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We introduce a simple tool called the wavelet (or, ̺-wavelet) scheme. Wavelets deals with coordination among processes which are at most ̺ hops away of each other. We present a selfstabilizing solution for this scheme. Our solution requires no underlying structure and works in arbritrary anonymous networks, i.e., no process identifier is required. Moreover, our solution works under any (even unfair) daemon.

Next, we use the wavelet scheme to design self-stabilizing layer clocks. We show that they provide an efficient device in the design of local coordination problems at distance ̺, i.e., ̺-barrier synchronization and ̺-local resource allocation (LRA) such as ̺-local mutual exclusion (LME), ̺-group mutual exclusion (GME), and ̺-Reader/Writers. Some solutions to the ̺-LRA problem (e.g., ̺-LME) also provide transformers to transform algorithms written assuming any ̺-central daemon into algorithms working with any distributed daemon.

Introduction

Most of the distributed system are not fully connected networks. Each process is only directly connected with a subset of others, called neighbors. By this way, the communication links organize the network in a some graph topology which is either arbitrary or in accordance with some global topology constraints, e.g., acyclicity, constant degree, ring, grid, etc. Whatever the topology complexity, the design of a distributed task is simplified if it requires coordination mechanisms involving a process with its neighbors only, i.e., one hop away. Such distributed tasks are said to be local. Unfortunately, many distributed tasks requires coordination farther away than the immediate neighbors, i.e., ̺ hops away with ̺ > 1. If ̺ is equal to the diameter of the network D, then the task is said to be global.

In this paper, we consider problems requiring coordination among processes which are at most ̺ hops away of each other. We present solutions having the desirable property of self-stabilization. The concept of self-stabilization [START_REF] Ew Dijkstra | Self stabilizing systems in spite of distributed control[END_REF][START_REF] Dolev | Self-Stabilization[END_REF] is an efficient approach to design distributed systems to tolerate arbitrary transient faults. A self-stabilizing system, regardless of the initial states of the processors and initial messages in the links, is guaranteed to converge to the intended behavior in finite time.

Motivation and Related Works. Coordination at distance ̺ received a particular attention in recent works. There are various motivations for this issue. The first one consists in the design of Contributions. In this paper, we introduce a simple tool called the wavelet (or, ̺-wavelet) scheme. Wavelets deals with coordination among processes which are at most ̺ hops away of each other. Wavelets are related to the notion of wave (also called Total algorithm [START_REF] Tel | Total algorithms[END_REF][START_REF] Tel | Introduction to Distributed Algorithms[END_REF]).

In this paper, we present a self-stabilizing solution to the ̺-wavelet problem. There are several way to design the wavelet scheme depending on network properties. For instance, assuming a unique identifier on each process, in [START_REF] Danturi | Self-stabilizing philosophers with generic conflicts[END_REF], the authors provides a self-stabilizing ̺-wavelets scheme by combining a stabilizing Propagation of Information with Feedback (PIF) [START_REF] Bui | State-optimal snap-stabilizing PIF in tree networks[END_REF] over a selfstabilizing BFS spanning tree [START_REF] St Huang | A self-stabilizing algorithm for constructing breadth-first trees[END_REF][START_REF] Johnen | Memory-efficient self-stabilizing algorithm to construct BFS spanning trees[END_REF] rooted at each process of height equal to ̺.

By contrast, our solution requires no underlying structure and works in arbritrary anonymous networks, i.e., no process identifier is required. Our solutions is based on the unison in [START_REF] Boulinier | When graph theory helps self-stabilization[END_REF] and works assuming any distributed (even unfair) daemon.

Next, we use the wavelet scheme to design self-stabilizing layer clocks. The lower layer clock, in the sequel called the main clock, provides a wavelet stream. The upper layer clock, so called the slave clock, achieves a ̺-barrier synchronization mechanism, where no process p starts to execute its phase i + 1 before all processes in the ̺-ball centered in p have completed their phase i.

Finally, we show that the layer clock also provides an efficient underlying device in the design of various local resource allocation problems at distance ̺. This problems include Mutual Exclusion [START_REF] Dijkstra | Solution to a problem in concurrent programming control[END_REF], Group Mutual Exclusion [START_REF] Joung | Asynchronous group mutual exclusion[END_REF], and Readers-Writers [START_REF] Courtois | Concurrent control with readers and writers[END_REF]. Some of these solutions (e.g., ̺-LME) also provides transformers to transform algorithms written assuming any ̺-central daemon into algorithms working with any distributed daemon.

Paper Outline. The remainder of the paper is organized as follows. We formally describe notations, definitions, and the execution model in Section 2. We also state what it means for a protocol to be self-stabilizing. In Section 3, we define the wavelet scheme, present our solution for this problem in an arbitrary anonymous networks, and show how it can be used as an infimum computation at distance ̺. In Section 4, we introduce the self-stabilizing layer clocks and show how they can be used to solve ̺-local coordination problems. Finally, we make some concluding remarks in Section 5.

Preliminaries

In this section, we first define the model of distributed systems considered in this paper. We then define the execution model and various general definitions such as events, causal DAG, and Coherent Cuts. We also state what it means for a protocol to be self-stabilizing.

Distributed System

A distributed system is an undirected connected graph, G = (V, E), where V is a set of nodes-|V | = n, n ≥ 2-and E is the set of edges. Nodes represent processes, and edges represent bidirectional communication links. A communication link (p, q) exists iff p and q are neighbors. The distributed system is considered to be arbitrary and anonymous, i.e., we consider no particular topology nor unique identifiers on processes.

