,y +ya)). Hence,

[Ra(3,t,2,y)] < (RA + RA)(5., %)

+Psa[r™Y <6, ATVA(Vax)T €ly—ya,y+ya), 7 = 7]

= (RA + RA)(3,1,%) + RA(5,t, &, ),
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with R (3,t,7) := 2IF’§75C[TA’Y < t, 78 = 7AY, Y ay — F(TA’Y,XTAAX)] >

yavVAl.

Term R3(3,t,%,y). From Lemma 3.5 applied to the process with frozen co-
efficients, one gets

(3.6) RA(5,1,%,y) < Clya + AY").

Term R%(3,t,%). Introduce for 0 < 3 < a < 1/2, Tpp := inf{s > 3 :
| X2 — & > AP A (5+ A%, §:=2B8+7, v> 0. One has

[RAG6,2)] < 2<P§,5:[TA’Y <t, 78 =78 18 < 7as,

Yosy — (Y, XY > yavA] + Paalr® > 700,78 < t])
= (R + R%)(5,t,%).
Let us first deal with R%'(5,¢, 7). One has
RA(5,t,7) <
37 2807'WA"Essllac, ey cas oy Yy — F(r™Y, X507

Note that since D is of class Hg, F' has the same regularity, i.e. it is uniformly
Lipschitz continuous in time and its first space derivatives are uniformly Lip-
schitz continuous in space. Thus, assuming up to a regularization procedure
that F' € CY2([0,T] x RY), Ito’s formula yields for all ¢ > 3,

F(t,XP) = F(5,%) + [VF(S,XSA) SdXA
[ 05, X8) 4 L (5, X2 (006), X3 )i
(3.8) = F(5)+ [tVF(s,XsA) -0 (¢(5), X515 ) AW, + RR (5,1, 2)
=Y, + R2(5,t,%) + [ (0% (0(s), X1 )VF (5, X2) — 0"V F (3, &)) - dWs.
From (A,-1) and the assumptions on D one derives |R2|(3,t,%) < C(t — 3).

Thus, for a given stopping time § < U < 754, the working assumptions (i.e.
smoothness of o, F'), standard computations and the BDG inequalities yield

E[[F(U, X2) — Yy Y] < C(AZH 4 AS140)y
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From (3.7) and the above control with U = TAY A T8, one obtains
(39) Ril(g, t, i‘) < CyKQAfl(Aﬂ?Jr(S + A5(1+9)).

Let us now control R3%(3,t,7). From Lemmas 3.1 and 3.4, for any 1 > 0 we
write

RR(5,t,3) < Pszlras < 5§+ A%+ Psz[r > 5+ A1y, pocy
(3.10) < C'(exp (—cAw*‘;) + AYT70/2 L AY/2),
_ 143 _ 0 1 _ AP
Take now o = s < 1/2, n = 6o ) = sarep YA = AY/16 Check
that for 6 = 28+~ = 2a—4n, one has § = 1IL%4, 8= 72/?1160/4 < a, 3n < a.
Thus, RZ(3,t, %) = O(A"). In addition, y 2AIFO—1 = AO/8 [,/ 2\26+0-1 —
O(AYB0+0)) Hence, from (3.9) and (3.10)

(311)  RA(5,t,&) < C(AYEUF0) L A9/8 L AO/A6O+1)) < CA0/32,

Term RX(3,t,%). We give an upper bound for RA(3,t, 7). The term RX(,t, %)

can be handled in the same way. From the previous control on R2A2(§,t,£)
and for the previous parameters, one gets
RN(5,t,%) = Psz[r® < t,7% # 78V 18 < 100] + O(A")
=Psz[r2 <t, 78 > 78 78 < 1a4]

+ Pg@[TA < t,’TA < &Y TA < Tpas] + O(A").
Note that,

RA(5,t,7) < Pss[r™Y <t,A7V3(V,av)” < yal+
P; z [T <t, rAY L A T < Tas, AT 1/2 Y ay —F(TA’Y,XTAA’Y)\ > ya]
+]P)§75;[T <t, 7Y > 8 A < Tas, A 1/2’YTA — F(TA7XTAA)‘ > ya]
+Psglr® < t, ATV2R(r®, X2 < yal + CAY,
for the previous function (ya)aso. Since we could obtain the same type of

bound for RE(3,t, %), from Lemma 3.5 and following the computations that
gave (3.9) we derive for the previous set of parameters

