N
N

N

HAL

open science

Planning Robust Temporal Plans A Comparison
Between CBTP and TGA Approaches

Yasmina Abdeddaim, Eugene Asarin, Matthieu Gallien, Félix Ingrand,

Charles Lesire, Mihaela Sighireanu

» To cite this version:

Yasmina Abdeddaim, Eugene Asarin, Matthieu Gallien, Félix Ingrand, Charles Lesire, et al.. Planning
Robust Temporal Plans A Comparison Between CBTP and TGA Approaches. International Confer-
ence on Automated Planning and Scheduling, Sep 2007, Providence, Rhode Island, United States.
pp-2-9. hal-00157935

HAL Id: hal-00157935
https://hal.science/hal-00157935

Submitted on 21 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00157935
https://hal.archives-ouvertes.fr

Planning Robust Temporal Plans
A Comparison Between CBTP* and TGA' Approaches?

Y. Abdeddaim™, E. Asarin'f, M. Gallien**, F. Ingrand**, C. Lesire**, M. Sighireanu
** LAAS/CNRS, University of Toulouse, France
T LIAFA, University of Paris 7 and CNRS, France
1 ESIEE Paris, COSI Laboratory, France

Abstract

Planning for real world applications, with explicit temporal
representation and a robust execution is a very challenging
problem. To tackle it, the planning community has proposed
a number of original and successful approaches. However,
there are other paradigms “outside” the Automated Planning
field which may prove to be successful with respect to this ob-
jective. This paper presents a comparison of two “planning”
approaches dealing with temporal and/or discrete uncertain-
ties and with a strong emphasis on robust execution. The first
approach is based on chronicles and constraint satisfaction
techniques; it relies on a causal link partial order temporal
planner, in our case IKIEl. The second approach is based on
timed game automata and reachability analysis, and uses the
UPPAAL-TIGA system. The comparison is both qualitative
(the kind of problems modeled and the properties of plans ob-
tained) and quantitative (experimental results on a real exam-
ple). To make this comparison possible, we propose a general
scheme to translate a subset of IKIEI planning problems into
UPPAAL-TIGA game-reachability problems. A direct conse-
quence of this automated process would be the possibility to
apply validation and verification techniques available in the
timed automata community.

Introduction

Decisional autonomous embedded systems are, by their very
nature, real-time programs. Automated planning is one of
the decisional processes required on these systems. Al-
though the corpus of research is large for untimed plan-
ning approaches, the results are still modest when it comes
to properly handle time and resources. Nevertheless, some
planning solutions dealing with time and resources have
been proposed and demonstrated (Chien 2006; Frank &
Jénsson 2003; Lemai & Ingrand 2004).

On the other hand, the validation and verification
field proposes techniques for the synthesis of timed con-
trollers (Maler, Pnueli, & Sifakis 1995; Asarin & Maler
1999; Abdeddaim, Asarin, & Maler 2006; Tripakis & Al-
tisen 1999). These techniques are based on (1) timed game

*Constraints Based Temporal Planning

TTimed Game Automata

This work has been supported by the National French Agency
for Research (ANR) project AMAES. Part of this work has been
funded by a grant from the European Social Fund (ESF).

automata models and (2) logics allowing to express the prop-
erties to be satisfied by these models. The decisional process
is described in this framework using strategies. However, the
application of these techniques to real-world problems has
been possible only recently due to an efficient algorithm pro-
posed in (Cassez et al. 2005) and implemented in UPPAAL-
TiGA (Behrmann et al. 2007).

This paper’s contribution can be resumed as follows. We
consider two methods, CBTP and TGA, for specifying and
solving realistic planning problems asking for continuous
time, duration uncertainty, uncertain ordering of events, and
executability of plans. For these methods we consider two
implementations IKIEI and UPPAAL-TIGA. First, we de-
velop a mapping from a subclass of IKIEI problems into
TGA reachability problems. This allows to verify and vali-
date the original plan model using classical model-checking
techniques. Second, we compare the methods and their im-
plementations (1) qualitatively on general domains and (2)
quantitatively on a special domain inspired from a plane-
tary exploration rover mission. The qualitative comparison
takes into account a large spectrum of criteria: the kind of
problems that can be modeled, the flexibility of plans and
strategies produced, their size and their execution.

Related works consider the use of verification techniques
to do planning (e.g., (Cimatti et al. 1997; Jensen & Veloso
2000)) or to validate planning domain models (e.g., (Lowry,
Havelund, & Penix 1997; Khatib, Muscettola, & Havelund
2001)). Beyond these works, few consider timed planning
problems. (Khatib, Muscettola, & Havelund 2001) provides
a mapping from interval-based temporal relations models
to timed automata models. However, their work aims only
to validate plans and does not consider the game semantics
needed to use of model-checking as planning engine. (Vidal
2000) translates Contingent TCN in TGA models in order
to verify and execute them, but does not consider producing
the plan, nor expressiveness issues.

Illustrative Example

Throughout the paper, we use an example domain (Explore)
inspired from a Mars rover (Ai-Chang et al. 2003) ex-
ploring an initially unknown environment. The rover can:
move with the cameras pointing forward; move the cameras
(mounted on a pané&tilt unit); take pictures (while still) with
the cameras pointing downward, and communicate (while
still). The mission of the rover is to navigate to take pictures
of predefined locations, and to communicate with an orbiter

during predefined visibility windows. There is a lot of tem-
poral uncertainties, especially in the duration of navigations
and communications.

