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Abstract

We prove that higher Sobolev norms of solutions of quasi-linear Klein-Gordon equations
with small Cauchy data on S1 remain small over intervals of time longer than the ones given
by local existence theory. This result extends previous ones obtained by several authors in
the semi-linear case. The main new difficulty one has to cope with is the loss of one derivative
coming from the quasi-linear character of the problem. The main tool used to overcome it
is a global paradifferential calculus adapted to the Sturm-Liouville operator with periodic
boundary conditions.

0 Introduction

We address in this paper the question of long time Sobolev stability for small solutions of
nonlinear Klein-Gordon equations on S1. Let us recall some known results. Consider V : S1 → R
a smooth nonnegative potential and consider u a solution of the equation

∂2u

∂t2
− ∂2u

∂x2
+ (V (x) +m2)u = f(u)

u|t=0 = εu0

∂tu|t=0 = εu0,

(0.0.1)

where ε > 0 is a small parameter, m ∈]0,+∞[, f is a nonlinearity vanishing at order κ+ 1 ≥ 2
at 0. It is well known that such an equation has a unique C0(R,H1) ∩ C1(R, L2) solution if
u0 ∈ H1(S1,R), u1 ∈ L2(S1,R) and ε is small enough. The question is to decide whether, when
u0 ∈ Hs+1(S1,R), u1 ∈ Hs(S1,R) (s� 1), ‖u(t, ·)‖Hs+1 + ‖∂tu(t, ·)‖Hs stays bounded over long
intervals of time when ε → 0, i.e. over intervals of length cε−r+1 with r > κ + 1 (the case
r = κ + 1 would correspond to the bound given by local existence theory). The difficulty of
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the problem comes from the fact that on S1 one does not have any dispersion making decay
linear solutions at infinite times, in contrast to what happens for that equation on the real line
(We refer to chapter 7 of the book of Hörmander [13] for results and references concerning the
nonlinear Klein-Gordon equation on Rd, and to Shatah [15] for the first occurrence in this setting
of the normal form method that will play an essential role below).

Bourgain answered the above question for equation (0.0.1) in [5]. He showed that the solutions
remain bounded in Hs+1 × Hs for intervals of time of length cε−N for any N , when s � N ,
and when the parameter m in (0.0.1) is taken outside a subset of zero measure of ]0,+∞[.
Bambusi [1] and Bambusi-Grébert [3] obtained later more precise versions of this result (see also
the lectures notes of Grébert [12]). Let us mention that, as far as we know, there is no example
of solutions which, when m is in the exceptionnal set excluded in the above result, would have an
Hs+1 ×Hs norm blowing up when time goes to infinity. Nevertheless, Bourgain [6] constructed
an example of an abstract perturbation of the linear wave equation for which such a blowing up
property occurs.

Two natural questions arise: can such results be extended to equations with more general
nonlinearities than the one of (0.0.1), and do they hold true in higher dimension? The latter
question has been answered affirmatively for equations of type (0.0.1) on the sphere Sd, or more
generally on Zoll manifolds, by Bambusi, Grébert, Szeftel and the author in [2]. The former one
has been taken up in [9, 10, 11], including in higher dimensions, for equations of type (0.0.1) in
which the right hand side is replaced by a general semi-linear non-linearity f(u, ∂tu, ∂xu). For
such non-linearities, the solution does not in general exist over an interval of time larger that
the one given by local existence theory (i.e. ]− cε−κ, cεκ [ if f vanishes at order κ+ 1 at zero) –
see [8] for examples of blowing-up solutions. Nevertheless, a result proved in [9, 10] asserts that
if, for instance, f is homogeneous of even degree κ+ 1, then the solution of the equation exists
and remains bounded in Hs+1 × Hs over an interval of time of length cε−2κ. The method of
proof was similar to the one used by Bourgain [5], Bambusi [1], Bambusi-Grébert [3], the main
novelty being its extension to a higher dimensional setting. Our goal in this paper is to address
the same question in one space dimension for quasi-linear Klein-Gordon equations. As we shall
explain below, the semi-linear methods of the above papers break down immediately because of
the extra loss of one derivative coming from the quasi-linear nature of the problem. Our main
theorem is stated in section 1 below. We shall in this introduction describe our method on the
example

(
Dt − (1 + a(u, ū))

√
−∆ + V +m2

)
u = 0

u|t=0 = εu0,
(0.0.2)

where u0 is a smooth complex valued function defined on S1, ∆ = d2

dx2 , and u→ a(u, ū) is a real
valued polynomial in (u, ū), homogeneous of odd degree κ. Our aim is to prove existence of the
solution, and uniform control of its Hs-norm (s � 1) by Cε, over an interval of time of length
cε−2κ (instead of the length cε−κ given by local existence theory). Let us first recall how the
corresponding semi-linear result may be proved. Let us take, for simplicity, the case V ≡ 0 and
consider (

Dt −
√
−∆ +m2

)
u = f(u, ū)

u|t=0 = εu0,
(0.0.3)
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where f(u, ū) = upūq with p + q = κ + 1. Set Λm =
√
−∆ +m2, Λ =

√
−∆ + 1 and let Πn be

the spectral projector on the space generated by the eigenfunctions e±inx (n ∈ N). Then the Hs

norm is given by ‖u‖2Hs = 〈Λsu,Λsu〉 =
∑+∞

n=0(1 + n2)s‖Πnu‖2L2 and if u solves (0.0.3)

(0.0.4)
1

2

d

dt
‖u(t, ·)‖2Hs = −Im [〈Λs(Λmu),Λsu〉+ 〈Λsf(u, ū),Λsu〉].

The first term in the right hand side vanishes by self-adjointness of Λm, and the second one may
be written −ImM0(u, . . . , ū) with
(0.0.5)

M0(u, . . . , u︸ ︷︷ ︸
p

, ū, . . . , ū︸ ︷︷ ︸
q+1

) =
∑

n1,...,np+q+1

(1 + n2
p+q+1)s

∫

S1

Πn1u · · ·ΠnpuΠnp+1u · · ·Πnp+q+1u dx.

The idea of the method is to perturb the Hs energy of u by a multilinear expression

ReM1(u, . . . , u, ū, . . . , ū︸ ︷︷ ︸
p+q+1=κ+2

)

such that d
dtM1(u, . . . , ū) will cancel out (0.0.5) up to a remainder which will be O(‖u‖2κ+2

Hs ).
This gain on the order of vanishing at 0, versus the one of the last term in (0.0.4), allows one to
obtain the longer interval of time cε−2κ by standart arguments. Using (0.0.3), one finds that

(0.0.6)
d

dt
M1(u, . . . , u, ū, . . . , ū) = iL(M1)(u, . . . , u, ū, . . . , ū) +R(u, ū)

where
(0.0.7)

L(M1)(u, . . . , ū) =

p∑

1

M1(u, . . . ,Λmu, . . . , u, ū, . . . , ū)−
p+q+1∑

p+1

M1(u, . . . , u, ū, . . . ,Λmū, . . . , ū),

and R(u, ū) is a remainder obtained substituting if(u, ū) to one of the arguments of M1. Since
f contains no derivative of u, R(u, ū) = O(‖u‖2κ+2

Hs ) as wanted. As ΛmΠnu =
√
m2 + n2Πnu,

one may write
(0.0.8)

L(M1)(Πn1u1, . . . ,Πnp+q+1up+q+1) = Fm(n1, . . . , np+q+1)M1(Πn1u1, . . . ,Πnp+q+1up+q+1),

where we denoted

(0.0.9) Fm(n1, . . . , np+q+1) =

p∑

1

√
m2 + n2

j −
p+q+1∑

p+1

√
m2 + n2

j .

To eliminate in d
dt [

1
2‖u(t, ·)‖2Hs + ReM1(u, . . . , ū)] terms homogeneous of degree κ+ 1, one has

to choose M1 so that L(M1) = −M0 i.e. according to (0.0.8) and (0.0.5)

M1(Πn1u1, . . . ,Πnp+q+1up+q+1) =

− Fm(n1, . . . , np+q+1)−1(1 + n2
p+q+1)s

∫

S1

Πn1u1 · · ·Πnp+q+1up+q+1 dx.
(0.0.10)
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Since p+ q is even, it may be proved that for m outside an exceptionnal subset of zero measure,
Fm(n1, . . . , np+q+1) does not vanish, and actually

|Fm(n1, . . . , np+q+1)|−1 ≤ Cµ(n1, . . . , np+q+1)N0

for some N0, µ(n1, . . . , np+q+1) standing for the third largest among n1, . . . , np+q+1. This shows
that |Fm|−1 is bounded from above by a power of a small frequency, which allows one to prove,
combining this with convenient estimates of the integral in (0.0.10), that M1 is a continuous
multilinear form on Hs × · · · × Hs for s � N0, and so a small perturbation of the Hs energy
when u is small. Let us notice that related ideas are used for problems on Rn by Colliander,
Keel, Staffilani, Takaoka and Tao in [7].

Let us go back to the quasi-linear equation (0.0.2). In this case (0.0.4) will write

1

2

d

dt
‖u(t, ·)‖2Hs = −Im 〈Λsa(u, ū)Λmu,Λ

su〉

=
1

2i
〈Λs[Λ−2sΛm, aΛ2s]u,Λsu〉.

(0.0.11)

Since the operator [Λ−2sΛm, aΛ2s] is of order 0, we still get a quantity well defined on Hs, even
if its expression is now a little bit more complicated than (0.0.5). We would like to argue as
above and find a new contribution ReM1 to add to 1

2‖u(t, ·)‖2Hs , so that its time derivative
would cancel out the right hand side of (0.0.11), up to remainders. The R(u, ū) terms in (0.0.6)
would be given by

R(u, ū) = i
( p∑

1

M1(u, . . . , u, a(u, ū)Λmu, u, . . . , u, ū, . . . , ū)

−
p+q+1∑

p+1

M1(u, . . . , u, ū, . . . , ū, a(u, ū)Λmū, ū, . . . , ū)
)
.

(0.0.12)

This quantity is no longer of order 0 in u, ū for a general M1, which means that R(u, ū) could
no longer be estimated by C‖u‖2κ+2

Hs but only by C‖u‖2κ+1
Hs ‖u‖Hs+1 . This loss of derivative,

which is systematic in quasi-linear problems, cannot be recovered if M1 is a multilinear form
which does not satisfy any structure condition. On the other hand, if we know that M1 has
a structure similar to the quantity in the right hand side of (0.0.11), we may hope to make
appear a commutator that will kill the extra loss of one derivative. This is actually the usual
way of getting quasi-linear energy inequalities. The price we have to pay to be able to do so is
that we must get for M0,M1 expressions more explicit that just multilinear quantities satisfying
convenient estimates, like those used in the semilinear problems treated in the aforementionned
references. We must be able to write M0 or M1 as

〈Op(c(u, . . . , ū; ·))u, u〉

where c(u1, . . . , up; ·) will be a convenient paradifferential symbol, that may be computed from
the equation, and Op(c) is the operator associated to that symbol. The difficulty that arises
is the following: we must work globally on S1, and cannot restrict ourselves to open subsets
of R through local charts. This is because our class of symbols will have to contain functions
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defined in terms of Fm(n1, . . . , np+q+1)−1, where Fm is given in (0.0.9) (to be able to construct
the analogous of M1 – see (0.0.10)). This quantity is well defined for m outside an exceptional
subset, only when the arguments n1, . . . , np+q+1 stay in a discrete set. In other words, we cannot
use Bony’s calculus of paradifferential operators on R [4], since their symbols are functions of
a continuous phase variable. We must instead define a global paradifferential calculus on S1,
in terms of symbols whose phase variable varies in the (discrete) spectrum of − d2

dx2 + V on S1.
When V ≡ 0, this is done through Fourier series expansions. An example of the type of symbols
we have to consider is given by

(n0, n1)→ 〈aein0x, ein1x〉 = â(n1 − n0)

where a ∈ C∞(S1). Such a quantity is rapidly decaying in n0 − n1, and its ∂n0 + ∂n1 derivative
vanishes. In general, when V 6≡ 0, the class of symbols we want to consider has to include
quantities like

(n0, n1)→ 〈aϕn0 , ϕn1〉,
where ϕn0 , ϕn1 are two eigenfunctions, and we want them to verify estimates of form

(0.0.13) |(∂n0 + ∂n1)γ〈aϕn0 , ϕn1〉| ≤ CN 〈n0 − n1〉−N (n0 + n1)−γ .

The first section of this paper is devoted to the construction of nice basis of L2(S1), i.e. of
orthonormal basis of almost eigenfunctions for which estimates of form (0.0.13) hold true. This

is done using quasi-modes for − d2

dx2 + V which resemble the imaginary exponentials of the free
case.

The second section of the paper is devoted to the definition of paradifferential operators associ-
ated to symbols whose phase argument varies in a discrete set. We establish the main symbolic
calculus properties of such operators.

The third section presents a special class of pseudo-differential operators, containing the oper-
ators involved in the writing of equation (0.0.1). These special operators enjoy more explicit
symbolic calculus properties that the general ones defined in section 2.

The fourth section is devoted to the proof of the theorem, using the machinery of sections 2 and
3 to be able to get the energy estimates we alluded to at the beginning of this introduction.
We first perform a paradifferential diagonalization of the principal part of the wave operator,
reducing (0.0.1) to a paradifferential version of (0.0.2). We then apply the energy method, as
explained after (0.0.11). The fact that we reduced ourselves to a diagonal principal symbol,
together with the symbolic calculus constructed in the preceding sections, allows us to show
that the remainders of form (0.0.12) that we get actually involve commutators compensating
the apparent loss of one derivative displayed by (0.0.11). In that way, we are able to obtain
energy inequalities of type d

dt‖u(t, ·)‖2Hs ≤ C‖u(t, ·)‖2κ+2
Hs , which imply the long time existence

result we are looking for.

Let us conclude this introduction expressing our gratitude to Dario Bambusi for several conver-
sations about this work. Let us say also that we shall use in the text the following notation: we
write n0 ∼ n1 to mean that there is a (large) constant C > 0 with C−1n0 ≤ n1 ≤ Cn0 when
n0, n1 → +∞, and we set n0 � n1 to say that there is a small c > 0 with n0 ≤ cn1 when
n0, n1 → +∞.
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1 Main results and nice basis

1.1 Statement of main theorem

We shall be interested in this paper in solutions of the periodic one dimensional quasi-linear
Klein-Gordon equation. We denote by ∆ = d2

dx2 the Laplace operator on S1, and take V : S1 →
R+ a smooth nonnegative potential. We shall sometimes identify S1 with the interval [−π, π]
with periodic boundary conditions. We consider a polynomial map

c : R3 −→ R
(X0, X1, X2) −→ c(X0, X1, X2)

(1.1.1)

which may be written

(1.1.2) c(X0, X1, X2) =

κ1∑

k=κ

ck(X0, X1, X2)

where ck is homogeneous of degree k in (X0, X1, X2). We denote by r the largest odd integer
satisfying κ ≤ r − 1 ≤ 2κ and

(1.1.3) for any even integer 2k satisfying κ ≤ 2k < r − 1, one has c2k(X0, X1, X2) ≡ 0.

We shall consider the following equation, where m > 0 is a parameter

∂2
t v + (1 + c(v, ∂tv, ∂xv))2[−∆ + V +m2]v = 0

v|t=0 = εv0

∂tv|t=0 = εv1,

(1.1.4)

where v0 and v1 are smooth real valued functions defined on S1, and ε > 0 is a small parameter.
Our main result is the following:

Theorem 1.1.1 There is a zero measure subset N of ]0,+∞[, and for every m ∈ N , there are
c > 0, s0 ∈ N, such that for any s ≥ s0, any (v0, v1) ∈ Hs+1(S1,R) × Hs(S1,R), verifying for
ε ∈]0, 1[

(1.1.5) ‖v0‖Hs0+1 + ‖v1‖Hs0 < ε,

equation (1.1.4) has a unique solution

v ∈ C0(]− Tε, Tε[,Hs+1(S1,R)) ∩ C1(]− Tε, Tε[,Hs(S1,R))

with Tε ≥ cε−r+1. Moreover, there is for any s ≥ s0 a constant cs > 0, such that if (v0, v1)
satisfies (1.1.5) with s0 replaced by s, ‖v(t, ·)‖Hs+1 + ‖∂tv(t, ·)‖Hs is uniformly bounded on the
interval ]− T ′ε, T ′ε[ with T ′ε ≥ csε−r+1.
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Remarks • It is enough to prove that for s0 large enough, condition (1.1.5) with ε > 0 small
enough implies the existence of an Hs0+1×Hs0 bounded solution defined on ]− Tε, Tε[×S1. We
know then that if the Cauchy data (v0, v1) belong to Hs+1 ×Hs with s ≥ s0, their smoothness
will be propagated by the equation.

• The time of existence given by local existence theory is cε−κ. If κ is even and cκ 6≡ 0 in (1.1.2),
then (1.1.3) gives r = κ + 1, and the theorem is empty: it just asserts that there is a solution
defined on the interval of time given by local existence theory. Because of that, we shall assume
in the sequel that κ is odd.

• If κ is odd, and c2k ≡ 0 if κ < 2k < 2κ, we may take r = 2κ + 1, and we get a solution on
an interval of length ε−2κ, i.e. on a much larger interval than the one given by local existence
theory.

• In the semi-linear case, theorem 1.1.1 has been proved (with more general assumptions on the
nonlinearity) in [9, 10] when the equation is posed more generally on Sd, or on a Zoll manifold
of any dimension.

• For semi-linear equations on Zoll manifolds, whose nonlinearities depend only on v, and not
on its derivatives, it has been proved in [2] that the solution of the problem is almost global, i.e.
defined on intervals of length cN ε

−N for any N . Moreover one has uniform Sobolev estimates
on such intervals. This result had been obtained previously in one dimension by Bourgain [5],
on a slightly weaker form, and by Bambusi [1] and Bambusi-Grébert [3].

• In the quasi-linear case, no result seems to have been known, except in the much simpler case of
equations of form (1.1.4) with zero potential and a quadratic nonlinearity on Td(d ≥ 1): see [9].
For such operators and nonlinearities, most of the difficulties we shall encounter in this paper
disappear. Actually, the fact that the potential is zero allows one to use Fourier series, and so
harmonic analysis. The combination of this and of the fact that the nonlinearity is quadratic
makes functions of type (0.0.9) always nonzero whatever the value of parameter m on the relevant
set of arguments. Because of that, the proof does not use the structure of the spectrum of the
Laplacian, and this explains why one is able to treat also the case of tori of higher dimension. On
the other hand, as soon as either the potential is nonzero, or the nonlinearity vanishes at order
strictly larger than two, the structure of the spectrum plays an essential role. This explains why,
in such cases, no result is known on Td(d ≥ 2), even for semi-linear equations.

• A natural question is to know if theorem 1.1.1 may be extended from S1 to Sd, as its semi-linear
counterpart. We are unable to perform such an extension. This is related to the existence of
“nice basis” which will be addressed in next subsection.

1.2 Nice basis

Let V : S1 → R+ be a smooth function. The large eigenvalues of − d2

dx2 + V are arranged in
couples (ω−n )2 ≤ (ω+

n )2, where ω+
n and ω−n have when n→ +∞ a same asymptotic expansion at

7



any order of form

(1.2.1) n+
1

4πn

∫

S1

V (x) dx+
α3

n3
+
α5

n5
+ · · ·

(see for instance the book of Marchenko [14]). We shall denote in this subsection for n large
enough by En the subspace of L2(S1,R) spanned by the eigenfunctions associated to (ω−n )2 and
(ω+
n )2, and by Πn the spectral projection of L2 onto that subspace. We shall choose a function

λ → ω(λ), which is a symbol of order 1, having when λ → +∞ the expansion (1.2.1) (with n
replaced by λ). If we write an = O(n−∞) to mean that for any N ∈ N there is CN > 0 with
|an| ≤ CNn−N , then ω(n)− ω±n = O(n−∞). Consequently, we have

(1.2.2) ‖
√
−∆ + VΠn − ω(n)Πn‖L(L2,L2) = O(n−∞).

Our goal is to construct a basis of each En such that some scalar products involving elements of
these basis will have symbolic behaviour relatively to the spectral parameters. Before stating the
theorem, let us introduce the following notations. For τ ∈ N, we denote by Nτ = {n ∈ N;n ≥ τ}.
If a : Nτ → C is given, we extend it by 0 to a function defined on Z, and we define ∂a : Nτ → C
by

(1.2.3) ∂a(n) = a(n+ 1)− a(n).

We denote by ∂∗ the formal adjoint of ∂ for the scalar product 〈a, b〉 =
∑

n≥τ a(n)b(n), that is

(1.2.4) ∂∗a(n) = −∂a(n− 1).

We have then for a function a defined on Nτ × Nτ
(1.2.5) (∂n − ∂∗n′)a(n, n′) = a(n+ 1, n′)− a(n, n′ − 1).

We shall use below the following elementary formulas. For a function a(n), denote if k ∈ Z
τka(n) = a(n− k). One has then

∂n(ab) = (∂na)(τ−1b) + a(∂nb)

∂∗n(ab) = (∂∗na)b+ (τ1a)(∂∗nb)

∂n(ab) = (∂na)b+ a(∂nb) + (∂na)(∂nb)

∂∗n(ab) = (∂∗na)b+ a(∂∗nb) + (∂∗na)(∂∗nb).

(1.2.6)

Moreover, if we consider functions a(n, n′), b(n, n′) defined on Nτ × Nτ , and if τ 1
k , τ

2
k are the

translation operators relatively to the first and second variable respectively, we have

(∂n − ∂∗n′)(ab) = (τ 1
−1a)((∂n − ∂∗n′)b) + ((∂n − ∂∗n′)a)(τ 2

1 b)

(∂n − ∂∗n′)(ab) = a((∂n − ∂∗n′)b) + ((∂n − ∂∗n′)a)b+ (∂na)(∂nb)− (∂∗n′a)(∂∗n′b),
(1.2.7)

∂n[a(n, n)] = ((∂n − ∂∗n′)a)(n, n+ 1)

∂∗n[a(n, n)] = −((∂n − ∂∗n′)a)(n− 1, n).
(1.2.8)

Remind that a pseudo-differential operator T , of order 0 on S1, may be written when acting on
a periodic function u as

(1.2.9) Tu(x) =

∫

S1

∑

n∈Z
ein(x−y)a(x, n)u(y) dy

8



where a is a smooth function on S1 × Z, satisfying for any α, β ∈ N,

(1.2.10) |∂αx ∂βna(x, n)| ≤ Cα,β(1 + |n|)−β

(where ∂x means a usual derivative, and ∂n is defined by (1.2.3)). We set

(1.2.11) |a|P = sup
0≤α≤P

sup
0≤β≤P

sup
(x,n)∈S1×Z

(1 + |n|)β|∂αx ∂βna(x, n)|.

We may also use a local representation: Let χ ∈ C∞0 (R) be supported inside an interval of
length strictly smaller that 2π. Take χ̃ ∈ C∞0 (C), χ̃ ≡ 1 close to 0, Supp χ̃ small enough and set
χ̃0 = 1− χ̃. Define

ã(x, ξ) =
+∞∑

n=−∞
a(x, n)Θ(x, ξ − n)

K(x, y) =
+∞∑

n=−∞
ein(x−y)χ̃0(ei(x−y) − 1)a(x, n)

(1.2.12)

with

Θ(x, η) =

∫
e−i(x−y)ηχ̃(ei(x−y) − 1)χ(y) dy.

Then we have if Suppu is contained in the domain where χ ≡ 1

Tu(x) =
1

2π

∫
eixξã(x, ξ)û(ξ) dξ +Ru(x)

Ru(x) =

∫
K(x, y)u(y) dy.

(1.2.13)

If we set χ̃k+1(z) = z−1χ̃k(z), we see that

K(x, y) =
∑

n

(
ei(n+1)(x−y) − ein(x−y)

)
χ̃1(ei(x−y) − 1)a(x, n)

=
∑

n

ein(x−y)χ̃1(ei(x−y) − 1)∂∗na(x, n)

=
∑

n

ein(x−y)χ̃k(e
i(x−y) − 1)(∂∗n)ka(x, n).

This shows that K is a smooth 2π-periodic function of (x, y), whose derivatives up to order N
are bounded in L∞ in terms of the constants Cαβ of (1.2.10) for α + β ≤ N + 2. Moreover, if
x ∈ [−π, π] and Supp χ̃ has been taken small enough, we see that

∂ηΘ(x, η) =

∫
e−i(x−y)η(ei(x−y) − 1)χ̃1(x, y)χ(y) dy

where χ̃1(x, y) = −i(x−y)(ei(x−y)−1)−1χ̃(ei(x−y)−1) ∈ C∞ if y ∈ Suppχ b]−π, π[, x ∈ [−π, π].
Consequently ∂ηΘ(x, η) = Θ1(x, η − 1) − Θ1(x, η), for a function Θ1, of the same form as Θ,

satisfying |∂αxΘ1(x, η)| ≤ CN 〈η〉−N for any α, any N . We may thus write

∂ξã(x, ξ) =
∑

n

a(x, n)∂n[Θ1(x, ξ − n)] =
∑

n

(∂∗na)(x, n)Θ1(x, ξ − n).
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Computing in the same way higher order derivatives, we get that ã is a symbol on [−π, π]× R,
whose semi-norms are controlled in terms of the corresponding semi-norms of a.