(3.12)
RA(5,t,7) < Oy 2A~HAH 4 A0 L AT gy 4 AV < CAY/32,
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From (3.12), (3.11), (3.6) we finally obtain Ra(5,t,%,y) = O(A?/32) = o(1).
The rest is uniform w.r.t. (3,2,y) € A% x RT.
Step 4. Final step. Plug the previous results in (3.4). We derive from (3.2)

/2N (ta Zz, y) = Ez[lA(t,a,s)QP(XTAAa )
X Pryoxa [T < (1= H(y/lo"VF(rae, X753, ) )] + o(1).

The previous controls on R\ (5,t,%), R%(3,t, %) give

Ua(t,z,y) = Ex[lrya<iPr., XA, [TA <t,Tap > TA]

P(Xrna)(1 = H(y/|o"VF (180, X2, )] + o(1).

TAQ TAQ
Under (A/o), by continuity arguments and Lemma 3.1 we eventually get
WA(ta z, y) = EJU[ITASt(p(XTAA)(l - H(y/‘U*VF(TAa XTAA)‘))] + 0(1)
Now, Lemma 3.2 gives

SPA(taxay) A_) Ez[lTStSD(XT)(l - H(y/|J*VF(Ta XT)|))]

—0

O

3.2. Proof of Lemmas 3.3, 3.4 and 3.5.

Proof of Lemma 3.3. We shall insist on the dependence of the exit times
with respect to x, by setting 72 := inf{s € AN* : W, > z} := 72 and
analogously for 7 = 7.

Our proof relies on the following convergence (see equation (19) in Sieg-
mund [Sie79]): if we set (for any y,z > 0)

D(z,y) = Po[W,a —z <yVA] - H(y),

then
li D = 0.
aim D)
Using the monotonicity and the uniform continuity of H(y), Dini’s Theorem
yields that the above limit is actually uniform with respect to y > 0. It
follows

(3.13) sup |D(z,y)] — 0.
y>0,2€[A1/2=¢/3 o) A0



18 E. GOBET AND S. MENOZZI

By similar monotonicity arguments,

(3.14) sup |Po(t2 > t) — Py(re > t)] — 0.
x>0,t>0 A—0

We can now proceed to the proof. First, note that if x/v/t > A3 5 400
as A — 0, Po(72 > t) and Py(7, > t) are both Oy (A). Thus, the difference
in Lemma 3.3 converges to 0 as A — 0.

Suppose now that /vt < A~¢/3 hence v/t > zA%/3 > Al/2-2¢/3 and
write for £ € AN*

P :=Py[r2 > t, WA—xgy\/K]

—+00
= / dzqt 0,z — Z)]PQ[WTZA —z< y\/K]

where ¢/ 2 denotes the transition density of the discretely killed Brow-
nian motion. Introduce the partition Rt = {z € [0,AY?=¢/3)} U {z ¢
[AY/27¢/3 100)}. Then,

+oo z,A A
P=R+ g~ (0, — 2)D(2,y)dz + Polry > t]H(y)

Al/2—¢/3

where |R| < 2Po[W; € [z —AY27¢/3 1]] < \/%AW*E/?’ < \/%AE/?’. Finally,
taking advantage of the estimates (3.13) and (3.14) readily completes our
proof. [J

Proof of Lemma 3.4. We take s = 0 for notational simplicity. Introduce
Tap = inf{t > 0: (t, XP) & Vap(AP)} and for v > 0 write from Lemma 3.1
and the notation of (3.8) (up to the same regularization procedure concerning
F)

t

A 207 _ : Ay A

BLfr® > A% =Bo[_inf | F(0.x) + /0 VF(s, X2) - 0(6(s), X2, )W,
+ R2(0,t,x) > 0,705 > AP 4+ 0,,(A) == Q,

where under the assumptions of the Lemma, |R2 (0, ¢;, x)\ < Ct;. For a given
r > 0, consider the event A, = {35 < T : | X2 — ¢(S | > r} where the

increments of X2 between two close times are large: by Lemma 3.1, it has
an exponentially small probability. Hence, if we set

