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Long-time Sobolev stability for small solutions of quasi-linear Klein-Gordon equations on the circle

We prove that higher Sobolev norms of solutions of quasi-linear Klein-Gordon equations with small Cauchy data on S 1 remain small over intervals of time longer than the ones given by local existence theory. This result extends previous ones obtained by several authors in the semi-linear case. The main new difficulty one has to cope with is the loss of one derivative coming from the quasi-linear character of the problem. The main tool used to overcome it is a global paradifferential calculus adapted to the Sturm-Liouville operator with periodic boundary conditions.

Introduction

We address in this paper the question of long time Sobolev stability for small solutions of nonlinear Klein-Gordon equations on S 1 . Let us recall some known results. Consider V : S 1 → R a smooth nonnegative potential and consider u a solution of the equation

∂ 2 u ∂t 2 - ∂ 2 u ∂x 2 + (V (x) + m 2 )u = f (u) u| t=0 = u 0 ∂ t u| t=0 = u 0 , (0.0.1)
where > 0 is a small parameter, m ∈]0, +∞[, f is a nonlinearity vanishing at order κ + 1 ≥ 2 at 0. It is well known that such an equation has a unique C 0 (R, H 1 ) ∩ C 1 (R, L 2 ) solution if u 0 ∈ H 1 (S 1 , R), u 1 ∈ L 2 (S 1 , R) and is small enough. The question is to decide whether, when u 0 ∈ H s+1 (S 1 , R), u 1 ∈ H s (S 1 , R) (s 1), u(t, •) H s+1 + ∂ t u(t, •) H s stays bounded over long intervals of time when → 0, i.e. over intervals of length c -r+1 with r > κ + 1 (the case r = κ + 1 would correspond to the bound given by local existence theory). The difficulty of Mathematics Subject Classification: 35L70, 35S50. Keywords: Quasi-linear Klein-Gordon equation, Longtime stability, Paradifferential calculus. This work was partially supported by the ANR project Equa-disp.

the problem comes from the fact that on S 1 one does not have any dispersion making decay linear solutions at infinite times, in contrast to what happens for that equation on the real line (We refer to chapter 7 of the book of Hörmander [START_REF] Hörmander | Lectures on nonlinear hyperbolic differential equations[END_REF] for results and references concerning the nonlinear Klein-Gordon equation on R d , and to Shatah [START_REF] Shatah | Normal forms and quadratic nonlinear Klein-Gordon equations[END_REF] for the first occurrence in this setting of the normal form method that will play an essential role below). Bourgain answered the above question for equation (0.0.1) in [START_REF] Bourgain | Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations[END_REF]. He showed that the solutions remain bounded in H s+1 × H s for intervals of time of length c -N for any N , when s N , and when the parameter m in (0.0.1) is taken outside a subset of zero measure of ]0, +∞[. Bambusi [START_REF] Bambusi | Birkhoff normal form for some nonlinear PDEs[END_REF] and Bambusi-Grébert [START_REF] Bambusi | Birkhoff normal form for partial differential equations with tame modulus[END_REF] obtained later more precise versions of this result (see also the lectures notes of Grébert [START_REF] Grébert | Birkhoff normal form and hamiltonian PDEs[END_REF]). Let us mention that, as far as we know, there is no example of solutions which, when m is in the exceptionnal set excluded in the above result, would have an H s+1 × H s norm blowing up when time goes to infinity. Nevertheless, Bourgain [START_REF] Bourgain | On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE[END_REF] constructed an example of an abstract perturbation of the linear wave equation for which such a blowing up property occurs.

Two natural questions arise: can such results be extended to equations with more general nonlinearities than the one of (0.0.1), and do they hold true in higher dimension? The latter question has been answered affirmatively for equations of type (0.0.1) on the sphere S d , or more generally on Zoll manifolds, by Bambusi, Grébert, Szeftel and the author in [START_REF] Bambusi | Almost global existence for Hamiltonian semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds[END_REF]. The former one has been taken up in [START_REF] Delort | Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres[END_REF][START_REF] Delort | Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds[END_REF][START_REF] Delort | Bounded almost global solutions for non Hamiltonian semilinear Klein-Gordon equations with radial data on compact revolution hypersurfaces[END_REF], including in higher dimensions, for equations of type (0.0.1) in which the right hand side is replaced by a general semi-linear non-linearity f (u, ∂ t u, ∂ x u). For such non-linearities, the solution does not in general exist over an interval of time larger that the one given by local existence theory (i.e. ]c -κ , c κ [ if f vanishes at order κ + 1 at zero)see [START_REF] Delort | Temps d'existence pour l'équation de Klein-Gordon semi-linéaire à données petites périodiques[END_REF] for examples of blowing-up solutions. Nevertheless, a result proved in [START_REF] Delort | Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres[END_REF][START_REF] Delort | Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds[END_REF] asserts that if, for instance, f is homogeneous of even degree κ + 1, then the solution of the equation exists and remains bounded in H s+1 × H s over an interval of time of length c -2κ . The method of proof was similar to the one used by Bourgain [START_REF] Bourgain | Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations[END_REF], Bambusi [START_REF] Bambusi | Birkhoff normal form for some nonlinear PDEs[END_REF], Bambusi-Grébert [START_REF] Bambusi | Birkhoff normal form for partial differential equations with tame modulus[END_REF], the main novelty being its extension to a higher dimensional setting. Our goal in this paper is to address the same question in one space dimension for quasi-linear Klein-Gordon equations. As we shall explain below, the semi-linear methods of the above papers break down immediately because of the extra loss of one derivative coming from the quasi-linear nature of the problem. Our main theorem is stated in section 1 below. We shall in this introduction describe our method on the example

D t -(1 + a(u, ū)) -∆ + V + m 2 u = 0 u| t=0 = u 0 , (0.0.2)
where u 0 is a smooth complex valued function defined on S 1 , ∆ = d 2 dx 2 , and u → a(u, ū) is a real valued polynomial in (u, ū), homogeneous of odd degree κ. Our aim is to prove existence of the solution, and uniform control of its H s -norm (s 1) by C , over an interval of time of length c -2κ (instead of the length c -κ given by local existence theory). Let us first recall how the corresponding semi-linear result may be proved. Let us take, for simplicity, the case V ≡ 0 and consider

D t --∆ + m 2 u = f (u, ū) u| t=0 = u 0 , (0.0.3)
where f (u, ū) = u p ūq with p + q = κ + 1. Set Λ m = √ -∆ + m 2 , Λ = √ -∆ + 1 and let Π n be the spectral projector on the space generated by the eigenfunctions e ±inx (n ∈ N). Then the H s norm is given by u 2 H s = Λ s u, Λ s u = +∞ n=0 (1 + n 2 ) s Π n u 2 L 2 and if u solves (0.0.3) (0.0.4) 1 2

d dt u(t, •) 2 H s = -Im [ Λ s (Λ m u), Λ s u + Λ s f (u, ū), Λ s u ].
The first term in the right hand side vanishes by self-adjointness of Λ m , and the second one may be written -Im M 0 (u, . . . , ū) with (0.0. (1 + n 2 p+q+1 ) s

S 1 Π n 1 u • • • Π np uΠ n p+1 u • • • Π n p+q+1 u dx.
The idea of the method is to perturb the H s energy of u by a multilinear expression

Re M 1 (u, . . . , u, ū, . . . , ū p+q+1=κ+2

) such that d dt M 1 (u, . . . , ū) will cancel out (0.0.5) up to a remainder which will be O( u 2κ+2 H s ). This gain on the order of vanishing at 0, versus the one of the last term in (0.0.4), allows one to obtain the longer interval of time c -2κ by standart arguments. Using (0.0.3), one finds that L(M 1 )(Π n 1 u 1 , . . . , Π n p+q+1 u p+q+1 ) = F m (n 1 , . . . , n p+q+1 )M 1 (Π n 1 u 1 , . . . , Π n p+q+1 u p+q+1 ),

where we denoted (0.0.9)

F m (n 1 , . . . , n p+q+1 ) = p 1 m 2 + n 2 j - p+q+1 p+1 m 2 + n 2 j .
To eliminate in d dt [ 1 2 u(t, •) 2 H s + Re M 1 (u, . . . , ū)] terms homogeneous of degree κ + 1, one has to choose M 1 so that L(M 1 ) = -M 0 i.e. according to (0.0.8) and (0.0.5)

M 1 (Π n 1 u 1 , . . . ,Π n p+q+1 u p+q+1 ) = -F m (n 1 , . . . , n p+q+1 ) -1 (1 + n 2 p+q+1 ) s S 1 Π n 1 u 1 • • • Π n p+q+1 u p+q+1 dx. (0.0.10)
Since p + q is even, it may be proved that for m outside an exceptionnal subset of zero measure, F m (n 1 , . . . , n p+q+1 ) does not vanish, and actually |F m (n 1 , . . . , n p+q+1 )| -1 ≤ Cµ(n 1 , . . . , n p+q+1 ) N 0 for some N 0 , µ(n 1 , . . . , n p+q+1 ) standing for the third largest among n 1 , . . . , n p+q+1 . This shows that |F m | -1 is bounded from above by a power of a small frequency, which allows one to prove, combining this with convenient estimates of the integral in (0.0.10), that M 1 is a continuous multilinear form on H s × • • • × H s for s N 0 , and so a small perturbation of the H s energy when u is small. Let us notice that related ideas are used for problems on R n by Colliander, Keel, Staffilani, Takaoka and Tao in [START_REF] Colliander | Resonant decompositions and the I-method for cubic nonlinear Schrödinger on R[END_REF].

Let us go back to the quasi-linear equation (0.0.2). In this case (0.0.4) will write 1 2

d dt u(t, •) 2 H s = -Im Λ s a(u, ū)Λ m u, Λ s u = 1 2i Λ s [Λ -2s Λ m , aΛ 2s ]u, Λ s u .
(0.0.11)

Since the operator [Λ -2s Λ m , aΛ 2s ] is of order 0, we still get a quantity well defined on H s , even if its expression is now a little bit more complicated than (0.0.5). We would like to argue as above and find a new contribution Re M 1 to add to 1 2 u(t, •) 2 H s , so that its time derivative would cancel out the right hand side of (0.0.11), up to remainders. The R(u, ū) terms in (0.0.6) would be given by R(u, ū) = i p 1 M 1 (u, . . . , u, a(u, ū)Λ m u, u, . . . , u, ū, . . . , ū) -p+q+1 p+1 M 1 (u, . . . , u, ū, . . . , ū, a(u, ū)Λ m ū, ū, . . . , ū) .

(0.0.12) This quantity is no longer of order 0 in u, ū for a general M 1 , which means that R(u, ū) could no longer be estimated by C u 2κ+2 H s but only by C u 2κ+1 H s u H s+1 . This loss of derivative, which is systematic in quasi-linear problems, cannot be recovered if M 1 is a multilinear form which does not satisfy any structure condition. On the other hand, if we know that M 1 has a structure similar to the quantity in the right hand side of (0.0.11), we may hope to make appear a commutator that will kill the extra loss of one derivative. This is actually the usual way of getting quasi-linear energy inequalities. The price we have to pay to be able to do so is that we must get for M 0 , M 1 expressions more explicit that just multilinear quantities satisfying convenient estimates, like those used in the semilinear problems treated in the aforementionned references. We must be able to write M 0 or M 1 as Op(c(u, . . . , ū; •))u, u where c(u 1 , . . . , u p ; •) will be a convenient paradifferential symbol, that may be computed from the equation, and Op(c) is the operator associated to that symbol. The difficulty that arises is the following: we must work globally on S 1 , and cannot restrict ourselves to open subsets of R through local charts. This is because our class of symbols will have to contain functions defined in terms of F m (n 1 , . . . , n p+q+1 ) -1 , where F m is given in (0.0.9) (to be able to construct the analogous of M 1 -see (0.0.10)). This quantity is well defined for m outside an exceptional subset, only when the arguments n 1 , . . . , n p+q+1 stay in a discrete set. In other words, we cannot use Bony's calculus of paradifferential operators on R [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF], since their symbols are functions of a continuous phase variable. We must instead define a global paradifferential calculus on S 1 , in terms of symbols whose phase variable varies in the (discrete) spectrum of -d 2 dx 2 + V on S 1 . When V ≡ 0, this is done through Fourier series expansions. An example of the type of symbols we have to consider is given by

(n 0 , n 1 ) → ae in 0 x , e in 1 x = â(n 1 -n 0 )
where a ∈ C ∞ (S 1 ). Such a quantity is rapidly decaying in n 0n 1 , and its ∂ n 0 + ∂ n 1 derivative vanishes. In general, when V ≡ 0, the class of symbols we want to consider has to include quantities like

(n 0 , n 1 ) → aϕ n 0 , ϕ n 1 ,
where ϕ n 0 , ϕ n 1 are two eigenfunctions, and we want them to verify estimates of form (0.0.13)

|(∂ n 0 + ∂ n 1 ) γ aϕ n 0 , ϕ n 1 | ≤ C N n 0 -n 1 -N (n 0 + n 1 ) -γ .
The first section of this paper is devoted to the construction of nice basis of L 2 (S 1 ), i.e. of orthonormal basis of almost eigenfunctions for which estimates of form (0.0.13) hold true. This is done using quasi-modes for -d 2 dx 2 + V which resemble the imaginary exponentials of the free case.

The second section of the paper is devoted to the definition of paradifferential operators associated to symbols whose phase argument varies in a discrete set. We establish the main symbolic calculus properties of such operators.

The third section presents a special class of pseudo-differential operators, containing the operators involved in the writing of equation (0.0.1). These special operators enjoy more explicit symbolic calculus properties that the general ones defined in section 2.

The fourth section is devoted to the proof of the theorem, using the machinery of sections 2 and 3 to be able to get the energy estimates we alluded to at the beginning of this introduction. We first perform a paradifferential diagonalization of the principal part of the wave operator, reducing (0.0.1) to a paradifferential version of (0.0.2). We then apply the energy method, as explained after (0.0.11). The fact that we reduced ourselves to a diagonal principal symbol, together with the symbolic calculus constructed in the preceding sections, allows us to show that the remainders of form (0.0.12) that we get actually involve commutators compensating the apparent loss of one derivative displayed by (0.0.11). In that way, we are able to obtain energy inequalities of type

d dt u(t, •) 2 H s ≤ C u(t, •) 2κ+2
H s , which imply the long time existence result we are looking for.

Let us conclude this introduction expressing our gratitude to Dario Bambusi for several conversations about this work. Let us say also that we shall use in the text the following notation: we write n 0 ∼ n 1 to mean that there is a (large) constant C > 0 with C -1 n 0 ≤ n 1 ≤ Cn 0 when n 0 , n 1 → +∞, and we set n 0 n 1 to say that there is a small c > 0 with n 0 ≤ cn 1 when n 0 , n 1 → +∞.

1 Main results and nice basis

Statement of main theorem

We shall be interested in this paper in solutions of the periodic one dimensional quasi-linear Klein-Gordon equation. We denote by ∆ = d 2 dx 2 the Laplace operator on S 1 , and take V : S 1 → R + a smooth nonnegative potential. We shall sometimes identify S 1 with the interval [-π, π] with periodic boundary conditions. We consider a polynomial map

c : R 3 -→ R (X 0 , X 1 , X 2 ) -→ c(X 0 , X 1 , X 2 ) (1.1.1)
which may be written

(1.1.2) c(X 0 , X 1 , X 2 ) = κ 1 k=κ c k (X 0 , X 1 , X 2 )
where c k is homogeneous of degree k in (X 0 , X 1 , X 2 ). We denote by r the largest odd integer satisfying κ ≤ r -1 ≤ 2κ and

(1.1.3) for any even integer 2k satisfying κ ≤ 2k < r -1, one has c 2k (X 0 , X 1 , X 2 ) ≡ 0.

We shall consider the following equation, where m > 0 is a parameter

∂ 2 t v + (1 + c(v, ∂ t v, ∂ x v)) 2 [-∆ + V + m 2 ]v = 0 v| t=0 = v 0 ∂ t v| t=0 = v 1 , (1.1.4)
where v 0 and v 1 are smooth real valued functions defined on S 1 , and > 0 is a small parameter. Our main result is the following: Theorem 1.1.1 There is a zero measure subset N of ]0, +∞[, and for every m ∈ N , there are c > 0, s 0 ∈ N, such that for any s ≥ s 0 , any

(v 0 , v 1 ) ∈ H s+1 (S 1 , R) × H s (S 1 , R), verifying for ∈]0, 1[ (1.1.5) v 0 H s 0 +1 + v 1 H s 0 < , equation (1.1.4) has a unique solution v ∈ C 0 (] -T , T [, H s+1 (S 1 , R)) ∩ C 1 (] -T , T [, H s (S 1 , R))
with T ≥ c -r+1 . Moreover, there is for any s ≥ s 0 a constant c s > 0, such that if (v 0 , v 1 ) satisfies (1.1.5) with s 0 replaced by s, v(t, •)

H s+1 + ∂ t v(t, •) H s is uniformly bounded on the interval ] -T , T [ with T ≥ c s -r+1 .
Remarks • It is enough to prove that for s 0 large enough, condition (1.1.5) with > 0 small enough implies the existence of an H s 0 +1 × H s 0 bounded solution defined on ] -T , T [×S 1 . We know then that if the Cauchy data (v 0 , v 1 ) belong to H s+1 × H s with s ≥ s 0 , their smoothness will be propagated by the equation.

• The time of existence given by local existence theory is c -κ . If κ is even and c κ ≡ 0 in (1.1.2), then (1.1.3) gives r = κ + 1, and the theorem is empty: it just asserts that there is a solution defined on the interval of time given by local existence theory. Because of that, we shall assume in the sequel that κ is odd.

• If κ is odd, and c 2k ≡ 0 if κ < 2k < 2κ, we may take r = 2κ + 1, and we get a solution on an interval of length -2κ , i.e. on a much larger interval than the one given by local existence theory.

• In the semi-linear case, theorem 1.1.1 has been proved (with more general assumptions on the nonlinearity) in [START_REF] Delort | Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres[END_REF][START_REF] Delort | Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds[END_REF] when the equation is posed more generally on S d , or on a Zoll manifold of any dimension.

• For semi-linear equations on Zoll manifolds, whose nonlinearities depend only on v, and not on its derivatives, it has been proved in [START_REF] Bambusi | Almost global existence for Hamiltonian semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds[END_REF] that the solution of the problem is almost global, i.e. defined on intervals of length c N -N for any N . Moreover one has uniform Sobolev estimates on such intervals. This result had been obtained previously in one dimension by Bourgain [START_REF] Bourgain | Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations[END_REF], on a slightly weaker form, and by Bambusi [START_REF] Bambusi | Birkhoff normal form for some nonlinear PDEs[END_REF] and Bambusi-Grébert [START_REF] Bambusi | Birkhoff normal form for partial differential equations with tame modulus[END_REF].

• In the quasi-linear case, no result seems to have been known, except in the much simpler case of equations of form (1.1.4) with zero potential and a quadratic nonlinearity on T d (d ≥ 1): see [START_REF] Delort | Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres[END_REF]. For such operators and nonlinearities, most of the difficulties we shall encounter in this paper disappear. Actually, the fact that the potential is zero allows one to use Fourier series, and so harmonic analysis. The combination of this and of the fact that the nonlinearity is quadratic makes functions of type (0.0.9) always nonzero whatever the value of parameter m on the relevant set of arguments. Because of that, the proof does not use the structure of the spectrum of the Laplacian, and this explains why one is able to treat also the case of tori of higher dimension. On the other hand, as soon as either the potential is nonzero, or the nonlinearity vanishes at order strictly larger than two, the structure of the spectrum plays an essential role. This explains why, in such cases, no result is known on T d (d ≥ 2), even for semi-linear equations.

• A natural question is to know if theorem 1.1.1 may be extended from S 1 to S d , as its semi-linear counterpart. We are unable to perform such an extension. This is related to the existence of "nice basis" which will be addressed in next subsection.

Nice basis

Let V : S 1 → R + be a smooth function. The large eigenvalues of -d 2 dx 2 + V are arranged in couples (ω - n ) 2 ≤ (ω + n ) 2
, where ω + n and ω - n have when n → +∞ a same asymptotic expansion at any order of form

(1.2.1) n + 1 4πn S 1 V (x) dx + α 3 n 3 + α 5 n 5 + • • •
(see for instance the book of Marchenko [START_REF] Marchenko | Sturm-Liouville operators and applications[END_REF]). We shall denote in this subsection for n large enough by E n the subspace of L 2 (S 1 , R) spanned by the eigenfunctions associated to (ω - n ) 2 and (ω + n ) 2 , and by Π n the spectral projection of L 2 onto that subspace. We shall choose a function λ → ω(λ), which is a symbol of order 1, having when λ → +∞ the expansion (1.2.1) (with n replaced by λ). If we write a n = O(n -∞ ) to mean that for any N ∈ N there is

C N > 0 with |a n | ≤ C N n -N , then ω(n) -ω ± n = O(n -∞ ). Consequently, we have (1.2.2) √ -∆ + V Π n -ω(n)Π n L(L 2 ,L 2 ) = O(n -∞ ).
Our goal is to construct a basis of each E n such that some scalar products involving elements of these basis will have symbolic behaviour relatively to the spectral parameters. Before stating the theorem, let us introduce the following notations. For τ ∈ N, we denote by

N τ = {n ∈ N; n ≥ τ }.
If a : N τ → C is given, we extend it by 0 to a function defined on Z, and we define ∂a :

N τ → C by (1.2.3) ∂a(n) = a(n + 1) -a(n).
We denote by ∂ * the formal adjoint of ∂ for the scalar product a, b

= n≥τ a(n)b(n), that is (1.2.4) ∂ * a(n) = -∂a(n -1).
We have then for a function a defined on

N τ × N τ (1.2.5) (∂ n -∂ * n )a(n, n ) = a(n + 1, n ) -a(n, n -1). 
We shall use below the following elementary formulas. For a function a

(n), denote if k ∈ Z τ k a(n) = a(n -k). One has then ∂ n (ab) = (∂ n a)(τ -1 b) + a(∂ n b) ∂ * n (ab) = (∂ * n a)b + (τ 1 a)(∂ * n b) ∂ n (ab) = (∂ n a)b + a(∂ n b) + (∂ n a)(∂ n b) ∂ * n (ab) = (∂ * n a)b + a(∂ * n b) + (∂ * n a)(∂ * n b). (1.2.6)
Moreover, if we consider functions a(n, n ), b(n, n ) defined on N τ × N τ , and if τ 1 k , τ 2 k are the translation operators relatively to the first and second variable respectively, we have

(∂ n -∂ * n )(ab) = (τ 1 -1 a)((∂ n -∂ * n )b) + ((∂ n -∂ * n )a)(τ 2 1 b) (∂ n -∂ * n )(ab) = a((∂ n -∂ * n )b) + ((∂ n -∂ * n )a)b + (∂ n a)(∂ n b) -(∂ * n a)(∂ * n b), (1.2.7) ∂ n [a(n, n)] = ((∂ n -∂ * n )a)(n, n + 1) ∂ * n [a(n, n)] = -((∂ n -∂ * n )a)(n -1, n). (1.2.8)
Remind that a pseudo-differential operator T , of order 0 on S 1 , may be written when acting on a periodic function u as (1.2.9)

T u(x) = S 1 n∈Z e in(x-y) a(x, n)u(y) dy
where a is a smooth function on S 1 × Z, satisfying for any α, β ∈ N,

(1.2.10) |∂ α x ∂ β n a(x, n)| ≤ C α,β (1 + |n|) -β
(where ∂ x means a usual derivative, and ∂ n is defined by (1.2.3)). We set (1.2.11)

|a| P = sup 0≤α≤P sup 0≤β≤P sup (x,n)∈S 1 ×Z (1 + |n|) β |∂ α x ∂ β n a(x, n)|.
We may also use a local representation: Let χ ∈ C ∞ 0 (R) be supported inside an interval of length strictly smaller that 2π. Take χ ∈ C ∞ 0 (C), χ ≡ 1 close to 0, Supp χ small enough and set χ0

= 1 -χ. Define ã(x, ξ) = +∞ n=-∞ a(x, n)Θ(x, ξ -n) K(x, y) = +∞ n=-∞ e in(x-y) χ0 (e i(x-y) -1)a(x, n) (1.2.12)
with Θ(x, η) = e -i(x-y)η χ(e i(x-y) -1)χ(y) dy.