The set of neighbors of every process p is denoted as N p . The degree of p is the number of neighbors of p, i.e., equal to |N p |. The distance between two processes p and q, denoted by d (p, q), is the length of the shortest path between p and q. Let ̺ be a positive integer. Define V (p, ̺) as the set of processes such that d(p, q) ≤ ̺, i.e., the ̺-ball centered at p. D denote the diameter of the network.

The program of a process consists of a set of registers (also referred to as variables) and a finite set of guarded actions of the following form: < label >:: < guard > -→< statement >. Each process can only write to its own registers, and read its own registers and registers owned by the neighboring processes. The guard of an action in the program of p is a boolean expression involving the registers of p and its neighbors. The statement of an action of p updates one or more registers of p. An action can be executed only if its guard evaluates to true. The actions are atomically executed, meaning the evaluation of a guard and the execution of the corresponding statement of an action, if executed, are done in one atomic step.

Execution Model

The state of a process is defined by the values of its registers. The configuration of a system is the product of the states of all processes. Let a distributed protocol P be a collection of binary transition relations denoted by →, on Γ, the set of all possible configurations of the system. P describes an oriented graph S = (Γ, →), called the transition graph of P. A sequence e = γ 0 , γ 1 , . . . , γ i , γ i+1 , . . . is called an execution of P iff ∀i ≥ 0, γ i → γ i+1 ∈ S. A process p is said to be enabled in a configuration γ i (γ i ∈ Γ) if there exists an action A such that the guard of A is true in γ i . Similarly, an action A is said to be enabled (in γ) at p if the guard of A is true at p (in γ). We consider that any enabled processor p is neutralized in the computation step γ i → γ i+1 if p is enabled in γ i and not enabled in γ i+1 , but does not execute any action between these two configurations. (The neutralization of a processor represents the following situation: At least one neighbor of p changes its state between γ i and γ i+1 , and this change effectively made the guard of all actions of p false.)

We assume an unfair and asynchronous distributed daemon. Unfairness means that even if a processor p is continuously enabled, then p may never be chosen by the daemon unless p is the only enabled processor. The asynchronous distributed daemon implies that during a computation step, if one or more processors are enabled, then the daemon chooses at least one (possibly more) of these enabled processors to execute an action.

In order to compute the time complexity, we use the definition of round [START_REF] Dolev | Uniform dynamic self-stabilizing leader election[END_REF]. This definition captures the execution rate of the slowest processor in any computation. Given an execution e, the first round of e (let us call it e ′ ) is the minimal prefix of e containing the execution of one action of the protocol or the neutralization of every enabled processor from the first configuration. Let e ′′ be the suffix of e, i.e., e = e ′ e ′′ . Then second round of e is the first round of e ′′ , and so on.

Events, Causal DAG's and Cuts

Definition 2.1 (Events) Let γ 0 γ 1 .... be a finite or infinite execution. For all p ∈ V, (p, 0) is an event. Let γ t → γ t+1 be a transition. If the process p executes a guarded action during this transition, we say that p executes an action at time t + 1. The pair (p, t + 1) is said to be an event (or a pevent). Events so that the guard does not depend on the shared registers of any neighbor are said to be internal.

Definition 2.2 (Causal DAG)

The causal DAG associated is the smallest relation Y on the set of events such that the following two conditions hold:

1. Let (p, t) and (p, t ′ ) be two events such that t > t 0 , t ′ is the greatest integer such that t 0 ≤ t ′ < t. Then, (p, t ′ ) Y (p, t); 2. Let (p, t) and (q, t ′ ) be two events such that (p, t) is not an internal event, q ∈ N p , t > t 0 , and t ′ is the greatest integer such that t 0 ≤ t ′ < t. Then, (q, t ′ ) Y (p, t).

Denote the causal order on the sequence γ 0 γ 1 .... by . Relation is the reflexive and transitive closure of the causal relation Y. The past cone of an event (p, t) is the causal-DAG induced by every event (q, t ′ ) such that (q, t ′ ) (p, t). A past cone involves a process q iff there is a q-event in the cone. We say that a past cone covers V , iff every process q ∈ V is involved in the cone. The cover of an event (p, t), denoted by Cover(p, t), is the set of processes q covered by the past cone of (p, t).

Definition 2.3 (Cut)

A cut C on a causal DAG is a map from V to N, which associates a process p with a time t C p . We mix this map with its graph:

C = p, t C p , p ∈ V .
The past of C, denoted by ]←, C], is the set of events (p, t) such that t ≤ t C p . Similarly, we define the future of C, denoted by [C, →[, as the set of events (p, t)

such that t C p ≤ t. A cut is said to be coherent if (q, t ′ ) (p, t) and (p, t) p, t C p , then (q, t ′ ) q, t C q . A cut C 1 is less than or equal to a cut C 2 , denoted by C 1 C 2 , if the past of C 1 is included in the past of C 2 . If C 1 and C 2 are coherent cutes such that C 1 C 2 , then [C 1 , C 2 ] is the induced causal DAG defined by the events (p, t) such that p, t C 1 p (p, t) p, t C 2 p .A sequence of events is any segment [C 1 , C 2 ] where C 1 and C 2 are coherent cuts satisfying C 1 C 2 . Any event of C 1 is called an initial event.

Self-Stabilization

Let X be a set. A predicate P is a function that has a Boolean value-true or false-for each element x ∈ X . A predicate P is closed for a transition graph S iff every state of an execution e that starts in a state satisfying P also satisfies P . A predicate Q is an attractor of the predicate P , denoted by P ⊲ Q, iff Q is closed for S and for every execution e of S, beginning by a state satisfying P , there exists a configuration of e for which Q is true. A transition graph S is self-stabilizing for a predicate P iff P is an attractor of the predicate true, i.e., true ⊲ P .