M, ::/0 VE(s, X2) - 0((5), X5))dWs 1= Beprs,, ti = (M),

B is a standard Brownian motion (on a possibly enlarged probability space)
owing to the Dambis, Dubbins-Schwarz Theorem, cf. Theorem V.1.7 in [RY99].
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In addition, the above time change is strictly increasing on the set A$ and
(M) — (M)s > (t — s)ap/2 (t > s) up to taking r small enough, because
(A),-2) is in force. Tt readily follows that

Q <Pl nf | My + Ol > =A% 750 > A% 4 Op ()

<Px[i€[[0,AiI215f+~/—1]] B{i + QCaalfi > —A“, TAB = A2/6+’Y’ _Aﬂ + Opol(A)

<P inf B; +2Ca;'t; > —A® > APty
o x[ie[[O,AlglﬁvL“/fl]] i T2bag ti = »Tas = ’

inf  B.+2Cay"s < —A*C A + Opor(A
$€[0,(M) n25++] 0 ) P 1(A)

+ Pylras > AP, inf By +2Cagts > —A*S, A9,
I[ AB SE[0,(M) p25 ] s 0 r]

for ¢ > 0. Thus, from Lemma 3.1 and standard controls

Q <P,[Fie]o, AQBJWA]], sup |Bs — By, + 2C’a61(5 — 1) > AYC — A%,
Se[gi,£i+1}
> A28+ ; > _Ae¢ _ 26+ A
Tas = A ] P [SE[O,aolggﬁ-F’v/ﬂ By z -A cA ] + OpOl( )

< Opat(A) + C(AYCB=7/2 L APH7/2),

Choose now v,( s.t. ((+ 3) =n > 0. The proof is complete. [
Proof of Lemma 8.5. Taking also s = 0 for notational convenience, we
write

P =P, [r2 <t, ATV2F~ (1%, XA) € [a,b]] < Opui(A)
[t/A]
(3.15) + > Eull,asy, ., Lo yxp YeVop (ro)EFt,_, [1A*1/2F(ti,XtAi)*e[a,b]H

i=1 -1

using Lemma 3.1 for the last identity.
A Taylor formula gives: F'(¢;, XtAi) = F(ti_1, X

ti—1

) + Etiﬂ (Wti - Wtiﬂ) +

R =Ny +RE |, whereXy, | =o*VF(ti_y, Xf ), Er, | (IR 1%

< CA? Conditionally to F,_,, Ni_, has a Gaussian distribution
N(F(ti—hXA )7 ”Eti—1H2A)'

ti—1

Also, on the event (ti_l,Xﬁ_l) € Vo 126, IPA > apA. Set Qi1 :=

ro)s ‘
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Pr,

ti—1

[F(t;, X5)™ € [aAY/2 bA1/2]]. We obtain

Qi1 =Pr, [Ni, +RE )7 € [aAV? A7)
<Pr. Wi, € [-bAY2 — A4 _aAl/? 4 A
+ ]P)]:ti—l [’Rti—lvti’ > A3/47Xt? ¢ th]
<Pr, Wi, € [-AY 2<b + AV, ZA2(q — AV

d( ti_ 178th 1)
A

+ CAY* exp (—c

using the Cauchy-Schwarz inequality and Lemma 3.1 for the last inequality.
Hence, we derive from (3.15)

[t/A]

d( t 76Dt1 )
P < Z E, 1 TASt 1, (ti—1,X )EVBD(TO) (CA1/4 €xp <—C 1A -
i=1

. /A1/2(aA1/4> (y — F(ti_l, X£ )2 dy |
ex —
ENVTSNT 2 Se,_, IPA (2rA) 2[5, |
t
+ Opol(A) < C(b —a—+ A1/4)A—1/0 dSEW[1TA>¢(8)7(¢(8),XAS))EVQD(TO)

d(XD . D,
X exp <—c (X s o))" >]+opol(A).