Our aim is to prove the following:

Theorem 1.2.1 There is τ ∈ N∗ and for any n ≥ τ , there is an orthonormal basis (ϕ1
n, ϕ

2
n)

of En, satisfying the following property: there is ν ∈ R+ and for any N,α, β, γ ∈ N there is a
constant C > 0, such that for any pseudo-differential operator of order 0 on S1, T , of symbol a,
for any n, n′ ∈ Nτ , any j, j′ ∈ {1, 2}, one has

(1.2.14)
∣∣∣∂αn (∂∗n′)

β(∂n − ∂∗n′)γ〈ϕjn, Tϕj
′
n′〉
∣∣∣ ≤ C〈n− n′〉−N (n+ n′)−γ |a|ν+N+α+β+γ .

An hilbertian basis (ϕjn)j,n of L2(S1,R), such that (1.2.14) is satisfied for n, n′ ≥ τ large enough,
will be called a nice basis.

Remark The functions ϕ1
n, ϕ

2
n of the statement are not assumed to be eigenfunctions of −∆+V .

Nevertheless, because of (1.2.2), they verify ‖(
√
−∆ + V − ω(n))(ϕjn)‖L2 = O(n−∞).

Before starting the proof of the theorem, let us state a corollary.

Corollary 1.2.2 Let (ϕjn)j,n be a nice basis of L2(S1,R). Let T1, T2 be two pseudo-differential
operators of order 0 on S1. There is ν ∈ R+, and for any N,α, β, γ ∈ N, there is C > 0 such
that for any C∞ function a on S1, one has

(1.2.15) |∂αn (∂∗n′)
β(∂n − ∂∗n′)γ〈T1ϕ

j
n, a(x)T2ϕ

j′
n′〉| ≤ C〈n− n′〉

−N
(n+ n′)−γ

α+β+γ+N+ν∑

k=0

‖∂ka‖L∞

for any n, n′ ∈ N∗.

The corollary follows from (1.2.14) applied to T = T ∗1 aT2, which is a pseudo-differential operator
of order 0, whose symbol semi-norms |·|P are controlled in terms of ‖∂ka‖L∞ for k ≤ P + ν0, for
a fixed ν0 ∈ N.

We shall first construct quasi-modes satisfying convenient properties.

Proposition 1.2.3 There exists for n ≥ τ large enough, functions U n ∈ C∞([−π, π],C) satis-
fying the following properties:

(i) For any n ∈ Nτ , any k ∈ N, ‖Un‖L2[−π,π] = 1 and ∂kxUn(π)−∂kxUn(−π) = O(n−∞), n→ +∞.

(ii) Let T be a pseudo-differential operator of order 0 on S1. Denote by Un(x) the function on
R obtained by 2π-periodization of Un. Consider Un as an element of L2(S1,C), and define for
n, n′ ∈ Nτ

(1.2.16) I−(n, n′) = 〈TUn, Un′〉, I+(n, n′) = 〈TUn, Un′〉.
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There is ν ∈ R+, and for any α, β, γ,N ∈ N, a constant C > 0 such that, for any operator T as
above, defined in terms of a symbol a by (1.2.9), one has

(1.2.17) |∂αn (∂∗n′)
β(∂n − ∂∗n′)γI−(n, n′)| ≤ C〈n− n′〉−N (n+ n′)−γ |a|ν+N+α+β+γ ,

(1.2.18) |∂αn (∂∗n′)
β(∂n − ∂∗n′)γI+(n, n′)| ≤ C(n+ n′)−N−γ |a|ν+N+α+β+γ

for any n, n′ ∈ Nτ with |n− n′| ≤ 1
2(n+ n′).

(iii) There is a sequence (hn)n∈N of R∗+ such that h−1
n − ω(n) = O(n−3) and

(1.2.19) ‖(−∆ + V − h−2
n Id)Un‖H−2 = O(n−∞), ‖Un‖H1/2−δ ≤ Cδh−1

n

for any n ≥ τ, δ > 0.

We shall first construct Un such that (i) and (iii) hold true.

Lemma 1.2.4 There are δ0 > 0 and smooth functions (x, h)→ θ(x, h), (x, h)→ b(x, h) defined
on [−π, π]×[0, δ0], real valued, even in h, and a sequence (hn)n of points of ]0, 1], with asymptotic
expansion

(1.2.20) hn =
1

n
− 1

4πn3

∫ π

−π
V (x) dx+

N∑

k=2

γkn
−2k−1 +O(n−2N−3)

for any N ∈ N, such that the following properties hold true:

(1.2.21)
1

hn
θ(π, hn)− 1

hn
θ(−π, hn)− 2πn = O(n−∞)

θ′(x, 0) ≡ 1, |(∂αx ∂βhθ′)(−π, h)− (∂αx ∂
β
hθ
′)(π, h)| = O(h∞),

|∂αx b(−π, h)− ∂αx b(π, h)| = O(h∞)
∀α, β ∈ N,(1.2.22)

and such that if one sets

(1.2.23) Un(x) = eiθ(x,hn)/hnb(x, hn)

conditions (i) and (iii) of the statement of proposition 1.2.3 hold true.

Proof: We look for a formal series in h, Φ(x, h), with smooth coefficients in x ∈ [−π, π], such
that Im Φ(x, 0) ≡ 0, and the semi-classical equation

(1.2.24) (−h2∂2
x + h2V (x)− 1)eiΦ(x,h)/h = 0

be satisfied formally. We get, denoting by Φ′,Φ′′ x-derivatives, the formal equation

(1.2.25) Φ′(x, h)2 − 1− ihΦ′′(x, h) + h2V (x) ≡ 0.
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We look for a solution Φ′(x, h) =
∑+∞

k=0 h
kΦ′k(x) with Φ′0 ≡ 1, Φ′2k real, Φ′2k+1 purely imaginary.

Identifying powers of h we get for k ≥ 1,

Φ′k(x) = −1

2
V (x)δk2 −

1

2

k−1∑

`=1

Φ′`(x)Φ′k−`(x) +
i

2
Φ′′k−1(x)

whence

(1.2.26) Φ′1(x) ≡ 0, Φ′2(x) = −1

2
V (x), Φ′k(x) 2π-periodic for any k.

Taking the imaginary part of (1.2.25), we get

Re Φ′(x, h)Im Φ′(x, h) =
h

2
Re Φ′′(x, h).

We choose for the equation on Im Φ the solution

(1.2.27) Im Φ(x, h) =
h

2
log[Re Φ′(x, h)],

where the right hand side is well defined since Re Φ′(x, 0) ≡ 1. We thus see that Im Φ(x, h) is
2π-periodic in x and odd in h. We may write using (1.2.26)

(1.2.28) Φ(π, h)− Φ(−π, h) =

∫ π

−π
Re Φ′(x, h) dx = 2π − h2

2

∫ π

−π
V (x) dx+

+∞∑

k=2

Akh
2k

for some real constants Ak. Then eiΦ(x,h)/h will be 2π-periodic if and only if there is n ∈ N with
Φ(π, h) − Φ(−π, h) = 2πnh. By (1.2.28), the h-solutions of this equation for n large enough
form a sequence (hn)n of R∗+, converging to zero, and having asymptotic expansion

hn =
1

n
− 1

4πn3

∫ π

−π
V (x) dx+ · · ·

Comparison with (1.2.1) shows that h−1
n − ω(n) = O(n−3).

We denote by θ(x, h) (resp. b̃(x, h)) a smooth function of (x, h) on [−π, π] × [0, δ0], even in h,
whose difference with Re Φ(x, h) (resp. e−Im Φ(x,h)/h) is tangent to 0 at infinite order, as well
as its derivatives, when h → 0, uniformly in x ∈ [−π, π]. Since Im Φ(x, h) and Re Φ′(x, h) are
2π-periodic for any h, (1.2.22) with b replaced by b̃ holds true. Moreover, by (1.2.26), (1.2.27),
b̃(x, h) = 1 + O(h2) uniformly in x ∈ [−π, π], so ‖b̃(·, h)‖L2([−π,π]) =

√
2π + O(h2). If we set

b(x, h) = b̃(x, h)/‖b̃(·, h)‖L2 , we thus obtain a function satisfying the last relation (1.2.22). The
equality (1.2.21) follows from the definition of hn. Define now Un(x, h) = eiθ(x,hn)/hnb(x, hn).
It obeys the properties of (i) of proposition 1.2.3. Moreover, by (1.2.24), we have the equality
(−∆ + V − h−2

n )Un = O(h∞n ) on [−π, π]. If Un is the 2π-periodization of Un, then Un is in
L2(S1,C), but not in C∞(S1), since it has, as well as its derivatives, jumps of magnitude O(h∞n )
at π mod 2π. Consequently, (−∆+V −h−2

n )Un = αnδπ +βnδ
′
π +gn(x) where αn, βn = O(h∞n ),

gn is C∞ on [−π, π] and O(h∞n ). This gives the first inequality in (1.2.19). The second one
follows from the fact that by (1.2.23), ∇Un = αnδπ + rn with αn = O(h∞n ), ‖rn‖L2 = O(h−1

n ),
whence ‖∇Un‖H−1/2−δ = O(h−1

n ) for any δ > 0. 2

We want now to express the quantities (1.2.16) in terms of Fourier integrals. Remind that we
consider a pseudo-differential operator T of order 0, expressed in terms of its symbol a by (1.2.9).
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Lemma 1.2.5 There is ν ∈ R+, a finite set of indices J , and for any N ∈ N, functions
r±N : Nτ × Nτ → C satisfying for any α, β, γ

(1.2.29) |∂αn (∂∗n′)
β(∂n − ∂∗n′)γrN (n, n′)| ≤ CαβγN (n+ n′)−N−γ |a|N+α+β+γ+ν

and a family of functions Aj,±N : R3 × R2
+ → C,

(x, y, ξ, ω, ω′)→ Aj,±N (x, y, ξ, ω, ω′),

compactly supported relatively to (x, y, ξ), smooth in (ω, ω ′), satisfying for |ω − ω′| ≤ 1
2(ω + ω′)

estimates of type

(1.2.30) |∂αω∂βω′(∂ω + ∂ω′)
γAj,±N (x, y, ξ, ω, ω′)|
≤ CαβγNN ′ |a|N+N ′+α+β+γ(1 + |x− y|ω)−N

′〈ω ± ω′〉−N (ω + ω′)−γ

for any α, β, γ,N ′, such that if

(1.2.31) J j,±N (ω, ω′) = ω

∫

R3

ei[ω(x−y)ξ+ωθ(y, 1
ω

)±ω′θ(x, 1
ω′ )]Aj,±N (x, y, ξ, ω, ω′) dxdydξ,

one has for |n− n′| ≤ 1
2(n+ n′)

(1.2.32) I±(n, n′) =
∑

j∈J
J j,±N (h−1

n , h−1
n′ ) + r±N (n, n′).

Proof: If we use (1.2.9), (1.2.13) and a partition of unity in y, we may write Tv as the sum of
Rv – where R is a smoothing operator whose contribution will be discussed at the end of the
proof – and of a finite sum of integrals of form

(1.2.33)

∫

R2

ei(x−y)ξ ã(x, y, ξ)v(y) dydξ

where v is the 2π-periodic extension of v ∈ L2(S1,R), where ã is C∞ in (x, y, ξ), compactly
supported in (x, y), and satisfies

(1.2.34) |∂αx ∂βy ∂γξ ã(x, y, ξ)| ≤ Cαβγ(1 + |ξ|)−γ

with constants Cαβγ controlled in terms of |a|α+β+γ . Let χ1 ∈ C∞(R), χ1 ≡ 0 on [−1, 1], χ1 ≡ 1
outside [−2, 2], and define

(1.2.35) T nv(x) =

∫
ei(x−y)ξ ã(x, y, ξ)χ1(n−2ξ)v(y) dydξ.

Let us take v = Un, 2π-periodic extension of the function Un defined on [−π, π] by (1.2.23).
Remind that Un is smooth outside π + 2πZ, and that at all points of π + 2πZ, Un as well as its
derivatives, have a jump of magnitude O(n−∞). Consequently, when we perform in (1.2.35) one
integration by parts in y, we get

Tnv(x) =

∫
ei(x−y)ξ1{y−π 6∈2πZ}∂y[ã(x, y, ξ)

χ1(n−2ξ)

iξ
Un(y)] dydξ + T n1 w
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where Tn1 is an operator of order −1, acting on a distribution w which is a finite sum of Dirac
masses with coefficients O(n−∞). In particular, ‖T n1 w‖L2 = O(n−∞). If we perform more
integrations by parts, we may write, remarking that each integration gains n−2 and looses one
∂y derivative

‖Tnv‖L2 ≤ CN |a|N+νn
−2N‖Un‖HN ([−π,π])

for a fixed ν ∈ R+. Since by (1.2.23), ‖Un‖HN = O(nN ), we see that the contribution of T n to
I±(n, n′) contributes to the last term in (1.2.32). This shows that we may, from now on, replace
T by the operator Tn defined by

Tnv(x) =

∫
ei(x−y)ξ ã(x, y, ξ)χ(n−2ξ)v(y) dydξ

where χ = 1−χ1, and study instead of I−(n, n′) (resp. I+(n, n′)) the quantity 〈TnUn, Un′〉 (resp.
〈TnUn, Un′〉) i.e. respectively

(1.2.36)

∫

R3

e
i(x−y)ξ+ i

hn
θ(y,hn)∓ i

hn′
θ(x,hn′ )ã(x, y, ξ)χ(n−2ξ)b(y, hn)b∓(x, hn′) dxdydξ

with b+ ≡ b, b− ≡ b̄. If we make in (1.2.36) integrations by parts in x or y, because θ or b have
jumps at π + 2πZ, we shall get boundary terms. But (1.2.21), (1.2.22), and the fact that ξ is
localized in a region where |ξ| ≤ Cn2, show us that these contributions will give rise to admissible
remainders of type (1.2.29). Consequently, we may argue like if θ and b were C∞ 2π-periodic
functions. Remark that by the first relation (1.2.22), we shall have |ξ − 1

hn
θ′(y, hn)| ≥ c

hn
if hn

is small enough, and either |ξ| ≥ Ah−1
n or |ξ| ≤ A−1h−1

n for a large enough constant A > 0.
Consequently, using y-integrations by parts, we see that up to admissible remainders of type
(1.2.29), we may in (1.2.36) replace the cut-off χ(n−2ξ) by ϕ(hnξ) with ϕ ∈ C∞0 (R− {0}). We
are thus reduced to

(1.2.37)
1

hn

∫
e
i
[

1
hn

(x−y)ξ+ 1
hn
θ(y,hn)∓ 1

hn′
θ(x,hn′ )

]
ã
(
x, y,

ξ

hn

)
ϕ(ξ)b(y, hn)b∓(x, hn′) dxdydξ.

Define the vector field

L∓(x, y, ω, ω′, ∂x + ∂y) =
(

1 +
(
ωθ′
(
y,

1

ω

)
∓ ω′θ′

(
x,

1

ω′
))2)−1

×
[
1 +

(
ωθ′
(
y,

1

ω

)
∓ ω′θ′

(
x,

1

ω′
))

(∂x + ∂y)
]
.

(1.2.38)

Since θ′(x, h) is even in h, and θ′(x, 0) ≡ 1, we may write

(1.2.39) ωθ′
(
y,

1

ω

)
∓ ω′θ′

(
x,

1

ω′
)

= ω ∓ ω′ + σ(y, ω)∓ σ(x, ω′)

where σ(y, ω) satisfies for any α, γ ∈ N (using (1.2.22))

|∂αy ∂γωσ(y, ω)| ≤ Cαγ(1 + ω)−1−γ ∀y ∈ R− {π + 2πZ}, ∀ω ∈ R+

[∂αy ∂
γ
ωσ] = O(ω−∞),

denoting by [·] the jump at π + 2πZ. Consequently, the coefficients c(x, y, ω, ω′) of L∓ satisfy
for x, y outside π + 2πZ,

(1.2.40) |∂δx∂δ
′
y ∂

α
ω∂

β
ω′(∂ω + ∂ω′)

γc(x, y, ω, ω′)| ≤ C(1 + ω + ω′)−γ〈ω ∓ ω′〉−1
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when |ω − ω′| ≤ 1
2(ω + ω′), with jump conditions

(1.2.41) [∂δx∂
δ′
y ∂

α
ω∂

β
ω′c] = O((ω + ω′)−∞).

We make in (1.2.37) integrations by parts using the vector field (1.2.38). Again, because of
(1.2.41) and (1.2.21), (1.2.22), boundary terms coming from the jumps give rise to remainders
of type (1.2.29), and up to such perturbations, we may rewrite (1.2.37) as
(1.2.42)

1

hn

∫
e
i
[

1
hn

(x−y)ξ+ 1
hn
θ(y,hn)∓ 1

hn′
θ(x,hn′ )

]
(tL∓)N

[
ã
(
x, y,

ξ

hn

)
ϕ(ξ)b(y, hn)b∓(x, hn′)

]
dxdydξ.

If L0(x− y, ω, ∂ξ) = (1 +ω2(x− y)2)−1(1 +ω(x− y) · ∂ξ), the coefficients of L0 satisfy estimates

(1.2.43) |∂αωc(x− y, ω)| ≤ Cα(1 + ω|x− y|)−1ω−α.

Integrating by parts using L0, we obtain that (1.2.42) may be written as J∓N (h−1
n , h−1

n′ ) with

J∓N (ω, ω′) = ω

∫
ei[ω(x−y)ξ+ωθ(y, 1

ω
)∓ω′θ(x, 1

ω′ )]A∓N (x, y, ξ, ω, ω′) dxdydξ

with

A∓N = (tL0)N
′
(tL∓)N

[
ã(x, y, ωξ)ϕ(ξ)b

(
y,

1

ω

)
b∓
(
x,

1

ω′
)]
.

By (1.2.40), (1.2.43), and (1.2.34), A∓N satisfies (1.2.30). Finally, the contributions 〈RUn, Un′〉,
〈RUn, Ūn′〉 of the smoothing operator in (1.2.13) to I+, I− contribute to r±N in (1.2.32), using
(1.2.23) and integrations by parts. This proves the lemma. 2

Proof of proposition 1.2.3: By lemma 1.2.4, conditions (i) and (iii) of the statement of the
proposition hold true. Let us prove (1.2.18). Since h−1

n = n + O(1/n), if we plug (1.2.30) with
α = β = γ = 0 inside (1.2.31) and integrate in y, we get from (1.2.32) that there is a fixed
ν ∈ R+ such that for any N , |I+(n, n′)| ≤ CN (n+ n′)−N |a|N+ν when |n− n′| ≤ 1

2(n+ n′). This
implies (1.2.18).

To show (1.2.17), let us prove first that for |ω − ω′| ≤ 1
2(ω + ω′)

(1.2.44) |∂αω∂βω′(∂ω + ∂ω′)
γJ j,−N (ω, ω′)| ≤ C〈ω − ω′〉−N (ω + ω′)−γ |a|α+β+γ+N+2.

Remark first that if we make act ∂ω + ∂ω′ on the phase of J j,−N , we get either a contribution
which is O(ω−1 + ω′−1), or a quantity like i(x− y)ξ or i

[
θ(y, 1

ω )− θ(x, 1
ω′ )
]
, in which, modulo a

O(ω−1 + ω′−1) term, we may factor out x− y. The decay given by the N ′ exponent in (1.2.30)
allows one to transform such a term in a gain of one negative power of ω. Consequently, (1.2.44)
follows from y-integrations of estimates (1.2.30). We have then to show that (1.2.44) implies
that

(1.2.45) ∂αn (∂∗n′)
β(∂n − ∂∗n′)γJ j,−N

( 1

hn
,

1

hn′

)

is estimated by the right hand side of (1.2.17). Call ω̃(λ) a symbol of order 1 defined on R+,
such that according to (1.2.20), h−1

n − ω̃(n) = O(n−∞). Up to terms verifying estimates of type
(1.2.29) we may, instead of (1.2.45), bound

∂αn (∂∗n′)
β(∂n − ∂∗n′)γJ j,−N (ω̃(n), ω̃(n′)).
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We use induction on α+ β + γ: set for t ∈ [0, 1], Ω(n, t) = tω̃(n+ 1) + (1− t)ω̃(n) so that

(∂n − ∂∗n′)J j,−N (ω̃(n), ω̃(n′)) = J j,−N (ω̃(n+ 1), ω̃(n′))− J j,−N (ω̃(n), ω̃(n′ − 1))

=

∫ 1

0
(∂ωJ

j,−
N )(Ω(n, t),Ω(n′ − 1, t)) dt(ω̃(n+ 1)− ω̃(n))

+

∫ 1

0
(∂ω′J

j,−
N )(Ω(n, t),Ω(n′ − 1, t)) dt(ω̃(n′)− ω̃(n′ − 1)).

Since ω̃(λ)− λ is a symbol of order −1, we may write this as

∫ 1

0
(∂ω + ∂ω′)J

j,−
N (Ω(n, t),Ω(n′ − 1, t)) dt+

∫ 1

0
∂ωJ

j,−
N (Ω(n, t),Ω(n′ − 1, t)) dtω̃−2(n)

+

∫ 1

0
∂ω′J

j,−
N (Ω(n, t),Ω(n′ − 1, t)) dtω̃−2(n′ − 1)

for a new symbol of order −2, ω̃−2(λ). This shows that we gained one (actually two) negative
powers of n+n′ in the last two integrals – when |n− n′| ≤ 1

2(n+n′) –, and also one such power
in the first one, because of (1.2.44). Moreover, Ω(n, t) satisfies the same assumptions as ω̃(n),
which allows one to proceed with the induction. This concludes the proof of the proposition. 2

Lemma 1.2.6 Let λ→ ω(λ) be the symbol defined after (1.2.1). Then

(1.2.46)
1

hn
− ω(n) = O(n−∞).

Moreover, for n large enough, there is a real valued orthonormal basis (ϕ1
n, ϕ

2
n) of the space En

such that

(1.2.47)
∥∥∥ϕ1

n −
Un + Ūn√

2

∥∥∥
L2

= O(n−∞),
∥∥∥ϕ2

n −
Un − Ūn
i
√

2

∥∥∥
L2

= O(n−∞).

Proof: We denote by Fn the span of (U1
n, U

2
n) in L2(S1,R), where U1

n = Un+Ūn√
2
, U2

n = Un−Ūn
i
√

2
.

Then for v ∈ Fn, if P = − d2

dx2 + V (x), we have by (iii) of proposition 1.2.3

(1.2.48) ‖(P − h−2
n )v‖H−2 = O(n−∞)

uniformly for v staying in the unit ball of Fn. In the same way, since En is the range of the
spectral projector Πn associated to the couple of eigenvalues (ω−n )2 ≤ (ω+

n )2, we have by (1.2.2)

(1.2.49) ‖(P − ω(n)2)v‖H−2 = O(n−∞)

uniformly for v in the unit ball of En (actually, the above relation holds true even for the L2

norm). We shall denote by E⊥n the orthogonal complement of En in H−2, by Π⊥n : H−2 → E⊥n
the orthogonal projection, and shall also use the notation Πn for the orthogonal projector from
H−2 to En. We set Qn = Π⊥n (P − ω(n)2Id)Π⊥n considered as a bounded operator from E⊥n ∩L2
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to E⊥n . Since the eigenvalues of P different from (ω+
n )2 and (ω−n )2 lie at a distance from ω(n)2

bounded from below by a fixed constant, Qn is invertible, with inverse Q−1
n : E⊥n → E⊥n ∩ L2

whose norm in L(H−2, L2) depends on n, but with ‖Q−1
n ‖L(H−2,H−2) uniformly bounded. Since

we have seen in proposition 1.2.3 that ω(n)− h−1
n = O(n−3), the operator

(1.2.50) Id−Q−1
n (h−2

n − ω(n)2)

will be invertible, as an operator from E⊥n to E⊥n endowed with the H−2 norm, for large enough
n. If v is in the unit ball of L2, we have

(1.2.51) Qnv = Π⊥n (P − ω(n)2Id)Π⊥n v = Π⊥n (P − ω(n)2Id)v −Π⊥n (P − ω(n)2Id)Πnv.

By (1.2.2), the last term has L2 (or H−2) norm O(n−∞). If we assume moreover that v ∈ Fn,
and write

(P − ω(n)2Id)v = (h−2
n − ω(n)2)v + (P − h−2

n )v,

the last term has H−2 norm O(n−∞) by (1.2.48). We deduce from this equality and (1.2.51)

(Qn − (h−2
n − ω(n)2)Id)Π⊥n v = rn

with rn ∈ E⊥n , ‖rn‖H−2 = O(n−∞). We deduce from the invertibility of Qn and of (1.2.50) for
large enough n that

(1.2.52) ‖Π⊥n v‖H−2 = O(n−∞).

We set for n large enough ψ1
n = ΠnU

1
n, ψ

2
n = ΠnU

2
n. The above equality implies

(1.2.53) ‖ψ1
n − U1

n‖H−2 = O(n−∞), ‖ψ2
n − U2

n‖H−2 = O(n−∞).

Moreover, since ψjn is in the range of Πn, ‖ψjn‖
H

1
2−δ
≤ Ch

− 1
2

+δ
n for any δ > 0, so that using

(1.2.19) ‖ψjn − U jn‖
H

1
2−δ
≤ Ch−1

n . Interpolating with (1.2.53), we get

(1.2.54) ‖ψjn − U jn‖L2 = O(n−∞) j = 1, 2.