Then we have if Supp u is contained in the domain where χ ≡ 1

T u(x) = 1 2π e ixξ ã(x, ξ)û(ξ) dξ + Ru(x)
Ru(x) = K(x, y)u(y) dy.

(1.2.13)

If we set χk+1 (z) = z -1 χk (z), we see that K(x, y) = n e i(n+1)(x-y)e in(x-y) χ1 (e i(x-y) -1)a(x, n)

= n e in(x-y) χ1 (e i(x-y) -1)∂ * n a(x, n)

= n e in(x-y) χk (e i(x-y) -1)(∂ * n ) k a(x, n).
This shows that K is a smooth 2π-periodic function of (x, y), whose derivatives up to order N are bounded in L ∞ in terms of the constants C αβ of (1.2.10) for α + β ≤ N + 2. Moreover, if

x ∈ [-π, π] and Supp χ has been taken small enough, we see that

∂ η Θ(x, η) = e -i(
x-y)η (e i(x-y) -1) χ1 (x, y)χ(y) dy where χ1 (x, y) = -i(x-y)(e i(x-y) -1)

-1 χ(e i(x-y) -1) ∈ C ∞ if y ∈ Supp χ ]-π, π[, x ∈ [-π, π]. Consequently ∂ η Θ(x, η) = Θ 1 (x, η -1) -Θ 1 (x, η), for a function Θ 1 , of the same form as Θ, satisfying |∂ α x Θ 1 (x, η)| ≤ C N η -N
for any α, any N . We may thus write

∂ ξ ã(x, ξ) = n a(x, n)∂ n [Θ 1 (x, ξ -n)] = n (∂ * n a)(x, n)Θ 1 (x, ξ -n).
Computing in the same way higher order derivatives, we get that ã is a symbol on [-π, π] × R, whose semi-norms are controlled in terms of the corresponding semi-norms of a.

Our aim is to prove the following:

Theorem 1.2.1 There is τ ∈ N * and for any n ≥ τ , there is an orthonormal basis (ϕ 1 n , ϕ 2 n ) of E n , satisfying the following property: there is ν ∈ R + and for any N, α, β, γ ∈ N there is a constant C > 0, such that for any pseudo-differential operator of order 0 on S 1 , T , of symbol a, for any n, n ∈ N τ , any j, j ∈ {1, 2}, one has

(1.2.14) ∂ α n (∂ * n ) β (∂ n -∂ * n ) γ ϕ j n , T ϕ j n ≤ C n -n -N (n + n ) -γ |a| ν+N +α+β+γ .
An hilbertian basis (ϕ j n ) j,n of L 2 (S 1 , R), such that (1.2.14) is satisfied for n, n ≥ τ large enough, will be called a nice basis.

Remark The functions ϕ 1 n , ϕ 2 n of the statement are not assumed to be eigenfunctions of -∆+V . Nevertheless, because of (1.2.2), they verify (

√ -∆ + V -ω(n))(ϕ j n ) L 2 = O(n -∞ ).
Before starting the proof of the theorem, let us state a corollary.

Corollary 1.2.2 Let (ϕ j n ) j,n be a nice basis of L 2 (S 1 , R). Let T 1 , T 2 be two pseudo-differential operators of order 0 on S 1 . There is ν ∈ R + , and for any N, α, β, γ ∈ N, there is C > 0 such that for any C ∞ function a on S 1 , one has

(1.2.15) |∂ α n (∂ * n ) β (∂ n -∂ * n ) γ T 1 ϕ j n , a(x)T 2 ϕ j n | ≤ C n -n -N (n + n ) -γ α+β+γ+N +ν k=0 ∂ k a L ∞ for any n, n ∈ N * .
The corollary follows from (1.2.14) applied to T = T * 1 aT 2 , which is a pseudo-differential operator of order 0, whose symbol semi-norms |•| P are controlled in terms of ∂ k a L ∞ for k ≤ P + ν 0 , for a fixed ν 0 ∈ N.

We shall first construct quasi-modes satisfying convenient properties.

Proposition 1.2.3

There exists for n ≥ τ large enough, functions U n ∈ C ∞ ([-π, π], C) satisfying the following properties:

(i) For any n ∈ N τ , any k ∈ N, U n L 2 [-π,π] = 1 and ∂ k x U n (π)-∂ k x U n (-π) = O(n -∞ ), n → +∞.
(ii) Let T be a pseudo-differential operator of order 0 on S 1 . Denote by U n (x) the function on R obtained by 2π-periodization of U n . Consider U n as an element of L 2 (S 1 , C), and define for n, n ∈ N τ (1.2.16)

I -(n, n ) = T U n , U n , I + (n, n ) = T U n , U n .
There is ν ∈ R + , and for any α, β, γ, N ∈ N, a constant C > 0 such that, for any operator T as above, defined in terms of a symbol a by (1.2.9), one has

(1.2.17) |∂ α n (∂ * n ) β (∂ n -∂ * n ) γ I -(n, n )| ≤ C n -n -N (n + n ) -γ |a| ν+N +α+β+γ , (1.2.18) |∂ α n (∂ * n ) β (∂ n -∂ * n ) γ I + (n, n )| ≤ C(n + n ) -N -γ |a| ν+N +α+β+γ for any n, n ∈ N τ with |n -n | ≤ 1 2 (n + n ).
(iii) There is a sequence

(h n ) n∈N of R * + such that h -1 n -ω(n) = O(n -3 ) and (1.2.19) (-∆ + V -h -2 n Id)U n H -2 = O(n -∞ ), U n H 1/2-δ ≤ C δ h -1 n for any n ≥ τ, δ > 0.
We shall first construct U n such that (i) and (iii) hold true.

Lemma 1.2.4 There are δ 0 > 0 and smooth functions (x, h) → θ(x, h), (x, h) → b(x, h) defined on [-π, π]×[0, δ 0 ], real valued, even in h, and a sequence (h n ) n of points of ]0, 1], with asymptotic expansion

(1.2.20) h n = 1 n - 1 4πn 3 π -π V (x) dx + N k=2 γ k n -2k-1 + O(n -2N -3 )
for any N ∈ N, such that the following properties hold true:

(1.2.21) 1 h n θ(π, h n ) - 1 h n θ(-π, h n ) -2πn = O(n -∞ ) θ (x, 0) ≡ 1, |(∂ α x ∂ β h θ )(-π, h) -(∂ α x ∂ β h θ )(π, h)| = O(h ∞ ), |∂ α x b(-π, h) -∂ α x b(π, h)| = O(h ∞ ) ∀α, β ∈ N, (1.2.22)
and such that if one sets (1.2.23)

U n (x) = e iθ(x,hn)/hn b(x, h n ) conditions (i) and (iii) of the statement of proposition 1.2.3 hold true.

Proof: We look for a formal series in h, Φ(x, h), with smooth coefficients in x ∈ [-π, π], such that Im Φ(x, 0) ≡ 0, and the semi-classical equation

(1.2.24) (-h 2 ∂ 2 x + h 2 V (x) - 1 
)e iΦ(x,h)/h = 0 be satisfied formally. We get, denoting by Φ , Φ x-derivatives, the formal equation

(1.2.25) Φ (x, h) 2 -1 -ihΦ (x, h) + h 2 V (x) ≡ 0.
We look for a solution Φ (x, h) = +∞ k=0 h k Φ k (x) with Φ 0 ≡ 1, Φ 2k real, Φ 2k+1 purely imaginary. Identifying powers of h we get for k ≥ 1,

Φ k (x) = - 1 2 V (x)δ k2 - 1 2 k-1 =1 Φ (x)Φ k-(x) + i 2 Φ k-1 (x) whence (1.2.26) Φ 1 (x) ≡ 0, Φ 2 (x) = - 1 2 V (x), Φ k (x) 2π-periodic for any k.
Taking the imaginary part of (1.2.25), we get

Re Φ (x, h)Im Φ (x, h) = h 2 Re Φ (x, h).
We choose for the equation on Im Φ the solution

(1.2.27) Im Φ(x, h) = h 2 log[Re Φ (x, h)],
where the right hand side is well defined since Re Φ (x, 0) ≡ 1. We thus see that Im Φ(x, h) is 2π-periodic in x and odd in h. We may write using (1.2.26)

(1.2.28) Φ(π, h) -Φ(-π, h) = π -π Re Φ (x, h) dx = 2π - h 2 2 π -π V (x) dx + +∞ k=2 A k h 2k
for some real constants A k . Then e iΦ(x,h)/h will be 2π-periodic if and only if there is n ∈ N with Φ(π, h) -Φ(-π, h) = 2πnh. By (1.2.28), the h-solutions of this equation for n large enough form a sequence (h n ) n of R * + , converging to zero, and having asymptotic expansion

h n = 1 n - 1 4πn 3 π -π V (x) dx + • • • Comparison with (1.2.1) shows that h -1 n -ω(n) = O(n -3 ).
We denote by θ(x, h) (resp. b(x, h)) a smooth function of (x, h) on [-π, π] × [0, δ 0 ], even in h, whose difference with Re Φ(x, h) (resp. e -Im Φ(x,h)/h ) is tangent to 0 at infinite order, as well as its derivatives, when h → 0, uniformly in 

, h) = 1 + O(h 2 ) uniformly in x ∈ [-π, π], so b(•, h) L 2 ([-π,π]) = √ 2π + O(h 2 ). If we set b(x, h) = b(x, h)/ b(•, h) L 2 ,
we thus obtain a function satisfying the last relation (1.2.22). The equality (1.2.21) follows from the definition of h n . Define now U n (x, h) = e iθ(x,hn)/hn b(x, h n ). It obeys the properties of (i) of proposition 1.2.3. Moreover, by (1.2.24), we have the equality

(-∆ + V -h -2 n )U n = O(h ∞ n ) on [-π, π]. If U n is the 2π-periodization of U n , then U n is in L 2 (S 1 , C), but not in C ∞ (S 1
), since it has, as well as its derivatives, jumps of magnitude 

O(h ∞ n ) at π mod 2π. Consequently, (-∆ + V -h -2 n )U n = α n δ π + β n δ π + g n (x) where α n , β n = O(h ∞ n ), g n is C ∞ on [-π, π] and O(h ∞ n ).
= α n δ π + r n with α n = O(h ∞ n ), r n L 2 = O(h -1 n ), whence ∇U n H -1/2-δ = O(h -1 n ) for any δ > 0. 2 
We want now to express the quantities (1.2.16) in terms of Fourier integrals. Remind that we consider a pseudo-differential operator T of order 0, expressed in terms of its symbol a by (1.2.9).

Lemma 1.2.5 There is ν ∈ R + , a finite set of indices J , and for any N ∈ N, functions r ± N : N τ × N τ → C satisfying for any α, β, γ

(1.2.29) |∂ α n (∂ * n ) β (∂ n -∂ * n ) γ r N (n, n )| ≤ C αβγN (n + n ) -N -γ |a| N +α+β+γ+ν
and a family of functions A j,± N : R 3 × R 2 + → C, (x, y, ξ, ω, ω ) → A j,± N (x, y, ξ, ω, ω ), compactly supported relatively to (x, y, ξ), smooth in (ω, ω ), satisfying for |ω -

ω | ≤ 1 2 (ω + ω ) estimates of type (1.2.30) |∂ α ω ∂ β ω (∂ ω + ∂ ω ) γ A j,± N (x, y, ξ, ω, ω )| ≤ C αβγN N |a| N +N +α+β+γ (1 + |x -y|ω) -N ω ± ω -N (ω + ω ) -γ
for any α, β, γ, N , such that if

(1.2.31) J j,± N (ω, ω ) = ω R 3 e i[ω(x-y)ξ+ωθ(y, 1 ω )±ω θ(x, 1 ω )] A j,± N (x, y, ξ, ω, ω ) dxdydξ, one has for |n -n | ≤ 1 2 (n + n ) (1.2.32) I ± (n, n ) = j∈J J j,± N (h -1 n , h -1 n ) + r ± N (n, n ).
Proof: If we use (1.2.9), (1.2.13) and a partition of unity in y, we may write T v as the sum of Rv -where R is a smoothing operator whose contribution will be discussed at the end of the proof -and of a finite sum of integrals of form (1.2.33)

R 2 e i(x-y)ξ ã(x, y, ξ)v(y) dydξ

where v is the 2π-periodic extension of v ∈ L 2 (S 1 , R), where ã is C ∞ in (x, y, ξ), compactly supported in (x, y), and satisfies

(1.2.34) |∂ α x ∂ β y ∂ γ ξ ã(x, y, ξ)| ≤ C αβγ (1 + |ξ|) -γ with constants C αβγ controlled in terms of |a| α+β+γ . Let χ 1 ∈ C ∞ (R), χ 1 ≡ 0 on [-1, 1], χ 1 ≡ 1 outside [-2, 2], and define (1.2.35) T n v(x) = e i(x-y)ξ ã(x, y, ξ)χ 1 (n -2 ξ)v(y) dydξ.
Let us take v = U n , 2π-periodic extension of the function U n defined on [-π, π] by (1.2.23).

Remind that U n is smooth outside π + 2πZ, and that at all points of π + 2πZ, U n as well as its derivatives, have a jump of magnitude O(n -∞ ). Consequently, when we perform in (1.2.35) one integration by parts in y, we get

T n v(x) = e i(x-y)ξ 1 {y-π ∈2πZ} ∂ y [ã(x, y, ξ) χ 1 (n -2 ξ) iξ U n (y)] dydξ + T n 1 w
where T n 1 is an operator of order -1, acting on a distribution w which is a finite sum of Dirac masses with coefficients O(n -∞ ). In particular, T n 1 w L 2 = O(n -∞ ). If we perform more integrations by parts, we may write, remarking that each integration gains n -2 and looses one ∂ y derivative

T n v L 2 ≤ C N |a| N +ν n -2N U n H N ([-π,π])
for a fixed ν ∈ R + . Since by (1.2.23), U n H N = O(n N ), we see that the contribution of T n to I ± (n, n ) contributes to the last term in (1.2.32). This shows that we may, from now on, replace T by the operator T n defined by

T n v(x) = e i(x-y)ξ ã(x, y, ξ)χ(n -2 ξ)v(y) dydξ
where χ = 1χ 1 , and study instead of 

I -(n, n ) (resp. I + (n, n )) the quantity T n U n , U n (resp. T n U n , U n ) i.e. respectively (1.2.36) R 3 e i(x-y)ξ+ i hn θ(y,hn)∓ i h n θ(x,h n ) ã(x, y, ξ)χ(n -2 ξ)b(y, h n )b ∓ (x, h n ) dxdydξ with b + ≡ b, b -≡ b. If
θ (y, h n )| ≥ c hn if h n is small enough, and either |ξ| ≥ Ah -1 n or |ξ| ≤ A -1 h -1
n for a large enough constant A > 0. Consequently, using y-integrations by parts, we see that up to admissible remainders of type (1.2.29), we may in (1.2.36) replace the cut-off

χ(n -2 ξ) by ϕ(h n ξ) with ϕ ∈ C ∞ 0 (R -{0}). We are thus reduced to (1.2.37) 1 h n e i 1 hn (x-y)ξ+ 1 hn θ(y,hn)∓ 1 h n θ(x,h n ) ã x, y, ξ h n ϕ(ξ)b(y, h n )b ∓ (x, h n ) dxdydξ.
Define the vector field

L ∓ (x, y, ω, ω , ∂ x + ∂ y ) = 1 + ωθ y, 1 ω ∓ ω θ x, 1 ω 2 -1 × 1 + ωθ y, 1 ω ∓ ω θ x, 1 ω (∂ x + ∂ y ) .
(1.2.38)

Since θ (x, h) is even in h, and θ (x, 0) ≡ 1, we may write

(1.2.39) ωθ y, 1 ω ∓ ω θ x, 1 ω = ω ∓ ω + σ(y, ω) ∓ σ(x, ω )
where σ(y, ω) satisfies for any α, γ ∈ N (using (1.2.22))

|∂ α y ∂ γ ω σ(y, ω)| ≤ C αγ (1 + ω) -1-γ ∀y ∈ R -{π + 2πZ}, ∀ω ∈ R + [∂ α y ∂ γ ω σ] = O(ω -∞ ),
denoting by [•] the jump at π + 2πZ. Consequently, the coefficients c(x, y, ω, ω ) of L ∓ satisfy for x, y outside π + 2πZ,

(1.2.40) |∂ δ x ∂ δ y ∂ α ω ∂ β ω (∂ ω + ∂ ω ) γ c(x, y, ω, ω )| ≤ C(1 + ω + ω ) -γ ω ∓ ω -1 when |ω -ω | ≤ 1 2 (ω + ω ), with jump conditions (1.2.41) [∂ δ x ∂ δ y ∂ α ω ∂ β ω c] = O((ω + ω ) -∞
). We make in (1.2.37) integrations by parts using the vector field (1.2.38). Again, because of (1.2.41) and (1.2.21), (1.2.22), boundary terms coming from the jumps give rise to remainders of type (1.2.29), and up to such perturbations, we may rewrite (1.2.37) as (1.2.42)

1 h n e i 1 hn (x-y)ξ+ 1 hn θ(y,hn)∓ 1 h n θ(x,h n ) ( t L ∓ ) N ã x, y, ξ h n ϕ(ξ)b(y, h n )b ∓ (x, h n ) dxdydξ. If L 0 (x -y, ω, ∂ ξ ) = (1 + ω 2 (x -y) 2 ) -1 (1 + ω(x -y) • ∂ ξ ), the coefficients of L 0 satisfy estimates (1.2.43) |∂ α ω c(x -y, ω)| ≤ C α (1 + ω|x -y|) -1 ω -α .
Integrating by parts using L 0 , we obtain that (1.2.42) may be written as

J ∓ N (h -1 n , h -1 n ) with J ∓ N (ω, ω ) = ω e i[ω(x-y)ξ+ωθ(y, 1 ω )∓ω θ(x, 1 ω )] A ∓ N (x, y, ξ, ω, ω ) dxdydξ with A ∓ N = ( t L 0 ) N ( t L ∓ ) N ã(x, y, ωξ)ϕ(ξ)b y, 1 ω b ∓ x, 1 ω .
By 

= n + O(1/n), if we plug (1.2.30) with α = β = γ = 0 inside (1.2.31
) and integrate in y, we get from (1.2.32) that there is a fixed

ν ∈ R + such that for any N , |I + (n, n )| ≤ C N (n + n ) -N |a| N +ν when |n -n | ≤ 1 2 (n + n ). This implies (1.2.18).
To show (1.2.17), let us prove first that for |ω -

ω | ≤ 1 2 (ω + ω ) (1.2.44) |∂ α ω ∂ β ω (∂ ω + ∂ ω ) γ J j,- N (ω, ω )| ≤ C ω -ω -N (ω + ω ) -γ |a| α+β+γ+N +2 .
Remark first that if we make act ∂ ω + ∂ ω on the phase of J j,- N , we get either a contribution which is O(ω -1 + ω -1 ), or a quantity like i(xy)ξ or i θ(y, 1 ω )θ(x, 1 ω ) , in which, modulo a O(ω -1 + ω -1 ) term, we may factor out xy. The decay given by the N exponent in (1.2.30) allows one to transform such a term in a gain of one negative power of ω. Consequently, (1.2.44) follows from y-integrations of estimates (1.2.30). We have then to show that (1.2.44) implies that

(1.2.45) ∂ α n (∂ * n ) β (∂ n -∂ * n ) γ J j,- N 1 h n , 1 h n
is estimated by the right hand side of (1.2.17). Call ω(λ) a symbol of order 1 defined on R + , such that according to

(1.2.20), h -1 n -ω(n) = O(n -∞ ).
Up to terms verifying estimates of type (1.2.29) we may, instead of (1.2.45), bound

∂ α n (∂ * n ) β (∂ n -∂ * n ) γ J j,- N (ω(n), ω(n )).
We use induction on α + β + γ:

set for t ∈ [0, 1], Ω(n, t) = tω(n + 1) + (1 -t)ω(n) so that (∂ n -∂ * n )J j,- N (ω(n), ω(n )) = J j,- N (ω(n + 1), ω(n )) -J j,- N (ω(n), ω(n -1)) = 1 0 (∂ ω J j,- N )(Ω(n, t), Ω(n -1, t)) dt(ω(n + 1) -ω(n)) + 1 0 (∂ ω J j,- N )(Ω(n, t), Ω(n -1, t)) dt(ω(n ) -ω(n -1)).
Since ω(λ)λ is a symbol of order -1, we may write this as

1 0 (∂ ω + ∂ ω )J j,- N (Ω(n, t), Ω(n -1, t)) dt + 1 0 ∂ ω J j,- N (Ω(n, t), Ω(n -1, t)) dtω -2 (n) + 1 0 ∂ ω J j,- N (Ω(n, t), Ω(n -1, t)) dtω -2 (n -1)
for a new symbol of order -2, ω-2 (λ). This shows that we gained one (actually two) negative powers of n + n in the last two integrals -when |nn | ≤ 1 2 (n + n ) -, and also one such power in the first one, because of (1.2.44). Moreover, Ω(n, t) satisfies the same assumptions as ω(n), which allows one to proceed with the induction. This concludes the proof of the proposition. 2 Lemma 1.2.6 Let λ → ω(λ) be the symbol defined after (1.2.1). Then

(1.2.46) 1 h n -ω(n) = O(n -∞ ).
Moreover, for n large enough, there is a real valued orthonormal basis

(ϕ 1 n , ϕ 2 n ) of the space E n such that (1.2.47) ϕ 1 n - U n + Ūn √ 2 L 2 = O(n -∞ ), ϕ 2 n - U n -Ūn i √ 2 L 2 = O(n -∞ ).
Proof: We denote by F n the span of (U

1 n , U 2 n ) in L 2 (S 1 , R), where U 1 n = Un+ Ūn √ 2 , U 2 n = Un-Ūn i √ 2 . Then for v ∈ F n , if P = -d 2 dx 2 + V (x), we have by (iii) of proposition 1.2.3 (1.2.48) (P -h -2 n )v H -2 = O(n -∞ )
uniformly for v staying in the unit ball of F n . In the same way, since E n is the range of the spectral projector Π n associated to the couple of eigenvalues (ω

- n ) 2 ≤ (ω + n ) 2 , we have by (1.2.2) (1.2.49) (P -ω(n) 2 )v H -2 = O(n -∞ )
uniformly for v in the unit ball of E n (actually, the above relation holds true even for the L 2 norm). We shall denote by

E ⊥ n the orthogonal complement of E n in H -2 , by Π ⊥ n : H -2 → E ⊥ n
the orthogonal projection, and shall also use the notation Π n for the orthogonal projector from