Specifying Planning Problems
IXTEI Domain Description Formalism

Let (P;,7) be a planning problem with P; the initial plan
and 7 the set of possible tasks {71, 72,...,7,}. The tasks
and the initial plan are augmented chronicles.

A chronicle (Ghallab, Nau, & Traverso 2004) for a set
of state variables a1 (), as(), ..., a,() is a pair ® = (F,C),
where F' is a set of temporal assertions about the state vari-
ables ai(), az(),...,an() and C is a set of constraints on
variables used in the chronicle.

A state variable a(py,...,py) is a piece-wise constant
function f,(¢,p1,...,pr) with t € R7 the time and
P1,.-.,Pr the possibly empty set of parameters. A state
variable is defined for each value of ¢ and may be unde-
fined for some tuples < pq, ..., pr >. The evolution of state
variables over the planning horizon is described using tem-
poral assertions. A temporal assertion on a state variable
a(p1,...,pr) is either an event or a persistence condition.
They refer to decision instants (called time points) which are
represented by temporal variables (with values in RT).

e An event, denoted event(a(py,...,pr) : (Tv1,Tv2),1),
specifying an instantaneous change of the value of
a(p1,...,px) from value ?v; to value ?vy (Tv1 #7v9) at
time point represented by variable ¢, or

o A persistence condition, denoted hold(a(p1,...,pr)
70, (t1,t2)), specifying that the value of a(pi,...,px)
must be equal to 7v during the interval |¢1, ¢s].

A plan P(S,®,G,CA,T) is described by a finite set of
state variables S, ® a chronicle, CA C ® a chronicle of
uncontrollable events on state variables in .S, G C ® the set
of goals expressed using persistence conditions and ' C 7
the set of tasks in the plan. The initial plan contains temporal
assertions tagged as explained meaning that the planner has
to consider them as already true (see section “Building Plans
and Strategies”).

task TAKE_PICTURE (?0bj, ?x, ?y) (t_start, t_end){
?obj in OBJECTS;
hold (AT_ROBOT () : {{?x, 2y}}

, (t_start, t_end));
hold (PAN_TILT_UNIT_POSITION ()

: {{AT_MY_FEET}},
(t_start, t_end));
event (PICTURE (20bj, 2%, ?y)
({{NONE}}, {{PICTURE_IDLE}}), t_start);
hold (PICTURE (?0bj, ?x, 2y) : {{PICTURE_IDLE}},
(t_start, t_end));
event (PICTURE (20bj, 2%, ?y)
({{PICTURE_IDLE}}, {{DONE}}), t_end);
uncontrollable (t_end - t_start) in [2, 4]; }

Figure 1: IKTET specification of the task for taking one pic-
ture in the Explore domain.

Constraints on temporal variables are represented using a
Simple Temporal Network with Uncertainties (STNU) (Vi-
dal & Fargier 1999). Constraints on atemporal variables are

represented using a general Constraint Satisfaction Problem
(CSP) (Mackworth 1977). Furthermore, there is a mecha-
nism (Trinquart & Ghallab 2001) to represent mixed con-
straints between atemporal and temporal variables. STNUs
allow to specify bounds on differences between two tem-
poral variables, including uncertain ones controlled by the
environment and to check for the consistency of all the con-
straints. The uncontrollable duration of tasks are modeled as
uncontrollable constraints in the STNU (Gallien & Ingrand
2006). For example, the task defined by IKIEI for a Take
Picture action has an uncontrollable duration (see Figure 1).

TGA and Reachability Control Problem

Timed Game Automata (TGA) model has been introduced
in (Maler, Pnueli, & Sifakis 1995) for the synthesis of timed
controllers. It is now studied intensively in the computer
aided verification domain and used to solve different kinds
of problems (scheduling, testing, etc.). We first present
quickly the simplest model of Timed Automata (Alur & Dill
1990) and then extend it to TGA.

Let X be a set of clock variables, which are real, positive
variables with values evolving with the same rate as the time.
The set C(X) of clock constraints over X contains formula
¢ generated by the following grammar: ¢ ::= z#c | © —
y#c | AP wherec € Z, z,y € X, and # € {<,<,>
,>}. We denote by B(X) the subset of C(X') that uses only
rectangular constraints of the form x#c.

A timed automaton (TA) (Alur & Dill 1990) is a tuple
A= (3,X,0,1,A), where X. is a finite set of actions, X is
a finite set of clocks, and Q is a finite set of control states.
The mapping I : Q — B(X) associates with each state
q € Q an invariant I(q), also called staying condition. The
set of transitions is A € QxC(X)xLx2¥ x Q. A transition

in A, also written ¢ 9:b7 q', specifies the source (q) and the
target (¢") states, the guard (g) which is a clock constraint to
be satisfied when the transition is executed, the label of the
transition (¢), and the subset of clocks to be assigned to 0
(r) as effect of the transition. This basic model of TA can be
extended to allow state variables with finite values in guards,
invariants, and assignments. A network of TA (nTA) is a
finite set of TA evolving in parallel. This is the basic model
of software tools dealing with the verification of TA.