Wavelets

In this section, we first define the problem considered in this paper, followed by our self-stabilizing solution designed for any anonymous networks. Next, we show that it provides an efficient tool to compute any infimum at distance ̺.

Problem Definition

Let us assume that there exists a special internal type of events called a decide event. Let ̺ be an integer. A ̺-wavelet is a sequence of events [C 1 , C 2 ] that satisfies the following two requirements:

1. The causal DAG induced by [C 1 , C 2 ] contains at least one decide event; 2. For each decide event (p, t), the past of (p,

t) in [C 1 , C 2 ] covers V (p, k).
A wave is the particular case where ̺ ≥ D, D is the diameter of the network. There are several way to implement the ̺-wavelet scheme if the processes have Id's, for instance using the PIF scheme on trees with height equal to ̺ rooted at each process. In the following subsection, we present a solution for the ̺-wavelet problem in anonymous networks. Next, we show how this solution provides a self-stabilizing infimum computation in a ̺-ball.

Solution Description

Our solution is based on the unison developed in [START_REF] Boulinier | When graph theory helps self-stabilization[END_REF], which stabilizes in O(n) rounds in general graphs. Note that in a tree, we could use the protocol proposed in [START_REF] Boulinier | Toward a time-optimal odd phase clock unison in trees[END_REF]. It gives the better stabilization time complexity of at most D rounds. In the sequel, we first borrow some basic definitions and properties introduced in [BPV04], followed by our solution and its correctness proof.

Unison

Basic Definitions and Properties. Let Z be the set of integers and K be a strictly positive integer. Two integers a and b are said to be congruent modulo K, denoted by a 

≡ b[K] if and only if ∃λ ∈ Z, b = a + λK. We denote ā the unique element in [0, K -1] such that a ≡ ā[K]. min(a -b, b -a) is a distance on the torus [0, K -1] denoted by d K (a, b) . Two integers
⊖ a def = if a ≤ l b then b -a else -a -b. If a 0 , a 1 , a 2 , . . . a p-1 , a p is a sequence of integers such that ∀i ∈ {0, . . . , p -1}, a i is locally comparable to a i+1 , then S = p-1 i=0 (a i+1 ⊖ a i ) is
the local variation of this sequence.

Define X = {-α, . . . , 0, . . . , K -1}, where α is a positive integer. Let ϕ be the function from X to X defined by: ϕ(x) def = if x ≥ 0 then x + 1 else x + 1. The pair (X , ϕ) is called a finite incrementing system. K is called the period of (X , ϕ). Let tail ϕ = {-α, . . . , 0} and ring ϕ = {0, . . . , K -1} be the sets of "extra" values and "expected" values, respectively. The set tail * ϕ is equal to tail ϕ \ {0}. A reset on X consists in enforcing any value of X to -α. We assume that each process p maintains a clock register p.r using an incrementing system (X , ϕ). Let γ be a system configuration, we define the predicate W U as follows: W U (γ) def ≡ ∀p ∈ V, ∀q ∈ N p : (p.r ∈ ring ϕ ) ∧ (|p.rq.r| ≤ 1) in γ. In the remainder, we will abuse notation, referring to the corresponding set of configurations simply by W U .

In W U , the clock values of neighboring processes are locally comparable. In the sequel of the paper, we need the three following definitions:

Delay. The delay of a path µ = p 0 p 1 . . . p k , denoted by δ µ , is the local variation of the sequence p 0 .r, p 1 .r, . . . , p k .r, i.e.,

δ µ = k-1 i=0 (p i+1 .r ⊖ l p i .r) if k > 0, 0 otherwise (k = 0).
Intrinsic Delay. The delay between two processes p and q is intrinsic if it is independent on the choice of the path from p to q. The delay is intrinsic iff it is intrinsic for every p and q in V . In this case, and at time t, the intrinsic delay between p and q is denoted by δ (p,q) . WU 0 . The predicate W U 0 is true for a system configuration γ iff γ satisfies W U and the delay is intrinsic in γ.

Unison Definition. Assume that each process p maintains a register p.r ∈ χ. The self-stabilizing asynchronous unison problem, or simply the unison problem, consists in the design of a protocol so that the following properties are true in every execution [START_REF] Boulinier | Synchronous vs. asynchronous unison[END_REF]:

Safety : W U is closed. Synchronization:
In W U , a process can increment its clock p.r only if the value of p.r is lower than or equal to the clock value of all its neighbors. No Lockout (Liveness): In W U , every process p increments its clock p.r infinitely often. Convergence: Γ ⊲ W U .

The following guarded action solves the synchronization property and the safety:

∀q ∈ N p : (q.r = p.r) ∨ (q.r = ϕ(p.r)) -→ p.r := ϕ(p.r)
The predicate W U 0 is closed for any execution of this guarded action. Moreover, for any execution starting from a configuration in W U 0 , the no lockout property is guaranteed. Generally, this property is not guaranteed in W U .