Following the proof of Lemma 10 in [GM04], mainly based on the application
of the occupation time formula for the distance process F(s, X2), one can
show that the above integral is bounded by C'A. This completes the proof.
U

Remark 3.6 Finally, we mention that if oo™ is uniformly elliptic, the rest
Réﬂ,ti can be avoided and the result can be stated without the contribution
A%, Indeed, we can directly exploit that the Euler scheme has conditionally a
non degenerate Gaussian distribution and usual changes of chart associated
to a parametrization of the boundary (see e.g. [Gob00]) give the ezpected

result.

4. Extension to the stationary case.

4.1. Framework. In this section we assume that the coefficients in (1.1)
are time independent and that the mappings b, are uniformly Lipschitz
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continuous, i.e. (X¢)¢>0 is the unique strong solution of
t
Xt:x—i—/ ds+/ s)dWs,t >0, z € R%.
0

For a bounded domain D C R¢, and given functions f, g,k : D — R, we are
interested in estimating

(4.1)  wu(z):= )2y +/ f(Xs)Zsds|, Zs = exp( /k: dr),

where 7 :=inf{t > 0: X; &€ D}.
Adapting freely the previous notations for Holder spaces to the elliptic
setting, introduce for 6 €]0, 1]:

(Ap) 1. Smoothness of the coefficients. b,o € Hyg.

2. Uniform ellipticity. For some ag > 0, V(z,£) € RIxR?, £*oo* ()¢
> agE[*.
(Dy) Smoothness of the domain. The bounded domain D is of class Ho.
(Cp) Other coefficients. The boundary data g € Hy.g, f,k € Hyi1p and
k<0.

Note that under (Ay) and since D is bounded, Lemma 3.1 Chapter III of
|Fre85] yields sup,c p Ex[7] < co. Thus, (4.1) is well defined under our current
assumptions.

From Theorem 6.13, the final notes of Chapter 6 in [GT98] and Theorem
2.1 Chapter II in Freidlin [Fre85], the Feynman-Kac representation in our
elliptic setting writes

Proposition 4.1 (Elliptic Feynman-Kac’s formula and estimates)
Assume (Ayg), (Dy), (Cy) are in force. Then, there is a unique solution of
class Hy 9 N C%(D) to

(4.2)

Lu—ku+ f=0, in D,
ulop =g

and it is given by (4.1).

In the following we denote by F'(x) the signed spatial distance to the bound-
ary 0D. Under (Dy), D satisfies the exterior and interior uniform sphere
condition with radius ro > 0 and F' € Hy(Vap(ro)) where Vap(rg) := {z €
R : d(x,0D) < rg}. Also, F can be extended to a Hy function preserving
the sign. For more details on the distance function, we refer to Appendix
14.6 in [GT98|.
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4.2. Tools and results. Below, we keep the previous notations concerning
the Euler scheme. We also use the symbol C' for nonnegative constants that
may depend on D, b, o, g, f,k but not on A or z. We reserve the notation ¢
for constants also independent of D, g, f, k. Let us now state the main results
of Section 2 in our current framework.

Proposition 4.2 (Tightness of the overshoot) Assume (Ay-2), and that
D is of class Hy. Then, for some ¢ > 0,

sup Eq exp(c[A~1/2F~ (XA )]2)] < +o.
A>0
From the proof of Theorem 2.2 and Theorem 4.2 in Gobet and Maire [GMO05]

we derive:

Theorem 4.3 (Joint limit laws associated to the overshoot) Assume
(Ay), and that D is of class Ha. Let  be a continuous function with compact
support. With the notation of Theorem 2.2, for allx € D, y > 0,

E$[ZTAA(P(XTAA)1F7(XTAA)2y\/Z] Ao Eo[Zro(Xr)(1 = H(y/lo"VF(X7))))]-

4.3. Error expansion and boundary correction. For notational convenience
introduce for x € D,

w(D) = Ea(g(X,) Zr + /0 " Zf(X0)ds),

’TA
WA (D) = E(g(X3) 25 + /0 28, F(XE,))ds).
The second quantity is well defined according to Theorem 4.2 in Gobet and
Maire [GMO5] that states