Since ‖Un‖L2 = 1, and 〈Un, Ūn〉 = O(n−∞) by (1.2.16) and (1.2.18), we deduce from (1.2.54)
and the definition of U1

n, U
2
n

(1.2.55) 〈ψ1
n, ψ

2
n〉 = O(n−∞), ‖ψjn‖2L2 − 1 = O(n−∞).

We define now (ϕ1
n, ϕ

2
n) as a Gram-Schmidt orthonormalization of (ψ1

n, ψ
2
n). Then (1.2.47) follows

from (1.2.54), (1.2.55). To show (1.2.46), we take v ∈ Fn of norm 1. We write

(ω(n)2 − h−2
n )Πnv = −(P − ω(n)2)Πnv + (P − h−2

n )v − PΠ⊥n v + h−2
n Π⊥n v.

By (1.2.48), (1.2.49) the H−2 norm of the first two terms in the right hand side is O(n−∞). By
(1.2.52), the H−4 norm of the last two terms is O(n−∞). Consequently

(ω(n)2 − h−2
n )‖Πnv‖H−4 = O(n−∞).
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To get (1.2.46) and conclude the proof, we just need to see that ‖Πnv‖H−4 ∼ n−4‖Πnv‖L2 ≥
cn−4. We have, since v is in the unit ball of Fn, ‖Π⊥n v‖H1 ≤ C‖v‖H1 ≤ Cn. Interpolating with
(1.2.52), we get ‖Π⊥n v‖L2 = O(n−∞), whence the wanted lower bound, ‖Πnv‖L2 ≥ c. 2

Proof of theorem 1.2.1: For n large enough, we take for (ϕ1
n, ϕ

2
n) the orthonormal basis of En

given by lemma 1.2.6. For small values of n, we take any orthonormal basis of En. Remark first
that if |n− n′| ≥ c(n + n′) for some c > 0, estimate (1.2.14) holds true. Actually, one has a
general estimate

|〈Πnu, TΠn′v〉| ≤ CN 〈n− n′〉−N |a|ν+N‖u‖L2‖v‖L2

for a fixed ν ∈ R+ (see for instance [10], proposition 1.2.2 and lemma 1.2.3). This implies that if

|n− n′| ≥ c(n+n′), |〈ϕjn, Tϕj
′
n′〉| is bounded from above by CN (n+n′)−N |a|ν+N , which is better

than the wanted estimate (1.2.14). We may thus assume |n− n′| ≤ c(n + n′) and n, n′ large

enough. Then using (1.2.47) we get that up to O((n+n′)−∞) terms, 〈ϕjn, Tϕj
′
n′〉 may be written

as linear combinations of I−(n, n′) and I+(n, n′). Formulas (1.2.17), (1.2.18) of proposition 1.2.3
give then (1.2.14). This concludes the proof of the theorem. 2

2 Paradifferential symbolic calculus

The aim of this section is to develop a symbolic calculus, analogous to Bony’s paradifferential
calculus [4], for symbols defined on a discrete set instead of an open subset of the euclidean
space. As will be clear in section 4, we shall need such an extension, as the symbols which will
naturally appear in reductions of the quasi-linear equation (1.1.4) will be defined on Np, and
will not have any nice extension to Rp.

2.1 Symbols and quantization

We first fix some notations. We shall consider G a finite dimensional real vector space, and
assume given an orthonormal decomposition

(2.1.1) L2(S1, G) =
⊕

k≥τ
Ek

where Ek is a finite dimensional subspace of dimension K(k) and τ ∈ N∗. We assume K(k)
independent of k for k large enough, and denote by K this value. We assume that each Ek is
endowed with a nice orthonormal basis (ϕjk)1≤j≤K(k) i.e. an orthonormal basis such that, for any
k, k′, for given pseudo-differential operators T1, T2 of order 0, for any function a ∈ C∞(S1,R),
we have estimates of type (1.2.15)

(2.1.2) |∂αk (∂∗k′)
β(∂k − ∂∗k′)γ〈T1ϕ

j
k, a(x)T2ϕ

j′
k′〉| ≤ C〈k − k′〉

−N
(k + k′)−γ

α+β+γ+N+ν∑

`=0

‖∂`a‖L∞ ,

18



where 1 ≤ j ≤ K(k), 1 ≤ j ′ ≤ K(k′) and ν is a fixed positive constant. We shall denote by E
the algebraic direct sum of the Ek’s, and will use E as a space of test functions.

If n = (n0, . . . , np+1) ∈ Np+2
τ we define

(2.1.3) n′ = (n1, . . . , np), |n′| = max(n1, . . . , np).

Moreover, if ni is such that ni = max(n0, . . . , np+1) we set

(2.1.4) max2(n0, . . . , np+1) = max({n0, . . . , np+1} − {ni})

and if nj , j 6= i, is such that nj = max2(n0, . . . , np+1) we define

µ(n0, . . . , np+1) = max({n0, . . . , np+1} − {ni, nj})
S(n0, . . . , np+1) = |ni − nj |+ µ(n0, . . . , np+1).

(2.1.5)

By convention, we set max2n0 = 1, µ(n0, n1) = 1. We denote by K either R or C and by Πk the
orthogonal projector from L2(S1, G⊗K) to Ek ⊗K and set

Fk :L2(S1, G⊗K) −→ KK(k)

u→ (〈u, ϕjk〉)1≤j≤K(k).
(2.1.6)

Then Fk is an isometry when restricted to Ek ⊗ K, if we endow KK(k) with the `2 norm.
We denote by F∗k the adjoint of Fk from (KK(k))∗ ' KK(k) to (L2)′ ' L2. We have for
V = (Vj)1≤j≤K(k) ∈ KK(k)

(2.1.7) F∗kV =

K(k)∑

j=1

Vjϕ
j
k(x)

and the relations

(2.1.8) F∗k = Πk ◦ F∗k , Πk = F∗k ◦ Fk, Fk ◦ F∗k = IdKK(k) , Fk = Fk ◦Πk.

If U = (u1, . . . , up) ∈ (L2)p and n′ = (n1, . . . , np) ∈ Npτ we denote

(2.1.9) Πn′U = (Πn1u1, . . . ,Πnpup).

We shall always denote by ||| · ||| the L(`2, `2) norm of linear maps between euclidean spaces (or
the corresponding norm of matrices). Let us define the first class of symbols we shall use.

Definition 2.1.1 Let d ∈ R, ν ∈ R+, p ∈ N, N0 ∈ N∗ be given. We denote by Σd,ν
p,N0

the space of
maps

(u1, . . . , up, n0, np+1) −→ a(u1, . . . , up;n0, np+1)

E × · · · × E × Nτ × Nτ −→ L(KK(np+1),KK(n0))
(2.1.10)

such that a is R-p-linear in (u1, . . . , up) and satisfies for some δ ∈]0, 1[ conditions:
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(i)δ For any U = (u1, . . . , up) ∈ Ep, any n = (n0, n
′, np+1) ∈ Np+2

τ (with n′ = (n1, . . . , np)),
a(Πn′U ;n0, np+1) ≡ 0 unless

(2.1.11) |n′| ≤ δ(n0 + np+1) and |n0 − np+1| ≤ δ(n0 + np+1).

(ii) For any N ∈ N, any α, β, γ ∈ N, there is C > 0 such that for any n = (n0, n
′, np+1) ∈ Np+2

τ

as above, any U = (u1, . . . , up) ∈ Ep, one has the estimate

|||∂αn0
(∂∗np+1

)β(∂n0 − ∂∗np+1
)γa(Πn′U ;n0, np+1)|||

≤ C(n0 + np+1)d−γ
|n′|ν+N+(α+β+γ)N0

(|n0 − np+1|+ |n′|)N
p∏

j=1

‖uj‖L2 .
(2.1.12)

We shall call symbols in the preceding class paradifferential symbols. We may of course extend
(2.1.10) to a C-p-linear map defined on (E ⊗ C)× · · · × (E ⊗ C)× Nτ × Nτ .

Remarks • When we make act ∂∗np+1
several times on a(Πn′U ;n0, np+1), we might, for small

values of np+1, have to calculate a at integers smaller than τ . We decide to extend a(· ;n0, np+1)
as 0 for n0 < τ or np+1 < τ .

• When |n′| is bounded, estimate (2.1.12) is similar to the estimate (2.1.2) defining nice basis.
When |n′| → +∞, we have an extra loss of powers of |n′|, coming from ‖∂`a‖L∞ in (2.1.2),
and from degenerate ellipticity estimates of some symbols that we shall have to include in our
classes.

• When p = 0, we set by convention |n′| = 1 in the above definition, and in all forthcoming
formulas.

Let us quantize the above symbols.

Definition 2.1.2 For a ∈ Σd,ν
p,N0

and U = (u1, . . . , up) ∈ Ep, up+1 ∈ E, we define

(2.1.13) Op(a(U ; ·))up+1 =
∑

n0∈Nτ

∑

np+1∈Nτ
F∗n0

[
a(U ;n0, np+1)Fnp+1up+1

]
.

Let us explain the origin of the above definition. Assume for instance that each Ek is one
dimensional, spanned by a function ϕk. If a, u ∈ L2, we may write

au =
∑

np+1

a(x)〈u, ϕnp+1〉ϕnp+1

=
∑

n0

∑

np+1

〈aϕnp+1 , ϕn0〉〈u, ϕnp+1〉ϕn0

=
∑

n0

∑

np+1

F∗n0

[
〈aϕnp+1 , ϕn0〉Fnp+1u

]
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using (2.1.6), (2.1.7), and the symbol 〈aϕnp+1 , ϕn0〉 satisfies by (2.1.2) estimates (2.1.12). Con-
dition (i)δ of definition 2.1.1, which is not satisfied in this example, comes from the fact that we
want to consider paradifferential operators, instead of pseudo-differential ones.

Let us show that operators of order 0 are bounded on Hs for s large enough.

Proposition 2.1.3 Let ν ∈ R+, N0 ∈ N∗. There exists s0 ∈ R and for any s ∈ R, any d ∈ R,
any p ∈ N, any a ∈ Σd,ν

p,N0
, there is a constant C > 0 such that for any U = (u1, . . . , up) ∈ Ep,

any up+1 ∈ E

(2.1.14) ‖Op(a(U ; ·))up+1‖Hs−d ≤ C
p∏

j=1

‖uj‖Hs0‖up+1‖Hs .

In particular, (U, up+1)→ Op(a(U ; ·))up+1 extends as a bounded (p+1)-linear map from (H s0)p×
Hs to Hs−d.

Proof: Since ‖v‖2Hs ∼
∑

n n
2s‖Πnv‖2L2 , let us estimate ‖Πn0Op(a(U ; ·))up+1‖L2 . We get using

(2.1.12) and condition (i)δ,

n−d0

∥∥∥
∑

np+1

a(U ;n0, np+1)Fnp+1up+1

∥∥∥
`2
≤

C
∑

n1

· · ·
∑

np+1

|n′|ν+N

(|n0 − np+1|+ |n′|)N
p∏

j=1

n−s0j n−sp+1cnp+1

p∏

j=1

‖uj‖Hs0‖up+1‖Hs

with (cnp+1)np+1 in the unit ball of `2. Moreover, by condition (i)δ of definition 2.1.1, we have
np+1 ∼ n0 on the summation. Consequently, if we take N > 1 and s0 large enough relatively
to ν, we obtain an estimate by Cn−s0 c′n0

for a new `2-sequence (c′n0
)n0 , which is the wanted

conclusion. 2

We shall define now a class of remainder operators.

Definition 2.1.4 Let d ∈ R, ν ∈ R+, p ∈ N. We denote by Rd,νp+1 the space of (p + 1)-linear

maps M : E × · · · × E → L2 such that for any `,N ∈ N, there is C > 0 such that for any
(n0, . . . , np+1) ∈ Np+2

τ , any u1, . . . , up+1 ∈ E

‖Πn0M(Πn1u1, . . . ,Πnp+1up+1)‖L2 ≤

Cnd0
max2(n1, . . . , np+1)ν+`

max(n1, . . . , np+1)`
µ(n0, . . . , np+1)N

S(n0, . . . , np+1)N

p+1∏

j=1

‖uj‖L2 .
(2.1.15)

Remark that by definition Rd,νp+1 ⊂ R
0,ν+d+

p+1 , and that M extends to a C-(p+1)-linear map defined
on (E ⊗ C) · · · × (E ⊗ C).

Let us show that up to a remainder operator we always may assume in definition 2.1.1 that
condition (i)δ is satisfied with an arbitrary small δ > 0.
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Lemma 2.1.5 Let d ∈ R, ν ∈ R+, p ∈ N, N0 ∈ N∗ be given. There is ν ′ ∈ R+ such that for any

δ′ ∈]0, 1[, any a ∈ Σd,ν
p,N0

, we may find a1 ∈ Σd,ν
p,N0

, satisfying condition (i)δ′ and R ∈ R0,ν′
p , so

that for any U ∈ Ep, up+1 ∈ E

Op(a(U ; ·))up+1 = Op(a1(U ; ·))up+1 +R(U, up+1).

Before starting the proof, let us state a lemma that we shall use several times.

Lemma 2.1.6 Assume given a family of real valued functions Kαβγ(ω, ω′) defined on R+×R+,
such that there are positive constants Cαβγ satisfying

C−1
αβγKαβγ(ω, ω′) ≤ Kαβγ(ω + h, ω′ + h′) ≤ CαβγKαβγ(ω, ω′)

for any ω, ω′ ∈ R∗+ large enough, any (h, h′) ∈ [−1, 1]2. Let H be a smooth function on R+×R+

satisfying for any α, β, γ ∈ N, any ω, ω′ ∈ R∗+

(2.1.16) |∂αω∂βω′(∂ω + ∂ω′)
γH(ω, ω′)| ≤ Kαβγ(ω, ω′).

Then, there are constants C ′αβγ such that for any α, β, γ ∈ N, any n, n′ ∈ N large enough, with

|n− n′| ≤ 1
2(n+ n′)

(2.1.17) |∂αn (∂∗n′)
β(∂n − ∂∗n′)γH(n, n′)| ≤ C ′αβγKαβγ(n, n′).

Proof of lemma 2.1.5: Let χ be a smooth function, with support close enough to 0, equal to
one on a neighborhood of zero. Define

a1(U ;n0, np+1) =
∑

n′=(n1,...,np)

χ
(n0 − np+1

n0 + np+1

)
χ
( |n′|
n0 + np+1

)
a(Πn′U ;n0, np+1).

Then condition (i)δ′ will be satisfied by a1 if Suppχ is small enough. Moreover, using lemma
2.1.6, we see that when |n0 − np+1| ≤ 1

2(n0 + np+1)

∣∣∣∂αn0
(∂∗np+1

)β(∂n0 − ∂∗np+1
)γχ
(n0 − np+1

n0 + np+1

)∣∣∣ ≤ Cαβγ(n0 + np+1)−γ

∣∣∣∂αn0
(∂∗np+1

)β(∂n0 − ∂∗np+1
)γχ
( |n′|
n0 + np+1

)∣∣∣ ≤ Cαβγ
|n′|α+β+γ

(n0 + np+1)α+β+γ
.

(2.1.18)

Consequently, using also Leibniz formulas (1.2.6), (1.2.7), we see that estimates (2.1.12) are
satisfied by a1. Finally, since R = Op(a− a1),

‖Πn0R(Πn1u1, . . . ,Πnp+1up+1)‖L2 ≤ |||(a− a1)(Πn′U ;n0, np+1)|||‖up+1‖L2

and since, for the indices to be considered, either |n′| ≥ c(n0+np+1) or |n0 − np+1| ≥ c(n0+np+1),
estimate (2.1.12) gives the upper bound

C(n0 + np+1)d−N |n′|ν+N
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from which (2.1.15) follows, since

max2(n1, . . . , np+1) ∼ |n′|, µ(n0, . . . , np+1) ∼ |n′|, S(n0, . . . , np+1) ≤ C(n0 + np+1)

because of (2.1.11). 2

Remainder operators act also on Sobolev spaces:

Lemma 2.1.7 Let s0 > 1. There is for any ν ∈ R+, any p ∈ N∗, s1, s2 ∈ R, s1 + s2 > ν + 2,
any d ∈ R, any M ∈ Rd,νp+1, a constant C > 0 such that for any u1, . . . , up+1 ∈ E, any n0 ∈ Nτ ,
one has the estimate
(2.1.19)

‖Πn0 [M(u1, . . . , up+1)]‖L2 ≤ Cn−s1−s2+ν+2+d
0

∑

1≤j1 6=j2≤p+1

‖uj1‖Hs1‖uj2‖Hs2

∏

1≤k≤p+1
k 6=j1,k 6=j2

‖uk‖Hs0 .

In particular, M is bounded for any θ from Hs × · · · ×Hs to Hs+θ−d if s is large enough with
respect to ν and θ and

‖M(u, . . . , u)‖Hs+θ−d ≤ C‖u‖p−1
Hs0‖u‖2Hs .

Proof: We consider the contribution to M of

M1(u1, . . . , up+1) =
∑

n1≤···≤np+1

M(Πn1u1, . . . ,Πnp+1up+1).

Then by definition 2.1.4

(2.1.20) ‖Πn0M1(Πn1u1, . . . ,Πnp+1up+1)‖L2 ≤ Cnd0
nν+`
p

n`p+1

µ(n0, . . . , np+1)N

S(n0, . . . , np+1)N

p+1∏

1

‖Πnjuj‖L2 .

For the summation for n1 ≤ · · · ≤ np+1 and np ≥ n0, we take ` = s1 − ν,N = 0. We get the
upper bound

Cnd0
∑

n1≤···≤np+1

np≥n0

n−s1−s2+ν
p+1 n−s0p−1 · · ·n−s01

p−1∏

1

‖uj‖Hs0‖up‖Hs1‖up+1‖Hs2

which is bounded by the right hand side of (2.1.19) for s1 +s2 > ν+2, s0 > 1. When we sum for
n1 ≤ · · · ≤ np+1 and np < n0, we have µ(n0, . . . , np+1) = np, S(n0, . . . , np+1) = |n0 − np+1|+np.
We take in (2.1.20) ` = s1 − ν, and get

Cnd0
∑

n1≤···≤np+1
n0>np

n−s01 · · ·n−s0p−1n
−s1−s2+ν
p+1 nNp (|n0 − np+1|+ np)

−N
p−1∏

1

‖uj‖Hs0‖up‖Hs1‖up+1‖Hs2 .
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For the sum over np+1 ≥ 1
2n0, we take N = 0 and get the upper bound (2.1.19). For the sum

over np+1 <
1
2n0, we take N = s1 + s2 − ν and get a bound in terms of

∑

n1≤···≤np+1<
1
2
n0

n−s01 · · ·n−s0p−1n
−s1−s2+ν
0 ≤ Cn−s1−s2+ν+2

0 ,

whence again (2.1.19). 2

2.2 Symbolic calculus

We shall prove that the operators we just defined enjoy nice symbolic calculus properties.

Definition 2.2.1 Let a ∈ Σd,ν
p,N0

. We denote by a• the symbol defined by

(2.2.1) a•(U ;n0, np+1) = a(U ;np+1, n0)∗

where a∗ means the adjoint of the operator a(U ;np+1, n0) acting from KK(n0) to KK(np+1).

Remark that since

(∂n0 − ∂∗np+1
)[a•(U ;n0, np+1)] = [(∂X − ∂∗Y )a(U ;X,Y )∗]|X=np+1−1,Y=n0+1

we get that a• ∈ Σd,ν
p,N0

. Moreover, it follows from definition 2.1.2 that

Op(a(U ; ·))∗ = Op(a•(U ; ·)),

where the star denotes here the adjoint of operators from L2 to L2.

Let us study now composition.

Proposition 2.2.2 (i) Let ν ∈ R+, N0 ∈ N∗. There is ν ′ ∈ R+ and for any p, q ∈ N, d, d′ ∈ R,

for any symbols a ∈ Σd,ν
p,N0

, b ∈ Σd′,ν
q,N0

satisfying condition (i)δ of definition 2.1.1 with a small

enough δ > 0, there is a symbol a#b ∈ Σd+d′,ν′
p+q,N0

such that for any U ′ = (u1, . . . , up) ∈ Ep,
U ′′ = (up+1, . . . , up+q) ∈ Eq, any up+q+1 ∈ E

(2.2.2) Op(a(U ′; ·))Op(b(U ′′; ·))up+q+1 = Op(a#b(U ′, U ′′; ·))up+q+1.

(ii) Assume moreover that for any U ′, U ′′ as above, any large enough n0, np+1, n
′
0, n
′
q+1 ∈ Nτ ,

the symbols a(U ′;n0, np+1) and b(U ′′;n′0, n
′
q+1) commute. Then there is a symbol c ∈ Σd+d′−1,ν′

p+q,N0

such that

(2.2.3) [Op(a(U ′; ·)),Op(b(U ′′; ·))]up+q+1 = Op(c(U ′, U ′′; ·))up+q+1

for any U ′ ∈ Ep, U ′′ ∈ Eq, up+q+1 ∈ E.
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Proof: (i) Using definition 2.1.2 and (2.1.8) we get

Op(a(U ′; ·))Op(b(U ′′; ·))up+q+1 =
∑

n0,k,np+q+1≥τ
F∗n0

[a(U ′;n0, k)b(U ′′; k, np+q+1)Fnp+q+1up+q+1]

and we have to check that

(2.2.4) (a#b)(U ′, U ′′;n0, np+q+1)
def
=
∑

k≥τ
a(U ′;n0, k)b(U ′′; k, np+q+1)

belongs to Σd+d′,ν′
p+q,N0

for some ν ′. If we set n′ = (n1, . . . , np), n
′′ = (np+1, . . . , np+q) and replace U ′

(resp. U ′′) by Πn′U
′ (resp. Πn′′U

′′) we get from condition (i)δ of definition 2.1.1 applied to a, b,

|n′| ≤ δ(n0 + k), |n′′| ≤ δ(k + np+q+1)

|n0 − k| ≤ δ(n0 + k), |k − np+q+1| ≤ δ(k + np+q+1)
(2.2.5)

which implies that a#b satisfies (i)4δ if δ > 0 is small enough. One has then to check estimate
(2.1.12) for a#b. We shall do that in the proof of (ii) below.

(ii) Before starting the proof, let us gather some formulas that we shall use. Let c(U ; ·) be a
symbol satisfying condition (i)δ of definition 2.1.1 with a small enough δ > 0. For h ∈ Z we
have, forgetting the explicit U dependence in the notations, for any ξ, η ∈ N,

(2.2.6) c(ξ + h, η)− c(ξ, η − h) = S((∂ξ − ∂∗η)c)(ξ, η;h)

where ∂ξ (resp. ∂∗η) means derivation with respect to the first (resp. second) argument of c(ξ, η),
and where

(2.2.7) S(c)(ξ, η;h) =
h−1∑

j=0

c(ξ + h− j − 1, η − j).

We shall denote also

(∆c)(ξ, η; k) = c(ξ, ξ + k)− c(η − k, η)

= S((∂ξ − ∂∗η)c)(η − k, ξ + k; ξ − η + k),
(2.2.8)

the last equality following from (2.2.6). By direct computation, one checks that

∂ξ[∆c(ξ, η; k)] = ((∂ξ − ∂∗η)c)(ξ, ξ + k + 1)

∂∗η [∆c(ξ, η; k)] = ((∂ξ − ∂∗η)c)(η − k − 1, η)

(∂ξ − ∂∗η)[∆c(ξ, η; k)] = ∆((∂ξ − ∂∗η)c)(ξ, η; k + 1)

(2.2.9)

and also that

∂ξS(c)(ξ, η;h) = S(∂ξc)(ξ, η;h)

∂∗ηS(c)(ξ, η;h) = S(∂∗ηc)(ξ, η;h).
(2.2.10)

We consider now the symbol of [Op(a(U ′; ·)),Op(b(U ′′; ·))]. By (2.2.4), this is equal to the
expression a#b(U ′, U ′′;n0, np+q+1)− b#a(U ′′, U ′;n0, np+q+1) i.e.

∑

k∈Nτ
[a(U ′;n0, k)b(U ′′; k, np+q+1)− b(U ′′;n0, k)a(U ′; k, np+q+1)].
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Using the assumption ab = ba and changing indexation, we get for large enough n0, np+q+1

∑

k∈Z
[a(U ′;n0, n0 + k)b(U ′′;n0 + k, np+q+1)− a(U ′;np+q+1 − k, np+q+1)b(U ′′;n0, np+q+1 − k)],

where because of the assumptions on the support of a, b, the k sum is for indices satisfying
|k| ≤ cn0 ∼ cnp+q+1 for some small constant c > 0 (see (2.1.11)). We may rewrite this using
notations (2.2.6) and (2.2.8)

∑

k∈Z
(∆a)(U ′;n0, np+q+1; k)b(U ′′;n0 + k, np+q+1)

+
∑

k∈Z
a(U ′;np+q+1 − k, np+q+1)S((∂ξ − ∂∗η)b)(U ′′;n0, np+q+1; k).