Protocol

Variable and algorithm description. The protocol is shown in Algorithm 1. For each process p, let V (p, ̺) be the set of processes which are cooperating (or conflicting) with p. Each process q ∈ V (p, ̺) is at most k-hops away from p -d(p, q) ≤ ̺. Let (χ, ϕ) be an incrementing system, such that χ = {-α, .., 0, 1, ..., ̺K -1}. In [START_REF] Boulinier | When graph theory helps self-stabilization[END_REF], it is shown that:

1. α greater than or equal to T G ensures the convergence property of the unison, where T G is the size of the greatest hole of G, i.e., the length of the longest chordless cycle of G if G contains cycle, 2 otherwise (G is acyclic); 2. ̺K greater than C G ensures the liveness property of the unison in W U 0 , where C G is the cyclomatic characteristic of G, i.e., the smallest length of the longest cycle in the set of all the cycle basis of G.

Note that T G is upper bounded by n and C G is upper bounded by min(n, 2D). We assume that the above two conditions are satisfied.

Algorithm 1 (SS -W S) The Self-Stabilizing Wave Stream for p

Constant and variable:

Np: the set of neighbors of process p; p.r ∈ χ;

Boolean Functions: ConvergenceStepp ≡ p.r ∈ tail * ϕ ∧ (∀q ∈ Np : (q.r ∈ tailϕ) ∧ (p.r ≤ tailϕ q.r)); LocallyCorrectp ≡ p.r ∈ ringϕ ∧ (∀q ∈ Np, q.r ∈ ringϕ ∧ ((p.r = q.r) ∨ (p.r = ϕ (q.r)) ∨ (ϕ (p.r) = q.r))); N ormalStepp ≡ p.r ∈ ringϕ ∧ (∀q ∈ Np : (p.r = q.r) ∨ (q.r = ϕ(p.r))); ResetInitp ≡ ¬LocallyCorrectp ∧ (p.r ∈ tailϕ); Actions: Analysis of Algorithm 1 in W U 0 . By definition of W U 0 , the delay is intrinsic-refer to Subsection 3.2.1. It defines a total preordering on the processes in V , so called precedence relationship.

N A : N ormalStepp -→ << CS 1 >> ; if p.r ≡ ̺ -1[̺] then
given a configuration in W U 0 , the absolute value of the delay between two processes p and q is equal to or less than the distance d(p, q) in the network.

We will now prove that Algorithm 1 provides a ̺-wavelet scheme. We will develop a proof technique called lifting. The idea behind this term is to interpret any possible configuration in W U 0 by another such that the register values are in N, the set of the positive integers. In this way, the precedence relationship becomes the natural order on N. It is possible because delay is intrinsic.

Consider γ 0 γ 1 ... be a maximal execution starting in W U 0 . Let p 0 be a minimal process, according to the precedence relationin γ 0 . Let ⊥ 0 = p 0 .r at time 0. Denote the value of a register r of a process p in the state γ t by p t .r. Similarly, δ t (p,q) denotes the delay between p and q in γ t . For each process p ∈ V , we associate the virtual register p.r. For the state γ 0 , we initiate this virtual register by the instruction p.r := ⊥ 0 + δ 0 (p 0 ,p) . During the execution, for each transition γ t → γ t+1 the instruction p.r := p.r + 1 holds if and only if p.r := p.r + 1 holds during the same transition. Denote by t p,k the smallest time such that p.r := k. Since the delay is bounded by D, if k ≥ ⊥ 0 + D, then t p,k is well defined and the cut C k = {(p, t p,k ), p ∈ V } is well defined on the network.

We now need to prove that for every k ≥ ⊥ 0 + D, the cuts C k are coherent. We first claim the following obvious lemma: Lemma 3.1 If (p, t) Y (q, t ′ ) then: q t ′ .r ∈ p t .r, p t .r + 1 Inductively, if (q 0 , t 0 ) Y (q 1 , t 1 ) Y (q 2 , t 2 ) ... Y (q i , t i ) then: q t i i .r ∈ q t 0 0 .r, ..., q t 0 0 .r + i

From the Lemma 3.1, if (q, t) (p, t p,k ) then (q, t) (q, t q,k ). It follows:

Lemma 3.2 For every k ≥ ⊥ 0 + D the cut C k is coherent. Lemma 3.3 Let k ≥ ⊥ 0 + D. If (p, t) is an event in the interval [C k , →[, then V (p, p t .r -k) ⊂ Cover(p, t).
Proof. The statement holds for the initial events of [C k , →[. Let A be the set of events (p, t) in [C k , →[ such that V (p, p t .rk) ⊂ Cover(p, t) does not hold. We assume that A is not empty, let (q, τ ) a minimal event in A according to . Let ̺ = q τ .rk, and let p 1 ∈ V (q, ̺). If p 1 = q then p 1 ∈ Cover(q, τ ), otherwise there exists q 1 ∈ N q such that p 1 ∈ V (q 1 , ̺ -1). (q, τ ) is not an initial event, so q 1 ∈ N τ q and there exists τ q 1 such that (q 1 , τ q 1 ) Y (q, τ ). By the minimality of (q, τ ), V (q 1 , ̺ -1) ⊂ Cover(q 1 , τ q 1 ) holds. So, V (q 1 , ̺ -1) ⊂ Cover(q, τ ). Thus, p 1 ∈ Cover(q, τ ). Therefore, (q, τ ) is not in A. Thus A =∅, and the lemma is proved. P

As a corollary of Lemma 3.3, the following result holds :

Theorem 3.4 Let k ≥ ⊥ 0 + D and ̺ be a positive integer. Then, [C k , C k+̺ ],
with C k+̺ as the set of decide events, is a ̺-wavelet.

Infimum Computation

Problem definition. In [START_REF] Tel | Total algorithms[END_REF][START_REF] Tel | Introduction to Distributed Algorithms[END_REF], the author introduces the infimum operators. An infimum ⊕ over a set S, is an associative, commutative and idempotent (i.e. x ⊕ x = x) binary operator.