(4.3) Vp > 1, limsup sup E,[(72)?] < .
A—0 xED

Theorem 4.4 (First order expansion) Under (Ay), (Dy), (Cy), for A
small enough and with the notation of Theorem 2.3

Err(A, g, f, k, ) = u®(D) — u(D)
= VAR, (Z:(Vu - Vg)(X;) - VF(X;)|o*VF(X,)]) + o(VA).
Define now D = {z € D : d(z,0D) > coV/Alo*VF(x)|}. Introduce 72 =
inf{t; > 0: X € D2}, Set
'f'A
uA(DA) = Ealo(XA)Z8 + [ 25,10} )ds).

One has:
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Theorem 4.5 (Boundary correction) Under (Ayp), (Dy), (Cy) and as-
suming additionally VIF (z)|o*V F(z)| is of class C2, then for A small enough
one has

u®(D?) — u(D) = o(VA).

4.4. Proofs. Note carefully that all the constants appearing in the error
analysis for the parabolic case have at most linear growth w.r.t the fixed
final time 7. Equation (4.3) allows to control uniformly the integrability of
these constants in our current framework. Thus, since the arguments remain
the same, we only give below sketches of the proofs.

Proof of Proposition 4.2. It is sufficient to prove that there exist constants
¢>0and C st. VA > 0, supasoPo[F(XA) > AAY?] < Cexp(—eA?).
Then any choice of ¢ < ¢ is valid. For x € D, we write

P =P, [F(X5) > AAYY

= D Ellasy, L o PF(XZ) 2 AANPFS ]
iEN* T i

where 72 = inf{s > t; 1 : X ¢ D}. From Lemma 3.1, we get
P < Cexp(—¢A?) Z P[4 > ti,l,Tt?_l < ti].
1EN*

Lemma 16 from [GMO04| remains valid under our current assumptions and
yields P < Cexp(—¢A?) Yien- E[1;a5,  (PIXZ € D] + Opu(A))]. From
(4.3), P,[m2 < oo] = 1. Since Y ;en+ Pu[72 > tio1] = ATIE,[72], we also
derive from (4.3) and the previous upper bound on P that P < C exp(—c¢A?)
which concludes the proof. [

Proof of Theorem 4.4. Similarly to the proof of Theorem 2.5 we suppose
first that w € Hs1g. The general case can be deduced as in the parabolic
case using suitable Schauder estimates, given in the final notes of Chapter 6
in [GT98], see also our Appendix.

In this simplified setting, we obtain

Err(A, g, f,k,x) £ — Z5Vg(mop (X)) VF(XA)F~(XA)+
(4.4) O 100a [A X ZH(Lu — ku + f)(XE)
iEN
(4.5) + ZEVu(XE) - VE(XE F (X2
(4.6) +O(IF~ (XS )IXE,, — X2D) + O(F~ (X2 )1
(4.7) +O(A*2) L O(|Whyyy — Wi PY9)) 1ir o a.
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The contribution (4.4) cancels owing to the PDE (4.2). The global contribu-
tion associated to the remainders (4.7) can be bounded by CA3/2+0/2(A=1E, [r2]).
From (4.3), this quantity is a O(AY/?t9/2) = o(v/A). For (4.6) write

(Z 1t,’<TA(‘F7(X$+1)HX$+1 - le‘) + ‘Fi(XISJﬁl)F)
€N

E E E
< CA Z 1ti<7’A 1TtA, lgtiﬂ < CA Z 1t¢<TA 1XtA,+1€D = CA17A<00
i€EN i i€EN ‘

where we used Lemma 16 from [GMO04] for the last inequality. Thus the
global contribution of this term is a O(A). We eventually derive the result
as in Section 2. [J

Theorem 4.5 can be proved as Theorem 2.4, using a sensitivity result
analogous to Theorem 2.2 in [CGKO06] for elliptic problems, see e.g. Simon
[Sim80].