(2.2.11)

We now prove estimates of type (2.1.12) for each k sum above. We start with the second one.
If we evaluate the above symbol at Πn′U

′, Πn′′U
′′ instead of U ′, U ′′, we get from (2.2.7) and

(2.1.12)

|||S((∂ξ − ∂∗η)b)(Πn′′U
′′;n0, np+q+1; k)|||

≤ C(1 + |k|)(n0 + np+q+1)d
′−1 |n′′|ν+N+N0

(|n0 − np+q+1 + k|+ |n′′|)N
p+q∏

p+1

‖uj‖L2 .

Moreover, if we make act derivatives on S((∂ξ − ∂∗η)b), we have, because of (2.2.10) the same
gains and losses as in (2.1.12). On the other hand, by (1.2.8), making act a ∂np+q+1 derivative
on a(Πn′U

′;np+q+1 − k, np+q+1) provides a gain of one negative power of np+q+1, and a loss of

|n′|N0 . Using (1.2.6), (1.2.7), we thus see that the action of ∂αn0
(∂∗np+q+1

)β(∂n0−∂∗np+q+1
)γ on the

general term of the second sum in (2.2.11) is bounded from above by
∏p+q

1 ‖uj‖L2 times

(2.2.12) C(1 + |k|)nd1
p+q+1

|n′|ν+N1+κ1

(|k|+ |n′|)N1

(n0 + np+q+1)d2 |n′′|ν+N2+κ2

(|n0 − np+q+1 + k|+ |n′′|)N2

with d1 + d2 = d+ d′− 1− γ, κ1 + κ2 = (α+ β+ γ + 1)N0, N1, N2 arbitrary. It is clear that the
sum in k satisfying |k| � n0 ∼ np+q+1 of these quantities is bounded from above by

(2.2.13) C(n0 + np+q+1)d+d′−1−γ (|n′|+ |n′′|)2ν+3+N0(α+β+γ+1)+N

(|n0 − np+q+1|+ |n′|+ |n′′|)N

which is the (2.1.12)-like estimate wanted (with ν replaced by ν ′ = 2ν + 3 +N0). Let us study
now the first sum in (2.2.11). It follows from (2.2.7), (2.2.8) and the fact that |k| � n0 ∼ np+q+1

that

|||(∆a)(Πn′U
′;n0, np+q+1; k)||| ≤ C(1+|n0 − np+q+1 + k|)(n0+np+q+1)d−1 |n′|ν+N+N0

(|k|+ |n′|)N
p∏

1

‖uj‖L2 .

Moreover, if we make act ∂n0 − ∂∗np+q+1
on ∆a, we gain because of (2.2.9) a decay of type

(n0+np+q+1)−1, and loose |n′|N0 . In the same way, ∂n0 or ∂∗np+q+1
loose |n′|N0 . Similar properties

hold true when derivatives act on b(Πn′′U
′′;n0+k, np+q+1). Consequently, using Leibniz formulas
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(1.2.6), we see that the action of ∂αn0
(∂∗np+q+1

)β(∂n0 − ∂∗np+q+1
)γ on the general term of the first

sum (2.2.11) gives a quantity bounded from above by an expression similar to (2.2.12), but
where k has been replaced by −k − n0 + np+q+1. We obtain as above that the k-sum is then
estimated by (2.2.13). This concludes the proof. 2

Let us study now composition relatively to an inner argument.

Proposition 2.2.3 Let d′ ∈ R, ν ∈ R+, N0 ∈ N∗. There is ν ′ = 2ν + d′+ + 1 such that for any

p ∈ N, q ∈ N∗, d ∈ R, for any a ∈ Σd,ν
q,N0

, b ∈ Σd′,ν
p,N0

satisfying condition (i)δ of definition 2.1.1

with a small enough δ > 0, there is c ∈ Σd,ν′
p+q,N0

such that for any U = (U (1), U (2)) ∈ Ep+q with

U (1) = (u1, . . . , up), U (2) = (up+1, U
(3)), U (3) = (up+2, . . . , up+q), for any up+q+1 ∈ E, one has

(2.2.14) Op[a(Op(b(U (1); ·))up+1, U
(3); ·)]up+q+1 = Op(c(U (1), U (2); ·))up+q+1.

Proof: By definition 2.1.2, we may write the left hand side as

∑

n0

∑

np+q+1

∑

k

∑

np+1

F∗n0
a
[
F∗kb(U (1); k, np+1)Fnp+1up+1, U

(3);n0, np+q+1

]
Fnp+q+1up+q+1

which is of form Op(c(U (1), U (2); ·))up+q+1 if we define

c(U (1), U (2);n0, np+q+1) =
∑

k

∑

np+1

a
[
F∗kb(U (1); k, np+1)Fnp+1up+1, U

(3);n0, np+q+1

]
.

Let us check that if we denote by n(1) = (n1, . . . , np), n
(2) = (np+1, n

(3)), n(3) = (np+2, . . . , np+q),
c(Πn(1)U (1),Πn(2)U (2);n0, np+q+1) satisfies the conditions of definition 2.1.1. The support con-
dition (i)2δ holds true if (i)δ is verified by a, b with small enough δ > 0. Moreover, it is
enough to check (2.1.12) when α = β = γ = 0. Using the assumption on a, b, we get for
|||c(Πn(1)U (1),Πn(2)U (2);n0, np+q+1)||| an upper bound given by the product of C

∏p+q
j=1‖uj‖L2 and

of

∑

k

(n0 + np+q+1)d
(k + |n(3)|)ν+N1

(|n0 − np+q+1|+ |n(3)|+ k)N1
(np+1 + k)d

′ |n(1)|ν+N2

(|k − np+1|+ |n(1)|)N2

for any N1, N2. Moreover, by condition (i)δ verified by a, b, the k-summation is made for
np+1 ∼ k � n0 ∼ np+q+1. We see that taking N2 = 0, we get for the sum the upper bound

C(n0 + np+q+1)d
|(n(1), n(2))|2ν+d′++N1+1

(|n0 − np+q+1|+ |(n(1), n(2))|)N1

which gives the wanted conclusion with ν ′ = 2ν + d′+ + 1. 2

We shall study now composition of an operator associated to a paradifferential symbol with a
remainder operator.
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Proposition 2.2.4 Let p ∈ N∗, q ∈ N, d, d′ ∈ R, ν ∈ R+, N0 ∈ N∗. There are ν ′ = 2ν + d′+ + 1

and ν ′′ = 2ν + 1 such that for any a ∈ Σd,ν
q+1,N0

satisfying condition (i)δ of definition 2.1.1

with δ > 0 small enough, for any M ∈ Rd′,νp , there are a symbol b ∈ Σd,ν′
p+q,N0

and an operator

R ∈ Rd+d′+,ν
′′

p+q+1 , such that for any U = (U ′, up+q+1) ∈ Ep+q+1 with U ′ = (U (1), U (2)), U (1) =

(u1, . . . , up), U (2) = (up+1, . . . , up+q),

(2.2.15) Op[a(M(U (1)), U (2); ·)]up+q+1 = Op(b(U ′; ·))up+q+1 +R(U).

We shall use several times below an inequality established in the proof of theorem 2.1.4 of [10]
(formulas (2.1.10) and (2.1.11) of that paper). We state this result as a separate lemma.

Lemma 2.2.5 Let ν1, ν2 ∈ R+. There is, for any N > 1+max(ν1, ν2), a constant CN > 0 such
that for any n0, . . . , np+q+1 ∈ N,

(2.2.16)
∑

k

µ(n0, . . . , np, k)ν1+N

S(n0, . . . , np, k)N
µ(k, np+1, . . . , np+q+1)ν2+N

S(k, np+1, . . . , np+q+1)N

is bounded from above by

(2.2.17) CN
µ(n0, . . . , np+q+1)ν

′+N ′

S(n0, . . . , np+q+1)N ′

where N ′ = N − 1−max(ν1, ν2), ν ′ = ν1 + ν2 + 1.

Proof of proposition 2.2.4: Let χ ∈ C∞0 (R), χ ≡ 1 close to zero, 0 ≤ χ ≤ 1 with Suppχ
small enough. If for n = (n0, . . . , np+q+1) we set n(1) = (n1, . . . , np), n

(2) = (np+1, . . . , np+q),
n′ = (n(1), n(2)), we define

(2.2.18) b(U ′;n0, np+q+1) =
∑

n(1)

χ
( |n(1)|
n0 + np+q+1

)
a(M(Πn(1)U (1)), U (2);n0, np+q+1).

Remark that if Suppχ is small enough, condition (i) of definition 2.1.1 will be satisfied by b.
We use (2.1.12) for a to estimate |||b(Πn′U

′;n0, np+q+1)||| by

C(n0 + np+q+1)d
∑

k

(k + |n(2)|)ν+N

(|n0 − np+q+1|+ k + |n(2)|)N ‖ΠkM(Πn(1)U (1))‖L2

p+q∏

p+1

‖uj‖L2

where the summation is made for k + |n(2)| � n0 ∼ np+q+1, and where moreover |n(1)| � n0 ∼
np+q+1. In other words, using notation (2.1.5), we may write the first factor in the k-sum as,

µ(n0, k, n
(2), np+q+1)ν+N

S(n0, k, n(2), np+q+1)N
.

We estimate the second factor using (2.1.15). We get for any N an upper bound given by the
product of

∏p+q
1 ‖uj‖L2 and of

C(n0 + np+q+1)d(1 + |n(1)|)ν
∑

k

µ(n0, k, n
(2), np+q+1)d

′
++ν+N

S(n0, k, n(2), np+q+1)N
µ(k, n(1))N

S(k, n(1))N
.
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By lemma 2.2.5, we obtain the bound

C(n0 + np+q+1)d(1 + |n(1)|)ν µ(n0, n
(1), n(2), np+q+1)d

′
++ν+N ′+1

S(n0, n(1), n(2), np+q+1)N ′
.

Since we have by assumption |n(2)| � n0 ∼ np+q+1, and on the support of the cut-off (2.2.18)
|n(1)| � n0, we see that

µ(n0, n
(1), n(2), np+q+1) = |n′|, S(n0, n

(1), n(2), np+q+1) = |n0 − np+q+1|+ |n′|.

We thus get for b an estimate of form (2.1.12) since derivatives are controlled in the same way.
The remainder in (2.2.15) will be given by

R(U) =
∑

n0

∑

n(1)

∑

n(2)

∑

np+q+1

χ1

( |n(1)|
n0 + np+q+1

)

×F∗n0

[
a(ΠkM(Πn(1)U (1)),Πn(2)U (2);n0, np+q+1)Fnp+q+1up+q+1

]
,

(2.2.19)

where χ1 = 1− χ. The L2 norm of Πn0R(Πn(1)U (1),Πn(2)U (2),Πnp+q+1up+q+1) will be bounded

from above using definitions 2.1.1 and 2.1.4 by
∏p+q+1

1 ‖uj‖L2 times

∑

k

χ1

( |n(1)|
n0 + np+q+1

) (k + |n(2)|)ν+N

(|n0 − np+q+1|+ |n(2)|+ k)N
(n0 + np+q+1)d

×kd′ (max2(n(1)))ν+`

(max(n(1)))`
µ(k, n(1))N

S(k, n(1))N

(2.2.20)

and because of condition (i) of definition 2.1.1, we may restrict the summation to those k satis-
fying k+ |n(2)| � n0 ∼ np+q+1. Moreover, the cut-off χ1 localizes for |n(1)| ≥ cn0. Consequently
(2.2.20) will be bounded from above by

Cn
d+d′+
0

(max2(n(1)))ν+`

max(n0, n(1), n(2), np+q+1)`

∑

k

µ(n0, k, n
(2), np+q+1)ν+N

S(n0, k, n(2), np+q+1)N
µ(k, n(1))N

S(k, n(1))N
.

Using again lemma 2.2.5, we get an upper bound

Cn
d+d′+
0

max2(n1, . . . , np+q+1)ν
′′+`

max(n1, . . . , np+q+1)`
µ(n0, . . . , np+q+1)N

′′

S(n0, . . . , np+q+1)N ′′

for new values ν ′′ = 2ν + 1, N ′′ of ν,N . This is the wanted remainder estimate. 2

Let us study now the action of an operator on a remainder.

Proposition 2.2.6 Let p ∈ N, q ∈ N∗, d ∈ R, d′ ∈ R, ν ∈ R+, ν
′ ∈ R+, N0 ∈ N∗. There is

ν′′ = ν + ν ′ + 1 such that for any a ∈ Σd,ν
p,N0

, any M ∈ Rd′,ν′q , the operator

(2.2.21) (u1, . . . , up+q)→ Op(a(u1, . . . , up; ·))M(up+1, . . . , up+q)

is in Rd+d′,ν′′
p+q .
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Proof: We denote by U (1) = (u1, . . . , up), U
(2) = (up+1, . . . , up+q), n

(1) = (n1, . . . , np), n
(2) =

(np+1, . . . , np+q). The value of operator (2.2.21) at (Πn(1)U (1),Πn(2)U (2)) is
∑

n0

∑

k

F∗n0
[a(Πn(1)U (1);n0, k)FkM(Πn(2)U (2))].

We make act Πn0 on this expression, and compute the L2-norm. Using definitions 2.1.1 and 2.1.4,
we get an estimate in terms of the product of

∏p+q
1 ‖uj‖L2 by

(2.2.22) C
∑

k

(n0 + k)d
|n(1)|ν+N

(|n0 − k|+ |n(1)|)N k
d′ (max2n

(2))ν
′+`

(maxn(2))`
µ(k, n(2))N

S(k, n(2))N

and we have on the support of the summation k ∼ n0 � |n(1)|.

• If moreover k ∼ n0 � |n(2)|, we get for (2.2.22) an estimate

C
∑

k

nd+d′
0 |n(1)|ν (max2n

(2))ν
′+N

nN0
.

Since we sum for |k − n0| ≤ cn0 by condition (i) of definition 2.1.1, this gives the upper bound

Cnd+d′+1+ν−N
0 (max2n

(2))ν
′+N ≤ Cnd+d′

0

(max2(n(1), n(2)))ν+ν′+1+`′

(max(n(1), n(2)))`′
µ(n0, . . . , np+q)

N ′

S(n0, . . . , np+q)N
′

if we take N = `′ +N ′ + ν + 1. This is a remainder type estimate.

• If |n(2)| ≥ cn0 for some c > 0, we bound (2.2.22) from above by

Cnd+d′
0

(max2(n(1), n(2)))ν
′+`

(max(n(1), n(2)))`

∑

k

µ(n0, n
(1), k)ν+N

S(n0, n(1), k)N
µ(k, n(2))N

S(k, n(2))N
.

Using again lemma 2.2.5 to estimate the k-sum, we obtain finally in this case

Cnd+d′
0

(max2(n(1), n(2)))ν
′+`

(max(n(1), n(2)))`
µ(n0, n

(1), n(2))ν+N ′+1

S(n0, n(1), n(2))N ′

for a new N ′. This implies the wanted remainder estimate. 2

Proposition 2.2.7 Let d, d′ ∈ R, ν, ν ′ ∈ R+.

(i) Let p ∈ N, q ∈ N∗, N0 ∈ N∗. There is ν ′′ = d+ + ν + ν ′ + 1 such that for any a ∈ Σd,ν
p,N0

, any

M ∈ Rd′,ν′q the operator

(2.2.23) R(u1, . . . , up+q) = M(Op(a(u1, . . . , up; ·))up+1, up+2, . . . , up+q)

belongs to Rd′,ν′′p+q .

(ii) Let p ∈ N∗, q ∈ N∗. There is ν ′′ = ν + ν ′ + 1 + d′+ such that for any M1 ∈ Rd,νq ,M2 ∈ Rd
′,ν′
p

the operator

(2.2.24) (u1, . . . , up+q−1)→M1(M2(u1, . . . , up), up+1, . . . , up+q−1)

belongs to Rd,ν′′p+q−1.
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Proof: (i) Denoting again U (1) = (u1, . . . , up), U
(2) = (up+1, U

(3)), U (3) = (up+2, . . . , up+q),
and using similar notations n(1), n(2), n(3) for the indices, we have to estimate the quantity

(2.2.25)
∑

k

Πn0M(F∗ka(Πn(1)U (1); k, np+1)Fnp+1up+1,Πn(3)U (3)).

The L2-norm of the general term of (2.2.25) is bounded from above by
∏p+q

1 ‖uj‖L2 times

Cnd
′

0

max2(k, n(3))ν
′+`

max(k, n(3))`
µ(n0, k, n

(3))N

S(n0, k, n(3))N
(k + np+1)d

|n(1)|ν+N

(|k − np+1|+ |n(1)|)N .

Moreover the summation is restricted to |n(1)| � k ∼ np+1, which allows one to bound this
quantity by

Cnd
′

0 n
d
p+1

max2(n(1), n(2))ν
′+`

max(n(1), n(2))`
µ(n0, k, n

(3))N

S(n0, k, n(3))N
µ(k, n(1), np+1)ν+N

S(k, n(1), np+1)N
.

Using again lemma 2.2.5 to estimate the k-sum, we get an expression of type

Cnd
′

0

max2(n(1), n(2))ν
′′+`

max(n(1), n(2))`
µ(n0, n

(1), n(2))N

S(n0, n(1), n(2))N

for ν ′′ = d+ + ν + ν ′ + 1, and new values of N, `.

(ii) We need to estimate the L2-norm of

(2.2.26)
∑

k

Πn0M1[ΠkM2(Πn(1)U (1)),Πn(2)U (2)]

if we denote here U (1) = (u1, . . . , up), U
(2) = (up+1, . . . , up+q−1) and use similar notations for

n(1), n(2). The L2-norm of the general term of (2.2.26) is bounded from above by

Cnd0
max2(k, n(2))ν+`2

max(k, n(2))`2
µ(n0, k, n

(2))N2

S(n0, k, n(2))N2
kd
′max2(n(1))ν

′+`1

max(n(1))`1
µ(k, n(1))N1

S(k, n(1))N1
.

Assume for instance n1 ≤ · · · ≤ np, np+q−1 ≤ · · · ≤ np+1. The above expression may be written

Cnd0k
d′ n

ν′+`1
p−1

n`1p

max2(k, np+2, np+1)ν+`2

max(k, np+1)`2

× µ(k, np−2, np−1, np)
N1

S(k, np−2, np−1, np)N1

µ(n0, k, np+3, np+2, np+1)N2

S(n0, k, np+3, np+2, np+1)N2
.

(2.2.27)

Remark first that, changing eventually the definition of `2, we can control the kd
′

term by
max2(k, np+2, np+1)d

′
+ . In the following we thus remove the kd

′
term and replace ν by ν + d′+.

• If np ≥ 1
Anp+1 for a large enough constant A > 0, we take `1 = `, `2 = 0 and we get an upper

bound of type

(2.2.28) Cnd0
max2(n(1), n(2))ν+ν′+d′++`

max(n(1), n(2))`
µ(k, n(1))N1

S(k, n(1))N1

µ(n0, k, n
(2))N2

S(n0, k, n(2))N2
.
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• If k ≤ Anp < np+1, we see that in (2.2.27),

max2(k, np+2, np+1) ≤ A(np + np+2) ≤ C max2(n(1), n(2)).

We take `1 = 0, `2 = ` and get again an estimate by (2.2.28).

• If np <
1
Anp+1 and np <

1
Ak, the last but one factor in (2.2.27) may be written

n
N1
p−1

kN1
. Moreover

max2(k, np+2, np+1) ≤ k if we assume k ≥ np+2. Taking in (2.2.27) `1 = `2 = 0, N ′1 < N1−ν−d′+,
when np+1 ≤ k, and `1 = 0, `2 = N ′1 < N1 − ν − d′+ when np+1 > k we get the upper bound

Cnd0
n
ν′+N ′1+ν+d′+
p−1

n
N ′1
p+1

µ(k, n(1))N1−N ′1−ν−d′+

S(k, n(1))N1−N ′1−ν−d′+
µ(n0, k, n

(2))N2

S(n0, k, n(2))N2

which again gives an estimate of type (2.2.28) (changing the definition of the exponents).

If k < np+2, we take in (2.2.27) `1 = 0 and get an estimate by

Cnd0
n
ν+d′++`2
p+2

n`2p+1

nν
′
p−1

µ(k, n(1))N1

S(k, n(1))N1

µ(n0, k, n
(2))N2

S(n0, k, n(2))N2
.

We get again an estimate of type (2.2.28). To finish the proof, we just have to sum (2.2.28)
using again lemma 2.2.5 to get the wanted upper bound

Cnd0
max2(n(1), n(2))ν

′′+`

max(n(1), n(2))`
µ(n0, n

(1), n(2))N

S(n0, n(1), n(2))N

with ν ′′ = ν + ν ′ + d′+ + 1. 2

3 Special pseudo-differential operators

3.1 An introductory example

In addition to the paradifferential symbols introduced in section 2, we shall need classes of
pseudo-differential operators. These classes will be more peculiar than the corresponding para-
differential ones. Let us explain this, and justify their definition through an example. Assume
that we are given an orthogonal decomposition L2 =

⊕
En, and assume that En is one dimen-

sional, spanned by a normalized eigenfunction ϕn. Let (X,n)→ b(X,n) be a linear real valued
function of X ∈ R, which is a symbol of order 0 relatively to n (∂αn b(X,n) = O(n−α), n→ +∞).
If u1 ∈ E , we can define the action of the pseudo-differential operator with symbol b(u1, n) on a
function u2 by the formula

(3.1.1)
∑

n2

b(u1, n2)〈u2, ϕn2〉ϕn2 .
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We denote, for future generalization, by B(X,n) the map from En to En given for any fixed
X ∈ R by

(3.1.2) B(X,n) : ϕn → b(X,n)ϕn

so that (3.1.1) may be written, if we remember that the orthogonal projection on En is given
by Πnu = 〈u, ϕn〉ϕn,

(3.1.3)
∑

n2

B(u1, n2)Πn2u2.

Remark also that (3.1.1) may be rewritten

(3.1.4)
∑

n0

∑

n2

ϕn0(x)〈b(u1, n2)ϕn2 , ϕn0〉〈u2, ϕn2〉

i.e. with notations (2.1.6), (2.1.7)

(3.1.5)
∑

n0

∑

n2

F∗n0
c(u1;n0, n2)Fn2u2

with

(3.1.6) c(u1;n0, n2) = 〈b(u1, n2)ϕn2 , ϕn0〉.

In other words, the operator (3.1.1) may be written under form (2.1.13) with a symbol c which
may be proved to satisfy estimates (2.1.12).

Our aim in this third section is to introduce a general class of operators of form (3.1.1). We
shall see that they may be expressed in terms of quantities like (3.1.5) i.e. from (a sum of)

paradifferential operators associated to symbols of the classes Σd,ν
p,N0

studied in section 2, up to
remainder operators. The interest of operators defined through formula (3.1.1) instead of (3.1.5),
is that they obey more explicit calculus rules, in particular for the symbol of the composition
of two operators. On the other hand, we do not escape the necessity of introducing more
general operators, of form (3.1.5), since to prove our main theorem, we shall have to define from
operators of type (3.1.1) more general ones, given by symbols of type (3.1.6).

3.2 Definition and calculus of special symbols

Remind that we denoted at the beginning of subsection 2.1 by G a finite dimensional real vector
space. Let (gi)i be a basis of G. We fix a nice basis (ϕjn)n,j of L2(S1,R), where (ϕjn)j is a basis of
the subspace E′n generated by the eigenfunctions associated to the eigenvalues ω−(n) ≤ ω+(n) of√
−∆ + V . For ` = (j, i) we set ϕ`n = ϕjn⊗ gi. Then (ϕ`n)` is a basis of En = E′n⊗G and (ϕ`n)n,`

is a nice basis of L2(S1, G) ' L2(S1,R) ⊗ G, and we have L2(S1, G) =
⊕

n≥τ En. Of course

(ϕ`n)` provides also a basis of En ⊗ C and (ϕ`n)`,n is a nice basis of L2(S1, G⊗ C) considered as
a C-vector space.
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Definition 3.2.1 Let d ∈ R, p ∈ N. We denote by Sdp the space of maps

(u1, . . . , up, np+1)→ b(u1, . . . , up, np+1)

E × · · · × E × Nτ −→ L(E , L2(S1, G⊗K))
(3.2.1)

such that one can find

• A map

B : G× · · ·G× Nτ → L(E ⊗K, E ⊗K), (X1, . . . , Xp, n)→ B(X1, . . . , Xp, n)

which is for any fixed value of n, p-linear in (X1, . . . , Xp), such that for any X1, . . . , Xp ∈ G, any
n ∈ Nτ , B(X1, . . . , Xp, n) is an element of L(En⊗K, En⊗K) (extended by zero on (En⊗K)⊥),
whose matrix elements in the nice basis (ϕ`n)` of En ⊗K satisfy for any α ∈ N

(3.2.2) |∂αnB``′(X1, . . . , Xp, n)| ≤ Cαnd−α
p∏

1

|Xj |G,

• A family of pseudo-differential operators of order 0 on S1, T1, . . . , Tp, such that one may write
for any u1, . . . , up ∈ E, np+1 ∈ Nτ

(3.2.3) b(u1, . . . , up, np+1) = B(T1u1, . . . , Tpup, np+1).

We shall quantize the above operators in the following way:

Definition 3.2.2 Let b ∈ Sdp . We define an operator Õp(b) acting on Ep+1 by

(3.2.4) Õp(b)(u1, . . . , up, ·)up+1 =
∑

np+1

b(u1, . . . , up, np+1)Πnp+1up+1.