H -2 to E n . We set Q n = Π ⊥ n (P -ω(n) 2 Id)Π ⊥ n considered as a bounded operator from E ⊥ n ∩ L 2 to E ⊥ n . Since the eigenvalues of P different from (ω + n ) 2 and (ω - n ) 2 lie at a distance from ω(n) 2 bounded from below by a fixed constant, Q n is invertible, with inverse Q -1 n : E ⊥ n → E ⊥ n ∩ L 2 whose norm in L(H -2 , L 2 ) depends on n, but with Q -1 n L(H -2 ,H -2 ) uniformly bounded. Since we have seen in proposition 1.2.3 that ω(n) -h -1 n = O(n -3 ), the operator (1.2.50) Id -Q -1 n (h -2 n -ω(n) 2 )
will be invertible, as an operator from E ⊥ n to E ⊥ n endowed with the H -2 norm, for large enough n. If v is in the unit ball of L 2 , we have

(1.2.51) Q n v = Π ⊥ n (P -ω(n) 2 Id)Π ⊥ n v = Π ⊥ n (P -ω(n) 2 Id)v -Π ⊥ n (P -ω(n) 2 Id)Π n v.
By (1.2.2), the last term has L 2 (or

H -2 ) norm O(n -∞
). If we assume moreover that v ∈ F n , and write (1.2.48). We deduce from this equality and (1.2.51)

(P -ω(n) 2 Id)v = (h -2 n -ω(n) 2 )v + (P -h -2 n )v, the last term has H -2 norm O(n -∞ ) by
(Q n -(h -2 n -ω(n) 2 )Id)Π ⊥ n v = r n with r n ∈ E ⊥ n , r n H -2 = O(n -∞
). We deduce from the invertibility of Q n and of (1.2.50) for large enough n that

(1.2.52) Π ⊥ n v H -2 = O(n -∞ ).
We set for n large enough

ψ 1 n = Π n U 1 n , ψ 2 n = Π n U 2 n . The above equality implies (1.2.53) ψ 1 n -U 1 n H -2 = O(n -∞ ), ψ 2 n -U 2 n H -2 = O(n -∞ ).
Moreover, since

ψ j n is in the range of Π n , ψ j n H 1 2 -δ ≤ Ch -1 2 +δ n
for any δ > 0, so that using

(1.2.19) ψ j n -U j n H 1 2 -δ ≤ Ch -1 n . Interpolating with (1.2.53), we get (1.2.54) ψ j n -U j n L 2 = O(n -∞ ) j = 1, 2.
Since U n L 2 = 1, and U n , Ūn = O(n -∞ ) by (1.2.16) and (1.2.18), we deduce from (1.2.54) and the definition of

U 1 n , U 2 n (1.2.55) ψ 1 n , ψ 2 n = O(n -∞ ), ψ j n 2 L 2 -1 = O(n -∞ ).
We define now (ϕ

1 n , ϕ 2 n ) as a Gram-Schmidt orthonormalization of (ψ 1 n , ψ 2 n ). Then (1.2.47) follows from (1.2.54), (1.2.55). To show (1.2.46), we take v ∈ F n of norm 1. We write (ω(n) 2 -h -2 n )Π n v = -(P -ω(n) 2 )Π n v + (P -h -2 n )v -P Π ⊥ n v + h -2 n Π ⊥ n v.
By (1.2.48), (1.2.49) the H -2 norm of the first two terms in the right hand side is O(n -∞ ). By (1.2.52), the

H -4 norm of the last two terms is O(n -∞ ). Consequently (ω(n) 2 -h -2 n ) Π n v H -4 = O(n -∞ ).
To get (1.2.46) and conclude the proof, we just need to see that

Π n v H -4 ∼ n -4 Π n v L 2 ≥ cn -4 . We have, since v is in the unit ball of F n , Π ⊥ n v H 1 ≤ C v H 1 ≤ Cn. Interpolating with (1.2.52), we get Π ⊥ n v L 2 = O(n -∞ ), whence the wanted lower bound, Π n v L 2 ≥ c. 2 
Proof of theorem 1.2.1: For n large enough, we take for (ϕ 1 n , ϕ 2 n ) the orthonormal basis of E n given by lemma 1.2.6. For small values of n, we take any orthonormal basis of E n . Remark first that if |nn | ≥ c(n + n ) for some c > 0, estimate (1.2.14) holds true. Actually, one has a general estimate

| Π n u, T Π n v | ≤ C N n -n -N |a| ν+N u L 2 v L 2
for a fixed ν ∈ R + (see for instance [START_REF] Delort | Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds[END_REF], proposition 1.2.2 and lemma 1.2.3). This implies that if

|n -n | ≥ c(n + n ), | ϕ j n , T ϕ j n | is bounded from above by C N (n + n ) -N
|a| ν+N , which is better than the wanted estimate (1.2.14). We may thus assume |nn | ≤ c(n + n ) and n, n large enough. Then using (1.2.47) we get that up to O((n + n ) -∞ ) terms, ϕ j n , T ϕ j n may be written as linear combinations of I -(n, n ) and I + (n, n ). Formulas (1.2.17), (1.2.18) of proposition 1.2.3 give then (1.2.14). This concludes the proof of the theorem. 2

Paradifferential symbolic calculus

The aim of this section is to develop a symbolic calculus, analogous to Bony's paradifferential calculus [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF], for symbols defined on a discrete set instead of an open subset of the euclidean space. As will be clear in section 4, we shall need such an extension, as the symbols which will naturally appear in reductions of the quasi-linear equation (1.1.4) will be defined on N p , and will not have any nice extension to R p .

Symbols and quantization

We first fix some notations. We shall consider G a finite dimensional real vector space, and assume given an orthonormal decomposition

(2.1.1) L 2 (S 1 , G) = k≥τ E k
where E k is a finite dimensional subspace of dimension K(k) and τ ∈ N * . We assume K(k) independent of k for k large enough, and denote by K this value. We assume that each E k is endowed with a nice orthonormal basis (ϕ j k ) 1≤j≤K(k) i.e. an orthonormal basis such that, for any k, k , for given pseudo-differential operators T 1 , T 2 of order 0, for any function a ∈ C ∞ (S 1 , R), we have estimates of type (1.2.15) and if n j , j = i, is such that n j = max 2 (n 0 , . . . , n p+1 ) we define µ(n 0 , . . . , n p+1 ) = max({n 0 , . . . , n p+1 } -{n i , n j })

(2.1.2) |∂ α k (∂ * k ) β (∂ k -∂ * k ) γ T 1 ϕ j k , a(x)T 2 ϕ j k | ≤ C k -k -N (k + k ) -γ α+β+γ+N +ν =0 ∂ a L ∞ , where 1 ≤ j ≤ K(k), 1 ≤ j ≤ K(k )
S(n 0 , . . . , n p+1 ) = |n i -n j | + µ(n 0 , . . . , n p+1 ). (2.1.5)
By convention, we set max 2 n 0 = 1, µ(n 0 , n 1 ) = 1. We denote by K either R or C and by Π k the orthogonal projector from L 2 (S 1 , G ⊗ K) to E k ⊗ K and set

F k :L 2 (S 1 , G ⊗ K) -→ K K(k) u → ( u, ϕ j k ) 1≤j≤K(k) . (2.1.6)
Then F k is an isometry when restricted to

E k ⊗ K, if we endow K K(k) with the 2 norm. We denote by F * k the adjoint of F k from (K K(k) ) * K K(k) to (L 2 ) L 2 . We have for V = (V j ) 1≤j≤K(k) ∈ K K(k) (2.1.7) F * k V = K(k) j=1 V j ϕ j k (x)
and the relations (2.1.8)

F * k = Π k • F * k , Π k = F * k • F k , F k • F * k = Id K K(k) , F k = F k • Π k . If U = (u 1 , . . . , u p ) ∈ (L 2 ) p and n = (n 1 , . . . , n p ) ∈ N p τ we denote (2.1.9) Π n U = (Π n 1 u 1 , . . . , Π np u p ).
We shall always denote by ||| • ||| the L( 2 , 2 ) norm of linear maps between euclidean spaces (or the corresponding norm of matrices). Let us define the first class of symbols we shall use.

Definition 2.1.1 Let d ∈ R, ν ∈ R + , p ∈ N, N 0 ∈ N * be given. We denote by Σ d,ν p,N 0 the space of maps (u 1 , . . . , u p , n 0 , n p+1 ) -→ a(u 1 , . . . , u p ; n 0 , n p+1 ) E × • • • × E × N τ × N τ -→ L(K K(n p+1 ) , K K(n 0 ) ) (2.1.10)
such that a is R-p-linear in (u 1 , . . . , u p ) and satisfies for some δ ∈]0, 1[ conditions:

(i) δ For any U = (u 1 , . . . , u p ) ∈ E p , any n = (n 0 , n , n p+1 ) ∈ N p+2 τ (with n = (n 1 , . . . , n p )), a(Π n U ; n 0 , n p+1 ) ≡ 0 unless (2.1.11) |n | ≤ δ(n 0 + n p+1 ) and |n 0 -n p+1 | ≤ δ(n 0 + n p+1 ).
(ii) For any N ∈ N, any α, β, γ ∈ N, there is C > 0 such that for any n = (n 0 , n , n p+1 ) ∈ N p+2 τ as above, any U = (u 1 , . . . , u p ) ∈ E p , one has the estimate

|||∂ α n 0 (∂ * n p+1 ) β (∂ n 0 -∂ * n p+1 ) γ a(Π n U ; n 0 , n p+1 )||| ≤ C(n 0 + n p+1 ) d-γ |n | ν+N +(α+β+γ)N 0 (|n 0 -n p+1 | + |n |) N p j=1 u j L 2 . (2.1.12)
We shall call symbols in the preceding class paradifferential symbols. We may of course extend (2.1.10) to a C-p-linear map defined on

(E ⊗ C) × • • • × (E ⊗ C) × N τ × N τ .
Remarks • When we make act ∂ * n p+1 several times on a(Π n U ; n 0 , n p+1 ), we might, for small values of n p+1 , have to calculate a at integers smaller than τ . We decide to extend a(• ; n 0 , n p+1 ) as 0 for n 0 < τ or n p+1 < τ .

• When |n | is bounded, estimate (2.1.12) is similar to the estimate (2.1.2) defining nice basis. When |n | → +∞, we have an extra loss of powers of |n |, coming from ∂ a L ∞ in (2.1.2), and from degenerate ellipticity estimates of some symbols that we shall have to include in our classes.

• When p = 0, we set by convention |n | = 1 in the above definition, and in all forthcoming formulas.

Let us quantize the above symbols. Definition 2.1.2 For a ∈ Σ d,ν p,N 0 and U = (u 1 , . . . , u p ) ∈ E p , u p+1 ∈ E, we define

(2.1.13) Op(a(U ; •))u p+1 = n 0 ∈Nτ n p+1 ∈Nτ F * n 0 a(U ; n 0 , n p+1 )F n p+1 u p+1 .
Let us explain the origin of the above definition. Assume for instance that each E k is one dimensional, spanned by a function ϕ k . If a, u ∈ L 2 , we may write 

au = n p+1 a(x) u, ϕ n p+1 ϕ n p+1 = n 0 n p+1 aϕ n p+1 , ϕ n 0 u, ϕ n p+1 ϕ n 0 = n 0 n p+1 F * n 0 aϕ n p+1 , ϕ n 0 F n p+1 u using (
u j H s 0 u p+1 H s .
In particular, (U, u p+1 ) → Op(a(U ; •))u p+1 extends as a bounded (p+1)-linear map from (H

s 0 ) p × H s to H s-d . Proof: Since v 2 H s ∼ n n 2s Π n v 2 L 2 , let us estimate Π n 0 Op(a(U ; •))u p+1 L 2 .
We get using (2.1.12) and condition (i) δ ,

n -d 0 n p+1 a(U ; n 0 , n p+1 )F n p+1 u p+1 2 ≤ C n 1 • • • n p+1 |n | ν+N (|n 0 -n p+1 | + |n |) N p j=1 n -s 0 j n -s p+1 c n p+1 p j=1 u j H s 0 u p+1 H s
with (c n p+1 ) n p+1 in the unit ball of 2 . Moreover, by condition (i) δ of definition 2.1.1, we have n p+1 ∼ n 0 on the summation. Consequently, if we take N > 1 and s 0 large enough relatively to ν, we obtain an estimate by Cn -s 0 c n 0 for a new 2 -sequence (c n 0 ) n 0 , which is the wanted conclusion.
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We shall define now a class of remainder operators.

Definition 2.1.4 Let d ∈ R, ν ∈ R + , p ∈ N. We denote by R d,ν p+1 the space of (p + 1)-linear maps M : E × • • • × E → L 2 such that for any , N ∈ N, there is C > 0 such that for any (n 0 , . . . , n p+1 ) ∈ N p+2 τ , any u 1 , . . . , u p+1 ∈ E Π n 0 M (Π n 1 u 1 , . . . , Π n p+1 u p+1 ) L 2 ≤ Cn d 0 max 2 (n 1 , . . . , n p+1 ) ν+ max(n 1 , . . . , n p+1 ) µ(n 0 , . . . , n p+1 ) N S(n 0 , . . . , n p+1 ) N p+1 j=1 u j L 2 . (2.1.15) Remark that by definition R d,ν p+1 ⊂ R 0,ν+d + p+1
, and that M extends to a C-(p+1)-linear map defined on

(E ⊗ C) • • • × (E ⊗ C).
Let us show that up to a remainder operator we always may assume in definition 2.1.1 that condition (i) δ is satisfied with an arbitrary small δ > 0.

Lemma 2.1.5 Let d ∈ R, ν ∈ R + , p ∈ N, N 0 ∈ N * be given. There is ν ∈ R + such that for any δ ∈]0, 1[, any a ∈ Σ d,ν
p,N 0 , we may find a 1 ∈ Σ d,ν p,N 0 , satisfying condition (i) δ and R ∈ R 0,ν p , so that for any

U ∈ E p , u p+1 ∈ E Op(a(U ; •))u p+1 = Op(a 1 (U ; •))u p+1 + R(U, u p+1 ).
Before starting the proof, let us state a lemma that we shall use several times. Lemma 2.1.6 Assume given a family of real valued functions K αβγ (ω, ω ) defined on R + × R + , such that there are positive constants C αβγ satisfying

C -1 αβγ K αβγ (ω, ω ) ≤ K αβγ (ω + h, ω + h ) ≤ C αβγ K αβγ (ω, ω ) for any ω, ω ∈ R * + large enough, any (h, h ) ∈ [-1, 1] 2 . Let H be a smooth function on R + × R + satisfying for any α, β, γ ∈ N, any ω, ω ∈ R * + (2.1.16) |∂ α ω ∂ β ω (∂ ω + ∂ ω ) γ H(ω, ω )| ≤ K αβγ (ω, ω ).
Then, there are constants C αβγ such that for any α, β, γ ∈ N, any n, n ∈ N large enough, with

|n -n | ≤ 1 2 (n + n ) (2.1.17) |∂ α n (∂ * n ) β (∂ n -∂ * n ) γ H(n, n )| ≤ C αβγ K αβγ (n, n ).
Proof of lemma 2.1.5: Let χ be a smooth function, with support close enough to 0, equal to one on a neighborhood of zero. Define

a 1 (U ; n 0 , n p+1 ) = n =(n 1 ,...,np) χ n 0 -n p+1 n 0 + n p+1 χ |n | n 0 + n p+1 a(Π n U ; n 0 , n p+1 ).
Then condition (i) δ will be satisfied by a 1 if Supp χ is small enough. Moreover, using lemma 2.1.6, we see that when

|n 0 -n p+1 | ≤ 1 2 (n 0 + n p+1 ) ∂ α n 0 (∂ * n p+1 ) β (∂ n 0 -∂ * n p+1 ) γ χ n 0 -n p+1 n 0 + n p+1 ≤ C αβγ (n 0 + n p+1 ) -γ ∂ α n 0 (∂ * n p+1 ) β (∂ n 0 -∂ * n p+1 ) γ χ |n | n 0 + n p+1 ≤ C αβγ |n | α+β+γ (n 0 + n p+1 ) α+β+γ . (2.1.18)
Consequently, using also Leibniz formulas (1.2.6), (1.2.7), we see that estimates (2.1.12) are satisfied by a 1 . Finally, since R = Op(aa 1 ),

Π n 0 R(Π n 1 u 1 , . . . , Π n p+1 u p+1 ) L 2 ≤ |||(a -a 1 )(Π n U ; n 0 , n p+1 )||| u p+1 L 2
and since, for the indices to be considered, either |n | ≥ c(n 0 +n p+1 ) or |n 0n p+1 | ≥ c(n 0 +n p+1 ), estimate (2.1.12) gives the upper bound

C(n 0 + n p+1 ) d-N |n | ν+N from which (2.1.15) follows, since max 2 (n 1 , . . . , n p+1 ) ∼ |n |, µ(n 0 , . . . , n p+1 ) ∼ |n |, S(n 0 , . . . , n p+1 ) ≤ C(n 0 + n p+1 )
because of (2.1.11).
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Remainder operators act also on Sobolev spaces:

Lemma 2.1.7 Let s 0 > 1.
There is for any

ν ∈ R + , any p ∈ N * , s 1 , s 2 ∈ R, s 1 + s 2 > ν + 2, any d ∈ R, any M ∈ R d,ν p+1 , a constant C > 0 such that for any u 1 , . . . , u p+1 ∈ E, any n 0 ∈ N τ , one has the estimate (2.1.19) Π n 0 [M (u 1 , . . . , u p+1 )] L 2 ≤ Cn -s 1 -s 2 +ν+2+d 0 1≤j 1 =j 2 ≤p+1 u j 1 H s 1 u j 2 H s 2 1≤k≤p+1 k =j 1 ,k =j 2 u k H s 0 .
In particular, M is bounded for any θ from

H s × • • • × H s to H s+θ-d if s is large enough with respect to ν and θ and M (u, . . . , u) H s+θ-d ≤ C u p-1 H s 0 u 2 H s .
Proof: We consider the contribution to M of

M 1 (u 1 , . . . , u p+1 ) = n 1 ≤•••≤n p+1 M (Π n 1 u 1 , . . . , Π n p+1 u p+1 ).
Then by definition 2.1.4

(2.1.20)

Π n 0 M 1 (Π n 1 u 1 , . . . , Π n p+1 u p+1 ) L 2 ≤ Cn d 0 n ν+ p n p+1 µ(n 0 , . . . , n p+1 ) N S(n 0 , . . . , n p+1 ) N p+1 1 Π n j u j L 2 .
For the summation for n 1 ≤ • • • ≤ n p+1 and n p ≥ n 0 , we take = s 1ν, N = 0. We get the upper bound

Cn d 0 n 1 ≤•••≤n p+1 np≥n 0 n -s 1 -s 2 +ν p+1 n -s 0 p-1 • • • n -s 0 1 p-1 1 u j H s 0 u p H s 1 u p+1 H s 2
which is bounded by the right hand side of (2.1.19) for

s 1 + s 2 > ν + 2, s 0 > 1. When we sum for n 1 ≤ • • • ≤ n p+1 and n p < n 0 , we have µ(n 0 , . . . , n p+1 ) = n p , S(n 0 , . . . , n p+1 ) = |n 0 -n p+1 | + n p .
We take in (2.1.20) = s 1ν, and get

Cn d 0 n 1 ≤•••≤n p+1 n 0 >np n -s 0 1 • • • n -s 0 p-1 n -s 1 -s 2 +ν p+1 n N p (|n 0 -n p+1 | + n p ) -N p-1 1 u j H s 0 u p H s 1 u p+1 H s 2 .
For the sum over n p+1 ≥ 1 2 n 0 , we take N = 0 and get the upper bound (2.1.19). For the sum over n p+1 < 1 2 n 0 , we take N = s 1 + s 2ν and get a bound in terms of

n 1 ≤•••≤n p+1 < 1 2 n 0 n -s 0 1 • • • n -s 0 p-1 n -s 1 -s 2 +ν 0 ≤ Cn -s 1 -s 2 +ν+2 0 , whence again (2.1.19). 2 

Symbolic calculus

We shall prove that the operators we just defined enjoy nice symbolic calculus properties.

Definition 2.2.1 Let a ∈ Σ d,ν p,N 0 . We denote by a • the symbol defined by

(2.2.1) a • (U ; n 0 , n p+1 ) = a(U ; n p+1 , n 0 ) *
where a * means the adjoint of the operator a(U ; n p+1 , n 0 ) acting from K K(n 0 ) to K K(n p+1 ) .

Remark that since

(∂ n 0 -∂ * n p+1 )[a • (U ; n 0 , n p+1 )] = [(∂ X -∂ * Y )a(U ; X, Y ) * ]| X=n p+1 -1,Y =n 0 +1
we get that a • ∈ Σ d,ν p,N 0 . Moreover, it follows from definition 2.1.2 that Op(a(U ;

•)) * = Op(a • (U ; •)),
where the star denotes here the adjoint of operators from L 2 to L 2 .

Let us study now composition.

Proposition 2.2.2 (i) Let ν ∈ R + , N 0 ∈ N * .
There is ν ∈ R + and for any p, q ∈ N, d, d ∈ R, for any symbols a ∈ Σ d,ν p,N 0 , b ∈ Σ d ,ν q,N 0 satisfying condition (i) δ of definition 2.1.1 with a small enough δ > 0, there is a symbol a#b ∈ Σ d+d ,ν p+q,N 0 such that for any

U = (u 1 , . . . , u p ) ∈ E p , U = (u p+1 , . . . , u p+q ) ∈ E q , any u p+q+1 ∈ E (2.2.2) Op(a(U ; •))Op(b(U ; •))u p+q+1 = Op(a#b(U , U ; •))u p+q+1 .
(ii) Assume moreover that for any U , U as above, any large enough n 0 , n p+1 , n 0 , n q+1 ∈ N τ , the symbols a(U ; n 0 , n p+1 ) and b(U ; n 0 , n q+1 ) commute. Then there is a symbol c ∈ Σ d+d -1,ν p+q,N 0 such that

(2.2.3) [Op(a(U ; •)), Op(b(U ; •))]u p+q+1 = Op(c(U , U ; •))u p+q+1
for any U ∈ E p , U ∈ E q , u p+q+1 ∈ E.

Proof: (i) Using definition 2.1.2 and (2.1.8) we get

Op(a(U ; •))Op(b(U ; •))u p+q+1 = n 0 ,k,n p+q+1 ≥τ F * n 0 [a(U ; n 0 , k)b(U ; k, n p+q+1 )F n p+q+1 u p+q+1 ]
and we have to check that

(2.2.4) (a#b)(U , U ; n 0 , n p+q+1 ) def = k≥τ a(U ; n 0 , k)b(U ; k, n p+q+1 )
belongs to Σ d+d ,ν p+q,N 0 for some ν . If we set n = (n 1 , . . . , n p ), n = (n p+1 , . . . , n p+q ) and replace U (resp. U ) by Π n U (resp. Π n U ) we get from condition (i) δ of definition 2.1.1 applied to a, b,

|n | ≤ δ(n 0 + k), |n | ≤ δ(k + n p+q+1 ) |n 0 -k| ≤ δ(n 0 + k), |k -n p+q+1 | ≤ δ(k + n p+q+1 ) (2.2.5)
which implies that a#b satisfies (i) 4δ if δ > 0 is small enough. One has then to check estimate (2.1.12) for a#b. We shall do that in the proof of (ii) below.