5. Conclusion. In the parabolic setting, the error expansion, Theorem
2.3, and the associated correction, Theorem 2.4, have been obtained un-
der “usual” assumptions from a PDE viewpoint, see (Ag). A natural ques-
tion concerns the possible extension of these results to a hypoelliptic frame-
work for a stopped diffusion with time dependent coefficients. The main tool
needed is the smoothness of the law of the diffusion. For coeflicients that are
C' in time, this point is discussed in Cattiaux and Mesnager [CMO02] for a
cylindrical domain. Up to an extension of their results to time dependent
domains, our main results should in some sense remain valid. For the elliptic
case, the extension of Theorems 4.4, 4.5 to a hypoelliptic framework is open.
Indeed, we strongly exploited some controls on the Euler scheme in large
time, that are far from being easy to establish when the coefficients degen-
erate. This will concern further research. For PDE results in this framework,
see [Bon69] for instance.

To conclude, we note that the boundary correction procedure could be at
least formally extended to general Itd processes of the form dX; = b,dt +
otdWy. In that case, the smaller domain would be defined w by w replacing
o*(t,z)VF(t,z) by oy VF(t,X;). Even if our current proof relies on Marko-
vian properties, we conjecture that the correction should once again give
a o(v/A) independently of the Markovian structure. We mention that it is
already known [GMO06] that the error associated to the discrete sampling of
an exit time for a general Itd process yields an error of order VA .
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APPENDIX A: PROOF OF THEOREM 2.5 IN THE GENERAL
SETTING

In this section, we detail how the proof of Section 2 has to be modified
under the assumptions of Theorem 2.3, i.e. for ¢ € Hi.4 and without com-
patibility condition so that v € Hj,g.

A.l. Preliminary notation and controls. Introduce the parabolic
distance pd: for (s, ), (t,y) € D, pd((s,z), (t,y)) = max(|s — t|/2, |z — y|).
We also denote for a closed set A € D and (s,z) € D, pd((s,z),A) the
parabolic distance of (s, z) to A.

Under our current assumptions, 3C' > 0, V(s,z) € D,

[Hu(s,z)| + sup [05u(s, )] < Cpd((s, ), PD N {v > s}) 77,

o, |a|=3
o 92 u(s.2) — 2 u(t. )
o,lal|=3, (t,y)eD, (t,y)#(s,z) pd((S, x)7 (t7 y))g
< C(pd((s,2), PD N {v > s}) Apd((t,y), PD N {v > t})7>~7,
|Oyu(s, z) — Oyu(t, x)|
(t,z)SeuDI,) t#s |t - 5|(1+€)/2
(A1) < C(pd((s,z),PDN{v >s}) Apd((t,z),PD N{v >t})"2°.

These inequalities are obtained with the interior Schauder estimates for the
PDEs satisfied by the partial derivatives (0, u);c[1,q), see Theorem 4.9 in
[Lie96].

We first state an important proposition for the error analysis with possibly
explosive controls as in (A.1) for the derivatives. Namely, under our current
regularity assumptions, in order to perform a Taylor expansion we have to
work with interior points s.t. the whole segment between these points belongs
to the time space domain, with the distance to the boundary uniformly lower
bounded along the segment. The proposition states that this is the case if
the points are "far enough" from the side of D.

Proposition A.1 Assume D € Hy and take € €]0,1[. For all (t,x) € DN
Vap(ro/2) \Vap (2AY20=9)) where 1 is defined in Section 1.4.2,t < T — A
and Yy € B(z, AV20-)) Dy, A, one has

L(t,r,y,A) == [(t,2), (t + A,y)] € D,
V(s,z) € I.(t,x,y,A), F(s,z) > iF(t,x)

for A small enough.
The proof is postponed to the end of the Section.
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A.2. Error analysis. Recall from the previous proof of Theorem 2.3
that the main term to analyze is

A E A A A A
€y = ( Z ]'ti<TA |:u(t'i+17 W'ﬁti+1 (Xti+1 ))Zti+1 - u(t“ Xti )Ztl
0<t;<T—4A1l-¢

A A
+Zt7,‘ f(tZ; Xti )A:| (l(ti7X§)€VaD(2A1/2(175)) + l(ti,X$)€V3D(2A1/2(175))))1TT0>TA

A AL, A, A
+ e33 = €31 + €55 + €53,

where = denotes an equality for the expectation up to a Opy(A). The terms
62A1, eQAQ, €2A3 are respectively associated to the events for which the (¢;, Xﬁ)i
are far from the parabolic boundary of D, close to its side and close to its
top.