If P = {a 1 , a 2 , ..., a r } is a finite part of (S) and a 0 ∈ (S) then, from the associativity, ⊕P means a 1 ⊕ a 2 ⊕ ... ⊕ a r . So, a 0 ⊕ P = a 0 ⊕ a 1 ⊕ a 2 ⊕ ... ⊕ a r . Such an operator defines a partial order relation ≤ ⊕ over S, by x ≤ ⊕ y if and only if x ⊕ y = x. We assume that S has a greatest element e ⊕ , such that x ≤ ⊕ e ⊕ for every x ∈ S. Hence (S, ⊕) is an Abelian idempotent semi-group with e ⊕ as identity element for ⊕.

Theorem 3.5 ([Tel88, Tel04]) A wave can be used to compute an infimum.

Self-Stabilizing Infimum Computation in a ̺-ball. In order to add a initializing step, we assume δ = ̺ + 1. We consider the following problem: at time C U δ each register p.v 0 is initialized during the critical section << CR2 >>, precisely when the register p.r takes the value U Cδ. At the end of each phase Φ U = [C U δ , C U δ+δ-1 ] , each process p needs to known the infimum of the registers q.v 0 of every q in V (p, ̺).

To reach the objective, we define for each process p two added registers p.v 1 and p.v 2 . These two registers are initialized at the date C U δ during the critical section << CR2 >>, by the value p.v 0 .

For k ∈ {1, 2, ..., ̺}, at the date C U δ+k , the action << CS1 >> is defined by: p.v 1 := p.v 2 ; p.v 2 := p.v 0 q.v ω(q) , q ∈ N p , with, if q.r = p.r then ω (q) = 2, and if q.r = p.r + 1 then ω (q) = 1. Proposition 3.6 For p ∈ V and k ∈ {1, ..., ̺}, at the date C U δ+k , both equalities hold:

(1) p.v 1 = {q.v 0 , q ∈ V (p, k -1)}, and (2) p.v 2 = {q.v 0 , q ∈ V (p, k)}.

Proof.

At C U δ , any process p satisfies p.v 1 = p.v 0 and p.v 2 = p.v 0 , it is the initializing step. Let A the set of events in Φ U = [C U δ+1 , C U δ+̺ ], for which the proposition is not true.

Assume by contradiction that A is not empty. Let (p, t) a minimal event in A. Let k ∈ {1, 2, ..., ̺} such that (p, t) ∈ C U δ+k . There exists t 0 such that (p, t 0 ) ∈ Φ U and (p, t 0 ) (p, t). We have p t .v 1 = p t 0 .v 2 = and p t 0 .v 2 = {q.v 0 , q ∈ V (p, k -1)}. This equality is true even if k = 1. Now, p t .v 2 = p.v 0 q tq .v ϕ(q) , q ∈ N p . From the minimality of the event (p, t), the events (q, t q ), where t q < t, are not in A and are in [C U ̺ , C U ̺+̺-1 ]. So, p.v 0 q tq .v ϕ(q) , q ∈ N p = {q.v 0 , q ∈ V (p, k)}. We obtain a contradiction. P

As a corollary, we obtain the expected theorem:

Theorem 3.7 On the cut C U δ+̺ , p.v 2 contains the infimum of the registers q.v 0 in the ̺-ball centered in p, according to the phase

U = [C U δ , C U δ+̺ ].

Applications

In this part, we show how to synchronize a self-stabilizing layer clock. The main clock defines a wavelet stream. Using the wavelet stream, we design with the slave clock a barrier synchronization at distance ρ. We then show how to use this layer clock to tackle efficiently many local synchronization problems at distance ρ.

Self-stabilizing Layer Clock

The idea is to manage the ̺-wavelet stream. A clock organizes this stream. The wavelets are used to compute concurrently local infimum on each ̺-ball. For each process p, once the infimum computed, a second clock defines a delay notion on the network. This delay is a total preordering useful to schedule the critical section enter of each process. More formally, we define two clocks, the first clock C 1 (the master clock) and a second clock C 2 (the slave clock). The incrementing systems are respectively (χ 1 , ϕ 1 ) and (χ 2 , ϕ 2 ). The behavior of the slave clock is scheduled by the first clock and a predicate cond. The predicate cond depends of the problem solved. To distinguish the two clocks, all the registers are subscripted by 1 or 2 respectively for the master clock and the slave clock. The predicates are superscripted by 1 or 2. For instance, the register of the master clock is denoted by r 1 and the register of the slave clock is denoted by r 2 , and the predicate N ormalStep 1 p is defined on the register r 1 of the process p. The predicate N ormalStep 2 p is defined on the register r 2 of the process p. We define in the same way W U 1 , W U 2 , and W U = W U 1 ∩ W U 2 . The stabilization of the layer clock is to guarantee Γ £ W U.

When the system is stabilized, the schedule of the slave clock of a process p is defined in << CS2 >> by N ormalStep 2 p ∧ cond → << CS2 >>; p.r 2 := ϕ 2 (p.r 2 )

We now generalize the above requirements by limiting their effect to the conflict processes which are at ̺-hops away of any given process p. Obviously, if ̺ = D, then the problem comes down to the above requirements. If ̺ = 1, then the set of processes which are conflicting with a process p is reduced to the neighboring processes of p. The most popular of this problems is the dining philosopher problem, also called the Local Mutual Exclusion (LME) problem.