A configuration of a TA (resp. nTA) is built from a state
(resp. set of states) and a valuation of clock variables. From
a given configuration, a TA can evolve (1) by executing a
discrete transition in A which changes the state and the val-
ues of reset clocks, or (2) by executing a timed transition,
i.e., by letting time pass in the current state and so incre-
menting all the clocks by the same value; the invariant of
the state should be satisfied by the new values of the clocks.
A run of a TA is a sequence of alternating timed and dis-
crete transitions between configurations. The set of configu-
rations for a TA is infinite, but Alur and Dill have shown that
the number of classes of equivalent configurations w.r.t. the
TA execution is finite. Such a class is called region and can
be represented in C(X). Symbolic configurations are sets of
regions. The notions of discrete transition, timed transition,
and run can be extended to symbolic configurations.

A timed game automaton is a timed automaton A =
(X, X,9,1,A) where the set of actions X is split in two
disjoint sets: Y. the set of controllable actions and ¥, the
set of uncontrollable actions. The notions of network of TA,
run, and symbolic configuration are defined in a similar way
for TGA. Figure 2 shows how the task of taking pictures
in the Explore domain can be modeled using TGA. Transi-
tions labeled by uncontrollable actions are represented using
dashed arrows; state g PTIC_NONE is initial.

V_AT_RBT_X==x&&
v_AT_RBT_Y==y&&
s_PAN_TILT==AT_FEET

q_PIC_NONE q_PIC_IDLE q_PIC_DONE

x_PIC<=4

Figure 2: TGA model of the task for taking one picture in
the Explore domain.

Given a TGA A and three symbolic configurations Init,
Safe, and Goal, the reachability control problem or reach-
ability game RG(A, Init, Safe, Goal) consists in finding a
strategy f s.t. A starting from Init and supervised by f
stays in Safe and enforces Goal. More precisely, a strat-
egy is a partial mapping f from the set of runs of A starting
from Init to the set X.U{\}. For a finite run p, the strategy
f(p) may say (1) no way to win if f(p) is undefined, (2) do
nothing, just wait in the last configuration of p if f(p) = A,
or (3) execute the discrete, controllable transition labeled by
¢ in the last configuration of p if f(p) = . A strategy f
is state-based or memory-less whenever its result depends
only on the last configuration of the run.

Building TGA from IIgI' Specifications

We briefly resume here the algorithm proposed in (Abded-
daim, Asarin, & Sighireanu 2006) for building reachability
control problems for a nTGA from IKIEI planning problems.
In order to simplify the presentation, let us consider first a
simple subset of I¥TEI where: (1) state variables are not pa-
rameterized and theirs values are finite, (2) there are no con-
straints relating atemporal and temporal variables, (3) tasks
are simple chronicles where only one state variable is mod-
ified by its events and these events are completely ordered.
Then, translating I¥TEI planning problems consists of the fol-
lowing steps: (a) for each state variable a generate a global,
discrete variable s, in the nTGA and a lock [, protecting
its modification; (b) for each task 7 generate an automaton
owning a clock z, € X as follows: (b.1) the initial transi-
tion acquires the lock [, of the state variable a, modified
by the task and the final transition frees this lock; (b.2) for
each value v taken by a, in 7 generate a state ¢,, € Q;
(b.3) for each event event(a() : (?vy,?vs),t) in 7 gener-

.. g,4,r . .
ate a transition ¢r ,, — @r ., 1N A where r assigns the
global variable s, to the final value v2 and resets the local
clock z; (b.4) from each persistence condition concerning
ar generate guards, invariants, and the kind of label (con-
trollable or uncontrollable) from the temporal constraints as-
sociated with the referenced time points; (b.5) from each

persistence condition concerning state variables not modi-
fied by the task, generate additional guards and invariants
for controllable transitions, and constraints in Safe for un-
controllable ones; (c) from the explained temporal assertions
of the initial plan, generate the Init configuration; (d) from
the persistence conditions of the set G of goals generate the
Goal configuration.

The IKTEI model of the Explore domain satisfies, with two
exceptions, the assumptions (1-3) above. The first exception
concerns parameterized state variables of KEI. One solution
is to flatten them into unparameterized state variables, so
producing an exponential growth of the number of states.
Fortunately, some modeling tools for TGA, e.g. UPPAAL-
T1GA, allow specification of parameterized TGA: they do
the flattening automatically. The second exception concerns
the state variables denoting the position of the robot and the
duration of the moving task of the robot. It is not possible to
relate (real valued) delays with such variables. A solution to
this problem is to pre-compute such relations, as detailed in
the comparison section of this paper.

For the simple subset of IKIEI above, the size of the nTGA
model obtained is linear in the size of the domain of (fully
instantiated) state variables, the number of tasks, and in the
number of temporal assertions. However, when parameter-
ized state variables are used in the gL specification, the
complexity of the translation is exponential because of the
flattening of state variables. For example, for the IIET spec-
ification of an Explore domain mission that takes four pic-
tures in four different points and communicates two times
with the satellite, we obtain a nTGA model with 31 states,
35 variables, 11 clocks, and 28 transitions.