Control of 5. From Proposition A.1, Lemma 3.1 and (A.1), the point-
wise #-Holder controls for the third spatial derivatives are bounded by C
xF(t;, X£) 7%, as well the (1 4 6)/2-Hélder controls for the time deriva-
tive. Hence, adapting the previous analysis of Section 2, we get

E
|62A1| <C Z 1ti<TA (TO—Q—GOWtiH _ Wti|3+9 + A(3+9)/2)
0<t;<T

+ Lani/20-0 <p(e, x2)<ro2E (i X)Wy, — W, PP+ A(3+9)/2))-

The terms involving 527 readily give a O(AY2+9/2) = o(Al/?). For the
other terms, the key tool is the occupation times formula associated to some
sharp controls from [GM04] for the expectation of the local time (LY(F(., X2))) .
at level y of the continuous semi-martingale distance process (F (s, X2))s.
Indeed, an easy adaptation of the proof of Lemma 17 [GMO04] to our time
dependent domain framework gives

(A.2) E[LY

TATA

(F(, X)) < Oyl +VA).

Thus, one has

TATA

E
5] < CAMER </0 Lo, X2, Jel2at/20-2) vy F(#(1), X)) 7> Vdt + 1>

E e [T Ay-2-6
§ CA / + / (/0 1F(t,XtA)€[A1/2(1_E)737‘0/4}F(t7Xt )7 - dt+ 1)

E 3ro/4
< CA1/2+9/2 (/A1/2(1E)y29Lg"/\TA (F(, XA))dy + 1)7
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using Lemma 3.1 for the last but one inequality, and the occupation time
formula for F(t,X/) for the last one (recall that o is uniformly elliptic).
Finally using (A.2), one gets

3rg/4
\ezAﬂ < CAL/2+0/2 </A1/02(1_ )y_z_e(y + Al/z)dy + 1) < CAY/2+0e/2

Thus, €4} is a o(AY/?). This technique will also be used for e5).
Control of 5. A Taylor formula gives:

E - A
€2A2 = Z 1ti<TA,F(ti,XtA,)E]O,ZAI/%l*E)} {Vu(ti, Xﬁ)(F VF) (ti+17 th’+1)
0<t;<T—4Al-¢ !
+ (Zt?f(tz‘,Xt?)A + O(A1/2+9/2))} X Lorgsra i= €5y + €35,

The term e5); corresponds to the overshoot. The term e, can be controlled
with techniques similar to the ones used for e2}. Namely,

E TATA
’62A22’ < CA1/2+6/2(A_1/0 1(¢(t)7X¢(t))GVaD(QAI/Q(l_E))dt)

E 1/240/2 1 TArs
<CA /249/ (A7 /0 1(t,XtA)€VaD(3A1/2(17€))dt)

3A1/2(1—¢)

E
< CA1/2+9/2A—1/3A1/2(1E)LgATA(F(.,X_A))dy

E 3AL/2(1—¢)
< CA1/2+9/2A’1/ (Jy| + AYV2)dy < CAL/HH0/2=
- _3A1/2(1—¢) -

which for € small enough gives a o(A/?).

Control of e5y. A Taylor formula gives the overshoot component for the
time steps between T — 4A'~¢ and T, and a O(AY2%9/2=¢) = o(Al/?) for
the other terms. This completes the proof. [

Proof of Proposition A.1. Fix t € [0,T — A]. For all A € [0, 1], let

si=t+ A,z =z + ANy — x).
Since F' € Ha,
(A.3) F(s,2) >F(t,z) — CA+ XN(VF(t,x),y —2) — CA'"®,

Now (VF(t,z),y —2) = F(t+A,y) — F(t,z) + O(A'~%) which plugged into
(A.3) yields for A small enough

F(s,2) > F(t,z)(1 = \) + AF(t + A,y) — CA™=.

Also, since (t,z) & Vap(2A1/20-9)) then, for A small enough, F(t+A,y) >
F(t,z)/3. The proof is complete. [J
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