̺-Local mutual exclusion:

A is the set of processes and R = (a, b) ∈ A 2 , d (a, b) > ̺ or a = b ̺-Local Readers-Writer: A is the set of 2-uples {(p, r) , p ∈ V, r ∈ {read, write}}, and R is defined by the safety condition: In every execution, if two ̺-neighboring processes execute their critical section simultaneously, then both are executing a read operation. ̺-Local Group Mutual Exclusion: R is a equivalence relationship over a set of resources . R is defined by the safety condition: In every execution, if two ̺-neighboring processes execute their critical section simultaneously, then both are using resources in the same equivalence class.

The ̺ generic version called the ̺-Local Resource Allocation (̺-LRA) is specified as follows: R is a general relationship over a set of resources A. The safety condition is: In every execution, if two ̺-neighboring processes execute their critical section simultaneously, then both are using resources whose are compatible.

Self-Stabilizing Solutions

Due to the lack of space, the correctness proofs of this section are left in the appendix. ̺-LRA. Each process p maintains three registers p.v : Σ where Σ is any data type, and the registers p.res 1 : χ 2 and p.res 2 : χ 2 × Σ. The content of p.v is the asked resource. Let us assume that a total order is defined on Σ. We reach the two fields of the register p.res i by p.res i .r and p.res i .v respectively, with i ∈ {1, 2}. We define a ̺-local ordering on χ 2 × Σ by: (r, v) ◭ (r ′ , v ′ ) ⇔ (r < l r ′ ) or (r = r ′ and v v ′ ) Recall that < l is defined by the delay, which is a total preordering. This preordering being computable at distance ̺. Define the associated ̺-local infimum in the following way:

(r, v) ⊕ (r ′ , v ′ ) = if (r, v) ◭ (r ′ , v ′ ) then (r, v) else (r ′ , v ′ )
Define the macros Initialization and Computation, respectively by: Initialization ≡ p.res 1 := (p.r 2 , p.v) ; p.res 2 := (p.r 2 , p.v) Computation ≡ p.res 1 := p.res 2 ; p.res 2 := (p.r 2 , p.v) q.res ω(q) , q ∈ N p with, if q.r 2 = p.r 2 then ω (q) = 2 and if q.r 2 = p.r 2 + 1 then ω (q) = 1. The preprocessing of a local infimum designates a winner q in the ̺-ball centered in p. It is important to see that this process is elected by p, and perhaps it is not elected by all the processes in the ̺-ball centered in q. The condition cond depends of the solved problem, it is the disjunction: (p.r 2 , p.v) = p.res 2 or cond 2 . Where (p.r 2 , p.v) = p.res 2 means that p is elected in the ̺-ball centered in p, the condition cond 2 is there to raise concurrency, it depends of the solved problem. If p is not elected by the ̺-local infimum calculation and cond 2 is true, the incrementation of the register may to be not wanted. The condition cond 1 of the incrementation is: p.r 2 = p.res 2 .r.

̺-LME. Assume that each process p has an identifier denoted by p.id. The value of p.id is in a total ordered set S, for instance the integers. In fact, the identities must be only a 2̺-distance network coloring. That is to say that every node must be colored such that two vertices lying at distance less than or equal to 2̺ have not the same color. We define for each process p the register p.v as p.id. The couple (p.r 2 , p.id) is defined for each process p. The condition cond 2 is defined by f alse and thus cond 1 ≡ true.

Definition 4.5 ̺-LME has a fairness index of k, if in any computation, between any two consecutive critical section execution of a process, any other process can execute its critical section at most k times. The time-service of ̺-LME is the maximal number of critical executions by other processes between two successive executions of the critical section by any process.

Our ̺-LME algorithm is a barrier synchronization at distance ̺. We deduce:

Proposition 4.6 For the ̺-LME algorithm, the fairness index is equal to D ̺ , and the service time is upper bounded by n(n-1) ̺ .

From the definition of a phase [START_REF] Boulinier | When graph theory helps self-stabilization[END_REF], and because Our solution for the ̺-LME problem provide a good technique to reduce the service time and the fairness index of LM E. The price to pay is the increase of the communications between processes. ̺-Group mutual exclusion. Let Σ be the set of resources. Let us assume that the preordering is defined on Σ -an arbitrary ordering, for instance a priority ordering. The binary relationship on A, defined by: x ≍ y iff x y and y x, is an equivalence relationship. The equivalence classes are the groups. The set of groups is the quotient Σ ≍ . p.v takes its values in Σ ≍ . An other way is to say that is an total ordering on the groups. To raise concurrency, if p asks a resource a and if the elected process at distance ̺ requests a resource in the same group, p enters in critical section. The predicate cond is defined as: p.v = p.res.v.

K 1 is in O (̺D) ⊂ O D 2 , K 2 is in O (D), respectively. So, K 1 K 2 is in O D 3 . Thus:
Note that we assume that there is no identity on the processes. However, we make the additional assumption that there is a total ordering on the resources. For instance, Local Mutual Exclusion problem is an instance of Group Mutual Exclusion where the resources are the processes. So, there is an ordering on the processes, which equivalent to define process identities.