We want now to define from an element of Sdp and from a cut-off function a symbol in the class

Σd,ν
p,1 .

Proposition 3.2.3 Let χ ∈ C∞0 (R), χ even with small enough support, p ∈ N∗. There is
ν ∈ R+ such that for any d ∈ R, if we define for b ∈ Sdp , u1, . . . , up ∈ E, n0, np+1 ∈ Nτ
(3.2.5)

bχ(u1, . . . , up;n0, np+1) =
∑

n1

· · ·
∑

np

χ
( |n′|
n0 + np+1

)
χ
(n0 − np+1

n0 + np+1

)
Fn0 ◦ b(Πn′U

′, np+1) ◦ F∗np+1

where U ′ = (u1, . . . , up), n′ = (n1, . . . , np), then bχ ∈ Σd,ν
p,1 . When p = 0, we shall set bχ(n0, n1) =

Fn0 ◦ b(n1) ◦ F∗n1
, which is supported for n0 = n1.

Remark We assume in the statement that χ is even since this implies when, in (3.2.3), B(X) is a
self-adjoint linear map independent of np+1, that the symbol bχ defined by (3.2.5) is self-adjoint
i.e. satisfies with notations (2.2.1) that b•χ(U ′;n0, np+1) = bχ(U ′;n0, np+1).
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Proof of proposition 3.2.3: Remark first that condition (i)δ of definition 2.1.1 is satisfied if
Suppχ is small enough. Remind that we set K(n) = dimEn. Since Fn sends the basis (ϕ`n)`
of En ⊗K onto the canonical basis of KK(n), the matrix of bχ(Πn′U

′;n0, np+1) in the canonical
basis of KK(np+1) and KK(n0) is

(3.2.6) χ
( |n′|
n0 + np+1

)
χ
(n0 − np+1

n0 + np+1

)(
〈b(Πn′U

′, np+1)ϕ
`p+1
np+1 , ϕ

`0
n0
〉
)
`0,`p+1

.

Remind also that for n0, np+1 large enough, the size of this matrix is independent of n0, np+1.
Using (2.1.18) to estimate derivatives of the cut-offs, and Leibniz formulas (1.2.6), (1.2.7), we
see that we just have to get estimates of type (2.1.12) for the matrix in (3.2.6). Decompose
Xj ∈ G on the basis (gi)i of G as Xj =

∑
iX

i
jgi. Then the entries of the matrix of the map

B(X1, . . . , Xp, np+1) in the nice basis (ϕ`n)` of En ⊗K may be decomposed as

B`′p+1`p+1
(X1, . . . , Xp, np+1) =

∑

I

BI
`′p+1`p+1

(np+1)XI

where we denote by I a p-tuple I = (i1, . . . , ip), by XI =
∏p
j=1X

ij
j , and by BI

`′p+1`p+1
(np+1) the

quantity B`′p+1`p+1
(gi1 , . . . , gip , np+1). By (3.2.3)

(3.2.7) 〈b(Πn′U
′, np+1)ϕ

`p+1
np+1 , ϕ

`0
n0
〉 =

∑

`′p+1

∑

I

〈BI
`′p+1`p+1

(np+1)(TΠn′U
′)Iϕ

`′p+1
np+1 , ϕ

`0
n0
〉

where TΠn′U
′ = (T1Πn1u1, . . . , TpΠnpup). Since `′p+1 ∈ {1, . . . ,K(np+1)} and K(n) is indepen-

dent of n→ +∞, and since I describes also a finite set, we actually just need to estimate each
term of the above sum, namely

(3.2.8) BI
`′p+1`p+1

(np+1)〈(TΠn′U
′)Iϕ

`′p+1
np+1 , ϕ

`0
n0
〉.

We apply inequality (2.1.2) with T1 = T2 = Id to the bracket. We get the following estimate

|∂αn0
(∂∗np+1

)β(∂n0 − ∂∗np+1
)γ〈ϕ`0n0

, (TΠn′U
′)Iϕ

`′p+1
np+1〉|

≤ C〈n0 − np+1〉−N (n0 + np+1)−γ sup
0≤k≤α+β+γ+N+ν

‖∂k[(TΠn′U
′)I ]‖L∞

(3.2.9)

for any α, β, γ,N ∈ N. By Sobolev injection, and the L2-boundedness of pseudo-differential
operators of order 0, we get for the last term in the above formula the upper bound

C(1 + |n′|)α+β+γ+N+ν
p∏

1

‖uj‖L2

for a new value of ν. If we combine (3.2.9) with (3.2.8) and (3.2.2), and use Leibniz formulas
(1.2.6), (1.2.7), we see that (3.2.7) satisfies estimate (2.1.12) of definition of symbols (with
N0 = 1). This concludes the proof. 2

We shall need estimates of type (2.1.12) for some functions of type (3.2.5), but depending on
extra parameters. We state theses estimates as a corollary of the proof of proposition 3.2.3.
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Corollary 3.2.4 (i) Let b ∈ Sdp . One has the following estimate for any indices n0, n
′ =

(n1, . . . , np), np+1, k:

(3.2.10) ‖Πn0b(Πn′U
′, k)Πnp+1‖L(L2,L2) ≤ C

|n′|ν+N

(|n0 − np+1|+ |n′|)N
kd

for some ν ∈ R+, independent of d.

(ii) Let B : G× · · · ×G× Nτ × Nτ → L(E ⊗K, E ⊗K) be a function

(X1, . . . , Xp, np+1, k)→ B(X1, . . . , Xp;np+1, k),

p-linear in (X1, . . . , Xp), and such that B(X1, . . . , Xp;np+1, k) is an element of L(Ek⊗K, Ek⊗K),
whose matrix elements in the nice basis of Ek ⊗K satisfy instead of (3.2.2)

(3.2.11) |∂α1
np+1

∂α2
k B``′(X1, . . . , Xp;np+1, k)| ≤ C(np+1 + k)d−α1−α2

p∏

1

|Xj |G.

Define as in (3.2.5),

bχ(u1, . . . , up, np+1;n0, k) =
∑

n1

· · ·
∑

np

χ
( |n′|
n0 + k

)
χ
(n0 − k
n0 + k

)
Fn0 ◦ b(Πn′U

′;np+1, k) ◦ F∗k .

Then bχ satisfies

|||∂αn0
(∂∗k)β1(∂∗np+1

)β2(∂n0 − ∂∗k − ∂∗np+1
)γbχ(Πn′U

′, np+1;n0, k)|||

≤ C(n0 + k)d−γ−β2
|n′|ν+N+α+β1+β2+γ

(|n0 − k|+ |n′|)N
p∏

1

‖uj‖L2

(3.2.12)

for some ν ∈ R+, independent of d.

Proof: (i) The left hand side of (3.2.10) equals |||Fn0b(Πn′U
′, k)F∗np+1

||| by (2.1.8) and (2.1.6),
(2.1.7). Consequently (3.2.10) is nothing but (2.1.12) in the case α = β = γ = 0, when the
symbol b depends on an extra parameter k, instead of being a function of np+1 as in (3.2.5).
Estimate (3.2.10) follows from (3.2.7) to (3.2.9) in the proof of proposition 3.2.3, in which
BI
`′p+1`p+1

is evaluated at k instead of np+1.

(ii) One has just to replace in the proof of proposition 3.2.3 the reference to (3.2.2) by the
reference to (3.2.11), k playing now the role of np+1. Remark that since in (3.2.12) ∂np+1-
derivatives act only on the BI

`′p+1`p+1
term in (3.2.8), they gain one negative power of k ∼ n0 +k.

2

Our next task will be to express a quantity of form Õp(b(u1, . . . , up, ·))up+1 in terms of the
action of paradifferential operators on u1, u2, . . . , up+1 and of a remainder operator. This is, in
our framework, analogous to Bony’s paradecomposition of a product [4].
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Proposition 3.2.5 Let p ∈ N∗. Let χ ∈ C∞0 (R), χ ≡ 1 close to zero, with small enough support.

There is ν ∈ R+ and for any d ∈ R, any symbol b ∈ Sdp , a family of symbols bj ∈ Σ
0,ν+d+

p,1

j = 1, . . . , p, and a remainder operator M ∈ R0,ν+d+

p+1 such that for any u1, . . . , up+1 ∈ E

Õp(b(u1, . . . , up, ·))up+1 = Op(bχ(u1, . . . , up; ·))up+1

+

p∑

j=1

Op(bj(u1, . . . , ûj , . . . , up+1; ·))uj

+M(u1, . . . , up+1).

(3.2.13)

When p = 0, we have Õp(b(·))u1 = Op(bχ(u; ·))u1.

Proof: We first define the symbols bj , and check that they belong to Σ
0,ν+d+

p,1 . Define for
j = 1, . . . , p

(3.2.14) χj(n0, . . . , np+1) = χ
( |(n1, . . . , n̂j , . . . , np+1)|

n0 + nj

)
χ
(n0 − nj
n0 + nj

)

so that on Suppχj we have

(3.2.15) nk ≤ c(n0 + nj), k ∈ {1, . . . , p+ 1} − {j}, |n0 − nj | ≤ c(n0 + nj)

for a small constant c > 0. Moreover, χj ≡ 1 on a domain of type (3.2.15) when c is replaced
by some smaller constant. We define a linear map bj(u1, . . . , ûj , . . . , up+1;n0, nj) from KK(nj)

to KK(n0) as
(3.2.16)

V →
∑

nk;k∈{1,...,p+1}−{j}
χj(n0, . . . , np+1)Fn0 [b(Πn1u1, . . . ,F∗njV, . . . ,Πnpup, np+1)Πnp+1up+1].

By (3.2.15), condition (i)δ of definition 2.1.1 will be satisfied if c > 0 is small enough. We
must check the estimates of condition (ii). To simplify notations, take from now on j = 1,
and set n′ = (n′′, np+1), n′′ = (n2, . . . , np), U

′ = (U ′′, up+1), U ′′ = (u2, . . . , up), Πn′U
′ =

(Πn2u2, . . . ,Πnp+1up+1). Then for V ∈ KK(n1), b1(Πn′U
′;n0, n1)·V is the product of the function

χ1(n0, . . . , np+1) by the vector of KK(n0) with components

(3.2.17) 〈b(F∗n1
V,Πn′′U

′′, np+1)Πnp+1up+1, ϕ
`0
n0
〉
`0
.

We use expression (3.2.3) for b in terms of B. Let (V`1)`1 be the coordinates of F∗n1
V on (ϕ`1n1

)`1
i.e. using Einstein’s conventions F∗n1

V = V`1ϕ
`1
n1

. We may rewrite (3.2.17)

〈V`1B(T1ϕ
`1
n1
, T ′′Πn′′U

′′, np+1)Πnp+1up+1, ϕ
`0
n0
〉
`0

where T ′′Πn′′U
′′ = (T2Πn2u2, . . . , TpΠnpup). In other words, the (`0, `1) entry of the matrix of

b1(Πn′U
′;n0, n1) in the canonical basis is

(3.2.18) χ1(n0, . . . , np+1)〈B(T1ϕ
`1
n1
, T ′′Πn′′U

′′, np+1)Πnp+1up+1, ϕ
`0
n0
〉.
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Since T1ϕ
`1
n1

is a function with values in the finite dimensional vector space G, with basis (gi)i,
we decompose it as (T1ϕ

`1
n1

)igi and write the bracket in (3.2.18) as

(3.2.19) 〈an′,i(x)(T1ϕ
`1
n1

)i, ϕ`0n0
〉

with

(3.2.20) an′,i(x) = B(gi, T
′′Πn′′U

′′, np+1)Πnp+1up+1.

By (3.2.2), Sobolev injection, and the L2 continuity of zero order pseudo-differential operators,
we get for any k

(3.2.21) ‖∂kxan′,i(x)‖L∞ ≤ Ck(1 + |n′|)k+ν+d+

p+1∏

2

‖uj‖L2

for some fixed ν ∈ R+. We apply estimate (2.1.2) to (3.2.19) and insert in it (3.2.21). If we
use estimates of type (2.1.18) for χ1 (replacing in (2.1.18) np+1 by n1) and the Leibniz formulas
(1.2.6), (1.2.7), we see that we get for (3.2.18) estimates of type (2.1.12) as wanted.

We must now prove formula (3.2.13). Let us compute Op(bj(u1, . . . , ûj , . . . , up+1; ·))uj using
definition 2.1.2: we must in the right hand side of (3.2.16) replace V by Fnjuj , compose on the
left with F∗n0

, and sum in n0, nj . Using (2.1.8), we get

∑

n0

· · ·
∑

np+1

χj(n0, . . . , np+1)Πn0 [b(Πn1u1, . . . ,Πnpup, np+1)Πnp+1up+1].

Consequently, because of the definition of bχ, bj , the operator M defined by equality (3.2.13)
may be written as
(3.2.22)

M(u1, . . . , up+1) =
∑

n0

· · ·
∑

np+1

χ̃(n0, . . . , np+1)Πn0 [b(Πn1u1, . . . ,Πnpup, np+1)Πnp+1up+1]

where χ̃ cuts-off outside a neighborhood of the region where one of the χj j = 1, . . . , p+1 equals
one. In other words, χ̃ is supported inside

(3.2.23)

p+1⋂

j=1

{(n0, . . . , np+1); |n0 − nj | ≥ c(n0 +nj) or ∃k ∈ {1, . . . , p+ 1}− {j} with nk ≥ cn0}

for some small c > 0. We estimate the L2 norm of Πn0M(Πn1u1, . . . ,Πnp+1up+1) i.e. of the
general term of (3.2.22). Using (3.2.3), we must bound

(3.2.24) |χ̃(n0, . . . , np+1)|‖Πn0B(T1Πn1u1, . . . , TpΠnpup, np+1)Πnp+1up+1‖L2

or equivalently the product of |χ̃(n0, . . . , np+1)| by

(3.2.25) 〈B(T1Πn1u1, . . . , TpΠnpup, np+1)Πnp+1up+1,Πn0u0〉

for any u0 ∈ L2 of norm 1. If for instance n1 and n2 are the largest two among n0, . . . , np+1, we
decompose again for j = 1, 2

TjΠnjuj =
∑

`j

∑

ij

〈uj , ϕ`jnj 〉(Tjϕ
`j
nj )

ijgij
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where hij denotes the ijth coordinate of an element of G on the basis (gk)k. We set n′′ =
(n3, . . . , np), n

′ = (n′′, np+1) and define

ai1i2n′(x) = B(gi1 , gi2 , T
′′Πn′′U

′′, np+1)Πnp+1up+1.

Then (3.2.25) may be written as the sum in `1, `2, i1, i2 of

(3.2.26) 〈u1, ϕ
`1
n1
〉〈u2, ϕ

`2
n2
〉〈ai1i2n′(x)(T1ϕ

`1
n1

)i1(T2ϕ
`2
n2

)i2 ,Πn0u0〉.

The last bracket is estimated by (2.1.2). Using Sobolev injections to control the L∞ norms of
derivatives of ai1i2n′ and (3.2.2), we may bound the modulus of (3.2.26) by

C〈n1 − n2〉−N (1 + n0 + |n′|)ν+Nndp+1

p+1∏

`=0

‖u`‖L2

for any N and some fixed ν. Since i1, i2, `1, `2 in (3.2.26) run in a finite set of indices, we get the
same estimate for (3.2.25). Consequently, when the largest two among n0, . . . , np+1 are among
{n1, . . . , np}, we have for (3.2.24) an upper bound

(3.2.27) Cndp+1

µ(n0, . . . , np+1)ν+N

S(n0, . . . , np+1)N

p+1∏

1

‖uj‖L2

for any N . One checks in the same way that this formula holds true when one at least of the
largest two among (n0, . . . , np+1) equals n0 or np+1. To conclude the proof, we have to show
that estimate (3.2.27), together with the support conditions (3.2.23), implies the upper bound

(3.2.28) C
max2(n1, . . . , np+1)d++`+ν

max(n1, . . . , np+1)`
µ(n0, . . . , np+1)N

S(n0, . . . , np+1)N

for any `,N . If there is c1 > 0 with max2(n1, . . . , np+1) ≥ c1 max(n1, . . . , np+1), this is trivial.
Assume now

max2(n1, . . . , np+1) < c1 max(n1, . . . , np+1).

If, for instance, np+1 = max(n1, . . . , np+1), we have np+1 ≥ 1
c1
nj , j = 1, . . . , p. Assume moreover

|n0 − np+1| ≥ c(n0 + np+1) where c > 0 is the constant of (3.2.23). Then, if c1 is small enough

S(n0, . . . , np+1) ≥ c′(n0 + np+1)

and inequality (3.2.27) implies (3.2.28). We are thus reduced to the case when |n0 − np+1| <
c(n0 + np+1). By (3.2.23) we must have then nk ≥ cn0 ∼ cnp+1 for some k ∈ {1, . . . , p}. This
implies again that max2(n1, . . . , np+1) ∼ max(n1, . . . , np+1) and the conclusion follows. 2

We shall now study symbolic properties of elements in Sdp . To be able to get for the symbol of a
composition a more explicit formula than the one of the proof of proposition 2.2.2 (ii), we shall
have to limit ourselves to symbols which are “scalar” according to the following definition.

Definition 3.2.6 Let d ∈ R, p ∈ N. We denote by Sdp,sc the space of maps

(u1, . . . , up, np+1)→ b(u1, . . . , up, np+1)

E × · · · × E × Nτ → L(E ⊗K, L2(S1, G⊗K))
(3.2.29)
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such that there is

• A function

Bs : G× · · · ×G× Nτ → L(G⊗K, G⊗K), (X1, . . . , Xp, n)→ Bs(X1, . . . , Xp, n)

p-linear in (X1, . . . , Xp), satisfying for any α ∈ N

(3.2.30) |∂αnBs(X1, . . . , Xp, n)| ≤ Cαnd−α
p∏

1

|Xj |G,

• A map

B∞ : G× · · · ×G× Nτ → L(G⊗K, G⊗K), (X1, . . . , Xp, n)→ B∞(X1, . . . , Xp, n)

p-linear in (X1, . . . , Xp), such that for any X1, . . . , Xp ∈ G, any n ∈ N, B∞(X1, . . . , Xp, n) is an
element of L(En ⊗ K, En ⊗ K) whose matrix elements in the nice basis (ϕ`n)` of En satisfy for
any N ∈ N

(3.2.31) |B∞,``′(X1, . . . , Xp, n)| ≤ CNn−N
∏
|Xj |G,

• A family of pseudo-differential operators of order 0 on S1, T1, . . . , Tp such that one may write
for any u1, . . . , up ∈ E , np+1 ∈ Nτ
(3.2.32)

b(u1, . . . , up, np+1) = Bs(T1u1, . . . , Tpup, np+1)⊗ IdE′np+1
⊗K +B∞(T1u1, . . . , Tpup, np+1).

Remark that an element of Sdp,sc is in particular an element of Sdp as shown by (3.2.32). In the
sequel, we shall have to work with G = K2. In this case, Bs can be identified with a 2×2 matrix
and the first term in the right hand side of (3.2.32) may be written

(3.2.33)

[
Bs,11 ⊗ IdE′np+1

⊗K Bs,12 ⊗ IdE′np+1
⊗K

Bs,21 ⊗ IdE′np+1
⊗K Bs,22 ⊗ IdE′np+1

⊗K

]

i.e. elements of Sdp,sc are given, up to a perturbation of order −∞, by a matrix in which each
block is a scalar operator acting on E ′n ⊗K.

We shall use in the proof of the following proposition the fact that we can make act the scalar
part of (3.2.32) not just on Enp+1 ⊗ K but as well on any Ek ⊗ K (replacing · ⊗ IdE′np+1

⊗K by

· ⊗ IdE′k⊗K).

Proposition 3.2.7 (i) Let p, q ∈ N. Let χ ∈ C∞0 (R), χ ≡ 1 close to zero, and assume that
Suppχ is small enough. There is ν ∈ R and for any d, d′ ∈ R, for any symbols a ∈ Sdq,sc, b ∈ Sd

′
p,sc

there are a symbol e ∈ Σd+d′−1,ν
p+q,1 and a remainder operator M ∈ Rd+d′,ν

p+q+1 such that for any
U = (U ′, U ′′) with U ′ = (u1, . . . , uq) ∈ Eq, U ′′ = (uq+1, . . . , up+q) ∈ Ep, any up+q+1 ∈ E, one has

Op(aχ(U ′; ·))Op(bχ(U ′′; ·))up+q+1 = Op((a ◦ b)χ(U ; ·))up+q+1

+ Op(e(U ; ·))up+q+1

+M(u1, . . . , up+q+1),

(3.2.34)
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where aχ, bχ are defined in terms of a, b by (3.2.5), and a ◦ b stands for the symbol associated to
the composition A ◦B of the linear maps defining a, b through (3.2.3).

(ii) Assume moreover that χ is even and that a ∈ Sdq,sc satisfies a(U ′; ·)∗ = a(U ′; ·). Then there

is a symbol e ∈ Σd−1,ν
q,1 such that

(3.2.35) Op(aχ(U ′; ·))∗ −Op(aχ(U ′; ·)) = Op(e(U ′; ·))
for any U ′ ∈ Eq.

Proof: (i) We decompose according to (3.2.32) a = as + a∞, b = bs + b∞. Then by proposi-
tion 3.2.3, a∞,χ and b∞,χ belong to Σ−∞,νp,1 . Consequently by proposition 2.2.2, their contribution
to the left hand side of (3.2.34) may be incorporated to the term e of the right hand side. In
the same way, the terms (a∞ ◦ b)χ or (a ◦ b∞)χ in the right hand side may be incorporated to e.
We may thus assume from now on that a = as, b = bs. Using notations (3.2.14), the definition
(3.2.5) of aχ, bχ, definition 2.1.2 of quantization of a paradifferential symbol and (2.1.8), we get

Op(aχ(U ′; ·))Op(bχ(U ′′; ·))up+q+1 =
∑

n0

· · ·
∑

np+q+1

∑

k

χq+1(n0, n
′, k)χp+1(k, n′′, np+q+1)

×Πn0

[
a(Πn′U

′, k)Πk[b(Πn′′U
′′, np+q+1)Πnp+q+1up+q+1]

]
(3.2.36)

setting n′ = (n1, . . . , nq), n
′′ = (nq+1, . . . , np+q). We write this expression I + II where

I =
∑

n0

· · ·
∑

np+q+1

∑

k

χq+1(n0, n
′, k)χp+1(k, n′′, np+q+1)

×Πn0

[
a(Πn′U

′, np+q+1)Πk[b(Πn′′U
′′, np+q+1)Πnp+q+1up+q+1]

](3.2.37)

and

II =
∑

n0

· · ·
∑

np+q+1

∑

k

χq+1(n0, n
′, k)χp+1(k, n′′, np+q+1)

×F∗n0
ã(Πn′U

′, np+q+1;n0, k)b̃(Πn′′U
′′; k, np+q+1)Fnp+q+1up+q+1

(3.2.38)

with

ã(Πn′U
′, np+q+1;n0, k) = Fn0 ◦

[a(Πn′U
′, k)− a(Πn′U

′, np+q+1)

k − np+q+1

]
◦ F∗k

b̃(Πn′′U
′′; k, np+q+1) = Fk ◦ [b(Πn′′U

′′, np+q+1)] ◦ F∗np+q+1
(k − np+q+1).

(3.2.39)

We used in the definition of I and II that a is scalar, so that in (3.2.37) it is meaningful to make
act a(Πnn′U

′, np+q+1) on an element of Ek, as remarked before the statement of proposition 3.2.7.

Study of term I

We further decompose I = I ′ + I ′′ where

I ′ =
∑

n0

· · ·
∑

np+q+1

χp+q+1(n0, n
′, n′′, np+q+1)

×Πn0

[
a(Πn′U

′, np+q+1)b(Πn′′U
′′, np+q+1)Πnp+q+1up+q+1

]
.
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Remark that I ′ is nothing but the first term in the right hand side of (3.2.34). Let us show that
I ′′ is a remainder operator. We have

I ′′ =
∑

n0

· · ·
∑

np+q+1

∑

k

[χq+1(n0, n
′, k)χp+1(k, n′′, np+q+1)− χp+q+1(n0, n

′, n′′, np+q+1)]

×Πn0

[
a(Πn′U

′, np+q+1)Πk[b(Πn′′U
′′, np+q+1)Πnp+q+1up+q+1]

]
.

(3.2.40)

The first cut-off in the above expression is supported in a domain of form

|n0 − k| < δ(n0 + k), |k − np+q+1| < δ(k + np+q+1)

|n′| < δ(n0 + k), |n′′| < δ(k + np+q+1)
(3.2.41)

and is equal to one on a domain of the same type. The second cut-off is supported inside a
domain

(3.2.42) |n0 − np+q+1| < δ(n0 + np+q+1), max(|n′|, |n′′|) < δ(n0 + np+q+1)

and is equal to 1 on a similar domain. By formula (3.2.10) of corollary 3.2.4, the general term
of (3.2.40) has L(L2, L2) norm bounded from above by

(3.2.43) Cndp+q+1

|n′|ν+N

(|n0 − k|+ |n′|)N
nd
′
p+q+1

|n′′|ν+N

(|k − np+q+1|+ |n′′|)N
.