(ii) Before starting the proof, let us gather some formulas that we shall use. Let c(U ; •) be a symbol satisfying condition (i) δ of definition 2.1.1 with a small enough δ > 0. For h ∈ Z we have, forgetting the explicit U dependence in the notations, for any ξ, η ∈ N,

(2.2.6) c(ξ + h, η) -c(ξ, η -h) = S((∂ ξ -∂ * η )c)(ξ, η; h)
where ∂ ξ (resp. ∂ * η ) means derivation with respect to the first (resp. second) argument of c(ξ, η), and where

(2.2.7) S(c)(ξ, η; h) = h-1 j=0 c(ξ + h -j -1, η -j).
We shall denote also

(∆c)(ξ, η; k) = c(ξ, ξ + k) -c(η -k, η) = S((∂ ξ -∂ * η )c)(η -k, ξ + k; ξ -η + k), (2.2.8) 
the last equality following from (2.2.6). By direct computation, one checks that

∂ ξ [∆c(ξ, η; k)] = ((∂ ξ -∂ * η )c)(ξ, ξ + k + 1) ∂ * η [∆c(ξ, η; k)] = ((∂ ξ -∂ * η )c)(η -k -1, η) (∂ ξ -∂ * η )[∆c(ξ, η; k)] = ∆((∂ ξ -∂ * η )c)(ξ, η; k + 1) (2.2.9)
and also that Using the assumption ab = ba and changing indexation, we get for large enough n 0 , n p+q+1 k∈Z

∂ ξ S(c)(ξ, η; h) = S(∂ ξ c)(ξ, η; h) ∂ * η S(c)(ξ, η; h) = S(∂ * η c)(ξ, η; h).
[a(U ; n 0 , n 0 + k)b(U ; n 0 + k, n p+q+1 ) -a(U ; n p+q+1 -k, n p+q+1 )b(U ; n 0 , n p+q+1 -k)],
where because of the assumptions on the support of a, b, the k sum is for indices satisfying |k| ≤ cn 0 ∼ cn p+q+1 for some small constant c > 0 (see (2.1.11)). We may rewrite this using notations (2.2.6) and (2.2.8)

k∈Z (∆a)(U ; n 0 , n p+q+1 ; k)b(U ; n 0 + k, n p+q+1 ) + k∈Z a(U ; n p+q+1 -k, n p+q+1 )S((∂ ξ -∂ * η )b)(U ; n 0 , n p+q+1 ; k).
(2.2.11)

We now prove estimates of type (2.1.12) for each k sum above. We start with the second one.

If we evaluate the above symbol at Π n U , Π n U instead of U , U , we get from (2.2.7) and (2.1.12)

|||S((∂ ξ -∂ * η )b)(Π n U ; n 0 , n p+q+1 ; k)||| ≤ C(1 + |k|)(n 0 + n p+q+1 ) d -1 |n | ν+N +N 0 (|n 0 -n p+q+1 + k| + |n |) N p+q p+1 u j L 2 .
Moreover, if we make act derivatives on S((∂ ξ -∂ * η )b), we have, because of (2.2.10) the same gains and losses as in (2.1.12). On the other hand, by (1.2.8), making act a ∂ n p+q+1 derivative on a(Π n U ; n p+q+1k, n p+q+1 ) provides a gain of one negative power of n p+q+1 , and a loss of |n | N 0 . Using (1.2.6), (1.2.7), we thus see that the action of

∂ α n 0 (∂ * n p+q+1 ) β (∂ n 0 -∂ * n p+q+1
) γ on the general term of the second sum in (2.2.11) is bounded from above by p+q 1 u j L 2 times (2.2.12) 

C(1 + |k|)n d 1 p+q+1 |n | ν+N 1 +κ 1 (|k| + |n |) N 1 (n 0 + n p+q+1 ) d 2 |n | ν+N 2 +κ 2 (|n 0 -n p+q+1 + k| + |n |) N 2 with d 1 + d 2 = d + d -1 -γ, κ 1 + κ 2 = (α + β + γ + 1)N 0 , N 1 ,
n 0 ∼ n p+q+1 that |||(∆a)(Π n U ; n 0 , n p+q+1 ; k)||| ≤ C(1+|n 0 -n p+q+1 + k|)(n 0 +n p+q+1 ) d-1 |n | ν+N +N 0 (|k| + |n |) N p 1 u j L 2 .
Moreover, if we make act ∂ n 0 -∂ * n p+q+1 on ∆a, we gain because of (2.2.9) a decay of type (n 0 +n p+q+1 ) -1 , and loose |n | N 0 . In the same way, ∂ n 0 or ∂ * n p+q+1 loose |n | N 0 . Similar properties hold true when derivatives act on b(Π n U ; n 0 +k, n p+q+1 ). Consequently, using Leibniz formulas (1.2.6), we see that the action of

∂ α n 0 (∂ * n p+q+1 ) β (∂ n 0 -∂ * n p+q+1
) γ on the general term of the first sum (2.2.11) gives a quantity bounded from above by an expression similar to (2.2.12), but where k has been replaced by -kn 0 + n p+q+1 . We obtain as above that the k-sum is then estimated by (2.2.13). This concludes the proof.
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Let us study now composition relatively to an inner argument.

Proposition 2.2.3 Let d ∈ R, ν ∈ R + , N 0 ∈ N * . There is ν = 2ν + d + + 1 such that for any p ∈ N, q ∈ N * , d ∈ R, for any a ∈ Σ d,ν q,N 0 , b ∈ Σ d ,ν
p,N 0 satisfying condition (i) δ of definition 2.1.1 with a small enough δ > 0, there is c ∈ Σ d,ν p+q,N 0 such that for any U = (U (1) , U (2) ) ∈ E p+q with U (1) = (u 1 , . . . , u p ), U (2) = (u p+1 , U (3) ), U (3) = (u p+2 , . . . , u p+q ), for any u p+q+1 ∈ E, one has

(2.2.14)
Op[a(Op(b(U (1) ; •))u p+1 , U (3) ; •)]u p+q+1 = Op(c(U (1) , U (2) ; •))u p+q+1 .

Proof: By definition 2.1.2, we may write the left hand side as

n 0 n p+q+1 k n p+1 F * n 0 a F * k b(U (1) ; k, n p+1 )F n p+1 u p+1 , U (3) ; n 0 , n p+q+1 F n p+q+1 u p+q+1
which is of form Op(c(U (1) , U (2) ; •))u p+q+1 if we define c(U (1) , U (2) ; 3) ; n 0 , n p+q+1 .

n 0 , n p+q+1 ) = k n p+1 a F * k b(U (1) ; k, n p+1 )F n p+1 u p+1 , U ( 
Let us check that if we denote by n (1) = (n 1 , . . . , n p ), n (2) = (n p+1 , n (3) ), n (3) = (n p+2 , . . . , n p+q ), c(Π n (1) U (1) , Π n (2) U (2) ; n 0 , n p+q+1 ) satisfies the conditions of definition 2.1.1. The support condition (i) 2δ holds true if (i) δ is verified by a, b with small enough δ > 0. Moreover, it is enough to check (2.1.12) when α = β = γ = 0. Using the assumption on a, b, we get for |||c(Π n (1) U (1) , Π n (2) U (2) ; n 0 , n p+q+1 )||| an upper bound given by the product of C p+q j=1 u j L 2 and of

k (n 0 + n p+q+1 ) d (k + |n (3) |) ν+N 1 (|n 0 -n p+q+1 | + |n (3) | + k) N 1 (n p+1 + k) d |n (1) | ν+N 2 (|k -n p+1 | + |n (1) |) N 2
for any N 1 , N 2 . Moreover, by condition (i) δ verified by a, b, the k-summation is made for n p+1 ∼ k n 0 ∼ n p+q+1 . We see that taking N 2 = 0, we get for the sum the upper bound 1) , n (2) )|

C(n 0 + n p+q+1 ) d |(n ( 
2ν+d + +N 1 +1 (|n 0 -n p+q+1 | + |(n (1) , n (2) )|) N 1
which gives the wanted conclusion with ν = 2ν + d + + 1. 2

We shall study now composition of an operator associated to a paradifferential symbol with a remainder operator.

Proposition 2.2.4 Let p ∈ N * , q ∈ N, d, d ∈ R, ν ∈ R + , N 0 ∈ N * .
There are ν = 2ν + d + + 1 and ν = 2ν + 1 such that for any a ∈ Σ d,ν q+1,N 0 satisfying condition (i) δ of definition 2.1.1 with δ > 0 small enough, for any M ∈ R d ,ν p , there are a symbol b ∈ Σ d,ν p+q,N 0 and an operator R ∈ R d+d + ,ν p+q+1 , such that for any U = (U , u p+q+1 ) ∈ E p+q+1 with U = (U (1) , U (2) ), U (1) = (u 1 , . . . , u p ), U (2) = (u p+1 , . . . , u p+q ), (2.2.15) Op[a(M (U (1) ),

U (2) ; •)]u p+q+1 = Op(b(U ; •))u p+q+1 + R(U ).
We shall use several times below an inequality established in the proof of theorem where

N = N -1 -max(ν 1 , ν 2 ), ν = ν 1 + ν 2 + 1.
Proof of proposition 2.2.4: Let χ ∈ C ∞ 0 (R), χ ≡ 1 close to zero, 0 ≤ χ ≤ 1 with Supp χ small enough. If for n = (n 0 , . . . , n p+q+1 ) we set n (1) = (n 1 , . . . , n p ), n (2) = (n p+1 , . . . , n p+q ), n = (n (1) , n (2) ), we define (2.2.18) b(U ; n 0 , n p+q+1 ) =

n (1) χ |n (1) | n 0 + n p+q+1 a(M (Π n (1) U (1) ), U (2) ; n 0 , n p+q+1 ).

Remark that if Supp χ is small enough, condition (i) of definition 2.1.1 will be satisfied by b.

We use (2.1.12) for a to estimate |||b(Π n U ; n 0 , n p+q+1 )||| by

C(n 0 + n p+q+1 ) d k (k + |n (2) |) ν+N (|n 0 -n p+q+1 | + k + |n (2) |) N Π k M (Π n (1) U (1) ) L 2 p+q p+1 u j L 2
where the summation is made for k + |n (2) | n 0 ∼ n p+q+1 , and where moreover |n (1) | n 0 ∼ n p+q+1 . In other words, using notation (2.1.5), we may write the first factor in the k-sum as, µ(n 0 , k, n (2) , n p+q+1 ) ν+N S(n 0 , k, n (2) , n p+q+1 ) N .

We estimate the second factor using (2.1.15). We get for any N an upper bound given by the product of p+q 1 u j L 2 and of

C(n 0 + n p+q+1 ) d (1 + |n (1) |) ν k µ(n 0 , k, n (2) , n p+q+1 ) d + +ν+N S(n 0 , k, n (2) , n p+q+1 ) N µ(k, n (1) ) N S(k, n (1) ) N .
By lemma 2.2.5, we obtain the bound (1) , n (2) , n p+q+1 ) d + +ν+N +1 S(n 0 , n (1) , n (2) , n p+q+1 ) N .

C(n 0 + n p+q+1 ) d (1 + |n (1) |) ν µ(n 0 , n
Since we have by assumption |n (2) | n 0 ∼ n p+q+1 , and on the support of the cut-off (2.2.18) |n (1) | n 0 , we see that µ(n 0 , n (1) , n (2) , n p+q+1 ) = |n |, S(n 0 , n (1) , n (2) , n p+q+1 ) = |n 0n p+q+1 | + |n |.

We thus get for b an estimate of form (2.1.12) since derivatives are controlled in the same way. The remainder in (2.2.15) will be given by

R(U ) = n 0 n (1) n (2) n p+q+1 χ 1 |n (1) | n 0 + n p+q+1 × F * n 0 a(Π k M (Π n (1) U (1) ), Π n (2) U (2) ; n 0 , n p+q+1 )F n p+q+1 u p+q+1 , (2.2 

.19)

where 2) , Π n p+q+1 u p+q+1 ) will be bounded from above using definitions 2.1.1 and 2.1.4 by p+q+1

χ 1 = 1 -χ. The L 2 norm of Π n 0 R(Π n (1) U (1) , Π n (2) U (
1 u j L 2 times k χ 1 |n (1) | n 0 + n p+q+1 (k + |n (2) |) ν+N (|n 0 -n p+q+1 | + |n (2) | + k) N (n 0 + n p+q+1 ) d ×k d (max 2 (n (1) )) ν+ (max(n (1) )) µ(k, n (1) ) N S(k, n (1) ) N (2.2.20)
and because of condition (i) of definition 2.1.1, we may restrict the summation to those k satisfying k + |n (2) | n 0 ∼ n p+q+1 . Moreover, the cut-off χ 1 localizes for |n (1) | ≥ cn 0 . Consequently (2.2.20) will be bounded from above by Cn d+d + 0 (max 2 (n (1) )) ν+ max(n 0 , n (1) , n (2) , n p+q+1 ) k µ(n 0 , k, n (2) , n p+q+1 ) ν+N S(n 0 , k, n (2) , n p+q+1 ) N µ(k, n (1) ) N S(k, n (1) ) N .

Using again lemma 2.2.5, we get an upper bound

Cn d+d + 0 max 2 (n 1 , . . . , n p+q+1 ) ν + max(n 1 , . . . , n p+q+1 ) µ(n 0 , . . . , n p+q+1 ) N S(n 0 , . . . , n p+q+1 ) N
for new values ν = 2ν + 1, N of ν, N . This is the wanted remainder estimate. 2

Let us study now the action of an operator on a remainder.

Proposition 2.2.6 Let p ∈ N, q ∈ N * , d ∈ R, d ∈ R, ν ∈ R + , ν ∈ R + , N 0 ∈ N * . There is ν = ν + ν + 1 such that for any a ∈ Σ d,ν p,N 0 , any M ∈ R d ,ν q , the operator (2.2.21) (u 1 , . . . , u p+q ) → Op(a(u 1 , . . . , u p ; •))M (u p+1 , . . . , u p+q ) is in R d+d ,ν p+q .
Proof: We denote by U (1) = (u 1 , . . . , u p ), U (2) = (u p+1 , . . . , u p+q ), n (1) = (n 1 , . . . , n p ), n (2) = (n p+1 , . . . , n p+q ). The value of operator (2.2.21) at (Π n (1) U (1) , Π n (2) U (2) ) is

n 0 k F * n 0 [a(Π n (1) U (1) ; n 0 , k)F k M (Π n (2) U (2) )].
We make act Π n 0 on this expression, and compute the L 2 -norm. Using definitions 2.1.1 and 2.1.4, we get an estimate in terms of the product of p+q

1 u j L 2 by (2.2.22) C k (n 0 + k) d |n (1) | ν+N (|n 0 -k| + |n (1) |) N k d (max 2 n (2) ) ν + (max n (2) ) µ(k, n (2) ) N S(k, n (2) ) N
and we have on the support of the summation k ∼ n 0 |n (1) |.

• If moreover k ∼ n 0 |n (2) |, we get for (2.2.22) an estimate

C k n d+d 0 |n (1) | ν (max 2 n (2) ) ν +N n N 0 .
Since we sum for |kn 0 | ≤ cn 0 by condition (i) of definition 2.1.1, this gives the upper bound 1) , n (2) )) ν+ν +1+ (max(n (1) , n (2) ))

Cn d+d +1+ν-N 0 (max 2 n (2) ) ν +N ≤ Cn d+d 0 (max 2 (n ( 
µ(n 0 , . . . , n p+q ) N S(n 0 , . . . , n p+q ) N if we take N = + N + ν + 1. This is a remainder type estimate.

• If |n (2) | ≥ cn 0 for some c > 0, we bound (2.2.22) from above by Cn d+d 0 (max 2 (n (1) , n (2) )) ν + (max(n (1) , n (2) ))

k µ(n 0 , n (1) , k) ν+N S(n 0 , n (1) , k

) N µ(k, n (2) ) N S(k, n (2) ) N .
Using again lemma 2.2.5 to estimate the k-sum, we obtain finally in this case Cn d+d 0 (max 2 (n (1) , n (2) )) ν + (max(n (1) , n (2) ))

µ(n 0 , n (1) , n (2) ) ν+N +1 S(n 0 , n (1) , n (2) ) N

for a new N . This implies the wanted remainder estimate.

2 Proposition 2.2.7 Let d, d ∈ R, ν, ν ∈ R + . (i) Let p ∈ N, q ∈ N * , N 0 ∈ N * . There is ν = d + + ν + ν + 1 such that for any a ∈ Σ d,ν p,N 0 , any M ∈ R d ,ν q the operator (2.2.23) R(u 1 , . . . , u p+q ) = M (Op(a(u 1 , . . . , u p ; •))u p+1 , u p+2 , . . . , u p+q ) belongs to R d ,ν p+q . (ii) Let p ∈ N * , q ∈ N * . There is ν = ν + ν + 1 + d + such that for any M 1 ∈ R d,ν q , M 2 ∈ R d ,ν p the operator (2.2.24) (u 1 , . . . , u p+q-1 ) → M 1 (M 2 (u 1 , . . . , u p ), u p+1 , . . . , u p+q-1 )
belongs to R d,ν p+q-1 .

Proof: (i) Denoting again U (1) = (u 1 , . . . , u p ), U (2) = (u p+1 , U (3) ), U (3) = (u p+2 , . . . , u p+q ), and using similar notations n (1) , n (2) , n (3) for the indices, we have to estimate the quantity (2.2.25)

k Π n 0 M (F * k a(Π n (1) U (1) ; k, n p+1 )F n p+1 u p+1 , Π n (3) U (3) ).
The L 2 -norm of the general term of (2.2.25) is bounded from above by p+q

1 u j L 2 times Cn d 0 max 2 (k, n (3) ) ν + max(k, n (3) ) µ(n 0 , k, n (3) ) N S(n 0 , k, n (3) ) N (k + n p+1 ) d |n (1) | ν+N (|k -n p+1 | + |n (1) |) N .
Moreover the summation is restricted to |n (1) | k ∼ n p+1 , which allows one to bound this quantity by 1) , n (2) ) ν + max(n (1) , n (2) )

Cn d 0 n d p+1 max 2 (n ( 
µ(n 0 , k, n (3) ) N S(n 0 , k, n (3) ) N
µ(k, n (1) , n p+1 ) ν+N S(k, n (1) , n p+1 ) N .

Using again lemma 2.2.5 to estimate the k-sum, we get an expression of type 1) , n (2) ) ν + max(n (1) , n (2) ) µ(n 0 , n (1) , n (2) ) N S(n 0 , n (1) , n (2) ) N for ν = d + + ν + ν + 1, and new values of N, .

Cn d 0 max 2 (n ( 
(ii) We need to estimate the L 2 -norm of (2.2.26)

k Π n 0 M 1 [Π k M 2 (Π n (1) U (1) ), Π n (2) U (2) ]
if we denote here U (1) = (u 1 , . . . , u p ), U (2) = (u p+1 , . . . , u p+q-1 ) and use similar notations for n (1) , n (2) . The L 2 -norm of the general term of (2.2.26) is bounded from above by

Cn d 0 max 2 (k, n (2) ) ν+ 2 max(k, n (2) ) 2 µ(n 0 , k, n (2) ) N 2 S(n 0 , k, n (2) ) N 2 k d max 2 (n (1) ) ν + 1 max(n (1) ) 1 µ(k, n (1) ) N 1 S(k, n (1) ) N 1 . Assume for instance n 1 ≤ • • • ≤ n p , n p+q-1 ≤ • • • ≤ n p+1 .
The above expression may be written

Cn d 0 k d n ν + 1 p-1 n 1 p max 2 (k, n p+2 , n p+1 ) ν+ 2 max(k, n p+1 ) 2 × µ(k, n p-2 , n p-1 , n p ) N 1 S(k, n p-2 , n p-1 , n p ) N 1 µ(n 0 , k, n p+3 , n p+2 , n p+1 ) N 2 S(n 0 , k, n p+3 , n p+2 , n p+1 ) N 2 .
(2.2.27)

Remark first that, changing eventually the definition of 2 , we can control the k d term by max 2 (k, n p+2 , n p+1 ) d + . In the following we thus remove the k d term and replace ν by ν + d + .

• If n p ≥ 1 A n p+1 for a large enough constant A > 0, we take 1 = , 2 = 0 and we get an upper bound of type (2.2.28) Cn d 0 max 2 (n (1) , n (2) ) ν+ν +d + + max(n (1) , n (2) )

µ(k, n (1) ) N 1 S(k, n (1) ) N 1 µ(n 0 , k, n (2) ) N 2 S(n 0 , k, n (2) ) N 2 .
• If k ≤ An p < n p+1 , we see that in (2.2.27), max 2 (k, n p+2 , n p+1 ) ≤ A(n p + n p+2 ) ≤ C max 2 (n (1) , n (2) ).

We take 1 = 0, 2 = and get again an estimate by (2.2.28).

• If n p < 1 A n p+1 and n p < 1 A k, the last but one factor in (2.2.27) may be written

n N 1 p-1 k N 1 . Moreover max 2 (k, n p+2 , n p+1 ) ≤ k if we assume k ≥ n p+2 . Taking in (2.2.27) 1 = 2 = 0, N 1 < N 1 -ν-d + ,
when n p+1 ≤ k, and 1 = 0, 2 = N 1 < N 1νd + when n p+1 > k we get the upper bound

Cn d 0 n ν +N 1 +ν+d + p-1 n N 1 p+1 µ(k, n (1) ) N 1 -N 1 -ν-d + S(k, n (1) ) N 1 -N 1 -ν-d + µ(n 0 , k, n (2) ) N 2 S(n 0 , k, n (2) ) N 2
which again gives an estimate of type (2.2.28) (changing the definition of the exponents).

If k < n p+2 , we take in (2.2.27) 1 = 0 and get an estimate by

Cn d 0 n ν+d + + 2 p+2 n 2 p+1 n ν p-1 µ(k, n (1) ) N 1 S(k, n (1) ) N 1 µ(n 0 , k, n (2) ) N 2 S(n 0 , k, n (2) ) N 2 .
We get again an estimate of type (2.2.28). To finish the proof, we just have to sum (2.2.28) using again lemma 2.2.5 to get the wanted upper bound 1) , n (2) ) ν + max(n (1) , n (2) ) µ(n 0 , n (1) , n (2) ) N S(n 0 , n (1) , n (2) ) N with ν = ν + ν + d + + 1. 2

Cn d 0 max 2 (n ( 
3 Special pseudo-differential operators

An introductory example

In addition to the paradifferential symbols introduced in section 2, we shall need classes of pseudo-differential operators. These classes will be more peculiar than the corresponding paradifferential ones. Let us explain this, and justify their definition through an example. Assume that we are given an orthogonal decomposition L 2 = E n , and assume that E n is one dimensional, spanned by a normalized eigenfunction ϕ n . Let (X, n) → b(X, n) be a linear real valued function of X ∈ R, which is a symbol of order 0 relatively to n 

(∂ α n b(X, n) = O(n -α ), n → +∞). If u 1 ∈ E,
n 2 b(u 1 , n 2 ) u 2 , ϕ n 2 ϕ n 2 .
We denote, for future generalization, by B(X, n) the map from E n to E n given for any fixed

X ∈ R by (3.1.2) B(X, n) : ϕ n → b(X, n)ϕ n
so that (3.1.1) may be written, if we remember that the orthogonal projection on E n is given by Π n u = u, ϕ n ϕ n , (3.1.3)

n 2 B(u 1 , n 2 )Π n 2 u 2 .
Remark also that (3.1.1) may be rewritten (3.1.4) 

n 0 n 2 ϕ n 0 (x) b(u 1 , n 2 )ϕ n 2 , ϕ n 0 u 2 ,
n 0 n 2 F * n 0 c(u 1 ; n 0 , n 2 )F n 2 u 2 with (3.1.6) c(u 1 ; n 0 , n 2 ) = b(u 1 , n 2 )ϕ n 2 , ϕ n 0 .
In other words, the operator (3.1.1) may be written under form (2.1.13) with a symbol c which may be proved to satisfy estimates (2.1.12).