̺-Readers-Writer. We assume that each process has an identity denoted by p.id. Each process has three possible requests: the process does not ask anything, the process asks to read, the process asks to write. This requests are symbolized respectively by N, R, W . In order to be able to compare two registers r at distance ̺, we assume that K ≥ 4̺ + 1. For each ̺-ball B, the local ordering ≤ l defines a total preordering on the registers r of processes in B. If a process p asks N or R then the register p.v is initialized by the value F . If p asks W then p.v is initialized by the value W p.id) . The ordering on Σ is defined by: v v ′ def ≡ (v = F and v ′ = F ) or (v = W Id and v ′ = F ) or (v = W Id and v ′ = W Id ′ with Id ≤ Id ′ )

For each process p, the predicate cond is defined by matching on p.res as follows:

(r, F ) when r = p.r 2 → true | (r, W id) when r = p.r 2 and p requests N → true | (r, W id) when r = p.r 2 and (p.r 2 , p.id) = (r, id) → true | → false

Conclusion

We presented a self-stabilizing algorithm to solve the ̺-wavelet scheme in arbritrary anonymous networks. Wavelets deals with coordination among processes which are at most ̺ hops away of each other. The proposed algorithm works under any (even unfair) daemon. Using the wavelet scheme, we described a self-stabilizing layer clocks protocol and showed that it provides an efficient device in the design of local coordination problems at distance ̺, i.e., ̺-barrier synchronization and ̺-local resource allocation (LRA) such as ̺-local mutual exclusion (LME), ̺-group mutual exclusion (GME), and ̺-Reader/Writers. Some solutions to the ̺-LRA problem (e.g., ̺-LME) allow to transform algorithms written assuming any ̺-central daemon into algorithms working with any distributed daemon.

  a and b are said to be locally comparable if and only if d K (a, b) ≤ 1. We then define the local order relationship ≤ l as follows: a ≤ l b def ⇔ 0 ≤ ba ≤ 1. If a and b are two locally comparable integers, we define b ⊖ a as follows: b

  << CS 2 >> ; p.r := ϕ(p.r); CA : ConvergenceStepp -→ p.r := ϕ(p.r); RA : ResetInitp -→ p.r := α (reset);

  Proposition 4.7 (1) During one phase, the number of link-communications is equal to 2 (̺ + 1) |E|, where |E| is the number of edges in the network. (2) The stabilization time complexity of ̺-LME algorithm is in O (n) rounds, and (3) The space complexity of ̺-LME algorithm is in O (log D).

Predicate cond is independent of the register p.r 1 . It is this predicate which expresses the distance ̺ synchronization problem solved, while the procedures Initialization and Computation are scheduled by the wavelet and provide a preprocessing used by cond. The procedures Initialization and Computation depends on the problem to be solved to the layer clock. We give some instances for different problems later.

We define the predicate N ormalStep p ≡ N ormalStep 1 p ∧ LocallyCorrect 2 p .

Algorithm 2 (SS -DC) Self-stabilizing Layer Clock

Constant and variable: Np: the set of neighbors of the process p; p.r1 ∈ χ1; p.r2 ∈ χ2; Boolean Functions: For clock i ∈ {1, 2}:

ConvergenceStep i p ≡ p.ri ∈ tail * ϕ i ∧ (∀q ∈ Np : (q.ri ∈ tailϕ i ) ∧ (p.ri ≤ tailϕ i q.ri)); LocallyCorrect i p ≡ p.ri ∈ ringϕ i ∧ ∀q ∈ Np, q.r ∈ ringϕ i ∧ ((p.ri = q.ri) ∨ (p.ri = ϕi (q.ri)) ∨ (ϕi (p.ri) = q.ri)); 

Local Comparison in a ̺-ball

In the network, when the layer clocks are stabilized, the delay between two processes according to the slave clocks defines a total preordering on the processes. Unfortunately this delay is a global notion. The problem is to find a condition such that for two processes in the same ̺-ball, it is possible to calculate directly the delay with only the knowledge of the r 2 register values, and so to decide which process precedes the other according to the delay. To organize comparison between two processes lying in a same ball of radius equal to ̺, it is sufficient to be able to compare the slave clock registers of any two processes at distance less than or equal to 2̺. By this way, in each ̺-ball B, we will be able to define a total preordering among the processes in B by comparison of the values of the registers r 2 of the processes. Of course we want that this total preordering is the same than the preordering defined by the delay. In order to reach this objective, we extend the locally comparability defined at one hop (refer to Section sub:unison) to the distance 2̺. For the clarity, we must be more formal: A local order on a set χ is an antisymmetric and reflexive binary relation on χ. Let χ = {0, ..., K -1} such that K ≥ 4̺ + 1. Let a and b be two elements of χ. Let us assume that d K (a, b) ≤ 2̺. Let us define now a local ordering ≤ l by : a

Lemma 4.3 Let p and q be two processes satisfying d (p, q) ≤ 2̺ . If a = p.r 2 and b = q.r 2 then the delay ̺ p,q is equal to ba if 0 ≤ ba ≤ 2̺ and is equal to -ab otherwise.

Proof.

Since d (p, q) ≤ 2̺, we have ̺ p,q ∈ {-2̺, ..., 2̺}. Moreover,

From this lemma, we access to the delay in each ̺-ball B. So our problem is solved. In the following section, we assume that

These assumptions ensure that the layer clocks are self-stabilizing, that the main clock is calibrate to defined a ̺-wave stream , and that delay defined by the slave clocks is computable at distance 2̺ with the only knowledge of the slave clock registers r 2 .

̺-Local Resource Allocation

Problem Definitions

The Resource Allocation problem deals with resource sharing problems among the processes. The resource allocation allows processes to access resources, (i.e., their critical sections) concurrently, provided the resources are not conflicting with each other. The specification of the general resource allocation problem is defined as follows:

Safety: if a processor requests a resource in A to enter in critical section, then its request is eventually satisfied and it enters the critical section. Fairness: In every execution, if two processes execute their critical section simultaneously, then both are using resources whose are compatible.