Remark moreover that by (3.2.41), (3.2.42), n0 ∼ np+q+1 � max(|n′|, |n′′|) and if

(3.2.44) |n0 − k|+ |k − np+q+1|+ |n′|+ |n′′| < δ′(n0 + np+q+1),

for small enough δ′ > 0, both cut-offs in (3.2.40) equal one. Consequently, on the support, we
may always extract from one of the factors of (3.2.43) a term decaying like (n0 + np+q+1)−N .
This shows that we get for I ′′ remainder type estimates of form (2.1.15) with d replaced by
d+ d′.

Study of term II

We shall show that II gives the term Op(e(U ; ·))up+q+1 in (3.2.34). We shall need the following
technical lemma:

Lemma 3.2.8 Let d ∈ R and f : Z → C be a function satisfying |∂αnf(n)| ≤ Cαn
d−α for any

α ∈ N. Define for a, b ∈ Z, a 6= b, g(a, b) = f(b)−f(a)
b−a . Then one may extend g to the diagonal

a = b and on the domain |a− b| ≤ 1
2 |a+ b| one has the estimate

(3.2.45) |∂αa ∂βb g(a, b)| ≤ Cα,β(a+ b)d−1−α−β

for any α, β ∈ N.

Proof: Let us construct first χ ∈ S(R) real valued such that χ(0) = 1, χ(n) = 0 ∀n ∈ Z∗ and,
for any k ∈ N, there is χk ∈ S(R) with

(3.2.46) ∀x ∈ R, χ(k)(x) = ∂kχk(x)
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where we denote ∂χ(x) = χ(x+ 1)− χ(x) (extending notation (1.2.3) to real arguments). Take
first γ ∈ C∞0 (]−1, 1[,R) with γ(0) = 1, θ ∈ C∞0 (]−π, π[,R) even, such that

∑
k∈Z θ(ξ−2πk) ≡ 1.

Define χ by χ̂(ξ) = θ(ξ)
∑+∞

k=−∞ γ̂(ξ + 2kπ). Then, for n ∈ Z

χ(n) =
1

2π

∫
einξθ(ξ)

( +∞∑

k=−∞
γ̂(ξ + 2kπ)

)
dξ = γ(n).

Moreover

χ′(x) =
1

2π

∫
eixξ(eiξ − 1)χ̂1(ξ) dξ = χ1(x+ 1)− χ1(x)

if we define χ̂1(ξ) = iξ
eiξ−1

χ̂(ξ), which belongs to S(R) by construction of χ̂. We deduce (3.2.46)
from this equality by induction.

Write now, denoting by 〈·, ·〉 the scalar product 〈f1, f2〉 =
∑+∞
−∞ f1(n)f2(n),

g(a, b) =
1

b− a
+∞∑

n=−∞
f(n)(χ(n− b)− χ(n− a)) = 〈f,H(·, a, b)〉

where

H(n, a, b) = −
∫ 1

0
χ′(n− (1− t)b− ta) dt.

This defines an extension of g(a, b) to a = b. If we make act the finite difference operator ∂b on
H(n, a, b), we get

∂βbH(n, a, b) = −
∫ 1

0
· · ·
∫ 1

0
χ(β+1)(n− (1− t)b− ta− (s1 + · · ·+ sβ)(1− t))(t− 1)β ds1 . . . dsβdt.

Using (3.2.46) in the right hand side, we see that we may write

∂βbH(n, a, b) = ∂β+1
n Hβ(n, a, b)

where Hβ satisfies for any N ∈ N an estimate

|Hβ(n, a, b)| ≤ CN
∫ 1

0
〈n− (1− t)b− ta〉−N dt.

Consequently, if we write

∂βb g(a, b) = 〈f, ∂βbH(n, a, b)〉 = 〈(∂∗n)β+1f,Hβ(n, a, b)〉

and use the above upper bound, and the assumption |a− b| ≤ 1
2 |a+ b|, we obtain |∂βb g(a, b)| ≤

C|a+ b|d−1−β . One treats in the same way the action of difference operators acting on the first
variable of g. 2

End of proof of proposition 3.2.7: Denote by (X1, . . . , Xq, n) → A(X1, . . . , Xq, n) the function
on G × · · · × G × Nτ in terms of which the symbol a(u1, . . . , uq, n) is defined according to
definition 3.2.6 (see formula (3.2.32)). Set

A1(X1, . . . , Xq, np+q+1, k) =
A(X1, . . . , Xq, np+q+1)−A(X1, . . . , Xq, k)

np+q+1 − k
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(taking by convention the quotient to be the extension of lemma 3.2.8 when np+q+1 = k). By
lemma 3.2.8, A1 satisfies when |np+q+1 − k| ≤ 1

2(np+q+1 + k) and np+q+1 ∼ k is large enough

|∂α1
np+q+1

∂α2
k A1(X1, . . . , Xq, np+q+1, k)| ≤ Cαβ(k + np+q+1)d−1−α1−α2

q∏

j=1

|Xj |G.

In other words, assumption (3.2.11) of corollary 3.2.4 holds true. We denote by ãχ the product
of ã given by (3.2.39) with χq+1(n0, n

′, k), and by b̃χ the product of b̃ by χp+1(k, n′′, np+q+1).
By (3.2.12)

|||∂αn0
(∂∗k)β1(∂∗np+q+1

)β2(∂n0 − ∂∗k − ∂∗np+q+1
)γ ãχ(Πn′U

′, np+q+1;n0, k)|||

≤ C(n0 + k)d−β2−γ−1 |n′|ν+N+α+β1+β2+γ

(|n0 − k|+ |n′|)N
q∏

1

‖uj‖L2 .
(3.2.47)

Moreover, by proposition 3.2.3 and Leibniz formulas (1.2.6), (1.2.7), b̃χ ∈ Σd′,ν
p,1 for some ν.

Define now

(3.2.48) e(U ;n0, np+q+1) =
∑

n′

∑

n′′

∑

k

ãχ(Πn′U
′, np+q+1;n0, k)b̃χ(Πn′′U

′′; k, np+q+1).

By the second Leibniz formula (1.2.7)

(∂n0 − ∂∗np+q+1
)e(Πn′U

′,Πn′′U
′′;n0, np+q+1) =

∑

k

((∂n0 − ∂∗np+q+1
− ∂∗k)ãχ)b̃χ

+
∑

k

ãχ(∂k − ∂∗np+q+1
)b̃χ

−
∑

k

(∂∗np+q+1
ãχ)(∂∗np+q+1

b̃χ).

(3.2.49)

Using (3.2.47), and the fact that b̃χ obeys symbol estimates of type (2.1.12), we see that the
action of ∂n0 − ∂∗np+q+1

on e gains one unit either on the order of ãχ or of b̃χ in (3.2.49), loosing
a power of |n′| or |n′′|. In the same way, one sees that a ∂n0 or a ∂∗np+q+1

derivative does not

change the order. Consequently, to check that e ∈ Σd+d′−1,ν
p+q,1 , we just have to check that (3.2.48)

satisfies property (i) of definition 2.1.1, and estimate (2.1.12) when α = β = γ = 0.

Since inequalities (3.2.41) are valid on the supports of ãχ, b̃χ, (i) of definition 2.1.1 holds true

(if δ > 0 in (3.2.41) is small enough). Moreover, by (3.2.47) and the fact that b̃χ ∈ Σd′,ν
p,1 , we get

for |||e(Πn′U
′,Πn′′U

′′;n0, np+q+1)||| an upper bound given by

∑

k

(n0 + k)d−1µ(n0, n
′, k)ν+N1

S(n0, n′, k)N1
(k + np+q+1)d

′ µ(k, n′′, np+q+1)ν+N2

S(k, n′′, np+q+1)N2

p+q∏

1

‖uj‖L2 .

Since on the support we have k ∼ n0 ∼ np+q+1, we may use lemma 2.2.5 to get the upper bound
(for new values of ν,N)

C(n0 + np+q+1)d+d′−1µ(n0, n
′, n′′, np+q+1)ν+N

S(n0, n′, n′′, np+q+1)N

p+q∏

1

‖uj‖L2
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which is the wanted estimate.

(ii) We have using notations (2.2.1), (3.2.5) and the fact that χ is even

a•χ(U ′;n0, nq+1)− aχ(U ′;n0, nq+1) =
∑

n1

· · ·
∑

np

χ
( |n′|
n0 + nq+1

)
χ
(n0 − nq+1

n0 + nq+1

)
Fn0 ◦

[
a(Πn′U

′, n0)− a(Πn′U
′, nq+1)

]
◦ F∗nq+1

.

One has just to apply the proof of proposition 3.2.3 together with estimate (3.2.45) to check

that the above formula defines an element of Σd−1,ν
q,1 . 2

3.3 Polyhomogenous symbols

We collect in this subsection corollaries of the results obtained in subsections 3.1 and 3.2, which
apply to symbols which are not necessarily multilinear in the arguments u1, . . . , up.

Definition 3.3.1 (i) For d ∈ R, ν ∈ R+, N0 ∈ N∗, we denote by Σ̃d,ν
N0

the space of functions

b : E × Nτ × Nτ → L(`2, `2) such that there is a finite family (bp)p=0,...,P of elements bp ∈ Σd,ν
p,N0

with

(3.3.1) b(u;n0, np+1) =
P∑

p=0

bp(u, . . . , u︸ ︷︷ ︸
p times

;n0, np+1)

for any n0, np+1 ∈ Nτ , u ∈ E.

(ii) For d ∈ N, we denote by S̃d the space of functions b : E × Nτ → L(E , L2) such that there is
a finite family (bp)p=0,...,P of elements bp ∈ Sdp with

(3.3.2) b(u, n) =
P∑

p=0

bp(u, . . . , u︸ ︷︷ ︸
p times

, n)

for any n ∈ Nτ , u ∈ E. We define in a similar way S̃dsc from Sdp,sc.

(iii) For ν ∈ R+, d ∈ R, we denote by R̃d,ν the space of all maps M : E → L2 such that there is

a finite family of maps Mp ∈ Rd,νp p = 1, . . . , P with

(3.3.3) M(u) =
P∑

p=1

Mp(u, . . . , u︸ ︷︷ ︸
p times

)

for any u ∈ E. Some times, we shall use the same notation for maps (u, v)→M(u, v) depending
on two arguments u, v ∈ E, and which may be written as a sum of multilinear expressions of
form Mp(u, . . . , u, v . . . , v) where the total number of arguments is p and 1 ≤ p ≤ P .
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We define the valuation v(b) of a symbol b (resp. v(M) of an element M of R̃d,ν) as the smallest
p ≥ 0 (resp. p ≥ 1) such that bp 6≡ 0 in (3.3.1), (3.3.2) (resp. Mp 6≡ 0 in (3.3.3)). The modified
valuation v′(b) of a symbol is the smallest p ≥ 1 such that bp 6≡ 0 in (3.3.1), (3.3.2).

In section 4 below, we shall have to use symbols verifying conditions of type (1.1.3). We introduce
the following definition.

Definition 3.3.2 Let κ be an odd integer, r ∈ N with κ ≤ r − 1 ≤ 2κ. We say that a symbol
b ∈ Σ̃d,ν

N0
(resp. b ∈ S̃d, resp. an operator M ∈ R̃d,ν) satisfies condition C(κ, r) if and only if

b = b0 +
∑κ1

p=κ bp (resp. M =
∑κ1

p=κMp+1) with bp ∈ Σd,ν
p,N0

(resp. bp ∈ Sdp , resp. Mp+1 ∈ Rd,νp+1)
and bp ≡ 0 (resp. Mp+1 ≡ 0) when p is an even integer 2k satisfying κ ≤ 2k < r − 1.

We shall use below several times the following remark. Let L be a linear map (resp. B be a
bilinear map) from one (resp. the product of two) of the above spaces of symbols or operators
to a third space of that type. Assume that L (resp. B) respects the natural graduations of these
spaces. Then L (resp. B) sends symbols or operators satisfying C(κ, r) to symbols or operators
satisfying C(κ, r).

This is trivial for linear maps. In the bilinear case, this follows from the fact that in an expression
of form B(a, b), the contributions of type B(aq, bp) with q > 0 and p > 0 are homogeneous of
degree p + q ≥ 2κ ≥ r − 1 (since v′(a) ≥ κ, v′(b) ≥ κ), so the condition imposed by C(κ, r) on
B(aq, bp) is void. Only terms of type B(a0, bp), B(aq, b0) have to be taken into consideration,
and they satisfy the condition of the definition.

We extend the definition of the quantization of operators by linearity, setting for b ∈ Σ̃d,ν
N0

or

b ∈ S̃d respectively

Op(b(u; ·)) =
P∑

p=0

Op(bp(u, . . . , u; ·))

Õp(b(u, ·)) =
P∑

p=0

Õp(bp(u, . . . , u, ·)).
(3.3.4)

By proposition 2.1.3 and lemma 2.1.7, maps like (u, v) → Op(b(u; ·))v, for b ∈ Σ̃d,ν
N0

(resp.

u→ R(u) for R ∈ R̃d,ν) extend from E × E (resp. E) to Hs(S1, G⊗K)2 (resp. Hs(S1, G⊗K))
if s is large enough. We use this in the following corollaries, which are stated for arguments u, v
smooth enough, but need only to be checked when u, v ∈ E by density.

Corollary 3.3.3 Let P ∈ N∗ be given. There is ν ∈ R+ such that if we define for d ∈ R,
b ∈ S̃d, χ ∈ C∞0 (R), χ ≡ 1 close to zero, Suppχ small enough, bχ =

∑P
p=0 bp,χ ∈ Σ̃d,ν

1 , we may

find a symbol b0 ∈ Σ̃
0,ν+d+

1 and an operator M ∈ R̃0,ν+d+ such that for any smooth enough u

(3.3.5) Õp(b(u, ·))u = Op(bχ(u; ·))u+ Op(b0(u; ·))u+M(u).

Moreover, one has

(3.3.6) v(bχ) ≥ v(b), v(b0) ≥ v′(b), v(M) ≥ v′(b) + 1
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and bχ, b
0,M satisfy condition C(κ, r) if b does so.

Proof: We decompose b =
∑P

p=0 bp and apply to each component proposition 3.2.5. We
obtain (3.3.5) and (3.3.6), remembering that for p = 0, b0 does not depend on u, so that

Õp(b0) = Op(b0,χ) for any χ as in the statement of the theorem. Consequently b0 does not
contribute to the last two terms in (3.3.5), which implies the last two inequalities in (3.3.6). 2

Corollary 3.3.4 Let d, d′ ∈ R, a ∈ S̃dsc, b ∈ S̃d
′

sc . Let χ ∈ C∞0 (R), χ ≡ 1 close to zero, with small

enough support. There are ν ∈ R+ independent of d, d′, a symbol e ∈ Σ̃d+d′−1,ν
1 and a remainder

operator M ∈ R̃d+d′,ν ⊂ R̃0,ν+d++d′+ such that for any smooth enough u, v,

(3.3.7) Op(aχ(u; ·)) ◦Op(bχ(u; ·))v = Op((a ◦ b)χ(u; ·))v + Op(e(u; ·))v +M(u, v).

Moreover

(3.3.8) v(e) ≥ min(v′(a), v′(b)), v(M) ≥ min(v′(a), v′(b)) + 1.

If v(a) = v′(a) > 0, v(b) = v′(b) > 0, we have

(3.3.9) v(e) ≥ v′(a) + v′(b), v(M) ≥ v′(a) + v′(b) + 1.

Moreover a ◦ b, e and M satisfy C(κ, r) if a and b do so.

Proof: We decompose a =
∑Q

q=0 aq, b =
∑P

p=0 bp and apply proposition 3.2.7 to each contri-
bution, remarking that Op(a0,χ)Op(b0,χ) = Op((a0 ◦ b0)χ), so that all contributions to e and M
come from compositions with p > 0 or q > 0. The last statement comes from the remark after
definition 3.3.2. 2

Corollary 3.3.5 (i) Let ν ∈ R+, N0 ∈ N∗. There is ν ′ ∈ R+, and for any d, d′ ∈ R, any

a ∈ Σ̃d,ν
N0

, b ∈ Σ̃d′,ν
N0

satisfying condition (i)δ of definition 2.1.1 with small enough δ > 0, there is

a symbol a#b ∈ Σ̃d+d′,ν′
N0

such that for any smooth enough u

Op(a(u; ·)) ◦Op(b(u; ·))u = Op(a#b(u; ·))u.

Moreover v(a#b) ≥ v(a) + v(b), and a#b satisfies C(κ, r) if a, b do so.

(ii) Assume moreover that the homogeneous components aq(u;n0, nq+1) and bp(u;n′0, n
′
p+1) of

a, b commute for large enough n0, nq+1, n
′
0, n
′
p+1 and that a0b0 ≡ b0a0. There is c ∈ Σ̃d+d′−1,ν′

N0

such that
[Op(a(u; ·)),Op(b(u; ·))]u = Op(c(u; ·))u

for any smooth enough u, and v(c) ≥ min(v′(a), v′(b)). If moreover v(a) = v′(a) > 0 and
v(b) = v′(b) > 0, then v(c) ≥ v′(a) + v′(b). Finally if a, b satisfy C(κ, r), the same holds true for
c.
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Proof: We decompose again a =
∑P

p=0 ap, b =
∑Q

q=0 bq and define a#b or c using the linearity
in (i), (ii) of proposition 2.2.2. The statement concerning valuations in (ii) of the corollary comes
from the fact that [Op(a0),Op(b0)] = 0 since these operators are constant coefficient ones. 2

Corollary 3.3.6 (i) Let d, d′ ∈ R, p ∈ N∗, ν ∈ R+, N0 ∈ N∗. Let a ∈ Σd,ν
p,N0

, b ∈ Σ̃d′,ν
N0

, and
assume that they satisfy condition (i)δ of definition 2.1.1 with a small enough δ > 0. Then there

are ν ′ = 2ν + d′+ + 1 and c ∈ Σ̃d,ν′
N0

with

Op[a[Op(b(u; ·))u, u, . . . , u︸ ︷︷ ︸
p−1 times

; ·]]v = Op(c(u; ·))v

for any smooth enough u, v. Moreover v(c) ≥ p+ v(b) and c satisfies C(κ, r) if b does so and p
is odd, p ≥ κ.

(ii) Let d ∈ R, d′ ∈ R, ν ∈ R+, p ∈ N∗, N0 ∈ N∗, a ∈ Σd,ν
p,N0

satisfying condition (i)δ of

definition 2.1.1 with a small enough δ > 0. Let M ∈ R̃d′,ν . There are ν ′ = d′+ + 2ν + 1,

ν′′ = 2ν + 1, b ∈ Σ̃d,ν′
N0

and R ∈ R̃d+d′+,ν
′′ ⊂ R̃0,ν′′+d++d′+ such that for any smooth enough u, v

Op(a(M(u), u, . . . , u︸ ︷︷ ︸
p−1

; ·))v = Op(b(u; ·))v +R(u, v)

with v(b) ≥ v(M) + p− 1, v(R) ≥ v(M) + p. Moreover b,R satisfy C(κ, r) if M does so and p
is odd, p ≥ κ.

(iii) Let d ∈ R, d′ ∈ R, ν, ν ′ ∈ R+, N0 ∈ N∗, a ∈ Σ̃d,ν
N0
,M ∈ R̃d′,ν . There is ν ′′ = ν + ν ′ + 1 such

that u→ R(u) = Op(a(u; ·))M(u) is in R̃d+d′,ν′′ and v(R) ≥ v(a) + v(M). Moreover R satisfies
C(κ, r) if a and M do so.

These statements follow from propositions 2.2.3, 2.2.4 and 2.2.6. In the same way, we deduce
from proposition 2.2.7:

Corollary 3.3.7 (i) Let d, d′ ∈ R, ν, ν ′ ∈ R+, N0 ∈ N, q ∈ N∗. Let a ∈ Σ̃d,ν
N0

and M ∈
Rd′,ν′q . There is ν ′′ = d+ + ν + ν ′ + 1 such that the operator u → R(u) given by R(u) =

M(Op(a(u; ·))u, u, . . . , u) is in R̃d′,ν′′ with v(R) ≥ q + v(a). Moreover R satisfies C(κ, r) if a
does so and q − 1 is an odd integer q − 1 ≥ κ.

(ii) Let M1 ∈ Rd,νq ,M2 ∈ R̃d′,ν′ . Then there is ν ′′ = ν + ν ′ + d′+ + 1 such that R(u) =

M1(M2(u), u, . . . , u) is in R̃d,ν′′ with v(R) ≥ v(M2) + q − 1.

Let us conclude this subsection with the following technical lemma.

Lemma 3.3.8 (i) Let a(λ) be a smooth function on R+ satisfying for any k, |∂kλa(λ)| ≤ Ckλ1−k

when λ → +∞. Let (n1, . . . , np) = n′ → G(n′) be a real valued function defined on Npτ , such
that there is C > 0 with |G(n′)| ≤ C(1 + |n′|). Consider the function

(3.3.10) F (n0, n1, . . . , np+1) = a(n0)− a(np+1) +G(n1, . . . , np)
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and assume that there is c > 0, N0 ∈ N∗ such that for any n0, np+1 ∈ Nτ , n′ ∈ Npτ satisfying
|n0 − np+1| ≤ 1

4(n0 + np+1), |n′| ≤ 1
4(n0 + np+1) one has

(3.3.11) |F (n0, . . . , np+1)| ≥ c(1 + |n0 − np+1|)|n′|−N0 .

Then we have for any α, β, γ ∈ N, any (n0, n
′, np+1) ∈ Np+2

τ satisfying the preceding inequalities

∣∣∣∂αn0
(∂∗np+1

)β(∂n0 − ∂∗np+1
)γ

1

F (n0, . . . , np+1)

∣∣∣

≤ Cαβγ(n0 + np+1)−γ |n′|N0(α+β+γ+1)
(1 + |n0 − np+1|)−1.

(3.3.12)

(ii) If instead of (3.3.11), F satisfies when |n0 − np+1| ≤ 1
4(n0 + np+1), |n′| ≤ 1

4(n0 + np+1)

(3.3.13) |F (n0, . . . , np+1)| ≥ c(n0 + np+1)|n′|−N0 ,

then (3.3.12) holds true with the right hand side replaced by

(3.3.14) Cαβγ(n0 + np+1)−1−γ |n′|N0(α+β+γ+1)
.

Proof: (i) We may assume in (3.3.12) that α+β+γ > 0 since the inequality without derivatives
follows from (3.3.11). Remark that we have then

(3.3.15) |∂αn0
(∂∗np+1

)β(∂n0 − ∂∗np+1
)γF (n0, . . . , np+1)| ≤ C(1 + |n0 − np+1|)(n0 + np+1)−γ .

This follows from lemma 3.2.8 applied to g(n0, np+1) =
a(n0)−a(np+1)

n0−np+1
and from Leibniz formulas

(1.2.6), (1.2.7). We shall show that for any α, β, γ we may write the quantity estimated in the
left hand side of (3.3.12) as a linear combination, indexed by k = 1, . . . , α+β+γ, of expressions
of form

(3.3.16)
Hk

F1 · · ·Fk+1
(n0, . . . , np+1),

where each function Hk satisfies

(3.3.17) |∂α′n0
(∂∗np+1

)β
′
(∂n0 − ∂∗np+1

)γ
′
Hk(n0, . . . , np+1)| ≤ C(1 + |n0 − np+1|)k(n0 + np+1)−γ−γ

′
,

and where F1, . . . , Fk+1 verify (3.3.11). Inequality (3.3.12) will then follow from (3.3.17) with
α′ = β′ = γ′ = 0.

To obtain the structure (3.3.16), we just have to show that if we apply to (3.3.16) a deriva-
tive ∂α0

n0
(∂∗np+1

)β0(∂n0 − ∂∗np+1
)γ0 with α0 + β0 + γ0 = 1, we get the sum of an expression

H̃k(F1 · · ·Fk+1)−1, where H̃k satisfies (3.3.17) with γ replaced by γ + γ0, and of a quantity
H̃k+1(F̃1 · · · F̃k+2)−1, with H̃k+1 satisfying (3.3.17) with k replaced by k+1 and γ by γ+γ0, and
with F̃j verifying (3.3.11). This follows from Leibniz formulas (1.2.6), (1.2.7) and from (3.3.15),
(3.3.17). This concludes the proof.

(ii) The proof is the same, replacing in (3.3.15), (3.3.17) the 1 + |n0 − np+1| factor by n0 +np+1.
2
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4 Long time existence

4.1 Strategy of proof

The aim of this section is to prove theorem 1.1.1. Our strategy will be to combine the meth-
ods used by Bourgain [5], Bambusi [1], Bambusi and Grébert [3], Delort and Szeftel [10] for
semi-linear equations, with the well-known approach allowing one to obtain quasi-linear energy
inequalities, namely diagonalization of the principal symbol of the equation.

Let us describe the steps that we shall follow, forgetting the necessary technicalities we shall
have to introduce later on. We denote by Λm =

√
−∆ + V +m2, and we shall consider an

equivalent system to the scalar equation for u =
[

Λmv
∂tv

]
, of type ∂tu = Õp(M(u, ·))u, where M

will be a symbol of order 1, belonging to the class introduced in subsection 3.1. We would like
to control over long time intervals the Sobolev energy of u

(4.1.1) 〈Λsmu(t, ·),Λsmu(t, ·)〉.

If one computes the time derivative of this expression, one gets

(4.1.2) 2Re 〈ΛsmÕp(M(u, ·))u,Λsmu〉.