Our aim in this third section is to introduce a general class of operators of form (3.1.1). We shall see that they may be expressed in terms of quantities like (3.1.5) i.e. from (a sum of) paradifferential operators associated to symbols of the classes Σ d,ν p,N 0 studied in section 2, up to remainder operators. The interest of operators defined through formula (3.1.1) instead of (3.1.5), is that they obey more explicit calculus rules, in particular for the symbol of the composition of two operators. On the other hand, we do not escape the necessity of introducing more general operators, of form (3.1.5), since to prove our main theorem, we shall have to define from operators of type (3.1.1) more general ones, given by symbols of type (3.1.6).

Definition and calculus of special symbols

Remind that we denoted at the beginning of subsection 2.1 by G a finite dimensional real vector space. Let (g i ) i be a basis of G. We fix a nice basis (ϕ j n ) n,j of L 2 (S 1 , R), where (ϕ j n ) j is a basis of the subspace E n generated by the eigenfunctions associated to the eigenvalues ω

-(n) ≤ ω + (n) of √ -∆ + V . For = (j, i) we set ϕ n = ϕ j n ⊗ g i . Then (ϕ n ) is a basis of E n = E n ⊗ G and (ϕ n ) n, is a nice basis of L 2 (S 1 , G) L 2 (S 1 , R) ⊗ G, and we have L 2 (S 1 , G) = n≥τ E n . Of course (ϕ n ) provides also a basis of E n ⊗ C and (ϕ n ) ,n is a nice basis of L 2 (S 1 , G ⊗ C) considered as a C-vector space. Definition 3.2.1 Let d ∈ R, p ∈ N.
We denote by S d p the space of maps

(u 1 , . . . , u p , n p+1 ) → b(u 1 , . . . , u p , n p+1 ) E × • • • × E × N τ -→ L(E, L 2 (S 1 , G ⊗ K)) (3.2.1)
such that one can find

• A map B : G × • • • G × N τ → L(E ⊗ K, E ⊗ K), (X 1 , . . . , X p , n) → B(X 1 , . . . , X p , n)
which is for any fixed value of n, p-linear in (X 1 , . . . , X p ), such that for any X 1 , . . . , X p ∈ G, any

n ∈ N τ , B(X 1 , . . . , X p , n) is an element of L(E n ⊗ K, E n ⊗ K) (extended by zero on (E n ⊗ K) ⊥ ), whose matrix elements in the nice basis (ϕ n ) of E n ⊗ K satisfy for any α ∈ N (3.2.2) |∂ α n B (X 1 , . . . , X p , n)| ≤ C α n d-α p 1 |X j | G ,
• A family of pseudo-differential operators of order 0 on S 1 , T 1 , . . . , T p , such that one may write for any u 1 , . . . , u p ∈ E,

n p+1 ∈ N τ (3.2.3) b(u 1 , . . . , u p , n p+1 ) = B(T 1 u 1 , . . . , T p u p , n p+1 ).
We shall quantize the above operators in the following way: We want now to define from an element of S d p and from a cut-off function a symbol in the class Σ d,ν p,1 .

Proposition 3.2.3 Let χ ∈ C ∞ 0 (R), χ even with small enough support, p ∈ N * . There is ν ∈ R + such that for any d ∈ R, if we define for b ∈ S d p , u 1 , . . . , u p ∈ E, n 0 , n p+1 ∈ N τ (3.2.5) b χ (u 1 , . . . , u p ; n 0 , n p+1 ) = n 1 • • • np χ |n | n 0 + n p+1 χ n 0 -n p+1 n 0 + n p+1 F n 0 • b(Π n U , n p+1 ) • F * n p+1 where U = (u 1 , . . . , u p ), n = (n 1 , . . . , n p ), then b χ ∈ Σ d,ν p,1 . When p = 0, we shall set b χ (n 0 , n 1 ) = F n 0 • b(n 1 ) • F * n 1 , which is supported for n 0 = n 1 .
Remark We assume in the statement that χ is even since this implies when, in (3.2.3), B(X) is a self-adjoint linear map independent of n p+1 , that the symbol b χ defined by (3.2.5) is self-adjoint i.e. satisfies with notations (2.2.1) that b • χ (U ; n 0 , n p+1 ) = b χ (U ; n 0 , n p+1 ).

Proof of proposition 3.2.3: Remark first that condition (i) δ of definition 2.1.1 is satisfied if Supp χ is small enough. Remind that we set

K(n) = dim E n . Since F n sends the basis (ϕ n ) of E n ⊗ K onto the canonical basis of K K(n) , the matrix of b χ (Π n U ; n 0 , n p+1 ) in the canonical basis of K K(n p+1 ) and K K(n 0 ) is (3.2.6) χ |n | n 0 + n p+1 χ n 0 -n p+1 n 0 + n p+1 b(Π n U , n p+1 )ϕ p+1 n p+1 , ϕ 0 n 0 0 , p+1 .
Remind also that for n 0 , n p+1 large enough, the size of this matrix is independent of n 0 , n p+1 . Using (2.1.18) to estimate derivatives of the cut-offs, and Leibniz formulas (1.2.6), (1.2.7), we see that we just have to get estimates of type (2.1.12) for the matrix in (3.2.6). Decompose X j ∈ G on the basis (g i ) i of G as X j = i X i j g i . Then the entries of the matrix of the map B(X 1 , . . . , X p , n p+1 ) in the nice basis (ϕ n ) of E n ⊗ K may be decomposed as

B p+1 p+1 (X 1 , . . . , X p , n p+1 ) = I B I p+1 p+1 (n p+1 )X I
where we denote by I a p-tuple I = (i 1 , . . . , i p ), by X I = p j=1 X i j j , and by B I p+1 p+1 (n p+1 ) the quantity B p+1 p+1 (g i 1 , . . . , g ip , n p+1 ). By (3.2.3) 

(3.2.7) b(Π n U , n p+1 )ϕ p+1 n p+1 , ϕ 0 n 0 = p+1 I B I p+1 p+1 (n p+1 )(T Π n U ) I ϕ p+1 n p+1 , ϕ 0 n 0 where T Π n U = (T 1 Π n 1 u 1 , . . . , T p Π np u p ). Since p+1 ∈ {1, . . . , K(n p+1 )} and K(n) is indepen- dent of n → +∞,
B I p+1 p+1 (n p+1 ) (T Π n U ) I ϕ p+1 n p+1 , ϕ 0 n 0 .
We apply inequality (2.1.2) with T 1 = T 2 = Id to the bracket. We get the following estimate

|∂ α n 0 (∂ * n p+1 ) β (∂ n 0 -∂ * n p+1 ) γ ϕ 0 n 0 , (T Π n U ) I ϕ p+1 n p+1 | ≤ C n 0 -n p+1 -N (n 0 + n p+1 ) -γ sup 0≤k≤α+β+γ+N +ν ∂ k [(T Π n U ) I ] L ∞ (3.2.9)
for any α, β, γ, N ∈ N. By Sobolev injection, and the L 2 -boundedness of pseudo-differential operators of order 0, we get for the last term in the above formula the upper bound

C(1 + |n |) α+β+γ+N +ν p 1 u j L 2
for a new value of ν. If we combine (3.2.9) with (3.2.8) and (3.2.2), and use Leibniz formulas (1.2.6), (1.2.7), we see that (3.2.7) satisfies estimate (2.1.12) of definition of symbols (with N 0 = 1). This concludes the proof.
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We shall need estimates of type (2.1.12) for some functions of type (3.2.5), but depending on extra parameters. We state theses estimates as a corollary of the proof of proposition 3.2.3.

Corollary 3.2.4 (i) Let b ∈ S d p .
One has the following estimate for any indices n 0 , n = (n 1 , . . . , n p ), n p+1 , k:

(3.2.10) Π n 0 b(Π n U , k)Π n p+1 L(L 2 ,L 2 ) ≤ C |n | ν+N (|n 0 -n p+1 | + |n |) N k d for some ν ∈ R + , independent of d. (ii) Let B : G × • • • × G × N τ × N τ → L(E ⊗ K, E ⊗ K) be a function (X 1 , . . . , X p , n p+1 , k) → B(X 1 , . . . , X p ; n p+1 , k),
p-linear in (X 1 , . . . , X p ), and such that B(X 1 , . . . , X p ; n p+1 , k) is an element of L(E k ⊗K, E k ⊗K), whose matrix elements in the nice basis of E k ⊗ K satisfy instead of (3.2.2)

(3.2.11) |∂ α 1 n p+1 ∂ α 2 k B (X 1 , . . . , X p ; n p+1 , k)| ≤ C(n p+1 + k) d-α 1 -α 2 p 1 |X j | G .
Define as in (3.2.5),

b χ (u 1 , . . . , u p , n p+1 ; n 0 , k) = n 1 • • • np χ |n | n 0 + k χ n 0 -k n 0 + k F n 0 • b(Π n U ; n p+1 , k) • F * k .
Then b χ satisfies

|||∂ α n 0 (∂ * k ) β 1 (∂ * n p+1 ) β 2 (∂ n 0 -∂ * k -∂ * n p+1 ) γ b χ (Π n U , n p+1 ; n 0 , k)||| ≤ C(n 0 + k) d-γ-β 2 |n | ν+N +α+β 1 +β 2 +γ (|n 0 -k| + |n |) N p 1 u j L 2 (3.2.12)
for some ν ∈ R + , independent of d.

Proof: (i) The left hand side of ( 3 Our next task will be to express a quantity of form Op(b(u 1 , . . . , u p , •))u p+1 in terms of the action of paradifferential operators on u 1 , u 2 , . . . , u p+1 and of a remainder operator. This is, in our framework, analogous to Bony's paradecomposition of a product [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF].

Since T 1 ϕ 1 n 1 is a function with values in the finite dimensional vector space G, with basis (g i ) i , we decompose it as (T 1 ϕ 1 n 1 ) i g i and write the bracket in (3.2.18) as

(3.2.19) a n ,i (x)(T 1 ϕ 1 n 1 ) i , ϕ 0 n 0 with (3.2.20) a n ,i (x) = B(g i , T Π n U , n p+1 )Π n p+1 u p+1 .
By (3.2.2), Sobolev injection, and the L 2 continuity of zero order pseudo-differential operators, we get for any k

(3.2.21) ∂ k x a n ,i (x) L ∞ ≤ C k (1 + |n |) k+ν+d + p+1 2 u j L 2
for some fixed ν ∈ R + . We apply estimate ( 2 

n 0 • • • n p+1 χ j (n 0 , . . . , n p+1 )Π n 0 [b(Π n 1 u 1 , . . . , Π np u p , n p+1 )Π n p+1 u p+1 ].
Consequently, because of the definition of b χ , b j , the operator M defined by equality (3.2.13) may be written as

(3.2.22) M (u 1 , . . . , u p+1 ) = n 0 • • • n p+1 χ(n 0 , . . . , n p+1 )Π n 0 [b(Π n 1 u 1 , . . . , Π np u p , n p+1 )Π n p+1 u p+1 ]
where χ cuts-off outside a neighborhood of the region where one of the χ j j = 1, . . . , p + 1 equals one. In other words, χ is supported inside for some small c > 0. We estimate the L 2 norm of Π n 0 M (Π n 1 u 1 , . . . , Π n p+1 u p+1 ) i.e. of the general term of (3.2.22). Using (3.2.3), we must bound

(3.2.24) | χ(n 0 , . . . , n p+1 )| Π n 0 B(T 1 Π n 1 u 1 , . . . , T p Π np u p , n p+1 )Π n p+1 u p+1 L 2 or equivalently the product of | χ(n 0 , . . . , n p+1 )| by (3.2.25) B(T 1 Π n 1 u 1 , . . . , T p Π np u p , n p+1 )Π n p+1 u p+1 , Π n 0 u 0
for any u 0 ∈ L 2 of norm 1. If for instance n 1 and n 2 are the largest two among n 0 , . . . , n p+1 , we decompose again for j = 1, 2

T j Π n j u j = j i j u j , ϕ j n j (T j ϕ j n j ) i j g i j
where h i j denotes the i j th coordinate of an element of G on the basis (g k ) k . We set n = (n 3 , . . . , n p ), n = (n , n p+1 ) and define

a i 1 i 2 n (x) = B(g i 1 , g i 2 , T Π n U , n p+1 )Π n p+1 u p+1 .
Then (3.2.25) may be written as the sum in 1 , 2 , i 1 , i 2 of (3.2.26)

u 1 , ϕ 1 n 1 u 2 , ϕ 2 n 2 a i 1 i 2 n (x)(T 1 ϕ 1 n 1 ) i 1 (T 2 ϕ 2 n 2 ) i 2 , Π n 0 u 0 .
The last bracket is estimated by (2.1.2). Using Sobolev injections to control the L ∞ norms of derivatives of a i 1 i 2 n and (3.2.2), we may bound the modulus of (3.2.26) by

C n 1 -n 2 -N (1 + n 0 + |n |) ν+N n d p+1 p+1 =0 u L 2
for any N and some fixed ν. Since i 1 , i 

C max 2 (n 1 , . . . , n p+1 ) d + + +ν max(n 1 , . . . , n p+1 ) µ(n 0 , . . . , n p+1 ) N S(n 0 , . . . , n p+1 ) N
for any , N . If there is c 1 > 0 with max 2 (n 1 , . . . , n p+1 ) ≥ c 1 max(n 1 , . . . , n p+1 ), this is trivial. Assume now max 2 (n 1 , . . . , n p+1 ) < c 1 max(n 1 , . . . , n p+1 ).

If, for instance, n p+1 = max(n 1 , . . . , n p+1 ), we have n p+1 ≥ 1 c 1 n j , j = 1, . . . , p. Assume moreover |n 0n p+1 | ≥ c(n 0 + n p+1 ) where c > 0 is the constant of (3.2.23). Then, if c 1 is small enough S(n 0 , . . . , n p+1 ) ≥ c (n 0 + n p+1 ) and inequality (3.2.27) implies (3.2.28). We are thus reduced to the case when |n 0n p+1 | < c(n 0 + n p+1 ). By (3.2.23) we must have then n k ≥ cn 0 ∼ cn p+1 for some k ∈ {1, . . . , p}. This implies again that max 2 (n 1 , . . . , n p+1 ) ∼ max(n 1 , . . . , n p+1 ) and the conclusion follows.

2

We shall now study symbolic properties of elements in S d p . To be able to get for the symbol of a composition a more explicit formula than the one of the proof of proposition 2.2.2 (ii), we shall have to limit ourselves to symbols which are "scalar" according to the following definition. Definition 3.2.6 Let d ∈ R, p ∈ N. We denote by S d p,sc the space of maps

(u 1 , . . . , u p , n p+1 ) → b(u 1 , . . . , u p , n p+1 ) E × • • • × E × N τ → L(E ⊗ K, L 2 (S 1 , G ⊗ K)) (3.2.29)
such that there is

• A function B s : G × • • • × G × N τ → L(G ⊗ K, G ⊗ K), (X 1 , . . . , X p , n) → B s (X 1 , . . . , X p , n) p-linear in (X 1 , . . . , X p ), satisfying for any α ∈ N (3.2.30) |∂ α n B s (X 1 , . . . , X p , n)| ≤ C α n d-α p 1 |X j | G , • A map B ∞ : G × • • • × G × N τ → L(G ⊗ K, G ⊗ K), (X 1 , . . . , X p , n) → B ∞ (X 1 , . . . , X p , n) p-linear in (X 1 , . . . , X p ), such that for any X 1 , . . . , X p ∈ G, any n ∈ N, B ∞ (X 1 , . . . , X p , n) is an element of L(E n ⊗ K, E n ⊗ K) whose matrix elements in the nice basis (ϕ n ) of E n satisfy for any N ∈ N (3.2.31) |B ∞, (X 1 , . . . , X p , n)| ≤ C N n -N |X j | G ,
• A family of pseudo-differential operators of order 0 on S 1 , T 1 , . . . , T p such that one may write for any u 1 , . . . ,

u p ∈ E, n p+1 ∈ N τ (3.2.32) b(u 1 , . . . , u p , n p+1 ) = B s (T 1 u 1 , . . . , T p u p , n p+1 ) ⊗ Id E n p+1 ⊗K + B ∞ (T 1 u 1 , . . . , T p u p , n p+1 ).
Remark that an element of S d p,sc is in particular an element of S d p as shown by (3.2.32). In the sequel, we shall have to work with G = K 2 . In this case, B s can be identified with a 2 × 2 matrix and the first term in the right hand side of (3.2.32) may be written

(3.2.33) B s,11 ⊗ Id E n p+1 ⊗K B s,12 ⊗ Id E n p+1 ⊗K B s,21 ⊗ Id E n p+1 ⊗K B s,22 ⊗ Id E n p+1 ⊗K
i.e. elements of S d p,sc are given, up to a perturbation of order -∞, by a matrix in which each block is a scalar operator acting on E n ⊗ K.

We shall use in the proof of the following proposition the fact that we can make act the scalar part of (3.2.32) not just on E n p+1 ⊗ K but as well on any and a remainder operator M ∈ R d+d ,ν p+q+1 such that for any U = (U , U ) with U = (u 1 , . . . , u q ) ∈ E q , U = (u q+1 , . . . , u p+q ) ∈ E p , any u p+q+1 ∈ E, one has (ii) Assume moreover that χ is even and that a ∈ S d q,sc satisfies a(U ; •) * = a(U ; •). Then there is a symbol e ∈ Σ d-1,ν q,1 such that

E k ⊗ K (replacing • ⊗ Id E n p+1 ⊗K by • ⊗ Id E k ⊗K ). Proposition 3.2.7 (i) Let p, q ∈ N. Let χ ∈ C ∞ 0 (R), χ ≡ 1 close to zero,
Op(a χ (U ; •))Op(b χ (U ; •))u p+q+1 = Op((a • b) χ (U ; •))u p+q+1 + Op(e(U ; •))u p+q+1 + M (u 1 , . . . , u p+q+1 ),
(3.2.35) Op(a χ (U ; •)) * -Op(a χ (U ; •)) = Op(e(U ; •))
for any U ∈ E q .

Proof: (i) We decompose according to (3.2.32)

a = a s + a ∞ , b = b s + b ∞ .
Then by proposition 3.2.3, a ∞,χ and b ∞,χ belong to Σ -∞,ν p,1 . Consequently by proposition 2.2.2, their contribution to the left hand side of (3.2.34) may be incorporated to the term e of the right hand side. In the same way, the terms (a ∞ • b) χ or (a • b ∞ ) χ in the right hand side may be incorporated to e. We may thus assume from now on that a = a s , b = b s . Using notations (3.2.14), the definition (3.2.5) of a χ , b χ , definition 2.1.2 of quantization of a paradifferential symbol and (2.1.8), we get

Op(a χ (U ; •))Op(b χ (U ; •))u p+q+1 = n 0 • • • n p+q+1 k χ q+1 (n 0 , n , k)χ p+1 (k, n , n p+q+1 ) × Π n 0 a(Π n U , k)Π k [b(Π n U , n p+q+1 )Π n p+q+1 u p+q+1 ] (3.2.36)
setting n = (n 1 , . . . , n q ), n = (n q+1 , . . . , n p+q ). We write this expression I + II where

I = n 0 • • • n p+q+1 k χ q+1 (n 0 , n , k)χ p+1 (k, n , n p+q+1 ) × Π n 0 a(Π n U , n p+q+1 )Π k [b(Π n U , n p+q+1 )Π n p+q+1 u p+q+1 ] (3.2.37) and II = n 0 • • • n p+q+1 k χ q+1 (n 0 , n , k)χ p+1 (k, n , n p+q+1 ) × F * n 0 ã(Π n U , n p+q+1 ; n 0 , k) b(Π n U ; k, n p+q+1 )F n p+q+1 u p+q+1 (3.2.38) with ã(Π n U , n p+q+1 ; n 0 , k) = F n 0 • a(Π n U , k) -a(Π n U , n p+q+1 ) k -n p+q+1 • F * k b(Π n U ; k, n p+q+1 ) = F k • [b(Π n U , n p+q+1 )] • F * n p+q+1 (k -n p+q+1 ). (3.2.39) 
We used in the definition of I and II that a is scalar, so that in (3.2.37) it is meaningful to make act a(Π n n U , n p+q+1 ) on an element of E k , as remarked before the statement of proposition 3.2.7.

Study of term I

We further decompose I = I + I where

I = n 0 • • • n p+q+1 χ p+q+1 (n 0 , n , n , n p+q+1 ) × Π n 0 a(Π n U , n p+q+1 )b(Π n U , n p+q+1 )Π n p+q+1 u p+q+1 .
Remark that I is nothing but the first term in the right hand side of (3.2.34). Let us show that I is a remainder operator. We have

I = n 0 • • • n p+q+1 k [χ q+1 (n 0 , n , k)χ p+1 (k, n , n p+q+1 ) -χ p+q+1 (n 0 , n , n , n p+q+1 )] ×Π n 0 a(Π n U , n p+q+1 )Π k [b(Π n U , n p+q+1 )Π n p+q+1 u p+q+1 ] . (3.2.40) 
The first cut-off in the above expression is supported in a domain of form

|n 0 -k| < δ(n 0 + k), |k -n p+q+1 | < δ(k + n p+q+1 ) |n | < δ(n 0 + k), |n | < δ(k + n p+q+1 ) (3.2.41)
and is equal to one on a domain of the same type. The second cut-off is supported inside a domain

(3.2.42) |n 0 -n p+q+1 | < δ(n 0 + n p+q+1 ), max(|n |, |n |) < δ(n 0 + n p+q+1 )
and is equal to 1 on a similar domain. 

|n 0 -k| + |k -n p+q+1 | + |n | + |n | < δ (n 0 + n p+q+1 ),
for small enough δ > 0, both cut-offs in (3.2.40) equal one. Consequently, on the support, we may always extract from one of the factors of (3.2.43) a term decaying like (n 0 + n p+q+1 ) -N . This shows that we get for I remainder type estimates of form (2.1.15) with d replaced by d + d .

Study of term II

We shall show that II gives the term Op(e(U ; •))u p+q+1 in (3.2.34). We shall need the following technical lemma:

Lemma 3.2.8 Let d ∈ R and f : Z → C be a function satisfying |∂ α n f (n)| ≤ C α n d-α for any α ∈ N. Define for a, b ∈ Z, a = b, g(a, b) = f (b)-f (a) b-a
. Then one may extend g to the diagonal a = b and on the domain |a -b| ≤ 1 2 |a + b| one has the estimate

(3.2.45) |∂ α a ∂ β b g(a, b)| ≤ C α,β (a + b) d-1-α-β
for any α, β ∈ N.

Proof: Let us construct first χ ∈ S(R) real valued such that χ(0) = 1, χ(n) = 0 ∀n ∈ Z * and, for any k ∈ N, there is

χ k ∈ S(R) with (3.2.46) ∀x ∈ R, χ (k) (x) = ∂ k χ k (x)
where we denote ∂χ(x) = χ(x + 1)χ(x) (extending notation (1.2.3) to real arguments). Take

first γ ∈ C ∞ 0 (]-1, 1[, R) with γ(0) = 1, θ ∈ C ∞ 0 (]-π, π[, R) even, such that k∈Z θ(ξ -2πk) ≡ 1. Define χ by χ(ξ) = θ(ξ) +∞ k=-∞ γ(ξ + 2kπ). Then, for n ∈ Z χ(n) = 1 2π e inξ θ(ξ) +∞ k=-∞ γ(ξ + 2kπ) dξ = γ(n). Moreover χ (x) = 1 2π e ixξ (e iξ -1) χ1 (ξ) dξ = χ 1 (x + 1) -χ 1 (x)
if we define χ1 (ξ) = iξ e iξ -1 χ(ξ), which belongs to S(R) by construction of χ. We deduce (3.2.46) from this equality by induction.