Building Plans and Strategies
IXIEI' Planner

The IKIET planner (Ghallab & Laruelle 1994) is a plan space
planner. The sketch of the algorithm is the following: (1)
look for possible defaults in the current plan, if none are
found, the plan is a solution plan (see Figure 3 for an ex-
ample of such a plan); otherwise (2) chose one default and
solve it (i.e. insert a chosen resolvant), if there is no re-
solvant, backtrack.

IKIET produces plans that have an STNU dynamically con-
trollable (Morris 2006) and a symbolic and numeric CSPs
arc-consistent (Mackworth & Freuder 1985). The search al-
gorithm will baktrack whenever this property is violated by
the current plan.

A default is:

e A possible conflict between two temporal assertions: one
“event" possibly at the same time than a “hold", two in-
compatible “holds" (different values, ...)

e An unexplained temporal assertion: a temporal assertion
cannot magically be true in a plan, but needs to be justified
by another event already in the plan (i.e. explaining it).

A resolvant is:
e The insertion of some constraints in the plan.

e The insertion of “hold" and supporting constraints in or-
der to make ‘““causal links".

COMMUNICATE(W1)

COMMUNICATE(W2)

MOVE(0,0,4,0)

MMOVE(4,0,0,-3)

MOVE(O,-3,W

TAKE7P|;§ 1£RE(OBJ2,4,0) /

DOWISEANJLLUNH() DOWN_

“UNIT()

E(OBJ3))0,-3) TAKE_PICTURE(OBJ1,0,0)

UPi;&\LTI iy M

uprA&llej UNIT()

D@

Figure 3: An example of solution plan found by IKIiT for the Explore domain.

e The insertion of a new task and a causal link.

IKIET uses a depth first search (DFS) algorithm to find a
solution plan. It employs a least commitment heuristic. The
system computes all defaults and all their resolvants. Then
for each resolvant a cost is computed. It is basically an esti-
mate of the number of possible totally instantiated solution
plans removed by the insertion of the resolvant.

The plans are both flexible thanks to the least commitment
approach and temporally contingent thanks to the STNU.
This is a very interesting property with respect to execution
in the real world.

UPPAAL-TIGA

The algorithms used to solve reachability control problems
on TGA are based on the exploration of the state space (i.e.,
all configurations) of the TGA. The classical algorithms for
solving games explore backward (from the goal to the initial
state) the state space. They suffer the usual “state explo-
sion” problem of verification by model-checking. Recently,
(Cassez et al. 2005) adapted the efficient forward/backward
algorithm for untimed games of (Liu & Smolka 1998) to
timed games. Moreover, they implemented it efficiently into
a tool called UPPAAL-TIGA (Behrmann et al. 2007), which
is an extension of the UPPAAL tool'.

We briefly present here the principles of the algorithm
published in (Cassez et al. 2005) and implemented, with ad-
ditional optimisations, in UPPAAL-TIGA. For this, we need
more notions on timed games. LetRG(A, Init, Safe, Goal)
be a reachability game. A finite or infinite run p in A starting
from Init is winning if it intersects at some point the Goal
while staying in Safe configurations. A maximal run p of
a TGA is either an infinite run or a finite run that satisfies
either (i) last configuration of p is in Goal or (ii) the only
possible next discrete actions from last configuration of p,
if any, are uncontrollable actions. A strategy f is winning
from a configuration s of A if all maximal runs obtained by
executing A from s under the supervision of f are winning.
A configuration s of A is winning if there exists a winning
strategy f from s in A. We denote by W(RG) the set of
winning configurations in A.

UPPAAL-TIGA takes as inputs (1) a network of TGA
A where the initial configuration Init is fixed, and (2) a
reachability control problem given by sets Safe and Goal.
First, UPPAAL-TIGA explores forward A in order to find a
winning run. During this exploration, UPPAAL-TIGA com-
putes on the fly the product of TGA automata in A. At

"UPPAAL is available at www . uppaal . com

the present time, the forward exploration is done in a depth
first search manner, without any heuristics to help the ex-
ploration. When a winning run is found, the forward ex-
ploration is suspended, and a backward, breadth first explo-
ration is started in order to back-propagate the winning in-
formation to the previously explored configurations or their
pending uncontrollable successors.

Strategy to win:
State: (Pl.gq _PIC_DONE P2.g PIC_NONE)
When you are in true, take transition
P2.q PIC_NONE->P2.g PIC_IDLE { 1, tau, x_PIC := 0 }
State: (Pl.gq PIC_NONE P2.g_PIC_NONE
When you are in true, take transition
Pl.g PIC_NONE->P1.q PIC_IDLE { 1, tau, x_PIC :

I
o

State: (Pl.gq PIC_DONE P2.q PIC_IDLE)

While you are in (P2.x_PIC<=4), wait.

State: (Pl.g PIC_IDLE P2.q PIC_IDLE)

While you are in (Pl.x_PIC<=4 && P2.x_PIC-Pl.x_PIC<-2),
wait.

State: (Pl.g PIC_IDLE P2.gq PIC_NONE)

When you are in (2<Pl.x_PIC && Pl.x_PIC<=4),

take transition

P2.q _PIC_NONE->P2.q PIC_IDLE { 1, tau, x_PIC := 0 }
While you are in (Pl.x_PIC<=2), wait.