If M(u, ·) = M0(·)+Mκ(u, ·) is the sum of two anti-self-adjoint matrices, with M0 independent of
u and Mκ homogeneous of degree κ > 0 in u, symbolic calculus shows that the above expression
may be written as

(4.1.3) 〈Õp(b(u, ·))u, u〉

where b is a self-adjoint symbol of order 2s vanishing at least at order κ at u = 0. Consequently,
for s large enough, this bracket is bounded from above by C‖u‖κ+2

Hs , and one gets the estimate

(4.1.4)
d

dt
‖u(t, ·)‖2Hs ≤ C‖u(t, ·)‖κ+2

Hs .

This is a way to recover the local existence result asserting that for smooth data of size ε→ 0,
the solution exists at least over an interval of time of length cε−κ. Our goal here is to obtain a
better result when κ is odd (and when the parameter m is outside a subset of zero measure).
Namely we want to obtain a solution over a time interval of length cε−2κ. From (4.1.1) to (4.1.3)
we know that

(4.1.5)
d

dt
〈Λsmu(t, ·),Λsmu(t, ·)〉 = 〈Õp(b(u, ·))u, u〉.

We would like to add in the left hand side a new contribution, of form 〈Õp(a(u, ·))u, u〉, vanishing
at order κ+2 at 0, with a symbol a of order 2s, determined in such a way that the time derivative
of this quantity will cancel out the right hand side of (4.1.5), up to remainders O(‖u‖2κ+2

Hs ). If

we compute d
dt〈Õp(a(u, ·))u, u〉 we get from the action of d/dt on the u’s which are not in the

argument of a, a contribution of type

(4.1.6) 〈[Õp(a(u, ·))Õp(M(u, ·)) + Õp(M(u, ·))∗Õp(a(u, ·))]u, u〉.
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Remember that M(u, ·) = M0(·) + Mκ(u, ·). Consider the expression obtained replacing in
(4.1.6) M(u, ·) by Mκ(u, ·): we get a term homogeneous of degree 2κ+ 2 in u. In a semi-linear
framework, i.e. when Mκ is a symbol of order 0, this gives a contribution to (4.1.6) which is
O(‖u‖2κ+2

Hs ), since a is of order 2s. In our quasi-linear framework, Mκ(u, ·) is a symbol of order 1,
which a priori looses one extra derivative. The way to circumvent that difficulty is well known:
one has to arrange so that a be self-adjoint and commute to M κ. Then since Mκ(u, ·) is assumed
anti-self-adjoint, the contribution of Mκ to (4.1.6) may be written in terms of a commutator

[Õp(a(u, ·)), Õp(Mκ(u, ·))]u. The symbolic calculus we studied in the preceding sections shows
that this commutator gains one derivative, so that again the contribution of M κ to (4.1.6) is

O(‖u‖2κ+2
Hs ). In other words, up to such nice remainders, d

dt〈Õp(a(u, ·))u, u〉 will be given by
contributions of type (4.1.6) with M replaced by M0, and by similar terms coming from the
action of d

dt on those u inside the argument of a. The last step of the proof will be to show that

we may choose a so that these contributions to d
dt〈Õp(a(u, ·))u, u〉 will cancel out the right hand

side of (4.1.5).

To ensure the commutator property of a with M , we start instead of (4.1.1) with

(4.1.7) 〈Λsmũ(t, ·),Λsmũ(t, ·)〉

where ũ is a new unknown defined in terms of u by ũ = Q(u)u, Q being a matrix such that
D(u, ·) = Q(u)M(u, ·)Q(u)−1 is diagonal. Computing the time derivative of (4.1.7), we shall get
instead of (4.1.5) an expression

(4.1.8) 〈Õp(b(u, ·))ũ, ũ〉

that we will try to cancel out adding to (4.1.7) a quantity

(4.1.9) 〈Õp(a(u, ·))ũ, ũ〉

where a is again a symbol to be determined. When we shall compute the time derivative of
(4.1.9), the contribution corresponding to (4.1.6) will be

(4.1.10) 〈[Õp(a(u, ·))Õp(D(u, ·)) + Õp(D(u, ·))∗Õp(a(u, ·))]ũ, ũ〉.

Since now D is diagonal, and since we shall look for a diagonal symbol a, the commutation
property between symbols aD = Da will hold true automatically. Moreover a will be taken
self-adjoint and D will be anti-self-adjoint. Because of that, the contribution of the part of D
which is homogeneous in u of order κ to (4.1.10) will be expressed through a commutator, and
will provide a remainder of type ‖u‖2κ+2

Hs . As explained above, the terms coming from the part
D0 of D independent of u will cancel out (4.1.8), if the symbol a is conveniently defined in terms
of b. Finally, since for small functions u, (4.1.7) will be equivalent to ‖u(t, ·)‖2

Hs we shall get

d

dt
‖u(t, ·)‖2Hs ≤ C‖u(t, ·)‖2κ+2

Hs

as long as ‖u(t, ·)‖Hs stays small enough, which is what we need to get a solution defined on an
interval of length cε−2κ.

Let us mention that the computations we outlined above will have to be done using paradif-
ferential operators instead of pseudo-differential ones. This is the justification for our study of
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the former in section 2. The diagonalization of the principal symbol of the equation, i.e. the
construction of ũ in terms of u, will be described in subsection 4.2. The last subsection 4.3 will
be devoted to the construction of the correcting terms (4.1.9) and to the proof of the theorem.

4.2 Diagonalization of principal part

We shall denote by Λm =
√
−∆ + V +m2. This is a scalar invertible pseudo-differential operator

of order 1 on S1. If v ∈ Hs+1(S1,R) for a large enough s, we set

(4.2.1) u =

[
Λmv
∂tv

]
, v = Λ−1

m u1, ∂tv = u2.

We define

(4.2.2) a(u) = c(Λ−1
m u1, u2, ∂xΛ−1

m u1)

where c is the function defined in (1.1.1), (1.1.2). In particular, a(u) may be written as a sum of
multilinear expressions in Tu1, u2 for pseudo-differential operators of order 0, T . Consequently
a(u) will be, according to definitions 3.3.1 and 3.2.1, a symbol of S̃0

sc (independent of n). Its
valuation will be equal to κ which, according to assumption (1.1.3), may be assumed to be odd.
Moreover it will satisfy condition C(κ, r) of definition 3.3.2 i.e.

(4.2.3) a =

κ1∑

k=κ

ak(u) where ak ∈ S0
k , a2k ≡ 0 for κ ≤ 2k < r − 1.

The first equation of (1.1.4) may be written

(4.2.4) ∂tu =

[
0 Λm

−(1 + a(u))2Λm 0

]
u.

We shall denote by G the vector space R2, and consider the operator − d2

dx2 + V (x) acting
on L2(S1, G). As in section 2.1, we denote by (ω−n )2 ≤ (ω+

n )2 the couple of eigenvalues with
asymptotics (1.2.1), and by Πn the spectral projector on the subspace of L2(S1, G) generated
by the eigenfunctions associated to these two eigenvalues for n ≥ τ + 1 large enough. We
denote by En the range of Πn. Then En is four dimensional for n ≥ τ + 1. We define Eτ to
be the orthogonal complement in L2(S1, G) of the Hilbert sum

⊕
n≥τ+1 En. Then Eτ is even

dimensional and we have the Hilbert decomposition

(4.2.5) L2(S1, G) =
+∞⊕

n=τ

En.

At times we shall denote by E ′n, n ≥ τ + 1 the subspace of L2(S1,R) generated by the two

eigenfunctions associated to the eigenvalues (ω−n )2 and (ω+
n )2 of the operator − d2

dx2 +V (x) acting
on L2(S1,R). We define E′τ in a similar way as Eτ . We have for n ≥ τ , En ' E′n × E′n. We
denote by E the algebraic direct sum of En for n ≥ τ . We introduce the following matrices

(4.2.6) P (u, n) =

[
IK′(n) IK′(n)

i(1 + a(u))IK′(n) −i(1 + a(u))IK′(n)

]
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and

(4.2.7) Q(u, n) =
i

2

[−i(1 + a(u))IK′(n) −IK′(n)

−i(1 + a(u))IK′(n) IK′(n)

]

so that

(4.2.8) P (u, n)Q(u, n) = Q(u, n)P (u, n) = (1 + a(u))I2K′(n)

where K ′(n) = dimE′n = 2 when n > τ . (We prefer to use Q(u, n) instead of P (u, n)−1

to always work with matrices whose coefficients are polynomial in u). Then, according to
definitions 3.3.1 and 3.2.1, P and Q are elements of S̃0. Actually these matrices define, according
to definition 3.2.6 and (3.2.33) elements of S̃0

sc, since each block of P (u, n), Q(u, n) is a scalar
matrix (the contribution of order −∞ of definition 3.2.6 is zero in this case). Moreover

(4.2.9) v(P ) = v(Q) = 0, v′(P ) = v′(Q) = κ

and P (u, n) and Q(u, n) satisfy condition C(κ, r).

Remind that we have constructed in theorem 1.2.1 a nice basis of L2(S1,R), which was adapted
to the decomposition given by the E ′n (which were then denoted by En). We construct from
this nice basis a natural basis of En = E′n×E′n, which makes a nice basis of L2(S1, G), as at the
beginning of subsection 3.2. We denote by λm(n) the matrix of Λm|E′n in the above nice basis.
For n ≥ τ + 1, λm(n) is a 2 × 2 matrix. We denote by ω(λ) a symbol of order 1 on R+ with
asymptotics given by (1.2.1) and we define

(4.2.10) ωm(n) =
√
m2 + ω(n)2

so that the difference between the eigenvalues of
√
−∆ + V +m2|E′n and ωm(n) is O(n−∞) when

n→ +∞. The matrix λm(n) may be written

(4.2.11) λm(n) = ωm(n)IK′(n) + λ̂m(n)

where λ̂m(n) is a matrix whose norm decays like n−∞ when n→ +∞. We introduce for n ≥ τ
the matrix

(4.2.12) M(u, n) =

[
0 λm(n)

−(1 + a(u))2λm(n) 0

]
.

This is a K(n) ×K(n) matrix (where K(n) = dimEn = 2K ′(n)) and since a(u) ∈ S̃0, we get
that M(u, ·) ∈ S̃1. Actually, decomposition (4.2.11) shows that M(u, ·) ∈ S̃1

sc since we may

write it as the sum of
[

0 ωm(n)IdK′(n)

−(1+a(u))2ωm(n)IdK′(n) 0

]
, which is scalar by blocks, and of a

contribution of order −∞. Moreover the coefficients of M(u, n) satisfy condition C(κ, r).

According to definition 3.2.2, Õp(M(u, ·))u is nothing but the right hand side of (4.2.4). We
may thus write this equation

(4.2.13) ∂tu = Õp(M(u, ·))u.
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Let us introduce the energy of solutions of (4.2.13) that we shall consider. We denote by Λ̃m
the operator Λ̃m = Õp(ωm(n)IK(n)) acting on L2(S1, G), so that Λ̃mΠn = ωm(n)Πn. For s large
enough we set

(4.2.14) Θs
0(u(t, ·)) = 2〈Λ̃smOp(Qχ(u; ·))u, Λ̃smOp(Qχ(u; ·))u〉

where χ ∈ C∞0 (R), χ ≡ 1 close to 0, χ even, Suppχ small enough, and where Qχ ∈ Σ̃0,ν
1 (for

some ν ∈ R+) is defined from Q in corollary 3.3.3 (see also (3.2.5)). Because of (4.2.9)

(4.2.15) v(Qχ) = 0, v′(Qχ) = κ.

The following lemma asserts that Θs
0(u) is indeed equivalent to ‖u‖2Hs for small u, and gives an

alternative expression for Θs
0(u), which will be useful in the sequel.

Lemma 4.2.1 There is s0 > 0 and for any s ≥ s0 there are constants C > 0, R0 > 0 such that
for any u ∈ Hs(S1, G) with ‖u‖Hs0 < R0, one has

(4.2.16) C−1‖u‖2Hs ≤ Θs
0(u) ≤ C‖u‖2Hs .

Moreover, we may find a self-adjoint scalar symbol c(u, ·) ∈ Σ̃2s,ν
1 , for some ν > 0 independent

of s, with v(c) ≥ κ, and satisfying condition C(κ, r), such that if ũ = Op(Qχ(u; ·))u
(4.2.17)

Θs
0(u) = 〈Λ̃smOp((1 + aχ)(u; ·))ũ, Λ̃smũ〉+ 〈Λ̃smũ, Λ̃smOp((1 + aχ)(u; ·))ũ〉+ 〈Op(c(u; ·))ũ, ũ〉.

Proof: We prove first (4.2.17). Remark that the left hand side and the sum of the first two
brackets in the right hand side of (4.2.17) are real, so if we find a symbol c satisfying (4.2.17),
the equality remains true replacing c by 1

2(c+ c•) where c• is defined by (2.2.1). In other words,
as soon as we have found a c, we can construct from it a self-adjoint one.

Compute the difference between 1
2Θs

0(u) and the first bracket in the right hand side of (4.2.17).
We get

(4.2.18) −〈Λ̃2s
mOp(aχ(u; ·))ũ, ũ〉.

We may always write Λ̃2s
m as a paradifferential operator associated to the symbol of Σ2s,0

0,0 given
by

χ
(n0 − n1

n0 + n1

)(ωm(n0) + ωm(n1)

2

)2s
.

Moreover aχ defined from a in corollary 3.3.3 belongs to Σ̃0,ν
1 for some ν ∈ R+. By corol-

lary 3.3.5 (i), we may thus write (4.2.18) as 〈Op(c(u; ·))ũ, ũ〉 for some symbol c ∈ Σ̃2s,ν
1 , for a

new value of ν independent of s. This gives (4.2.17).

Before starting the proof of (4.2.16), let us express u in function of ũ and conversely. Denote

(4.2.19) P0(n) = P (0, n) =

[
IK′(n) IK′(n)

iIK′(n) −iIK′(n)

]
, Q0(n) = Q(0, n) =

i

2

[−iIK′(n) −IK′(n)

−iIK′(n) IK′(n)

]
.
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If we denote σ0(u;n) = Qχ(u;n)−Q0,χ(n), we get a symbol in Σ̃0,ν
1 for some ν, with v(σ0) ≥ κ,

satisfying condition C(κ, r), such that by definition of ũ

(4.2.20) ũ = Q0u+ Op(σ0(u; ·))u,

where for short we write Q0 for Õp(Q0(·)) = Op(Q0,χ(·)). Multiplying by P0 = Q−1
0 we get,

using the same type of notation convention,

(4.2.21) u = P0ũ+ Op(σ̃0(u; ·))u

for another symbol σ̃0 with σ̃0 ∈ Σ̃0,ν
1 , v(σ̃0) ≥ κ, σ̃0 satisfying C(κ, r). Using proposition 2.1.3,

we obtain that there are C > 0, s0 > 0 and for any s ≥ s0, there is R0 > 0 small enough such
that for any u ∈ Hs with ‖u‖Hs0 < R0,

(4.2.22) C−1‖ũ‖Hs ≤ ‖u‖Hs ≤ C‖ũ‖Hs ,

since the last terms in (4.2.20), (4.2.21) are O(‖u‖κHs0‖u‖Hs), u → 0. If we apply proposi-

tion 2.1.3 to the operators of order 2s Λ̃2s
mOp(aχ(u; ·)) and Op(c(u; ·)), we see that there is a

new value of s0, independent of the order of these operators, such that for s ≥ s0 there is Cs > 0
so that (4.2.18) as well as the last bracket in (4.2.17), are smaller than Cs‖u‖κHs0‖u‖2Hs . This
shows that

Θs
0(u)− 2〈Λ̃smũ, Λ̃smũ〉 = O(‖u‖κHs0‖u‖2Hs), u→ 0.

Inequalities (4.2.16) follow from that and (4.2.22). 2

The interest of the preceding lemma is that it gives for Θ0 an expression in terms of ũ, and the
equation written on ũ will be essentially diagonal. Let us introduce some more notations. We
set

(4.2.23) D(u, n) = Q(u, n)M(u, n)P (u, n) = i(1 + a(u))2

[
λm(n) 0

0 −λm(n)

]
.

We write also

(4.2.24) D0(n) = D(0, n), Dκ(u, n) = D(u, n)−D0(n)

so that Dκ(u, n) ∈ S̃1
sc with valuation larger or equal to κ. Moreover D(u, ·) satisfies condition

C(κ, r). We set also

(4.2.25) M0(n) = M(0, n), Mκ(u, n) = M(u, n)−M0(n)

so that Mκ(u, n) is an element of S̃1
sc of valuation larger or equal to κ. In the same way, the

expressions

(4.2.26) P κ(u, n) = P (u, n)− P0(n), Qκ(u, n) = Q(u, n)−Q0(n)

are symbols of S̃0
sc, with valuations larger or equal to κ.
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Lemma 4.2.2 There is some ν ∈ R+ and there are symbols b0(u; ·) in Σ̃0,ν
1 , b1(u; ·), b̃1(u; ·) in

Σ̃1,ν
1 with v(b0), v(b̃1) ≥ κ, there are operators R, R̃ in R̃0,ν , with v(R), v(R̃) ≥ κ+ 1, satisfying

condition C(κ, r), such that one may write for all u ∈ H s(S1, G) solution of (4.2.13)

(4.2.27)
∂u

∂t
= P0D0ũ+ Op(b̃1(u; ·))u+ R̃(u)

(4.2.28)
∂ũ

∂t
= Op(b1(u; ·))u+R(u)

(4.2.29) Op((1 + aχ)(u; ·))∂ũ
∂t

= Op(Dχ(u; ·))ũ+ Op(b0(u; ·))u+R(u)

where we denoted by D0 the operator Õp(D0(n)).

Proof: Let us show first (4.2.27). We apply corollary 3.3.3 to (4.2.13). We get

(4.2.30)
∂u

∂t
= Op(Mχ(u; ·))u+ Op(b̃0(u; ·))u+ R̃(u)

where b̃0 ∈ Σ̃0,ν
p , R̃ ∈ R̃0,ν for some ν ∈ R+, v(b̃0) ≥ κ, v(R̃) ≥ κ+1, b̃0 and R̃ satisfying condition

C(κ, r). Using (4.2.25), we further decompose Op(Mχ(u; ·)) = M0 + Op(Mκ
χ (u; ·)), where M0

denotes for short the operator with symbol M0(n). Since Mκ
χ (u, n) ∈ Σ̃1,ν

1 , satisfies v(Mκ
χ ) ≥ κ,

and verifies condition C(κ, r), we just have, to deduce (4.2.27) from (4.2.30), to express M0u in
terms of ũ. This follows from (4.2.21) together with the expression M0P0 = P0D0, which is a
consequence of (4.2.23) and (4.2.8).

We shall prove now (4.2.28) and (4.2.29). We compute first

(4.2.31)
∂ũ

∂t
=

∂

∂t
[Op(Qχ(u; ·))u] = Op(Qχ(u; ·))∂u

∂t
+ Op(Q′χ(U ; ·))u

where U = (u, ∂tu) and Q′(U, ·) is the symbol obtained by time derivation of Q(u, ·). Let us show,
using the equation, that Q′χ(U ; ·) is an element of Σ̃0,ν

1 for some ν, satisfying v(Q′χ(u; ·)) ≥ κ
and verifying condition C(κ, r). By (4.2.7) we may write Q′χ(U ; ·) as a finite sum indexed by
p ≥ κ of quantities of type

ap,χ(∂tu, u, . . . , u;n0, np+1)

[1
2 IK′(np+1) 0
1
2 IK′(np+1) 0

]

where ap is the component homogeneous of degree p in the expansion of a. If we plug in this
expression (4.2.30), we see using corollary 3.3.6 (i) and (ii) that we get a contribution of type
Op(b0(u; ·))u + R(u), like the last two terms in the right hand side of (4.2.29). In particular,
such terms are of the form of the right hand side of (4.2.28). To finish the proof of (4.2.28), we
just have to study the first term in the right hand side of (4.2.31). If we replace in that term
∂tu by (4.2.30) and use corollaries 3.3.5 (i) and 3.3.6 (iii), we obtain that this contribution is
again of the same form as the right hand side of (4.2.28). Let us prove (4.2.29), making act
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Op((1 + aχ)(u; ·)) on (4.2.31). We have seen already that the last term in the right hand side of
(4.2.31) has the structure of the last two terms in the right hand side of (4.2.29). This remains
true if we make act Op((1 + aχ)(u; ·)) on it, by corollary 3.3.5 (i) and corollary 3.3.6 (iii). So,
we just have to study, using (4.2.30)

Op((1 + aχ)(u; ·))Op(Qχ(u; ·))∂u
∂t

= Op((1 + aχ)(u; ·))Op(Qχ(u; ·))Op(Mχ(u; ·))u

+Op((1 + aχ)(u; ·))Op(Qχ(u; ·))Op(b̃0(u; ·))u
+Op((1 + aχ)(u; ·))Op(Qχ(u; ·))R̃(u).

(4.2.32)

Again by corollaries 3.3.5 (i) and 3.3.6 (iii), the last two terms give a contribution to the last
two terms in (4.2.29). Since a is a scalar symbol we may, by corollary 3.3.5 (ii), commute in the
first term in the right hand side of (4.2.32), Op((1 + aχ)(u; ·)) and Op(Qχ(u; ·))Op(Mχ(u; ·)),
up to errors that may be incorporated inside the Op(b0(u; ·))u term in (4.2.29). We are thus
reduced to

(4.2.33) Op(Qχ(u; ·))Op(Mχ(u; ·))Op((1 + aχ)(u; ·))u.

We apply corollary 3.3.4 to the symbols P and Q satisfying (4.2.8). Using also corollary 3.3.5 (i)
and corollary 3.3.6 (iii), we obtain that (4.2.33) may be written as

[Op(Qχ(u; ·))Op(Mχ(u; ·))Op(Pχ(u; ·))]Op(Qχ(u; ·))u

up again to contributions to the last two terms in (4.2.29). To conclude the proof, we just
have to apply again corollary 3.3.4 to the bracket in the above formula, making use of the first
equality (4.2.23) and of corollaries 3.3.5 (i), 3.3.6 (iii) and 3.3.7 (i). 2

We want to obtain a formula giving the time derivative of expressions generalizing the first term
in the right hand side of (4.2.17). We introduce first some notations. We shall consider symbols

c ∈ Σd,ν
p,N0

satisfying the following conditions

(4.2.34) c(U ; ·) = c′(U ; ·) + c′′(U ; ·) with c′′ ∈ Σd−1,ν
p,N0

and self-adjoint,

c′(U ; ·) is self-adjoint and for any n0, np+1 ≥ τ + 1,

c′(U ;n0, np+1) =

[
c11(U ;n0, np+1) 0

0 c22(U ;n0, np+1)

]
with 2× 2 matrices c11, c22.

(4.2.35)

(Remind that our symbols of Σd,ν
p,N0

are 4 × 4 matrices when evaluated at (n0, np+1) with
n0, np+1 ≥ τ + 1).

When c ∈ Σd,ν
p,N0

we shall associate to it the following function

(4.2.36) cM0(u;n0, np+1) =

p∑

j=1

c(u, . . . ,M0u, . . . , u;n0, np+1)

where as before M0 denotes the operator with symbol M0(n), and where the term M0u is the
jth argument of the general term of the sum. We first prove a lemma.
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Lemma 4.2.3 Let ν ∈ R+. There is ν ′ ∈ R+ such that for any d ∈ R, N0 ∈ N∗, p ∈ N, c ∈ Σd,ν
p,N0

,

one can find a symbol e1 ∈ Σ̃d,ν′
N0

with v(e1) ≥ κ+ p and R1 ∈ R̃d,ν′ with v(R1) ≥ κ+ p+ 1, such
that for any smooth enough solution u of (4.2.13), any smooth enough v

(4.2.37) Op(
∂

∂t
c(u, . . . , u; ·))v = Op(cM0(u; ·))v + Op(e1(u; ·))v +R1(u, v).

Moreover, if p is odd and p ≥ κ, then e1 satisfies condition C(κ, r).

Proof: The left hand side of (4.2.37) is a sum of expressions

(4.2.38) Op(c(u, . . . ,
∂u

∂t
, . . . , u; ·))v.

We use for ∂u
∂t expression (4.2.30) and decomposition (4.2.25). We get

∂u

∂t
= M0u+ Op(Mκ

χ (u; ·))u+ Op(b̃0(u; ·))u+ R̃(u).

When we plug this decomposition inside (4.2.38), we get from the M0u term, according to
(4.2.36), a contribution to the first term in the right hands side of (4.2.37). The remaining
terms in the above expression of ∂u

∂t contribute to the last two terms in (4.2.37), using (i) and
(ii) of corollary 3.3.6. 2

Let us state now the main proposition.