Write now, denoting by

•, • the scalar product f 1 , f 2 = +∞ -∞ f 1 (n)f 2 (n), g(a, b) = 1 b -a +∞ n=-∞ f (n)(χ(n -b) -χ(n -a)) = f, H(•, a, b)
where

H(n, a, b) = - 1 0 χ (n -(1 -t)b -ta) dt.
This defines an extension of g(a, b) to a = b. If we make act the finite difference operator ∂ b on H(n, a, b), we get

∂ β b H(n, a, b) = - 1 0 • • • 1 0 χ (β+1) (n -(1 -t)b -ta -(s 1 + • • • + s β )(1 -t))(t -1) β ds 1 . . . ds β dt.
Using (3.2.46) in the right hand side, we see that we may write

∂ β b H(n, a, b) = ∂ β+1 n H β (n, a, b)
where H β satisfies for any N ∈ N an estimate

|H β (n, a, b)| ≤ C N 1 0 n -(1 -t)b -ta -N dt.
Consequently, if we write End of proof of proposition 3.2.7: Denote by (X 1 , . . . , X q , n) → A(X 1 , . . . , X q , n) the function on G × • • • × G × N τ in terms of which the symbol a(u 1 , . . . , u q , n) is defined according to definition 3.2.6 (see formula (3.2.32)). Set A 1 (X 1 , . . . , X q , n p+q+1 , k) = A(X 1 , . . . , X q , n p+q+1 ) -A(X 1 , . . . , X q , k) n p+q+1k (taking by convention the quotient to be the extension of lemma 3.2.8 when n p+q+1 = k). By lemma 3.2.8, A 1 satisfies when |n p+q+1 -k| ≤ 1 2 (n p+q+1 + k) and n p+q+1 ∼ k is large enough

∂ β b g(a, b) = f, ∂ β b H(n, a, b) = (∂ * n ) β+1 f, H β (n,
|∂ α 1 n p+q+1 ∂ α 2 k A 1 (X 1 , . . . , X q , n p+q+1 , k)| ≤ C αβ (k + n p+q+1 ) d-1-α 1 -α 2 q j=1 |X j | G .
In other words, assumption (3.2.11) of corollary 3.2.4 holds true. We denote by ãχ the product of ã given by (3.2.39) with χ q+1 (n 0 , n , k), and by bχ the product of b by χ p+1 (k, n , n p+q+1 ). By (3.2.12) 

|||∂ α n 0 (∂ * k ) β 1 (∂ * n p+q+1 ) β 2 (∂ n 0 -∂ * k -∂ * n p+q+1 ) γ ãχ (Π n U , n p+q+1 ; n 0 , k)||| ≤ C(n 0 + k) d-β 2 -γ-1 |n | ν+N +α+β 1 +β 2 +γ (|n 0 -k| + |n |) N q 1 u j L 2 . ( 3 
(∂ n 0 -∂ * n p+q+1 )e(Π n U , Π n U ; n 0 , n p+q+1 ) = k ((∂ n 0 -∂ * n p+q+1 -∂ * k )ã χ ) bχ + k ãχ (∂ k -∂ * n p+q+1 ) bχ - k (∂ * n p+q+1 ãχ )(∂ * n p+q+1 bχ ). ( 3 
(n 0 + k) d-1 µ(n 0 , n , k) ν+N 1 S(n 0 , n , k) N 1 (k + n p+q+1 ) d µ(k, n , n p+q+1 ) ν+N 2 S(k, n , n p+q+1 ) N 2 p+q 1 u j L 2 .
Since on the support we have k ∼ n 0 ∼ n p+q+1 , we may use lemma 2.2.5 to get the upper bound (for new values of ν, N )

C(n 0 + n p+q+1 ) d+d -1 µ(n 0 , n , n , n p+q+1 ) ν+N S(n 0 , n , n , n p+q+1 ) N p+q 1 u j L 2
which is the wanted estimate.

(ii) We have using notations (2.2.1), (3.2.5) and the fact that χ is even

a • χ (U ; n 0 , n q+1 ) -a χ (U ; n 0 , n q+1 ) = n 1 • • • np χ |n | n 0 + n q+1 χ n 0 -n q+1 n 0 + n q+1 F n 0 • a(Π n U , n 0 ) -a(Π n U , n q+1 ) • F * n q+1 .
One has just to apply the proof of proposition 3.2.3 together with estimate (3.2.45) to check that the above formula defines an element of Σ d-1,ν q,1 . 2

Polyhomogenous symbols

We collect in this subsection corollaries of the results obtained in subsections 3.1 and 3.2, which apply to symbols which are not necessarily multilinear in the arguments u 1 , . . . , u p . In section 4 below, we shall have to use symbols verifying conditions of type (1.1.3). We introduce the following definition. We shall use below several times the following remark. Let L be a linear map (resp. B be a bilinear map) from one (resp. the product of two) of the above spaces of symbols or operators to a third space of that type. Assume that L (resp. B) respects the natural graduations of these spaces. Then L (resp. B) sends symbols or operators satisfying C(κ, r) to symbols or operators satisfying C(κ, r). This is trivial for linear maps. In the bilinear case, this follows from the fact that in an expression of form B(a, b), the contributions of type B(a q , b p ) with q > 0 and p > 0 are homogeneous of degree p + q ≥ 2κ ≥ r -1 (since v (a) ≥ κ, v (b) ≥ κ), so the condition imposed by C(κ, r) on B(a q , b p ) is void. Only terms of type B(a 0 , b p ), B(a q , b 0 ) have to be taken into consideration, and they satisfy the condition of the definition. 

Definition 3.3.1 (i) For d ∈ R, ν ∈ R + , N 0 ∈ N * , we denote by Σ d,ν N 0 the space of functions b : E × N τ × N τ → L( 2 , 2
; •))v, for b ∈ Σ d,ν N 0 (resp. u → R(u) for R ∈ R d,ν ) extend from E × E (resp. E) to H s (S 1 , G ⊗ K) 2 (resp. H s (S 1 , G ⊗ K))
if s is large enough. We use this in the following corollaries, which are stated for arguments u, v smooth enough, but need only to be checked when u, v ∈ E by density. Moreover, one has and a remainder operator M ∈ R d+d ,ν ⊂ R 0,ν+d + +d + such that for any smooth enough u, v,

(3.3.6) v(b χ ) ≥ v(b), v(b 0 ) ≥ v (b), v(M ) ≥ v (b)
(3.3.7) Op(a χ (u; •)) • Op(b χ (u; •))v = Op((a • b) χ (u; •))v + Op(e(u; •))v + M (u, v). Moreover (3.3.8) v(e) ≥ min(v (a), v (b)), v(M ) ≥ min(v (a), v (b)) + 1. If v(a) = v (a) > 0, v(b) = v (b) > 0, we have (3.3.9) v(e) ≥ v (a) + v (b), v(M ) ≥ v (a) + v (b) + 1.
Moreover a • b, e and M satisfy C(κ, r) if a and b do so.

Proof: We decompose a = Q q=0 a q , b = P p=0 b p and apply proposition 3.2.7 to each contribution, remarking that Op(a 0,χ )Op(b 0,χ ) = Op((a 0 • b 0 ) χ ), so that all contributions to e and M come from compositions with p > 0 or q > 0. The last statement comes from the remark after definition 3. Remember that M (u, •) = M 0 (•) + M κ (u, •). Consider the expression obtained replacing in (4.1.6) M (u, •) by M κ (u, •): we get a term homogeneous of degree 2κ + 2 in u. In a semi-linear framework, i.e. when M κ is a symbol of order 0, this gives a contribution to (4.1.6) which is O( u 2κ+2 H s ), since a is of order 2s. In our quasi-linear framework, M κ (u, •) is a symbol of order 1, which a priori looses one extra derivative. The way to circumvent that difficulty is well known: one has to arrange so that a be self-adjoint and commute to M κ . Then since M κ (u, •) is assumed anti-self-adjoint, the contribution of M κ to (4.1.6) may be written in terms of a commutator [ Op(a(u, •)), Op(M κ (u, •))]u. The symbolic calculus we studied in the preceding sections shows that this commutator gains one derivative, so that again the contribution of M κ to (4.1.6) is O( u 2κ+2 H s ). In other words, up to such nice remainders, d dt Op(a(u, •))u, u will be given by contributions of type (4.1.6) with M replaced by M 0 , and by similar terms coming from the action of d dt on those u inside the argument of a. The last step of the proof will be to show that we may choose a so that these contributions to d dt Op(a(u, •))u, u will cancel out the right hand side of (4.1.5).

To ensure the commutator property of a with M , we start instead of (4.1.1) with

(4.1.7) Λ s m ũ(t, •), Λ s m ũ(t, •)
where ũ is a new unknown defined in terms of u by ũ = Q(u)u, Q being a matrix such that

D(u, •) = Q(u)M (u, •)Q(u) -1 is diagonal.
Computing the time derivative of (4.1.7), we shall get instead of (4.1.5) an expression where a is again a symbol to be determined. When we shall compute the time derivative of (4.1.9), the contribution corresponding to (4.1.6) will be Since now D is diagonal, and since we shall look for a diagonal symbol a, the commutation property between symbols aD = Da will hold true automatically. Moreover a will be taken self-adjoint and D will be anti-self-adjoint. Because of that, the contribution of the part of D which is homogeneous in u of order κ to (4.1.10) will be expressed through a commutator, and will provide a remainder of type u 2κ+2 H s . As explained above, the terms coming from the part D 0 of D independent of u will cancel out (4.1.8), if the symbol a is conveniently defined in terms of b. Finally, since for small functions u, (4.1.7) will be equivalent to u(t, •) Let us mention that the computations we outlined above will have to be done using paradifferential operators instead of pseudo-differential ones. This is the justification for our study of the former in section 2. The diagonalization of the principal symbol of the equation, i.e. the construction of ũ in terms of u, will be described in subsection 4.2. The last subsection 4.3 will be devoted to the construction of the correcting terms (4.1.9) and to the proof of the theorem.

Diagonalization of principal part

We shall denote by Λ m = √ -∆ + V + m 2 . This is a scalar invertible pseudo-differential operator of order 1 on S 1 . If v ∈ H s+1 (S 1 , R) for a large enough s, we set (4.2.1)

u = Λ m v ∂ t v , v = Λ -1 m u 1 , ∂ t v = u 2 .
We define

(4.2.2) a(u) = c(Λ -1 m u 1 , u 2 , ∂ x Λ -1 m u 1 )
where c is the function defined in (1.1.1), (1.1.2). In particular, a(u) may be written as a sum of multilinear expressions in T u 1 , u 2 for pseudo-differential operators of order 0, T . Consequently a(u) will be, according to definitions 3.3.1 and 3.2.1, a symbol of S 0 sc (independent of n). Its valuation will be equal to κ which, according to assumption (1.1.3), may be assumed to be odd. Moreover it will satisfy condition C(κ, r) of definition 3.3.2 i.e. 

4.2.3) a = κ 1 k=κ a k (u) where a k ∈ S 0 k , a 2k ≡ 0 for κ ≤ 2k < r -1.
The first equation of (1.1.4) may be written (4.2.4)

∂ t u = 0 Λ m -(1 + a(u)) 2 Λ m 0 u.
We shall denote by G the vector space R 2 , and consider the operator -d 2 dx 2 + V (x) acting on L 2 (S 1 , G). As in section 2.1, we denote by (ω - n ) 2 ≤ (ω + n ) 2 the couple of eigenvalues with asymptotics (1.2.1), and by Π n the spectral projector on the subspace of L 2 (S 1 , G) generated by the eigenfunctions associated to these two eigenvalues for n ≥ τ + 1 large enough. We denote by E n the range of Π n . Then E n is four dimensional for n ≥ τ + 1. We define E τ to be the orthogonal complement in L 2 (S 1 , G) of the Hilbert sum n≥τ +1 E n . Then E τ is even dimensional and we have the Hilbert decomposition (4.2.5)

L 2 (S 1 , G) = +∞ n=τ E n .
At times we shall denote by E n , n ≥ τ + 1 the subspace of L 2 (S 1 , R) generated by the two eigenfunctions associated to the eigenvalues (ω - n ) 2 and (ω + n ) 2 of the operator -d 2 dx 2 + V (x) acting on L 2 (S 1 , R). We define E τ in a similar way as E τ . We have for n ≥ τ , E n E n × E n . We denote by E the algebraic direct sum of E n for n ≥ τ . We introduce the following matrices (4.2.6)

P (u, n) = I K (n) I K (n) i(1 + a(u))I K (n) -i(1 + a(u))I K (n) and (4.2.7) Q(u, n) = i 2 -i(1 + a(u))I K (n) -I K (n) -i(1 + a(u))I K (n) I K (n) so that (4.2.8) P (u, n)Q(u, n) = Q(u, n)P (u, n) = (1 + a(u))I 2K (n)
where K (n) = dim E n = 2 when n > τ . (We prefer to use Q(u, n) instead of P (u, n) -1 to always work with matrices whose coefficients are polynomial in u). Then, according to definitions 3.3.1 and 3.2.1, P and Q are elements of S 0 . Actually these matrices define, according to definition 3.2.6 and (3.2.33) elements of S 0 sc , since each block of P (u, n), Q(u, n) is a scalar matrix (the contribution of order -∞ of definition 3.2.6 is zero in this case). Moreover (4.2.9)

v(P ) = v(Q) = 0, v (P ) = v (Q) = κ and P (u, n) and Q(u, n) satisfy condition C(κ, r).
Remind that we have constructed in theorem 1.2.1 a nice basis of L 2 (S 1 , R), which was adapted to the decomposition given by the E n (which were then denoted by E n ). We construct from this nice basis a natural basis of E n = E n × E n , which makes a nice basis of L 2 (S 1 , G), as at the beginning of subsection 3.2. We denote by λ m (n) the matrix of Λ m | E n in the above nice basis.

For n ≥ τ + 1, λ m (n) is a 2 × 2 matrix. We denote by ω(λ) a symbol of order 1 on R + with asymptotics given by (1.2.1) and we define (4.2.10)

ω m (n) = m 2 + ω(n) 2
so that the difference between the eigenvalues of

√ -∆ + V + m 2 | E n and ω m (n) is O(n -∞ ) when n → +∞. The matrix λ m (n) may be written (4.2.11) λ m (n) = ω m (n)I K (n) + λm (n)
where λm (n) is a matrix whose norm decays like n -∞ when n → +∞. We introduce for n ≥ τ the matrix (4.2.12)

M (u, n) = 0 λ m (n) -(1 + a(u)) 2 λ m (n) 0 . This is a K(n) × K(n) matrix (where K(n) = dim E n = 2K (n))
and since a(u) ∈ S 0 , we get that M (u, •) ∈ S 1 . Actually, decomposition (4.2.11) shows that M (u, •) ∈ S 1 sc since we may write it as the sum of

0 ωm(n)Id K (n) -(1+a(u)) 2 ωm(n)Id K (n) 0
, which is scalar by blocks, and of a contribution of order -∞. Moreover the coefficients of M (u, n) satisfy condition C(κ, r).

According to definition 3.2.2, Op(M (u, •))u is nothing but the right hand side of (4.2.4). We may thus write this equation (4.2.13)

∂ t u = Op(M (u, •))u.
Let us introduce the energy of solutions of (4.2.13) that we shall consider. We denote by Λ m the operator Λ

m = Op(ω m (n)I K(n) ) acting on L 2 (S 1 , G), so that Λ m Π n = ω m (n)Π n . For s large enough we set (4.2.14) Θ s 0 (u(t, •)) = 2 Λ s m Op(Q χ (u; •))u, Λ s m Op(Q χ (u; •))u
where χ ∈ C ∞ 0 (R), χ ≡ 1 close to 0, χ even, Supp χ small enough, and where Q χ ∈ Σ 0,ν 1 (for some ν ∈ R + ) is defined from Q in corollary 3.3.3 (see also (3.2.5)). Because of (4.2.9)

(4.2.15) v(Q χ ) = 0, v (Q χ ) = κ.
The following lemma asserts that Θ s 0 (u) is indeed equivalent to u 2 H s for small u, and gives an alternative expression for Θ s 0 (u), which will be useful in the sequel.

Lemma 4.2.1

There is s 0 > 0 and for any s ≥ s 0 there are constants C > 0, R 0 > 0 such that for any u ∈ H s (S 1 , G) with u H s 0 < R 0 , one has

(4.2.16) C -1 u 2 H s ≤ Θ s 0 (u) ≤ C u 2 H s .
Moreover, we may find a self-adjoint scalar symbol c(u, •) ∈ Σ 2s,ν 1 , for some ν > 0 independent of s, with v(c) ≥ κ, and satisfying condition C(κ, r),

such that if ũ = Op(Q χ (u; •))u (4.2.17) Θ s 0 (u) = Λ s m Op((1 + a χ )(u; •))ũ, Λ s m ũ + Λ s m ũ, Λ s m Op((1 + a χ )(u; •))ũ + Op(c(u; •))ũ, ũ . 
Proof: We prove first (4.2.17). Remark that the left hand side and the sum of the first two brackets in the right hand side of (4.2.17) are real, so if we find a symbol c satisfying (4.2.17), the equality remains true replacing c by 1 2 (c + c • ) where c • is defined by (2.2.1). In other words, as soon as we have found a c, we can construct from it a self-adjoint one.

Compute the difference between 1 2 Θ s 0 (u) and the first bracket in the right hand side of (4.2.17). We get (4.2.18) -Λ 2s m Op(a χ (u; •))ũ, ũ .

We may always write Λ 2s m as a paradifferential operator associated to the symbol of Σ 2s,0 0,0 given by

χ n 0 -n 1 n 0 + n 1 ω m (n 0 ) + ω m (n 1 ) 2 2s .
Moreover a χ defined from a in corollary 3.3.3 belongs to Σ 0,ν 1 for some ν ∈ R + . By corollary 3.3.5 (i), we may thus write (4.2.18) as Op(c(u; •))ũ, ũ for some symbol c ∈ Σ 2s,ν 1 , for a new value of ν independent of s. This gives (4.2.17).

Before starting the proof of (4.2.16), let us express u in function of ũ and conversely. Denote 

4.2.19) P 0 (n) = P (0, n) = I K (n) I K (n) iI K (n) -iI K (n) , Q 0 (n) = Q(0, n) = i 2 -iI K (n) -I K (n) -iI K (n) I K (n) . If we denote σ 0 (u; n) = Q χ (u; n) -Q 0,χ ( 
n), we get a symbol in Σ 0,ν 1 for some ν, with v(σ 0 ) ≥ κ, satisfying condition C(κ, r), such that by definition of ũ

(4.2.20) ũ = Q 0 u + Op(σ 0 (u; •))u,
where for short we write Q 0 for Op(Q 0 (•)) = Op(Q 0,χ (•)). Multiplying by P 0 = Q -1 0 we get, using the same type of notation convention, (4.2.21) u = P 0 ũ + Op(σ 0 (u; •))u

for another symbol σ0 with σ0 ∈ Σ 0,ν 1 , v( σ0 ) ≥ κ, σ0 satisfying C(κ, r). Using proposition 2.1.3, we obtain that there are C > 0, s 0 > 0 and for any s ≥ s 0 , there is R 0 > 0 small enough such that for any u ∈ H s with u H s 0 < R 0 , (4. 2

The interest of the preceding lemma is that it gives for Θ 0 an expression in terms of ũ, and the equation written on ũ will be essentially diagonal. Let us introduce some more notations. We set We write also where we denoted by D 0 the operator Op(D 0 (n)).

Proof: Let us show first (4.2.27). We apply corollary 3.3.3 to (4.2.13). We get where b0 ∈ Σ 0,ν p , R ∈ R 0,ν for some ν ∈ R + , v( b0 ) ≥ κ, v( R) ≥ κ+1, b0 and R satisfying condition C(κ, r). Using (4.2.25), we further decompose Op(M χ (u; •)) = M 0 + Op(M κ χ (u; •)), where M 0 denotes for short the operator with symbol M 0 (n). Since M κ χ (u, n) ∈ Σ 1,ν 1 , satisfies v(M κ χ ) ≥ κ, and verifies condition C(κ, r), we just have, to deduce (4.2.27) from (4.2.30), to express M 0 u in terms of ũ. This follows from (4.2.21) together with the expression M 0 P 0 = P 0 D 0 , which is a consequence of (4.2.23) and (4.2.8).

We shall prove now (4.2.28) and (4.2.29). We compute first where U = (u, ∂ t u) and Q (U, •) is the symbol obtained by time derivation of Q(u, •). Let us show, using the equation, that Q χ (U ; •) is an element of Σ 0,ν 1 for some ν, satisfying v(Q χ (u; •)) ≥ κ and verifying condition C(κ, r). By (4.2.7) we may write Q χ (U ; •) as a finite sum indexed by p ≥ κ of quantities of type a p,χ (∂ t u, u, . . . , u; n 0 , n p+1 )

1 2 I K (n p+1 ) 0 1 2 I K (n p+1 ) 0
where a p is the component homogeneous of degree p in the expansion of a. If we plug in this expression (4.2.30), we see using corollary 3.3.6 (i) and (ii) that we get a contribution of type Op(b 0 (u; •))u + R(u), like the last two terms in the right hand side of (4.2.29). In particular, such terms are of the form of the right hand side of (4.2.28). To finish the proof of (4.2.28), we just have to study the first term in the right hand side of (4.2.31). If we replace in that term ∂ t u by (4.2.30) and use corollaries 3.3.5 (i) and 3.3.6 (iii), we obtain that this contribution is again of the same form as the right hand side of (4.2.28). Let us prove (4.2.29), making act Proof: Remark that since c is self-adjoint, so is c M 0 defined by (4.2.36). So the left hand side and the first two terms in the right hand side of (4.2.39) are real valued. Consequently, it is enough to prove (4.2.39) for some non necessarily self-adjoint symbol e, and replacing ( R(u), u + u, R(u) ) Moreover, if a is self-adjoint, we may assume that c 1 is also self-adjoint.