Figure 4: Example of a UPPAAL-TIGA strategy.

If the backward propagation returns to Init, the RG prob-
lem is solved and (Cassez et al. 2005) have shown that the
explored configurations are included in (but not necessarily
equal to) W(RG), the set of all winning configuration. If
Init is not reached by the backward propagation, the for-
ward exploration is resumed to find other winning runs.

When the problem is solved, a second exploration of the
set of winning configurations builds a memory-less strategy
f. This strategy is a piece-wise function giving a determin-
istic choice for actions to be done depending on the current
configuration (values of clocks and variables). For example,
Figure 4 presents the strategy built by UPPAAL-TIGA for the
network of two (independent) TGA (P1 and P2) modeling
the task of taking (different) pictures (see Figure 2) when
the control problem asks to take them before 6 time units.
(Local clocks and states are prefixed by the name of the task
using a dotted notation and tau is the label for internal ac-
tion.)

Qualitative Comparison
Modeling Issues

The comparison between IK[EI and TGA models has been
investigated on several examples and applications. From
these studies, we have identified three significant differences
that may be of interest for planning problems: (1) the capa-
bility of IIET to model mixed constraints, (2) the possibility
to model periodic tasks with TGA, and (3) the fact that TGA
can handle discrete choices of the environment. These three
points are detailed here after.

Mixed constraints The first difference concerns the ma-
nipulation of state variables, as already mentioned in the
translation subsection. State variables in IKIEI may belong
to dense domains and can be constrained by timed variables.
The kind of relations allowed depends on the underlying
CSP system. For example, the task MOVE of Figure 5 re-
lates the duration of moving (i.e., t_end-t_start) with
the current and future position of the robot (i.e., x¢, y). In
order to have tractable TGA models, state variables have to
belong to finite domains and cannot be related with clocks.
To relate clocks with state variables, such relations have to
be approximated by (pre-computed) constants. For exam-
ple, the task MOVE can be modeled by (1) fixing a set of
positions to be observed (constant arrays posx and posy),
(2) pre-computing the minimal and maximal duration of the
navigation between each pair of positions (constant matri-
ces min_move and max_move indexed by positions), and
(3) using the pre-computed duration in clock constraints and
invariants. Figure 6 provides the TGA model for the task
MOVE for a fixed set of four positions. The discrete vari-
able crt gives the index of the current position of the robot.
When the robot is not moving (state g RB_STATUS_STL,
which is initial), it can choose to move in another position.
We model it by a non-deterministic choice for values of vari-
able d, the distance between the index of the current position
and the index nxt of the next position. The navigation is
done in state g RB_STATUS_STL and its end is fixed by
the environment (uncontrollable transition).

task MOVE (int x1, int yl, int x2, int y2)

(t_start, t_end) {

// events and conditions saying that

// the position Q@t_start is (x1,yl)

// the position Q@t_end is (x2,y2)

variable s in [0.13,0.25];

variable dist in [0.5, +o00];

// constraints approximating

// dist by abs(x1-x2)+abs (yl-y2)

variable duration;

dist = s *x duration;

uncontrollable duration = t_end - t_start; }
Figure 5: Task MOVE represented using IKIEI constraints.

Periodic tasks The second difference concerns the speci-
fication of periodic tasks. Il has to unfold periodic tasks
on the full duration of the plan. For example, if a photog-
raphy has to be taken every five minutes during one hour,
IIET specification has to include explicitly 12 tasks. Instead,

q_RB_STATUS_STILL

/ d:int[1,3]
!
]
X_MOVE>=min_move[crt][nxt]

s_RB_STATUS:=RB_STATUS_STILL, 1

V_AT_RBT_X:=posx[nxt],
v_AT_RBT_Y:=posy[nxt],
nxt:=crt

s_PAN_TILT==PAN_TILT_STRG

x_MOVE:=0,
s_RB_STATUS:=RB_STATUS_MOVE,
nxt:=(crt+d) %4

\
q_RB_STATUS_MOVE

X_MOVE<=max_move[crt][nxt]&&

Figure 6: Task MOVE represented using TGA.

TGA model allows natural specification (using loops) of pe-
riodic tasks.

Discrete choices of the environment The third difference
concerns the specification of discrete choices of the envi-
ronment. For example, consider a robot guide in a museum
(the system) with a group of visitors (the environment). The
robot has to present first picture P1, and this takes from 15
to 20 minutes. At the end of the presentation of P1, the vis-
itors may choose, in maximum 3 minutes, between visiting
picture P2 (which takes from 7 to 10 minutes) or picture P3
(which takes from 5 to 6 minutes).

The problem is to build a plan such that the full visit is
done in 20 to 25 minutes. This type of problems cannot be
represented by IKTiL: it is not possible to have one task with
different possible outcomes.

In TGA (see Figure 7), two uncontrollable transitions
(corresponding to each discrete choice of visitors) may
outgo from the same state. Discrete choices of the envi-
ronment are useful to model faults introduced by the envi-
ronment: one choice is for the nominal behavior of the en-
vironment and the other(s) choice(s) is (are) for the faulty
behavior. Then, it could be possible to obtain a fault tolerant
plan/strategy, if it exists.

q_end2 O q_pic1 x<=20 O q_end3
x>=7 x>=15 x>=5
X:=
. ic3
q_pic2 ~ X -0 Xe0 . - - > 6q_plc
x<=10 S~ _--" X<=t

Ox<=3
q_resp

Figure 7: TGA model for the robot guide example.