Most of the problem requiring coordination among process sharing some resources are particular instances of the graph of compatibility, and then, particular safety requirements. For instance, the following well-known problems are particular instances of the resource allocation problem:

Mutual exclusion: A is the set of processes and R = {(a, a) , a ∈ A} . The safety condition is: In every execution, no two processes execute their critical section simultaneously. Readers-Writer: A is the set of 2-uples {(p, r) , p ∈ V, r ∈ {read, write}}, and R is defined by the safety condition: In every execution, if two processes execute their critical section simultaneously, then both are executing a read operation. Group Mutual Exclusion: R is a equivalence relationship over a set of resources A. R is defined by the safety condition: In every execution, if two processes execute their critical section simultaneously, then both are using resources in the same equivalence class.

A Self-stabilization of the layer clock

We apply the convergence stair method [START_REF] Dolev | Self-Stabilization[END_REF].

Lemma A.1 The predicates W U 1 , W U 2 and W U are closed.

Proposition A.2 The clock C 1 stabilizes to W U 1 .

Proof.

Let e = γ 1 .....γ k .... be a maximal execution. Assume that e is finite. Then, the last state γ l is a deadlock. So, the clock C 1 is stabilized, otherwise there should exist a process for which CA 1 or RA 1 is enable. We suppose now that e is not finite. The projection e 1 of e on the registers r 1 is an execution of the clock C 1 . If e 1 is finite, then in the last state C 1 is stabilized for the same reasons than above. If e 1 is not finite, then e 1 is an infinite execution of C 1 , so from [START_REF] Boulinier | When graph theory helps self-stabilization[END_REF] there is a state which is in W U 1 . P

Proof.

Let e = γ 1 .....γ k .... be a maximal execution. We can assume from Proposition A.2 that γ 1 ∈ W U 1 . So while C 2 is not stabilized, C 1 does not execute any action. So the projection e 2 of e on the registers r 2 is an execution of the clock C 2 . If e 2 is finite, then in the last state C 2 is stabilized otherwise there should exist a process for which CA 2 or RA 2 is enable. . If e 2 is not finite, then e 2 is an infinite execution of C 2 , so from [START_REF] Boulinier | When graph theory helps self-stabilization[END_REF] there is a state which is in W U 2 . P From Proposition A.2 and Proposition A.3 we deduce the corollary:

The layer clock stabilizes to W U .

Proposition A.5 (No starvation) Once stabilized, the clock C 1 increments infinitely often.

Proof. Let e = γ 1 .....γ k .... be a maximal execution. We can suppose from Corollary A.4 that γ 1 ∈ W U . Assume that for a process p, action N A is executed only a finite number of time. Then the clock of each process is executed only a finite time, so e is finite. But in the last state of e, minimal processes according to the precedence relationship are enable, which is a contradiction.

While C 2 is not stabilized, C 1 does not execute any action. So the projection e 2 of e on the registers r 2 is an execution of the clock C 2 . If e 2 is finite, then in the last state C 2 is stabilized otherwise there should exist a process for which CA 2 or RA 2 is enable. If e 2 is not finite, then e 2 is an infinite execution of C 2 . From [START_REF] Boulinier | When graph theory helps self-stabilization[END_REF] there is a state which is in W U 2 . P B Correctness Proofs of Subsection 4.3.2 ̺-LRA. In order to proof liveness and no lockout property, we lifts the main clock, using the lifting construction defined in section 3.2.2. We use the same notation, except that the register r becomes the register r 1 . As in Section 3.3, δ = ρ + 1.

there is at least one process which is elected and which increments.

Proof.

The set of processes is finite. So there is an infimum (p.r 2 , p.v) among the processes, according to the total order relationship . p is elected during the phase [C U δ , C U δ+̺ ] and p.r 2 increments. P Lemma B.2 (Liveness) Every process has the privilege infinitely often.

Proof. It is sufficient to prove that each process p has the privilege at least one time. Assume that a process p has never the privilege. Let P ot p = q∈V δ (p,q) be the some of the delays from p to each q in V . This quantity is an integer, and from the assumption that p has never the privilege, P ot p is strictly increasing. So P ot p is not upper bounded. But this quantity is upper bounded by |V | D. This is a contradiction. We deduce the lemma. P ̺-LME. From Section 4.3, both the no lockout and liveness properties are verified. It remains to show the safety property.

Lemma B.3 (Safety) If the process p has the privilege, then no process at distance less than or equal to ̺ from p has the privilege simultaneously.

Proof.

Assume that p has the privilege in the phase [C U δ , C U δ+̺ ], it enters critical section when its register satisfies p.r 1 = U δ + ̺. Any other process q at distance less than or equal to ̺ from p has not the privilege in the phase [C U δ , C U δ+̺ ]. So if q ∈ B ̺ (p) has the privilege simultaneously, it does not have the privilege in the same phase. The absolute value of the delay, according to the first clock, between the two processes is less than or equal to ̺. But when p enters critical section and while p is in critical section: q.r 1 ∈ {U δ + ̺ -̺, ..., U δ + ̺ + ̺} = {U δ, ..., U ̺ + 2̺}, and U δ + 2̺ < (U + 1) δ + ̺. We deduce that q can enter in critical section simultaneously if and only if q.r 1 = U δ + ̺, thus in the same phase as p, which leads to a contradiction. P ̺-Group mutual exclusion. Again, from Section 4.3, both the no lockout and liveness properties are verified. The next lemma directly follows from the construction of cond:

Lemma B.4 (Safety) If the process p and the process q have the privilege simultaneously and are at distance less than or equal to ̺, the requested resources are in the same group.