Remark that the last statement follows from (4.3.5) and the fact that if c 1 satisfies (4. The proof of (4.3.5) will use several lemmas. We remark first that we may extend c 1 and a, which are R-mulitilinear maps in (u 1 , . . . , u p ) as C-mulitilinear maps. This allows us to make the change of function u j → P 0 u j in (4.3.5), where P 0 is defined in (4. where we denoted ã(u 1 , . . . , u p ; n 0 , n p+1 ) = a(P 0 u 1 , . . . , P 0 u p ; n 0 , n p+1 ) c1 (u 1 , . . . , u p ; n 0 , n p+1 ) = c 1 (P 0 u 1 , . . . , P 0 u p ; n 0 , n p+1 ) c1 D 0 (u 1 , . . . , u p ; n 0 , n p+1 ) = p j=1 c 1 (P 0 u 1 , . . . , P 0 D 0 u j , . . . , P 0 u p ; n 0 , n p+1 ). We shall denote by Σ d,ν p,N 0 (N ) the space of functions a of type (2.1.10), defined on

(E ⊗ C) × • • • × (E ⊗ C) × N τ × N τ instead of E × • • • × E × N τ × N τ ,
which are C-p-linear in (u 1 , . . . , u p ) and satisfy condition (i) δ of definition 2.1.1 for some δ ∈]0, 1[ small enough, and inequalities (2.1.12) only when α + β + γ ≤ N . We endow this space with the norm |a| d,ν p,N 0 ,N given by the best constant in inequality (2.1.12). Of course, Σ d,ν p,N 0 is the restriction of N Σ d,ν p,N 0 (N ) to real arguments (u 1 , . . . , u p ). If c 1 ∈ Σ d,ν p,N 0 (N ) we denote by L(c 1 ) the symbol defined by the left hand side of (4.3.6). Remind that by (4.2.23), (4.2.24), (4.2.11), the matrix D 0 (n) = D(0, n) may be decomposed as where D0 (n) is a symbol of order -∞. When n = τ , we may take D 0 (τ ) = 0. We then decompose Remark that L 1 sends Σ d,ν p,N 0 (N ) into Σ -∞,0 p,N 0 (N ) since D0 is of order -∞. On the other hand, if c 1 satisfies condition (H D ), c1 (U ; n 0 , n p+1 ) commutes when n 0 , n p+1 ∈ N τ +1 to D 0 (n 0 ) whence we obtain that L 0 sends Σ d,ν p,N 0 (N ) in Σ d+1,ν p,N 0 (N ). Let us prove the following lemma:

5 )

 5 

1 1 M 1 M 1

 1111 (u, . . . , u, ū, . . . , ū) = iL(M 1 )(u, . . . , u, ū, . . . , ū) + R(u, ū) where (0.0.7) L(M 1 )(u, . . . , ū) = p (u, . . . , Λ m u, . . . , u, ū, . . . , ū) -p+q+1 p+1 (u, . . . , u, ū, . . . , Λ m ū, . . . , ū), and R(u, ū) is a remainder obtained substituting if (u, ū) to one of the arguments of M 1 . Since f contains no derivative of u, R(u, ū) = O( u 2κ+2 H s ) as wanted. As Λ m Π n u = √ m 2 + n 2 Π n u, one may write (0.0.8)

( 2 . 2 . 10 )

 2210 We consider now the symbol of [Op(a(U ;•)), Op(b(U ; •))]. By (2.2.4), this is equal to the expression a#b(U , U ; n 0 , n p+q+1 )b#a(U , U ; n 0 , n p+q+1 ) i.e. k∈Nτ [a(U ; n 0 , k)b(U ; k, n p+q+1 )b(U ; n 0 , k)a(U ; k, n p+q+1 )].

  we can define the action of the pseudo-differential operator with symbol b(u 1 , n) on a function u 2 by the formula (3.1.1)

Definition 3 . 2 . 2

 322 Let b ∈ S d p . We define an operator Op(b) acting on E p+1 by (3.2.4) Op(b)(u 1 , . . . , u p , •)u p+1 = n p+1 b(u 1 , . . . , u p , n p+1 )Π n p+1 u p+1 .

  0 , . . . , n p+1 ); |n 0n j | ≥ c(n 0 + n j ) or ∃k ∈ {1, . . . , p + 1} -{j} with n k ≥ cn 0 }

  and assume that Supp χ is small enough. There is ν ∈ R and for any d, d ∈ R, for any symbols a ∈ S d q,sc , b ∈ S d p,sc there are a symbol e ∈ Σ d+d -1,ν p+q,1

( 3 .

 3 2.34) where a χ , b χ are defined in terms of a, b by (3.2.5), and a • b stands for the symbol associated to the composition A • B of the linear maps defining a, b through (3.2.3).

  a, b) and use the above upper bound, and the assumption |a -b| ≤ 1 2 |a + b|, we obtain |∂ β b g(a, b)| ≤ C|a + b| d-1-β . One treats in the same way the action of difference operators acting on the first variable of g. 2

)

  ) such that there is a finite family (b p ) p=0,...,P of elements b p ∈ Σ d,ν p,N 0 with (3.3.1) b(u; n 0 , n p+1 ) = P p=0 b p (u, . . . , u p times ; n 0 , n p+1 ) for any n 0 , n p+1 ∈ N τ , u ∈ E. (ii) For d ∈ N, we denote by S d the space of functions b : E × N τ → L(E, L 2 ) such that there is a finite family (b p ) p=0,...,P of elements b p ∈ S d p with (3.3.2) b(u, n) = P p=0 b p (u, . . . , u p times , n) for any n ∈ N τ , u ∈ E. We define in a similar way S d sc from S d p,sc .(iii) For ν ∈ R + , d ∈ R, we denote by R d,ν the space of all maps M : E → L 2 such that there is a finite family of maps M p ∈ R d,ν p p = 1, . . . , P with for any u ∈ E. Some times, we shall use the same notation for maps (u, v) → M (u, v) depending on two arguments u, v ∈ E, and which may be written as a sum of multilinear expressions of form M p (u, . . . , u, v . . . , v) where the total number of arguments is p and 1 ≤ p ≤ P . We define the valuation v(b) of a symbol b (resp. v(M ) of an element M of R d,ν ) as the smallest p ≥ 0 (resp. p ≥ 1) such that b p ≡ 0 in (3.3.1), (3.3.2) (resp. M p ≡ 0 in (3.3.3)). The modified valuation v (b) of a symbol is the smallest p ≥ 1 such that b p ≡ 0 in (3.3.1), (3.3.2).

Definition 3 . 3 . 2

 332 Let κ be an odd integer, r ∈ N with κ ≤ r -1 ≤ 2κ. We say that a symbolb ∈ Σ d,ν N 0 (resp. b ∈ S d , resp. an operator M ∈ R d,ν ) satisfies condition C(κ, r) if and only if b = b 0 + κ 1 p=κ b p (resp. M = κ 1 p=κ M p+1 ) with b p ∈ Σ d,ν p,N 0 (resp. b p ∈ S d p , resp. M p+1 ∈ R d,ν p+1) and b p ≡ 0 (resp. M p+1 ≡ 0) when p is an even integer 2k satisfying κ ≤ 2k < r -1.

  We extend the definition of the quantization of operators by linearity, setting for b ∈ Σ d,ν N 0 or b ∈ S d respectively Op(b(u; •)) = P p=0 Op(b p (u, . . . , u; •)) Op(b(u, •)) = P p=0 Op(b p (u, . . . , u, •)).

( 3 . 3 . 4 )

 334 By proposition 2.1.3 and lemma 2.1.7, maps like (u, v) → Op(b(u

Corollary 3 . 3 . 3

 333 Let P ∈ N * be given. There is ν ∈ R + such that if we define for d ∈ R, b ∈ S d , χ ∈ C ∞ 0 (R), χ ≡ 1 close to zero, Supp χ small enough, b χ = P p=0 b p,χ ∈ Σ d,ν 1 , we may find a symbol b 0 ∈ Σ 0,ν+d + 1and an operator M ∈ R 0,ν+d + such that for any smooth enough u (3.3.5) Op(b(u, •))u = Op(b χ (u; •))u + Op(b 0 (u; •))u + M (u).

+ 1 and 2 Corollary 3 . 3 . 4

 12334 b χ , b 0 , M satisfy condition C(κ, r) if b does so. Proof: We decompose b = P p=0 b p and apply to each component proposition 3.2.5. We obtain (3.3.5) and (3.3.6), remembering that for p = 0, b 0 does not depend on u, so that Op(b 0 ) = Op(b 0,χ ) for any χ as in the statement of the theorem. Consequently b 0 does not contribute to the last two terms in (3.3.5), which implies the last two inequalities in (3.3.6). Let d, d ∈ R, a ∈ S d sc , b ∈ S d sc . Let χ ∈ C ∞ 0 (R), χ ≡ 1 close to zero, with small enough support. There are ν ∈ R + independent of d, d , a symbol e ∈ Σ d+d -1,ν 1

3 . 2 . 2

 322 Corollary 3.3.5 (i) Let ν ∈ R + , N 0 ∈ N * . There is ν ∈ R + , and for anyd, d ∈ R, any a ∈ Σ d,ν N 0 , b ∈ Σ d ,ν N 0 satisfying condition (i) δ of definition 2.1.1 with small enough δ > 0, there is a symbol a#b ∈ Σ d+d ,ν N 0 such that for any smooth enough u Op(a(u; •)) • Op(b(u; •))u = Op(a#b(u; •))u. Moreover v(a#b) ≥ v(a) + v(b), and a#b satisfies C(κ, r) if a, b do so.(ii) Assume moreover that the homogeneous components a q (u; n 0 , n q+1 ) and b p (u; n 0 , n p+1 ) of a, b commute for large enough n 0 , n q+1 , n 0 , n p+1 and thata 0 b 0 ≡ b 0 a 0 . There is c ∈ Σ d+d -1,ν N 0 such that [Op(a(u; •)),Op(b(u; •))]u = Op(c(u; •))u for any smooth enough u, and v(c) ≥ min(v (a), v (b)). If moreover v(a) = v (a) > 0 and v(b) = v (b) > 0, then v(c) ≥ v (a) + v (b). Finally if a, b satisfy C(κ, r), the same holds true for c.

( 4 . 1 . 8 )

 418 Op(b(u, •))ũ, ũ that we will try to cancel out adding to (4.1.7) a quantity (4.1.9) Op(a(u, •))ũ, ũ

( 4 .

 4 1.10) [ Op(a(u, •)) Op(D(u, •)) + Op(D(u, •)) * Op(a(u, •))]ũ, ũ .

(

  

(

  

( 4 .

 4 2.23) D(u, n) = Q(u, n)M (u, n)P (u, n) = i(1 + a(u)) 2 λ m (n) 0 0 -λ m (n) .

( 4 .Lemma 4 . 2 . 2

 4422 2.24) D 0 (n) = D(0, n), D κ (u, n) = D(u, n) -D 0 (n) so that D κ (u, n) ∈ S 1sc with valuation larger or equal to κ. Moreover D(u, •) satisfies condition C(κ, r). We set also (4.2.25)M 0 (n) = M (0, n), M κ (u, n) = M (u, n) -M 0 (n) so that M κ (u, n) is an element of S 1sc of valuation larger or equal to κ. In the same way, the expressions (4.2.26)P κ (u, n) = P (u, n) -P 0 (n), Q κ (u, n) = Q(u, n) -Q 0 (n)are symbols of S 0 sc , with valuations larger or equal to κ. There is some ν ∈ R + and there are symbols b 0 (u;•) in Σ 0,ν 1 , b 1 (u; •), b1 (u; •) in Σ 1,ν 1 with v(b 0 ), v( b1 ) ≥ κ, there are operators R, R in R 0,ν , with v(R), v( R) ≥ κ + 1, satisfying condition C(κ,r), such that one may write for all u ∈ H s (S 1 , G) solution of (4.2.13) (4.2.27) ∂u ∂t = P 0 D 0 ũ + Op( b1 (u; •))u + R(u) (4.2.28) ∂ ũ ∂t = Op(b 1 (u; •))u + R(u) (4.2.29) Op((1 + a χ )(u; •)) ∂ ũ ∂t = Op(D χ (u; •))ũ + Op(b 0 (u; •))u + R(u)

( 4 .

 4 2.30)∂u ∂t = Op(M χ (u; •))u + Op( b0 (u; •))u + R(u)

  Q χ (u; •))u] = Op(Q χ (u; •)) ∂u ∂t + Op(Q χ (U ; •))u

Lemma 4 . 2 . 3

 423 Let ν ∈ R + . There is ν ∈ R + such that for any d ∈ R, N 0 ∈ N * , p ∈ N, c ∈ Σ d,ν p,N 0 , one can find a symbol e 1 ∈ Σ d,νN 0 with v(e 1 ) ≥ κ + p and R 1 ∈ R

Proposition 4 . 2 . 4

 424 Let ν ∈ R + , p ∈ N, N 0 ∈ N * be given. There is ν ∈ R + and for any d ∈ R, for any symbol c ∈ Σ d,ν p,N 0 satisfying (4.2.34), (4.2.35), one can find• a self-adjoint symbol e ∈ Σ d,ν N 0 with v(e) ≥ p + κ, • an operator R ∈ R d,ν satisfying v(R) ≥ p + κ + 1,such that for any smooth enough u satisfying equation (4.2.13) one has, denoting c(u;•) = c(u, . . . , u; •), c(u; •))Op((1 + a χ )(u; •)) + Op((1 + a χ )(u; •)) * Op(c(u; •))]ũ, ũ = Op(c M 0 (u; •))ũ, ũ + [Op(c(u; •))D 0 + D * 0 Op(c(u; •))]ũ, ũ + Op(e(u; •))ũ, ũ + ( R(u), u + u, R(u) ).

( 4 .

 4 2.39)Moreover, if p is odd, p ≥ κ then c M 0 , e, R satisfy condition C(κ, r).

(c 1 Proposition 4 . 3 . 2

 1432 H D ) In (4.3.3) each block outside the diagonal is zero. (H N D ) In (4.3.3) each block on the diagonal is zero.In accordance with notations (4.2.36), if c 1 is a symbol in Σ d,ν p,N 0 we shall set(4.3.4) c 1 M 0 (u 1 , . . . , u p ; n 0 , n p+1 ) = p j=1 (u 1 , . . . , M 0 u j , . . . , u p ; n 0 , n p+1 ). Let ν ∈ R + . There is ν ∈ R + such that for any d ∈ R, p ∈ N odd, a ∈ Σ d,νp,N 0 satisfying assumption (H D ) (resp. assumption (H N D )), we may find a symbolc 1 ∈ Σ d,ν p,N 0 satisfying (H D ) (resp. a symbol c 1 ∈ Σ d-1,ν p,N 0 satisfying (H N D )) such that c 1 M 0 (u 1 , . . . , u p ; n 0 , n p+1 ) + c 1 (u 1 , . . . , u p ; n 0 , n p+1 )D 0 (n p+1 ) -D 0 (n 0 )c 1 (u 1 , .. . , u p ; n 0 , n p+1 ) = a(u 1 , . . . , u p ; n 0 , n p+1 ).

  3.5), then c 1• defined by (2.2.1) satisfies also (4.3.5) with right hand side replaced by a • (since D(n) * = -D(n)).

  2.19) and satisfies by (4.2.23) P 0 D 0 = M 0 P 0 . This equation is thus equivalent to c1 D 0 (u 1 , . . . , u p ; n 0 , n p+1 ) + c1 (u 1 , . . . , u p ; n 0 , n p+1 )D 0 (n p+1 ) -D 0 (n 0 )c 1 (u 1 , . . . , u p ; n 0 , n p+1 ) = ã(u 1 , . . . , u p ; n 0 , n p+1 ) (4.3.6) 

( 4 .

 4 3.8) D 0 (n) = D 0 (n) + D0 (n), D 0 (n) = iω m (n) I K (n) 0 0 -I K (n)

( 4 . 3 . 9 )

 439 L(c 1 ) = L 0 (c 1 ) + L 1 (c 1 ) with, if U = (u 1 , . . . , u p ), (4.3.10) L 0 (c 1 )(U ; n 0 , n p+1 ) = c1 D 0 (U ; n 0 , n p+1 ) + c1 (U ; n 0 , n p+1 )D 0 (n p+1 ) -D 0 (n 0 )c 1 (U ; n 0 , n p+1 ) and (4.3.11) L 1 (c 1 )(U ; n 0 , n p+1 ) = c1 (U ; n 0 , n p+1 ) D0 (n p+1 ) -D0 (n 0 )c 1 (U ; n 0 , n p+1 ).

( 4 . 1 4

 41 3.12) L 0 (c 1 )(U ; n 0 , n p+1 ) = c1 D 0 (U ; n 0 , n p+1 ) + c1 (U ; n 0 , n p+1 )(D 0 (n p+1 ) -D 0 (n 0 )).Remark that because of definition (4.2.10) of ω m , ω m (n p+1 )-ω m (n 0 ) satisfies when |n p+1n 0 | ≤ (n p+1 + n 0 ) inequalities(3.3.15). This shows that ifΣ d,ν p,N 0 = {a ∈ N Σ d,ν p,N 0 (N ); a satisfies (H D )} Σ d,ν p,N 0 (N ) = Σ d,ν p,N 0 ∩ Σ d,ν p,N 0 (N ),(4.3.13)then L 0 sends Σ d,ν p,N 0 (N ) into Σ d,ν+1 p,N 0 (N -1).If c 1 satisfies assumption (H N D ), then for n0 , n p+1 ∈ N τ +1 , c1 (U ; n 0 , n p+1 )D 0 (n 0 ) = -D 0 (n 0 )c 1 (U ; n 0 , n p+1 ) whence (4.3.14) L 0 (c 1 )(U ; n 0 , n p+1 ) = c1 D 0 (U ; n 0 , n p+1 ) + c1 (U ; n 0 , n p+1 )(D 0 (n p+1 ) + D 0 (n 0 )). If we define Σ d,ν p,N 0 = {a ∈ N Σ d,ν p,N 0 (N ); a satisfies (H N D )} Σ d,νp,N 0 (N ) = Σ d,ν p,N 0 ∩ Σ d,ν p,N 0 (N ),(4.3.15) 

  and ν is a fixed positive constant. We shall denote by E the algebraic direct sum of the E k 's, and will use E as a space of test functions. , . . . , n p ), |n | = max(n 1 , . . . , n p ). Moreover, if n i is such that n i = max(n 0 , . . . , n p+1 ) we set(2.1.4) max 2 (n 0 , . . . , n p+1 ) = max({n 0 , . . . , n p+1 } -{n i })

	If n = (n 0 , . . . , n p+1 ) ∈ N p+2 τ	we define
	(2.1.3)	n = (n 1

  2.1.6),(2.1.7), and the symbol aϕ n p+1 , ϕ n 0 satisfies by (2.1.2) estimates (2.1.12). Condition (i) δ of definition 2.1.1, which is not satisfied in this example, comes from the fact that we want to consider paradifferential operators, instead of pseudo-differential ones.Let us show that operators of order 0 are bounded on H s for s large enough.Proposition 2.1.3 Let ν ∈ R + , N 0 ∈ N * . There exists s 0 ∈ R and for any s ∈ R, any d ∈ R, any p ∈ N, any a ∈ Σ d,ν p,N 0 , there is a constant C > 0 such that for any U = (u 1 , . . . , u p ) ∈ E p , any u p+1 ∈ E

			p
	(2.1.14)	Op(a(U ; •))u p+1 H s-d ≤ C	j=1

  2.1.4 of[START_REF] Delort | Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds[END_REF] (formulas (2.1.10) and (2.1.11) of that paper). We state this result as a separate lemma.Lemma 2.2.5 Let ν 1 , ν 2 ∈ R + . There is, for any N > 1 + max(ν 1 , ν 2 ), a constant C N > 0 such that for any n 0 , . . . , n p+q+1 ∈ N, 0 , . . . , n p , k) ν 1 +N S(n 0 , . . . , n p , k) N µ(k, n p+1 , . . . , n p+q+1 ) ν 2 +N S(k, n p+1 , . . . , n p+q+1 ) N

	(2.2.16)		
	is bounded from above by		
	(2.2.17)	C N	µ(n

k µ(n 0 , . . . , n p+q+1 ) ν +N S(n 0 , . . . , n p+q+1 ) N

  ϕ n 2

	i.e. with notations (2.1.6), (2.1.7)
	(3.1.5)

  .2.10) equals |||F n 0 b(Π n U , k)F * n p+1 ||| by (2.1.8) and (2.1.6), (2.1.7). Consequently (3.2.10) is nothing but (2.1.12) in the case α = β = γ = 0, when the symbol b depends on an extra parameter k, instead of being a function of n p+1 as in (3.2.5). Estimate (3.2.10) follows from (3.2.7) to (3.2.9) in the proof of proposition 3.2.3, in which B I p+1 p+1 is evaluated at k instead of n p+1 . (ii) One has just to replace in the proof of proposition 3.2.3 the reference to (3.2.2) by the reference to (3.2.11), k playing now the role of n p+1 . Remark that since in (3.2.12) ∂ n p+1derivatives act only on the B I p+1 p+1 term in (3.2.8), they gain one negative power of k ∼ n 0 + k. 2

  .1.2) to (3.2.19) and insert in it (3.2.21). If we use estimates of type (2.1.18) for χ 1 (replacing in (2.1.18) n p+1 by n 1 ) and the Leibniz formulas (1.2.6), (1.2.7), we see that we get for (3.2.18) estimates of type (2.1.12) as wanted.We must now prove formula (3.2.13). Let us compute Op(b j (u 1 , . . . , u j , . . . , u p+1 ; •))u j using definition 2.1.2: we must in the right hand side of (3.2.16) replace V by F n j u j , compose on the left with F * n 0 , and sum in n 0 , n j . Using (2.1.8), we get

  2 , 1 , 2 in (3.2.26) run in a finite set of indices, we get the same estimate for (3.2.25). Consequently, when the largest two among n 0 , . . . , n p+1 are among {n 1 , . . . , n p }, we have for (3.2.24) an upper bound for any N . One checks in the same way that this formula holds true when one at least of the largest two among (n 0 , . . . , n p+1 ) equals n 0 or n p+1 . To conclude the proof, we have to show that estimate (3.2.27), together with the support conditions (3.2.23), implies the upper bound (3.2.28)

	(3.2.27)	Cn d p+1	µ(n 0 , . . . , n p+1 ) ν+N S(n 0 , . . . , n p+1 ) N	p+1 1	u j L 2

  By formula (3.2.10) of corollary 3.2.4, the general term of (3.2.40) has L(L 2 , L 2 ) norm bounded from above by -k| + |n |) N n d p+q+1 |n | ν+N (|kn p+q+1 | + |n |) N .

	(3.2.43) (|n 0 Remark moreover that by (3.2.41), (3.2.42), n 0 ∼ n p+q+1 Cn d p+q+1 |n | ν+N	max(|n |, |n |) and if
	(3.2.44)	

  U , n p+q+1 ; n 0 , k) bχ (Π n U ; k, n p+q+1 ).

	.2.47)
	p,1 for some ν. Moreover, by proposition 3.2.3 and Leibniz formulas (1.2.6), (1.2.7), bχ ∈ Σ d ,ν Define now
	(3.2.48) ãχ (Π n By the second Leibniz formula (1.2.7) e(U ; n 0 , n p+q+1 ) = n n k

  .2.49) Using (3.2.47), and the fact that bχ obeys symbol estimates of type (2.1.12), we see that the action of ∂ n 0 -∂ * n p+q+1 on e gains one unit either on the order of ãχ or of bχ in (3.2.49), loosing a power of |n | or |n |. In the same way, one sees that a ∂ n 0 or a ∂ * n p+q+1 derivative does not change the order. Consequently, to check that e ∈ Σ d+d -1,ν Since inequalities (3.2.41) are valid on the supports of ãχ , bχ , (i) of definition 2.1.1 holds true (if δ > 0 in (3.2.41) is small enough). Moreover, by (3.2.47) and the fact that bχ ∈ Σ d ,ν p,1 , we get for |||e(Π n U , Π n U ; n 0 , n p+q+1 )||| an upper bound given by

	p+q,1	, we just have to check that (3.2.48)
	satisfies property (i) of definition 2.1.1, and estimate (2.1.12) when α = β = γ = 0.
	k	

  2.22) C -1 ũ H s ≤ u H s ≤ C ũ H s , since the last terms in (4.2.20), (4.2.21) are O( u κ H s 0 u H s ), u → 0. If we apply proposition 2.1.3 to the operators of order 2s Λ 2s m Op(a χ (u; •)) and Op(c(u; •)), we see that there is a new value of s 0 , independent of the order of these operators, such that for s ≥ s 0 there is C s > 0 so that (4.2.18) as well as the last bracket in (4.2.17), are smaller than C s u κ H s 0 u 2 H s . This shows that Θ s 0 (u) -2 Λ s m ũ, Λ s m ũ = O( u κ H s 0 u 2 H s ), u → 0. Inequalities (4.2.16) follow from that and (4.2.22).

  d,ν with v(R 1 ) ≥ κ + p + 1, such that for any smooth enough solution u of (4.2.13), any smooth enough v , . . . , u;•))v = Op(c M 0 (u; •))v + Op(e 1 (u; •))v + R 1 (u, v).Moreover, if p is odd and p ≥ κ, then e 1 satisfies condition C(κ, r).We use for ∂u ∂t expression (4.2.30) and decomposition (4.2.25). We get∂u ∂t = M 0 u + Op(M κ χ (u; •))u + Op( b0 (u; •))u + R(u).When we plug this decomposition inside (4.2.38), we get from the M 0 u term, according to (4.2.36), a contribution to the first term in the right hands side of (4.2.37). The remaining terms in the above expression of ∂u ∂t contribute to the last two terms in (4.2.37), using (i) and (ii) of corollary 3.3.6.2Let us state now the main proposition.