Flexibility Issues

From the point of view of results produced (plans and strate-
gies), there are two interesting differences between IKIEI and
UPPAAL-TIGA.

Least commitment versus full instantiation The IIET al-
gorithm for building plans does an unordered exploration of
the defaults still in the plan and stops when no more defaults
are present. The resolvants are as unrestrictive on the plan
as possible, they will solve the default with a priori the least
constraining solution. Moreover, a solution plan in IKIET is
not fully instantiated. It may contain state variables which
are not instantiated, but still constrained in the CSPs. These
two characteristics of IKIEI plans are known under the name

of least commitment: the plan may contain choices that the
controller has to determined at execution. Such property
provides some flexibility to the controller. Furthermore, the
IKIET plans will not fail during execution if the uncontrol-
lable durations remain between the given bounds, making
them both flexible and contingent.

This least commitment property is not true for strate-
gies generated by UPPAAL-TIGA, since the UPPAAL-TIGA
strategies are deterministic. Indeed, during the forward ex-
ploration, the explored run fixes values for all state variables
and an order between transitions. If the exploration is suc-
cessful, this (fixed) order is chosen in the strategy.

For example, if the planning problem consists in planning
two independent tasks taking photos, IKIEI' planner builds a
plan where there is no particular order between the begin-
ning of these tasks. UPPAAL-TIGA fixes an order as shown
by the strategy given on Figure 4: tasks P1 is started first and
then P2 is started. In order to obtain some least commitment
strategies, the algorithm of UPPAAL-TIGA shall be asked to
compute all winning configurations W(RG) and not only
the first subset found to include the initial configuration.

Conditional strategies Recall that strategies produced by
UPPAAL-TIGA are deterministic, piece-wise functions say-
ing which are the ways to stay in the set of winning config-
urations w.r.t. the current configuration. So several (deter-
ministic) choices may be proposed by a strategy in a given
configuration (see, e.g., Figure 4).

For example (Figure 8), let us consider the case of a pa-
parazzi (controller) trying to take the picture of a star (envi-
ronment) at the exit of its hotel before an Oscar ceremony.
The star shall exit between 5 and 10 p.m. The photo is
needed as soon as possible by the paparazzi’s boss in or-
der to be published either in the before dinner edition of its
newspaper (i.e., before 8) or in the night edition of its enter-
tainment channel (i.e., after 11).

Star,NoLVisible©t<=1o No Com No_Com
t<= 88& =11 8&
t>=51 photo_taken photo_taken

photo_taken = true s photo_sent := true

¥
star_visible () O Com O Com
Figure 8: TGA model for the Paparazzi example.

For this example, UPPAAL-TIGA is able to generate a
strategy (Figure 9) saying that if the star exits before 8 then
take the photo and send it immediately, otherwise wait and
send the photo after 11 as soon as possible.

A plan in IKTET is a universal plan described by an STNU.
Then it is not possible to use disjunction like the one needed
to solve this example. If the problem is relaxed by removing
the obligation to transmit as soon as possible, IKIEI finds a
solution. However, the plans produced for the relaxed pa-
parazzi example are not as efficient as strategies. For exam-
ple, the plans will always transmit the picture for the night
edition no matter the time of exit of the star, though the
strategies will transmit the picture as soon as it is available.

This is a big advantage of strategies with respect to ex-

photo_sent :=true

Strategy to win:

State: (STAR.Star_Not_Visible COM1.No_Com COM2.No_Com)
While you are in (t<=10), wait.
State: (STAR.Star_Visible COM1.No_Com COM2.No_Com)

When you are in (ll<=t),
take transition COM2.No_Com->COM2.Com
{ t >>= 11 && photo_taken, tau, photo_sent := 1 }
When you are in (5<=t && t<=8),
take transition COMI.No_Com->COMI1.Com
{ t <= 8 && photo_taken, tau, photo_sent := 1 }
While you are in (8<t && t<11l), wait.

Figure 9: Strategy to win for the Paparazzi example.

ecution facing temporal uncertainties. For example, in the
Explore domain, the IKIEI plans may include unnecessary
wait periods at execution time because the move has taken
less time than the maximum expected duration. In that case,
it may be possible to reschedule the plan in order to move
back some tasks in the plan in order to take benefits from
that opportunity, but that would take time to compute the
new plan. Our experiments show that UPPAAL-TIGA strate-
gies do not have this drawback.

Optimization Issues

Recall that the heuristic of IKIEI' chooses to add a new task
to the plan if and only if no other resolvants are possi-
ble. UPPAAL-TIGA does not have such heuristics nor causal
links and it may generate strategies where tasks are done
only to fill some waiting time. For example, in the Explore
domain, while waiting the visibility window to communi-
cate, the strategy produced by UPPAAL-TIGA contains mov-
ings of the cameras from the forward to the downward posi-
tion and back, while it is clearly not required in the mission.

To avoid the planning of such useless actions by UPPAAL-
TIGA, a solution is to introduce in the model additional con-
straints on the firing of transitions, depending on the domain.
For example, in the Explore domain, the moving of the cam-
eras shall be done only if the robot has to take a new picture
or move again. Such constraints can be added directly on
the model or by additional automata called observers, which
monitor the behavior of the robot and prohibit some of its ac-
tions. These constraints can be derived automatically from
the domain definition by looking at which tasks can estab-
lish new values for a state variable and which tasks expect a
specific value for the same state variables.

There is a general solution to this issue for any kind of do-
main, but in a (possibly) less efficient manner. It consists in
associating costs with some controllable discrete transitions
and then asking for a strategy with a minimal total cost (i.e.,
minimal sum of all costs in runs). This kind of query is very
expensive in computation time. A less expensive query is to
ask for a total cost not exceeding some bound. The choice
of the bound can be made by a binary search and trying to
have reasonable computation times.

For example, to limit the number of useless moves of the
cameras, a high cost can be associated to each controllable
transition corresponding to such moves. To other control-
lable transitions, unitary costs can be added. Then, a shorter

strategy can be obtained if we ask to solve the reachability
control problem where the total goal cost is less than the
cost needed for the moves of the cameras to take pictures
plus some supplementary costs for other transitions.

Execution Issues

An IET plan is not fully instantiated before execution. So,
the execution is somewat equivalent to finding a solution of
a CSP while maintaining it fully propagated, and this re-
quires a significant amount of computation. The execution
of the plan (Lemai & Ingrand 2004) consists in choosing a
time point having all the necessary constraints on its pre-
decessors satisfied (i.e. meaning that they are executed and
the constraints between them are satisfied) and executing it
(i.e. constraining it to occur at its execution time). Then,
an incremental algorithm is used to efficiently propagate the
STNU after the execution of each time point.

Executing UPPAAL-TIGA strategy consists in (1) collect-
ing information about the current state of the controller, (2)
finding the winning configuration containing this state, and
(3) firing the transition proposed by the strategy for this
state.

To sum up execution issues, a UPPAAL-TIGA strategy
asks for less expensive execution procedures while an IKTET
plan allows to use some plan repair techniques (Lemai &
Ingrand 2004) if something unexpected happens during the
execution.

Quantitative Comparison

This section presents some experimental results obtained on
the Explore domain by IKIFI and UPPAAL-TIGA. Note that
UPPAAL-TIGA has been run on a TGA model obtained from
the IKTET specification using the principles of translation pre-
sented in this paper. However, one could obtain more com-
pact models (and so more efficient results) by building a
model from scratch. All the runs were made on a Pentium4
at 3.2 GHz and with 1GB memory. The evaluation problems
include always two communications, at least one picture and
the robot has to be back at its starting point at the end.

The first series of results (see Figure 10) compare the time
for the two systems to find a solution for problems with
solutions. We compare one IKIEl model to three different
UPPAAL-TIGA models obtained as described in the section
about optimization issues: the standard model, model with
costs, and model with causal links. For IZTgl, the planning
involves few bactracks. For UPPAAL-TIGA, the winning
strategies obtained have a maximum duration close to the
optimal one. In fact, UPPAAL-TIGA finds a plan faster if
the maximum duration is close to the optimal one rather
than a larger one. It comes from the fact that the number
of possible explored states is smaller if the maximum du-
ration is smaller. For the model with costs, UPPAAL-TIGA
runs out of memory for 8 pictures because the number of
states is multiplied by the number of possible values of the
cost variable (45 in this experiment) and thus storing them
uses too much memory. The modelisation of causal links
is a way to cut some branches without solutions during the
exploration of the model by UPPAAL-TIGA, thus better time
performances are obtained.

T T T T T T
180 ixtet ——

tiga
160 | tiga with causal links ---3:---
tiga with costs &
140
120 al

100 -

seconds

80

60

40 +

20 af

o

number of pictures

Figure 10: Duration in seconds to find a solution for prob-
lems with a a lot of solutions.

The next series of results (see Figure 11 and Figure 12)
show how the systems behave when the problems have no
solutions. Experiments are restricted to problems with 3 to
8 pictures. These results are important when considering the
execution in the real world. Indeed, during the execution of
a plan, the planner may be used to replan if some failures
invalidate the current plan. It is important to have a planner
answering as fast as possible to the question: “Is there a plan
for all goals?”

KIET runs out of memory for the problem with 8 pictures
because it does some node caching during the search in order
to reduce the cost of backtracks and the cache becomes too
big to fit in the memory when the full search space shall be
explored.

These results show that UPPAAL-TIGA has a better be-
havior when the problem does not have solutions. Indeed,
UPPAAL-TIGA is able to use the forward search algorithm
to prune large part of the search space due to instantiation of
all parameters and the maximum duration of the plan fixed
by the goal. Instead, IKIEI needs to explore all the search
space before concluding that no solution exists because it
has no way to detect when a partially instantiated plan has
no solution.

T
with solution ——
without solution ---x---

1000

100 -

seconds
X

L L L L
3 4 5 6 7 8
number of pictures

Figure 11: Duration in seconds for I{TE to prove there is no
solution (the scale is logarithmic).