	(4.2.37) c(uProof: The left hand side of (4.2.37) is a sum of expressions Op( ∂ ∂t
	(4.2.38)	Op(c(u, . . . ,	∂u ∂t	, . . . , u; •))v.

Proof: We first define the symbols b j , and check that they belong to Σ 0,ν+d + p,1

. Define for j = 1, . . . , p (3.2.14) χ j (n 0 , . . . , n p+1 ) = χ |(n 1 , . . . , n j , . . . , n p+1 )| n 0 + n j χ n 0n j n 0 + n j so that on Supp χ j we have (3.2.15)

for a small constant c > 0. Moreover, χ j ≡ 1 on a domain of type (3.2.15) when c is replaced by some smaller constant. We define a linear map b j (u 1 , . . . , u j , . . . , u p+1 ; n 0 , n j ) from K K(n j ) to K K(n 0 ) as (3.2.16) V → n k ;k∈{1,...,p+1}-{j} χ j (n 0 , . . . , n p+1 )F n 0 [b(Π n 1 u 1 , . . . , F * n j V, . . . , Π np u p , n p+1 )Π n p+1 u p+1 ].

By (3.2.15), condition (i) δ of definition 2.1.1 will be satisfied if c > 0 is small enough. We must check the estimates of condition (ii). To simplify notations, take from now on j = 1, and set n = (n , n p+1 ), n = (n 2 , . . . , n p ), U = (U , u p+1 ), U = (u 2 , . . . , u p ), Π n U = (Π n 2 u 2 , . . . , Π n p+1 u p+1 ). Then for V ∈ K K(n 1 ) , b 1 (Π n U ; n 0 , n 1 )•V is the product of the function χ 1 (n 0 , . . . , n p+1 ) by the vector of K K(n 0 ) with components (3.2.17) b(F * n 1 V, Π n U , n p+1 )Π n p+1 u p+1 , ϕ 0 n 0 0 .

We use expression (3.2.3) for b in terms of B. Let (V 1 ) 1 be the coordinates of F * n 1 V on (ϕ 1 n 1 ) 1 i.e. using Einstein's conventions

We may rewrite (3.2.17)

where T Π n U = (T 2 Π n 2 u 2 , . . . , T p Π np u p ). In other words, the ( 0 , 1 ) entry of the matrix of b 1 (Π n U ; n 0 , n 1 ) in the canonical basis is (3.2.18) χ 1 (n 0 , . . . , n p+1 ) B(T 1 ϕ 1 n 1 , T Π n U , n p+1 )Π n p+1 u p+1 , ϕ 0 n 0 .

Proof: We decompose again a = P p=0 a p , b = Q q=0 b q and define a#b or c using the linearity in (i), (ii) of proposition 2.2.2. The statement concerning valuations in (ii) of the corollary comes from the fact that [Op(a 0 ), Op(b 0 )] = 0 since these operators are constant coefficient ones. 2 

N 0 and R ∈ R d+d + ,ν ⊂ R 0,ν +d + +d + such that for any smooth enough u, v Op(a(M (u), u, . . . , u

These statements follow from propositions 2.2.3, 2.2.4 and 2.2.6. In the same way, we deduce from proposition 2.2.7:

Let us conclude this subsection with the following technical lemma.

and assume that there is c > 0, N 0 ∈ N * such that for any n

Then we have for any α, β, γ ∈ N, any (n 0 , n , n p+1 ) ∈ N p+2 τ satisfying the preceding inequalities

(3.3.12)

then (3.3.12) holds true with the right hand side replaced by α+β+γ+1) .

Proof: (i) We may assume in (3.3.12) that α+β +γ > 0 since the inequality without derivatives follows from (3.3.11). Remark that we have then

This follows from lemma 3.2.8 applied to g(n 0 , n p+1 ) =

and from Leibniz formulas (1.2.6), (1.2.7). We shall show that for any α, β, γ we may write the quantity estimated in the left hand side of (3.3.12) as a linear combination, indexed by k = 1, . . . , α + β + γ, of expressions of form (3.3.16)

where each function

and where F 1 , . . . , F k+1 verify (3.3.11). Inequality (3.3.12) will then follow from (3.3.17) with α = β = γ = 0.

To obtain the structure (3.3.16), we just have to show that if we apply to (3.3.16) a derivative

, where Hk satisfies (3.3.17) with γ replaced by γ + γ 0 , and of a quantity Hk+1 ( F1 • • • Fk+2 ) -1 , with Hk+1 satisfying (3.3.17) with k replaced by k + 1 and γ by γ + γ 0 , and with Fj verifying (3.3.11). This follows from Leibniz formulas (1.2.6), (1.2.7) and from (3.3.15), (3.3.17). This concludes the proof.

(ii) The proof is the same, replacing in (3.3.15), (3.3.17) the 1 + |n 0n p+1 | factor by n 0 + n p+1 . 2

4 Long time existence

Strategy of proof

The aim of this section is to prove theorem 1.1.1. Our strategy will be to combine the methods used by Bourgain [START_REF] Bourgain | Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations[END_REF], Bambusi [START_REF] Bambusi | Birkhoff normal form for some nonlinear PDEs[END_REF], Bambusi and Grébert [START_REF] Bambusi | Birkhoff normal form for partial differential equations with tame modulus[END_REF], Delort and Szeftel [START_REF] Delort | Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds[END_REF] for semi-linear equations, with the well-known approach allowing one to obtain quasi-linear energy inequalities, namely diagonalization of the principal symbol of the equation.

Let us describe the steps that we shall follow, forgetting the necessary technicalities we shall have to introduce later on. We denote by Λ m = √ -∆ + V + m 2 , and we shall consider an equivalent system to the scalar equation for u = Λmv ∂tv , of type ∂ t u = Op(M (u, •))u, where M will be a symbol of order 1, belonging to the class introduced in subsection 3.1. We would like to control over long time intervals the Sobolev energy of u

If one computes the time derivative of this expression, one gets

is the sum of two anti-self-adjoint matrices, with M 0 independent of u and M κ homogeneous of degree κ > 0 in u, symbolic calculus shows that the above expression may be written as

where b is a self-adjoint symbol of order 2s vanishing at least at order κ at u = 0. Consequently, for s large enough, this bracket is bounded from above by C u κ+2 H s , and one gets the estimate (4.1.4)

This is a way to recover the local existence result asserting that for smooth data of size → 0, the solution exists at least over an interval of time of length c -κ . Our goal here is to obtain a better result when κ is odd (and when the parameter m is outside a subset of zero measure). Namely we want to obtain a solution over a time interval of length c -2κ . From (4.1.1) to (4.1.3) we know that (4.1.5)

We would like to add in the left hand side a new contribution, of form Op(a(u, •))u, u , vanishing at order κ+2 at 0, with a symbol a of order 2s, determined in such a way that the time derivative of this quantity will cancel out the right hand side of (4.1.5), up to remainders O( u 2κ+2 H s ). If we compute d dt Op(a(u, •))u, u we get from the action of d/dt on the u's which are not in the argument of a, a contribution of type

Op((1 + a χ )(u; •)) on (4.2.31). We have seen already that the last term in the right hand side of (4.2.31) has the structure of the last two terms in the right hand side of (4.2.29). This remains true if we make act Op((1 + a χ )(u; •)) on it, by corollary 3.3.5 (i) and corollary 3.3.6 (iii). So, we just have to study, using (4.2.30)

Again by corollaries 3.3.5 (i) and 3.3.6 (iii), the last two terms give a contribution to the last two terms in (4.2.29). Since a is a scalar symbol we may, by corollary 3.3.5 (ii), commute in the first term in the right hand side of (4.2.32), Op((

up to errors that may be incorporated inside the Op(b 0 (u; •))u term in (4.2.29). We are thus reduced to

We apply corollary 3.3.4 to the symbols P and Q satisfying (4.2.8). Using also corollary 3.3.5 (i) and corollary 3.3.6 (iii), we obtain that (4.2.33) may be written as

up again to contributions to the last two terms in (4.2.29). To conclude the proof, we just have to apply again corollary 3.3.4 to the bracket in the above formula, making use of the first equality (4.2.23) and of corollaries 3.3.5 (i), 3.3.6 (iii) and 3.3.7 (i). 2

We want to obtain a formula giving the time derivative of expressions generalizing the first term in the right hand side of (4.2.17). We introduce first some notations. We shall consider symbols c ∈ Σ d,ν p,N 0 satisfying the following conditions

p,N 0 we shall associate to it the following function

where as before M 0 denotes the operator with symbol M 0 (n), and where the term M 0 u is the jth argument of the general term of the sum. We first prove a lemma.

by ( R 1 (u), u + u, R 2 (u) ) for some R 1 , R 2 satisfying the same conditions as R. Then taking real parts, we replace e by e+e to get (4.2.39).

Let us show that we can write as the right hand side of (4.2.39) the time derivative

The idea of the proof is the following: we shall express ∂ ũ ∂t using (4.2.28) or (4.2.29). The linear contributions coming from these expressions will give the first two terms in the right hand side of (4.2.39). The contributions which are at least of order κ in u will contribute to the last two terms. The key point will be not to loose derivatives, i.e. to check that e is of order d and not d + 1. This will follow from the fact that Op(e(u; •)) will be expressed from commutators of operators with commuting symbols. Symbolic calculus will thus bring the needed gain of one derivative. Let us proceed with the implementation of such a strategy.

Study of first term in RHS of (4.2.40)

Let us consider

Op(

By lemma 4.2.3, we may write this as (4.2.41)

The first term gives on one hand the first term in the right hand side of (4.2.39), and on the other hand a contribution Op(c M 0 (u; •))Op(a χ (u; •))ũ. Using corollary 3.3.5 (i), we see that this expression can be incorporated in the Op(e(u; •))ũ term in (4.2.39). Remark that the index ν given by corollary 3.3.5 is independent of the order d of c. The second term in (4.2.41) gives similarly a contribution to the e-term in (4.2.39). In the last term, we express ũ from u using (4.2.20). From corollaries 3.3.5 (i) and 3.3.7 (i), we see that we obtain a contribution R(u), ũ for some R satisfying the requirements of the statement of proposition 4.2.4. If we express ũ from u by (4.2.20) and use (iii) of corollary 3.3.6, we see that we obtain a contribution to the fourth term in the right hand side of (4.2.39).

Study of second term in RHS of (4.2.40)

If we apply lemma 4.2.3 to the symbol of order 0 a χ , we see that 

Using, as in the study of the preceding cases, (4.2.20), and corollaries 3.3.5 (i) and 3.3.6 (iii), we may write this expression as a contribution to the third and fourth terms in the right hand side of (4.2.39), using that the sum of the orders of the involved symbols is at most d.

Let us study now the first term in (4.2.42). We write using (4.2.29) We study first the contribution of the last term i.e.

2Re Op(c(u; 

The contribution of Dκ (u, n) to (4.2.47) may be treated as expression (4.2.43). Since we may write D κ (u, n) * = -D κ (u, n), (ii) of proposition 3.2.7 shows that Op(D κ χ (u; •)) * = -Op(D κ χ (u; •)) modulo an operator of order zero, whose contribution may be treated as (4.2.43). Consequently, we are left with Remark now that by assumption (4.2.35) and the expression of D κ , we have c (u,

•) (for large enough phase arguments of the symbols). We may therefore apply corollary 3.3.5 (ii) to write the commutator as an operator associated to a symbol in Σ d,ν N 0 , of valuation larger or equal to κ + p, for some ν independent of d. Reasoning as for (4.2.43), we get again a contribution to the last two terms in (4.2.39).

To finish the proof, we just have to remark that the contribution to the first term in (4.2.42) obtained plugging the first term in the right hand side of (4.2.45) inside the first term in the right hand side of (4.2.44) gives the second term in the right hand side of (4.2.39). This concludes the proof of the proposition. Proof: We compute first M ( du dt , u, . . . , u) using formulas (4.2.30) and decomposing

Using corollary 3.3.7, we get a contribution to the first and third terms in the right hand side of (4.2.49). In the same way, we get from M (u, . . . , u), du dt , using corollary 3.3.6 (iii) contributions to the last two terms in (4.2.49). 2

Refined energy inequalities and proof of the main theorem

The objective of this subsection is to prove proposition 4.3.2 below, which will imply theorem 1.1.1. Remind that we defined in (4.2.14) for a solution u of equation (4.2.4) the quantity Θ s 0 (u(t, •)) which, as long as u(t, •) H s remains small enough, is equivalent to u(t, •) 2 H s . We shall see that d dt Θ s 0 (u(t, •)) may be written essentially as Op(a(u; •))ũ, ũ for a symbol a of order 2s and valuation κ. We shall next find a correction Θ s 1 (u(t, •)) so that d dt (Θ s 0 (u(t, •))-Θ s 1 (u(t, •))) may be written as Op(b(u; •))ũ, ũ with b of order 2s and valuation r -1 > κ. This gain on the valuation will give us the long time existence result we look for. The correction Θ s 1 will be constructed solving an equation on symbols involving the right hand side of (4.2.39). This is the main technical part of this subsection.

Let us first recall some notations, and a result of [START_REF] Delort | Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds[END_REF] that will play a crucial role. Remind from subsection 1.2 that the large eigenvalues of P = √ -∆ + V come by pairs ω -(n) ≤ ω + (n) having the same asymptotics (1.2.1). We denote as before by ω(•) a symbol on R + with asymptotics (1.2.1) at infinity. We fix a large enough integer τ so that the spectrum H of P may be written

where for n ≥ τ + 1, I n are disjoint intervals of length O(n -∞ ) centered at ω(n) and containing ω -(n) and ω + (n), and where I τ contains the small eigenvalues. We set H = H ∪ {ω(n); n ∈ N}, and write for H a decomposition of form (4.3.1). The decomposition of L 2 (S 1 , R 2 ) associated to (4.3.1) is given by (4.2.5). Let us recall a special case of proposition 2.2.1 of [START_REF] Delort | Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds[END_REF]. We use notation (2.1.5). Let p be an odd positive integer. There is a zero measure subset N of ]0, +∞[ such that for any m ∈]0, +∞[-N , there are c > 0, N 0 ∈ N, so that for any ξ 0 , . . . , ξ p+1 ∈ H (or H), any 0 ≤ q ≤ p + 1 (4.3.2)

From now on, we fix a value of m outside N , and so an integer N 0 . We shall state and prove a proposition relying on division by quantities of form (4.3.2). We need first to introduce some notations. If a is a paradifferential symbol, a ∈ Σ d,ν p,N 0 , remind that for any u 1 , . . . , u p ∈ E, n 0 , n p+1 ∈ N τ , a(u 1 , . . . , u p ; n 0 , n p+1 ) is a K(n 0 ) × K(n p+1 ) matrix, where for n ∈ N τ , K(n) is an even integer (and K(n) = 4 if n ≥ τ + 1). We can write a block decomposition of a involving K(n 0 )/2 lines and K(n p+1 )/2 columns (4.3.3) * * * * .

We shall consider the following two assumptions

(ii) Let F be a subspace of Σ d,ν p,N 0 (N ) such that there is a finite subset K of N τ × N τ so that for any a ∈ F , a(•; n 0 , n p+1 ) ≡ 0 if (n 0 , n p+1 ) ∈ K. Then F is stable by L and L : F → F is bijective.

Proof: (i) We denote by Π n the spectral projector on the space E n ⊗ C, where E n is defined by the decomposition (4.2.5) of L 2 (S 1 ; R 2 ). We shall use the notation Π n for the similar projector acting on L 2 (S 1 ; C). For every n, we denote by (ω(n, )) the K (n) eigenvalues of the restriction of P = √ -∆ + V to the range of Π n acting on L 2 (S 1 ; C). We choose an orthonormal basis of that range made of eigenfunctions of P associated to these eigenvalues (this is not in general a nice basis). We write (4. 

and set 

By (4.3.8), we have also

Remind the map
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These are projectors on K K(n) and we have

p,N 0 (N ) be such that L(c 1 ) vanishes identically. Compose L(c 1 ) (given by the left hand side of (4.3.6)) on the left by Π 0 , 0 n 0 and on the right by Π p+1 , p+1 n p+1

, and evaluate it at

where j ∈ {+, -} j = 0, . . . , p + 1. We get

Using (4.3.20), (4.3.23) we may write this as

2) shows that for m outside N , the scalar coefficient above never vanishes, which implies c1 ≡ 0, whence c 1 ≡ 0. This proves (i) of the lemma.

To prove (ii), we remark that if a ∈ F is given, we may define c 1 ∈ F with L(c 1 ) = a by

.

Since by definition of F , n 0 , n p+1 stay in a bounded set of indices, the estimates of definition of a symbol hold true trivially. 2

Proof of proposition 4.3.2: Using notations (4.3.13), (4.3.15), we shall construct operators

such that L • L -1 = Id. This will give the wanted conclusion. It will be enough to construct for any N

(N ) coincide with identity. Actually, since L is injective by lemma 4.3.3,

which allows us to define L -1 satisfying (4.3.24).

If A N > 0 is a constant to be chosen, we decompose

where F N , F N is the subspace made of symbols a satisfying a(•; n 0 , n p+1 ) ≡ 0 for n 0 +n p+1 > A N . By (ii) of lemma 4.3.3, it is enough to construct

for A N large enough. Remind decomposition (4.3.9) of L, and let us construct first an inverse L -1 0,N to L 0 . We take ã respectively in Σ d,ν p,N 0 (N, A N ) or Σ d,ν p,N 0 (N, A N ) and look for c 1 in the right hand side of (4.3.26) with L 0 (c 1 ) = ã. We use expressions (4.3.12), (4.3.14) for L 0 (c 1 ). If we compose on the right with J p+1 defined in (4.3.18) and evaluate L 0 (c 1 ) at Π , n U = (Π 1 , 1 n 1 u 1 , . . . , Π p, p np u p ), we get respectively the equalities

Using ( iF , ∓ (n 0 , . . . , n p+1 ) -1 ã(Π , n U ; n 0 , n p+1 )J p+1

where the sum is taken for 1 , . . . , p , 1 , . . . , p+1 in a set of bounded cardinal, and where

It is enough to check that each term in the sum (4. 

this is a consequence of proposition 4.3.1. By inequalities (3.3.12), in the case of signin (4.3.27), we see that c1 is a symbol in Σ d,ν+N 0 p,N 0 (N + 1, A N ) (taking eventually for N 0 a larger value than the one of (3.3.11)). In the case of F , + , we remark that it satisfies (3.3.13). So (3.3.12) will be controlled in terms of (3.3.14). This implies that for ã ∈ Σ d,ν p,N 0 (N, A N ), (4.3.27) defines a symbol c1 in Σ d-1,ν+N 0 p,N 0 (N, A N ). Consequently we have defined a bounded inverse L -1 0,N to L 0 , acting on space (4.3.26). To define L -1 N as

we just need to check that the operator norm of

to itself is smaller than one if A N is large enough. But we have seen that L 1 sends Σ d ,ν p,N 0 (N ) to Σ -∞,0 p,N 0 (N ) for any d . By definition (4.3.11) of L 1 , the same is true for the Σ or Σ spaces, so the operator norm of L -1 0,N • L 1 on the above spaces is bounded from above by C N /A N , where C N > 0 in independent of A N (it suffices to extract from the gain on the order coming from L 1 a factor 1 n 0 +n p+1 ≤ 1

A N ). The conclusion follows for large enough A N . 2

We shall need also a result, similar to proposition 4.3.2, but for remainder operators. We use notations (4.3.19). We compose on the left (4.3.29) with Π 0 , 0 n 0 and replace u j by Π j , j n j u j , for any possible values of n 0 , . . . , n p+1 , 0 , . . . , p+1 , 0 , . . . , p+1 . If U = (u 1 , . . . , u p+1 ), n = (n 1 , . . . , n p+1 ), = ( 1 , . . . , p+1 ), = ( 1 , . . . , p+1 ) we set

Using (4.3.20) we see that (4.3.29) may be written

where the sum is taken for 0 , . . . , p+1 , 0 , . 

for a scalar self adjoint symbol c 0 ∈ Σ 2s,ν 1 , and c 0 satisfying condition C(κ, r) of definition 3.3.2. We may decompose c 0 as a finite sum of homogeneous symbols c 0 p ∈ Σ 2s,ν p,1 . Remark that the contributions coming from the components homogeneous of degree p ≥ r -1 give again a contribution to Θ s 0 (u) which is O( u r-1 H s 0 u 2 H s ). Modifying again the definition of Θ s 0 , we may thus assume

Since c 0 satisfies C(κ, r), terms indexed by even p's in the above sum are zero. We compute the time derivative of (4. 

where e 0 ∈ Σ 2s,ν N 0 , R 0 ∈ R 2s,ν for some ν independent of s, and with v(e 0 ) ≥ κ, v(R 0 ) ≥ κ + 1. Moreover e 0 is self-adjoint and these symbols and operators satisfy condition C(κ, r). Since c 0 is scalar and D * 0 = -D 0 , we get from corollary 3.3.5 (ii) that the second duality bracket may be written Op(b(u; •))ũ, ũ for a symbol b ∈ Σ 2s,ν 1 for some ν independent of s. Moreover, since c 0 satisfies condition C(κ, r), c 0 M 0 and b have valuation larger or equal to κ, and verify also C(κ, r). We may thus write

for a new symbol g ∈ Σ 2s,ν 1 with v(g) ≥ κ, g satisfying condition C(κ, r). In particular, the homogeneous components of order p of g with κ ≤ p < r -1 vanish if p is even. Moreover we may assume g self-adjoint. For odd p, κ ≤ p < r -1, we decompose the corresponding contribution g p as g p + g p , where g p satisfies assumption (H D ) and g p satisfies (H N D ). By proposition 4.3.2, for each such p, we may find

for some ν independent of s, such that (4.3.5) holds true for c 1 p = c 1 p + c 1 p , when its right hand side is replaced by g p . In particular, these c where f 0 ∈ Σ 2s,ν N 0 , S 0 ∈ R 2s,ν for some ν independent of s, with v(f 0 ) ≥ 2κ, v(S 0 ) ≥ 2κ + 1. (We used again (4.2.20) to express ũ in terms of u in the last but one term coming from (4.2.39)).

Let us define also a perturbation to get rid of the R 0 (u), u term in (4.3.33). We may decompose R 0 = R 0 + R0 with R 0 = κ≤p<r-1 R 0 p+1 and R0 ∈ R 2s,ν of valuation larger or equal to r, and where R 0 p+1 ∈ R 2s,ν p+1 and the sum is indexed by odd p (since R 0 satisfies condition C(κ, r)). Define M p+1 as the solution of equation ( 4 where R 1 ∈ R 2s+1,ν , R 2 p+1 ∈ R 0,ν for some ν independent of s and v(R By proposition 2.1.3, and using that v(f 0 ) ≥ 2κ, there is some s 0 , depending on ν but not on s, such that when s ≥ s 0 the first term in (4.3.37) is bounded by C u 2κ H s 0 u 2 H s , as long as u H s 0 ≤ 1. In the second term of (4.3.37), S 0 , R 1 , R0 belong to R 2s+1,ν for some ν independent of s, and have valuation larger or equal to r. By lemma 2.1. [START_REF] Colliander | Resonant decompositions and the I-method for cubic nonlinear Schrödinger on R[END_REF]