Conclusion

Most embedded autonomous systems require some form
of planning with temporal representation. Moreover, the

25

T T T

with solution and with causal links —+—

with solution ------

without solution and with causal links ---*---
without solution &

20

seconds

number of pictures

Figure 12: Duration in seconds for UPPAAL-TIGA to prove
there is no solution.

plans/policies produced should be robust with respect to ex-
ecution, i.e. leave some flexibility to the plan execution con-
troller. Such flexibility can be obtained in various ways.
One can allow events to occur in a temporal interval, or
one can provide local repair mechanism, or the plan can
propose multiple execution paths which all lead to the goal
but with difference depending on the date of occurrence of
some events. In our search to improve the planner on our
mobile robots (on which we were using the CBTP IKIiD),
we studied a completely different approach based on TGA
and UPPAAL-TIGA which, among other things, can produce
plans with a robust and more opportunistic execution. We
show that a “classical” rover exploration problem can be
modeled in UPPAAL-TIGA (we propose a general scheme
to translate an IKTEI' model to UPPAAL-TIGA) and produce
plans with a temporally robust execution policy. We then
compare the two approaches, qualitatively but also quantita-
tively, and show that each has its advantages and drawbacks.
Thus, at this stage, it is not a clear cut which approach may
be the best for a given problem and it is probably wiser to
look at the features of the problem and the expected prop-
erties to decide which one to choose. However, having the
possibility to use formal methods available in the timed au-
tomata community to prove some properties of a given plan
model is also very encouraging with respect to the accept-
ability of automated planning in critical timed systems.

Acknowledgment

The authors would like to thank Alexandre David for his
valuable support on UPPAAL-TIGA tool and its internals.

References

Abdeddaim, Y.; Asarin, E.; and Maler, O. 2006. Scheduling with
timed automata. Theoretical Computer Sciences 354(2).

Abdeddaim, Y.; Asarin, E.; and Sighireanu, M. 2006. From IxTeT
to timed games. Technical report, LIAFA.

Ai-Chang, M.; Bresina, J.; Charest, L.; Jonsson, A.; Hsu, J.;
Kanefsky, B.; Maldague, P.; Morris, P.; Rajan, K.; and Yglesias,
J. 2003. MAPGEN: Mixed initiative planning and scheduling for
the Mars 03 MER mission. In ISAIRAS.

Alur, R., and Dill, D. 1990. Automata for modeling real-time
systems. In JCALP.

Asarin, E., and Maler, O. 1999. As soon as possible: Time opti-
mal control for timed automata. In HSCC.

Behrmann, G.; Cougnard, A.; David, A.; Fleury, E.; Larsen, K.;
and Lime, D. 2007. Uppaal-Tiga: Time for playing games! In
CAV.

Cassez, F.; David, A.; Fleury, E.; Larsen, K.; and Lime, D. 2005.
Efficient on-the-fly algorithms for the analysis of timed games. In
CONCUR.

Chien, S. 2006. Integrated Al in space: The autonomous science-
craft on Earth observing one. In AAAL

Cimatti, A.; Giunchiglia, F.; Giunchiglia, E.; and Traverso, P.
1997. Planning via model checking: A decision procedure for
R. In ECP, 130-142.

Frank, J., and Jonsson, A. 2003. Constraint-based attribute and
interval planning. Constraints 8(4).

Gallien, M., and Ingrand, F. 2006. Controlability and makespan
issues with robot action planning and execution. In ICAPS work-
shop on Planning under Uncertainty and Execution Control for
Autonomous Systems.

Ghallab, M., and Laruelle, H. 1994. Representation and control
in IxTeT, a temporal planner. In AIPS.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated Plan-
ning: Theory and Practice. Morgan Kaufmann.

Jensen, R. M., and Veloso, M. M. 2000. Obdd-based universal
planning for synchronized agents in non-deterministic domains.
JAIR 13:189-226.

Khatib, L.; Muscettola, N.; and Havelund, K. 2001. Mapping
temporal planning constraints into timed automata. In TIME.
Lemai, S., and Ingrand, F. 2004. Interleaving temporal planning
and execution in robotics domains. In AAAL

Liu, X., and Smolka, S. 1998. Simple linear-time algorithms for
minimal fixed points (extended abstract). In ICALP.

Lowry, M. R.; Havelund, K.; and Penix, J. 1997. Verification
and validation of ai systems that control deep-space spacecraft.
In ISMIS, 35-47.

Mackworth, A., and Freuder, E. 1985. The complexity of some
polynomial newtork consistency algorithms for constraint satis-
faction problems. Artificial Intelligence 25(1).

Mackworth, A. 1977. Consistency in networks of relations. Arti-
ficial Intelligence 8.

Maler, O.; Pnueli, A.; and Sifakis, J. 1995. On the synthesis of
discrete controllers for timed systems. In STACS.

Morris, P. 2006. A structural characterization of temporal dy-
namic controllability. In CP.

Trinquart, R., and Ghallab, M. 2001. An extended functional
representation in temporal planning : towards continuous change.
In ECP.

Tripakis, S., and Altisen, K. 1999. On-the-fly controller synthesis
for discrete and dense-time systems. In FM.

Vidal, T., and Fargier, H. 1999. Handling contingency in temporal
constraint networks: from consistency to controllabilities. JETAI
11(1).

Vidal, T. 2000. A unified dynamic approach for dealing with
temporal uncertainty and conditional planning. In ICAPS.