Proposition 4.2.4 Let ν ∈ R+, p ∈ N, N0 ∈ N∗ be given. There is ν ′ ∈ R+ and for any d ∈ R,
for any symbol c ∈ Σd,ν

p,N0
satisfying (4.2.34), (4.2.35), one can find

• a self-adjoint symbol e ∈ Σ̃d,ν′
N0

with v(e) ≥ p+ κ,

• an operator R ∈ R̃d,ν′ satisfying v(R) ≥ p+ κ+ 1,
such that for any smooth enough u satisfying equation (4.2.13) one has, denoting c(u; ·) =
c(u, . . . , u; ·),

1

2

d

dt
〈[Op(c(u; ·))Op((1 + aχ)(u; ·)) + Op((1 + aχ)(u; ·))∗Op(c(u; ·))]ũ, ũ〉

= 〈Op(cM0(u; ·))ũ, ũ〉+ 〈[Op(c(u; ·))D0 +D∗0Op(c(u; ·))]ũ, ũ〉
+ 〈Op(e(u; ·))ũ, ũ〉+ (〈R(u), u〉+ 〈u,R(u)〉).

(4.2.39)

Moreover, if p is odd, p ≥ κ then cM0 , e, R satisfy condition C(κ, r).

Proof: Remark that since c is self-adjoint, so is cM0 defined by (4.2.36). So the left hand side and
the first two terms in the right hand side of (4.2.39) are real valued. Consequently, it is enough to
prove (4.2.39) for some non necessarily self-adjoint symbol e, and replacing (〈R(u), u〉+〈u,R(u)〉)
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by (〈R1(u), u〉 + 〈u,R2(u)〉) for some R1, R2 satisfying the same conditions as R. Then taking
real parts, we replace e by e+e•

2 and Rj by R1+R2
2 to get (4.2.39).

Let us show that we can write as the right hand side of (4.2.39) the time derivative

d

dt
〈Op(c(u; ·))Op((1 + aχ)(u; ·))ũ, ũ〉 =

〈Op(
d

dt
c(u; ·))Op((1 + aχ)(u; ·))ũ, ũ〉+ 〈Op(c(u; ·))Op(

d

dt
aχ(u; ·))ũ, ũ〉

+ 〈Op(c(u; ·))Op((1 + aχ)(u; ·)) d
dt
ũ, ũ〉+ 〈Op(c(u; ·))Op((1 + aχ)(u; ·))ũ, d

dt
ũ〉.

(4.2.40)

The idea of the proof is the following: we shall express ∂ũ
∂t using (4.2.28) or (4.2.29). The linear

contributions coming from these expressions will give the first two terms in the right hand side
of (4.2.39). The contributions which are at least of order κ in u will contribute to the last two
terms. The key point will be not to loose derivatives, i.e. to check that e is of order d and not
d + 1. This will follow from the fact that Op(e(u; ·)) will be expressed from commutators of
operators with commuting symbols. Symbolic calculus will thus bring the needed gain of one
derivative. Let us proceed with the implementation of such a strategy.

Study of first term in RHS of (4.2.40)

Let us consider

Op(
d

dt
c(u; ·))Op((1 + aχ)(u; ·))ũ.

By lemma 4.2.3, we may write this as
(4.2.41)
Op(cM0(u; ·))Op((1 + aχ)(u; ·))ũ+ Op(e1(u; ·))Op((1 + aχ)(u; ·))ũ+R1(u,Op((1 + aχ)(u; ·))ũ).

The first term gives on one hand the first term in the right hand side of (4.2.39), and on the
other hand a contribution Op(cM0(u; ·))Op(aχ(u; ·))ũ. Using corollary 3.3.5 (i), we see that this
expression can be incorporated in the Op(e(u; ·))ũ term in (4.2.39). Remark that the index ν ′

given by corollary 3.3.5 is independent of the order d of c. The second term in (4.2.41) gives
similarly a contribution to the e-term in (4.2.39). In the last term, we express ũ from u using
(4.2.20). From corollaries 3.3.5 (i) and 3.3.7 (i), we see that we obtain a contribution 〈R(u), ũ〉
for some R satisfying the requirements of the statement of proposition 4.2.4. If we express ũ
from u by (4.2.20) and use (iii) of corollary 3.3.6, we see that we obtain a contribution to the
fourth term in the right hand side of (4.2.39).

Study of second term in RHS of (4.2.40)

If we apply lemma 4.2.3 to the symbol of order 0 aχ, we see that

Op(
d

dt
aχ(u; ·))ũ = Op(aχ,M0(u; ·))ũ+ Op(e1(u; ·))ũ+R1(u, ũ)

where aχ,M0 ∈ Σ̃0,ν
1 , e1 ∈ Σ̃0,ν′

1 , R1 ∈ R̃0,ν′ for some ν ′ ∈ R+, with moreover v(aχ,M0) ≥
κ, v(e1) ≥ 2κ, v(R1) ≥ 2κ + 1. If we make act on the left Op(c(u; ·)) and use as before
corollaries 3.3.5 (i), 3.3.6 (iii), (4.2.20) and corollary 3.3.7 (i), we obtain a contribution to the
third and fourth terms in (4.2.39).
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Study of third and fourth terms in RHS of (4.2.40)

We write the sum of the last two terms in (4.2.40) as

(4.2.42) 2Re 〈Op(c(u; ·))Op((1 + aχ)(u; ·))dũ
dt
, ũ〉+ 〈[Op(c(u; ·)),Op(aχ(u; ·))]ũ, dũ

dt
〉

using that c and aχ are self-adjoint symbols. We may apply corollary 3.3.5 (ii) to the bracket in
(4.2.42), since aχ is scalar and so commutes to c. There is ν ′, independent of d, and a symbol

b ∈ Σ̃d−1,ν′
N0

with v(b) ≥ κ+ p such that the last term in (4.2.42) equals

〈Op(b(u; ·))ũ, dũ
dt
〉.

Using (4.2.28), we reduce ourselves to the study of

(4.2.43) 〈ũ,Op(b(u; ·))∗(Op(b1(u; ·))u+R(u))〉.

Using, as in the study of the preceding cases, (4.2.20), and corollaries 3.3.5 (i) and 3.3.6 (iii),
we may write this expression as a contribution to the third and fourth terms in the right hand
side of (4.2.39), using that the sum of the orders of the involved symbols is at most d.

Let us study now the first term in (4.2.42). We write using (4.2.29)

Op(c(u; ·))Op((1 + aχ)(u; ·))dũ
dt

= Op(c(u; ·))Op(Dχ(u; ·))ũ
+Op(c(u; ·))Op(b0(u; ·))u

+Op(c(u; ·))R(u).

(4.2.44)

The contribution of the last two terms to the first duality bracket in (4.2.42) is of form the
conjugate of (4.2.43), since the sum of the orders of the symbols is at most d, and R(·) ∈ R̃0,ν ,
and has been already treated. To study the first term in the right hand side of (4.2.44), where
Dχ is a symbol of order 1, remind decomposition (4.2.24), which allows us to write

(4.2.45) Dχ(u; ·) = D0,χ(·) +Dκ
χ(u; ·).

We study first the contribution of the last term i.e.

2Re 〈Op(c(u; ·))Op(Dκ
χ(u; ·))ũ, ũ〉 =

〈[Op(c(u; ·))Op(Dκ
χ(u; ·)) + Op(Dκ

χ(u; ·))∗Op(c(u; ·))∗]ũ, ũ〉.
(4.2.46)

Remind decomposition (4.2.34) of c. Since c′′ ∈ Σd−1,ν
p,N0

, we may write by corollary 3.3.5 (i)

Op(c′′(u; ·))Op(Dκ
χ(u; ·)) = Op(g(u; ·)) for a new symbol g ∈ Σ̃d,ν′

N0
with ν ′ independent of d and

v(g) ≥ p + κ. This term will give in (4.2.46) a contribution which can be treated as (4.2.43).
The c′ contribution to (4.2.46) may be written, since c′ is self-adjoint

(4.2.47) 〈[Op(c′(u; ·))Op(Dκ
χ(u; ·)) + Op(Dκ

χ(u; ·))∗Op(c′(u; ·))]ũ, ũ〉.

By (4.2.23), (4.2.24) and (4.2.11), we may decompose

Dκ(u, n) = Dκ′(u, n) + D̂κ(u, n)
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with

Dκ′(u, n) = i(2a(u) + a(u)2)ωm(n)

[
IK′(n) 0

0 −IK′(n)

]

D̂κ(u, n) of order −∞.

The contribution of D̂κ(u, n) to (4.2.47) may be treated as expression (4.2.43). Since we
may write Dκ′(u, n)∗ = −Dκ′(u, n), (ii) of proposition 3.2.7 shows that Op(Dκ

χ
′(u; ·))∗ =

−Op(Dκ
χ
′(u; ·)) modulo an operator of order zero, whose contribution may be treated as (4.2.43).

Consequently, we are left with

(4.2.48) 〈[Op(c′(u; ·)),Op(Dκ′(u; ·))]ũ, ũ〉.

Remark now that by assumption (4.2.35) and the expression of Dκ′, we have c′(u, ·)◦Dκ′(u, ·) =
Dκ′(u, ·) ◦ c′(u, ·) (for large enough phase arguments of the symbols). We may therefore apply

corollary 3.3.5 (ii) to write the commutator as an operator associated to a symbol in Σ̃d,ν′
N0

, of
valuation larger or equal to κ + p, for some ν ′ independent of d. Reasoning as for (4.2.43), we
get again a contribution to the last two terms in (4.2.39).

To finish the proof, we just have to remark that the contribution to the first term in (4.2.42)
obtained plugging the first term in the right hand side of (4.2.45) inside the first term in the right
hand side of (4.2.44) gives the second term in the right hand side of (4.2.39). This concludes
the proof of the proposition. 2

Proposition 4.2.5 Let ν ∈ R+. There is ν ′ ∈ R+ and for any p ∈ N∗, d ∈ R, M̃ ∈ Rd,νp , there

are operators R1 ∈ R̃d+1,ν′ , R2 ∈ R̃0,ν′ with v(R1) ≥ κ + p, v(R2) ≥ κ + 1, such that for any
smooth enough u solving equation (4.2.13)

d

dt
〈M̃(u, . . . , u), u〉 =

p∑

j=1

〈M̃(u, . . . ,M0u, . . . , u), u〉+ 〈M∗0 M̃(u, . . . , u), u〉

+ 〈R1(u), u〉+ 〈M̃(u, . . . , u), R2(u)〉.
(4.2.49)

Proof: We compute first M̃(dudt , u, . . . , u) using formulas (4.2.30) and decomposing

Op(Mχ(u; ·)(u; ·)) = M0u+ Op(Mκ
χ (u; ·)(u; ·)).

Using corollary 3.3.7, we get a contribution to the first and third terms in the right hand side of
(4.2.49). In the same way, we get from 〈M̃(u, . . . , u), dudt 〉, using corollary 3.3.6 (iii) contributions
to the last two terms in (4.2.49). 2
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4.3 Refined energy inequalities and proof of the main theorem

The objective of this subsection is to prove proposition 4.3.2 below, which will imply theo-
rem 1.1.1. Remind that we defined in (4.2.14) for a solution u of equation (4.2.4) the quantity
Θs

0(u(t, ·)) which, as long as ‖u(t, ·)‖Hs remains small enough, is equivalent to ‖u(t, ·)‖2Hs . We
shall see that d

dtΘ
s
0(u(t, ·)) may be written essentially as 〈Op(a(u; ·))ũ, ũ〉 for a symbol a of order

2s and valuation κ. We shall next find a correction Θs
1(u(t, ·)) so that d

dt(Θ
s
0(u(t, ·))−Θs

1(u(t, ·)))
may be written as 〈Op(b(u; ·))ũ, ũ〉 with b of order 2s and valuation r − 1 > κ. This gain on
the valuation will give us the long time existence result we look for. The correction Θs

1 will be
constructed solving an equation on symbols involving the right hand side of (4.2.39). This is
the main technical part of this subsection.

Let us first recall some notations, and a result of [10] that will play a crucial role. Remind from
subsection 1.2 that the large eigenvalues of P =

√
−∆ + V come by pairs ω−(n) ≤ ω+(n) having

the same asymptotics (1.2.1). We denote as before by ω(·) a symbol on R+ with asymptotics
(1.2.1) at infinity. We fix a large enough integer τ so that the spectrum H of P may be written

(4.3.1) H = (H ∩ Iτ ) ∪
+∞⋃

n=τ+1

(H ∩ In),

where for n ≥ τ + 1, In are disjoint intervals of length O(n−∞) centered at ω(n) and containing
ω−(n) and ω+(n), and where Iτ contains the small eigenvalues. We set H̃ = H∪{ω(n);n ∈ N},
and write for H̃ a decomposition of form (4.3.1). The decomposition of L2(S1,R2) associated
to (4.3.1) is given by (4.2.5). Let us recall a special case of proposition 2.2.1 of [10]. We use
notation (2.1.5).

Proposition 4.3.1 For any ξ ∈ H (or H̃), denote by n(ξ) the unique n ∈ Nτ such that ξ ∈ In(ξ).
Let p be an odd positive integer. There is a zero measure subset N of ]0,+∞[ such that for any
m ∈]0,+∞[−N , there are c > 0, N0 ∈ N, so that for any ξ0, . . . , ξp+1 ∈ H (or H̃), any
0 ≤ q ≤ p+ 1

(4.3.2)
∣∣∣

q∑

j=0

√
m2 + ξ2

j −
p+1∑

j=q+1

√
m2 + ξ2

j

∣∣∣ ≥ cµ(n(ξ0), . . . , n(ξp+1))−N0 .

From now on, we fix a value of m outside N , and so an integer N0. We shall state and prove
a proposition relying on division by quantities of form (4.3.2). We need first to introduce some

notations. If a is a paradifferential symbol, a ∈ Σd,ν
p,N0

, remind that for any u1, . . . , up ∈ E ,
n0, np+1 ∈ Nτ , a(u1, . . . , up;n0, np+1) is a K(n0) ×K(np+1) matrix, where for n ∈ Nτ , K(n) is
an even integer (and K(n) = 4 if n ≥ τ + 1). We can write a block decomposition of a involving
K(n0)/2 lines and K(np+1)/2 columns

(4.3.3)

[
∗ ∗
∗ ∗

]
.

We shall consider the following two assumptions
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(HD) In (4.3.3) each block outside the diagonal is zero.

(HND) In (4.3.3) each block on the diagonal is zero.

In accordance with notations (4.2.36), if c1 is a symbol in Σd,ν
p,N0

we shall set

(4.3.4) c1
M0

(u1, . . . , up;n0, np+1) =

p∑

j=1

c1(u1, . . . ,M0uj , . . . , up;n0, np+1).

Proposition 4.3.2 Let ν ∈ R+. There is ν ′ ∈ R+ such that for any d ∈ R, p ∈ N odd, a ∈
Σd,ν
p,N0

satisfying assumption (HD) (resp. assumption (HND)), we may find a symbol c1 ∈ Σd,ν′
p,N0

satisfying (HD) (resp. a symbol c1 ∈ Σd−1,ν′
p,N0

satisfying (HND)) such that

c1
M0

(u1, . . . , up;n0, np+1) + c1(u1, . . . , up;n0, np+1)D0(np+1)−D0(n0)c1(u1, . . . , up;n0, np+1)

= a(u1, . . . , up;n0, np+1).

(4.3.5)

Moreover, if a is self-adjoint, we may assume that c1 is also self-adjoint.

Remark that the last statement follows from (4.3.5) and the fact that if c1 satisfies (4.3.5), then
c1• defined by (2.2.1) satisfies also (4.3.5) with right hand side replaced by a• (since D(n)∗ =
−D(n)).

The proof of (4.3.5) will use several lemmas. We remark first that we may extend c1 and a,
which are R-mulitilinear maps in (u1, . . . , up) as C-mulitilinear maps. This allows us to make
the change of function uj → P0uj in (4.3.5), where P0 is defined in (4.2.19) and satisfies by
(4.2.23) P0D0 = M0P0. This equation is thus equivalent to

c̃1
D0

(u1, . . . , up;n0, np+1) + c̃1(u1, . . . , up;n0, np+1)D0(np+1)−D0(n0)c̃1(u1, . . . , up;n0, np+1)

= ã(u1, . . . , up;n0, np+1)

(4.3.6)

where we denoted

ã(u1, . . . , up;n0, np+1) = a(P0u1, . . . , P0up;n0, np+1)

c̃1(u1, . . . , up;n0, np+1) = c1(P0u1, . . . , P0up;n0, np+1)

c̃1
D0

(u1, . . . , up;n0, np+1) =

p∑

j=1

c1(P0u1, . . . , P0D0uj , . . . , P0up;n0, np+1).

(4.3.7)

We shall denote by Σd,ν
p,N0

(N) the space of functions a of type (2.1.10), defined on (E ⊗ C) ×
· · · × (E ⊗ C) × Nτ × Nτ instead of E × · · · × E × Nτ × Nτ , which are C-p-linear in (u1, . . . , up)
and satisfy condition (i)δ of definition 2.1.1 for some δ ∈]0, 1[ small enough, and inequalities

(2.1.12) only when α + β + γ ≤ N . We endow this space with the norm |a|d,νp,N0,N
given by the

best constant in inequality (2.1.12). Of course, Σd,ν
p,N0

is the restriction of
⋂
N Σd,ν

p,N0
(N) to real
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arguments (u1, . . . , up). If c1 ∈ Σd,ν
p,N0

(N) we denote by L(c1) the symbol defined by the left
hand side of (4.3.6). Remind that by (4.2.23), (4.2.24), (4.2.11), the matrix D0(n) = D(0, n)
may be decomposed as

(4.3.8) D0(n) = D′0(n) + D̂0(n), D′0(n) = iωm(n)

[
IK′(n) 0

0 −IK′(n)

]

where D̂0(n) is a symbol of order −∞. When n = τ , we may take D′0(τ) = 0. We then
decompose

(4.3.9) L(c1) = L0(c1) + L1(c1)

with, if U ′ = (u1, . . . , up),
(4.3.10)
L0(c1)(U ′;n0, np+1) = c̃1

D0
(U ′;n0, np+1) + c̃1(U ′;n0, np+1)D′0(np+1)−D′0(n0)c̃1(U ′;n0, np+1)

and

(4.3.11) L1(c1)(U ′;n0, np+1) = c̃1(U ′;n0, np+1)D̂0(np+1)− D̂0(n0)c̃1(U ′;n0, np+1).

Remark that L1 sends Σd,ν
p,N0

(N) into Σ−∞,0p,N0
(N) since D̂0 is of order −∞. On the other hand, if

c1 satisfies condition (HD), c̃1(U ′;n0, np+1) commutes when n0, np+1 ∈ Nτ+1 to D′0(n0) whence

(4.3.12) L0(c1)(U ′;n0, np+1) = c̃1
D0

(U ′;n0, np+1) + c̃1(U ′;n0, np+1)(D′0(np+1)−D′0(n0)).

Remark that because of definition (4.2.10) of ωm, ωm(np+1)−ωm(n0) satisfies when |np+1 − n0| ≤
1
4(np+1 + n0) inequalities (3.3.15). This shows that if

Σ′d,νp,N0
= {a ∈

⋂

N

Σd,ν
p,N0

(N); a satisfies (HD)}

Σ′d,νp,N0
(N) = Σ′d,νp,N0

∩ Σd,ν
p,N0

(N),

(4.3.13)

then L0 sends Σ′d,νp,N0
(N) into Σ′d,ν+1

p,N0
(N − 1).

If c1 satisfies assumption (HND), then for n0, np+1 ∈ Nτ+1,

c̃1(U ′;n0, np+1)D′0(n0) = −D′0(n0)c̃1(U ′;n0, np+1)

whence

(4.3.14) L0(c1)(U ′;n0, np+1) = c̃1
D0

(U ′;n0, np+1) + c̃1(U ′;n0, np+1)(D′0(np+1) +D′0(n0)).

If we define

Σ′′d,νp,N0
= {a ∈

⋂

N

Σd,ν
p,N0

(N); a satisfies (HND)}

Σ′′d,νp,N0
(N) = Σ′′d,νp,N0

∩ Σd,ν
p,N0

(N),

(4.3.15)

we obtain that L0 sends Σ′′d,νp,N0
(N) in Σd+1,ν

p,N0
(N). Let us prove the following lemma:
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Lemma 4.3.3 (i) For any d ∈ R, ν ∈ R+, p ∈ N, N ∈ N, the operator L is injective on

Σd,ν
p,N0

(N).

(ii) Let F be a subspace of Σd,ν
p,N0

(N) such that there is a finite subset K of Nτ × Nτ so that
for any a ∈ F , a(·;n0, np+1) ≡ 0 if (n0, np+1) 6∈ K. Then F is stable by L and L : F → F is
bijective.

Proof: (i) We denote by Πn the spectral projector on the space En⊗C, where En is defined by
the decomposition (4.2.5) of L2(S1;R2). We shall use the notation Π′n for the similar projector
acting on L2(S1;C). For every n, we denote by (ω(n, `))` the K ′(n) eigenvalues of the restriction
of P =

√
−∆ + V to the range of Π′n acting on L2(S1;C). We choose an orthonormal basis of

that range made of eigenfunctions of P associated to these eigenvalues (this is not in general a
nice basis). We write

(4.3.16) Π′n =
∑

`

Π′`n

the corresponding decomposition of Π′n. The sum in (4.3.16) is finite, and for n ≥ τ + 1 made of
only two terms as the range of Π′n is two dimensional. We set ωm(n, `) =

√
m2 + ω(n, `)2 and

we have

(4.3.17) ΛmΠ′`n = ωm(n, `)Π′`n

and (ωm(n, `))` are the eigenvalues of the matrix λm(n) defined in (4.2.11). We define

(4.3.18) J+(n) =

[
IK′(n) 0

0 0

]
, J−(n) =

[
0 0
0 IK′(n)

]
, J(n) = J+(n)− J−(n)

and set

Π`,+
n =

[
Π′`n 0
0 0

]
, Π`,−

n =

[
0 0
0 Π′`n

]
,

Π+
n =

[
Π′n 0
0 0

]
, Π−n =

[
0 0
0 Π′n

]
,

(4.3.19)

so that Πn = Π+
n + Π−n and, denoting by D0 the operator with symbol D0(n) given by (4.2.23),

(4.2.24),

(4.3.20) D0Π`,±
n = ±iωm(n, `)Π`,±

n .

By (4.3.8), we have also

(4.3.21) D′0Π±n = ±iωm(n)Π±n .

Remind the map Fn : L2(S1;K2)→ KK(n) (K = R or C) defined by (2.1.6) and set

(4.3.22) Π̃`,±
n = Fn ◦Π`,±

n ◦ F∗n, Π̃±n = Fn ◦Π±n ◦ F∗n.
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These are projectors on KK(n) and we have

D0(n)Π̃`,±
n = Π̃`,±

n D0(n) = ±iωm(n, `)Π̃`,±
n

D′0(n)Π̃±n = Π̃±nD
′
0(n) = ±iωm(n)Π̃±n .

(4.3.23)

Let c1 ∈ Σd,ν
p,N0

(N) be such that L(c1) vanishes identically. Compose L(c1) (given by the left

hand side of (4.3.6)) on the left by Π̃`0,ε0
n0 and on the right by Π̃

`p+1,εp+1
np+1 , and evaluate it at

Π`′,ε′
n′ U

′ = (Π`1,ε1
n1

u1, . . . ,Π
`p,εp
np up)

where εj ∈ {+,−} j = 0, . . . , p+ 1. We get

p∑

j=1

Π̃`0,ε0
n0

c1(P0Π`1,ε1
n1

u1, . . . , P0D0Π
`j ,εj
nj uj , . . . , P0Π

`p,εp
np up;n0, np+1)Π̃

`p+1,εp+1
np+1

+Π̃`0,ε0
n0

c1(P0Π`1,ε1
n1

u1, . . . , P0Π
`p,εp
np up;n0, np+1)D0(np+1)Π̃

`p+1,εp+1
np+1

−Π̃`0,ε0
n0

D0(n0)c1(P0Π`1,ε1
n1

u1, . . . , P0Π
`p,εp
np up;n0, np+1)Π̃

`p+1,εp+1
np+1 ≡ 0.

Using (4.3.20), (4.3.23) we may write this as

i
(p+1∑

j=1

εjωm(nj , `j)− ε0ωm(n0, `0)
)
Π̃`0,ε0
n0

c̃1(Π`′,ε′
n′ U

′;n0, np+1)Π̃
`p+1,εp+1
np+1 ≡ 0.

Condition (4.3.2) shows that for m outside N , the scalar coefficient above never vanishes, which
implies c̃1 ≡ 0, whence c1 ≡ 0. This proves (i) of the lemma.

To prove (ii), we remark that if a ∈ F is given, we may define c1 ∈ F with L(c1) = a by

Π̃`0,ε0
n0

c̃1(Π`′,ε′
n′ U

′;n0, np+1)Π̃
`p+1,εp+1
np+1 =

− i
(p+1∑

j=1

εjωm(nj , `l)− ε0ωm(n0, `0)
)−1

Π̃`0,ε0
n0

ã(Π`′,ε′
n′ U

′;n0, np+1)Π̃
`p+1,εp+1
np+1 .

Since by definition of F , n0, np+1 stay in a bounded set of indices, the estimates of definition of
a symbol hold true trivially. 2

Proof of proposition 4.3.2: Using notations (4.3.13), (4.3.15), we shall construct operators

L−1 : Σ′d,νp,N0
→ Σ′d,ν+N0

p,N0

L−1 : Σ′′d,νp,N0
→ Σ′′d−1,ν+N0

p,N0

(4.3.24)

such that L ◦L−1 = Id. This will give the wanted conclusion. It will be enough to construct for
any N

L−1
N : Σ′d,νp,N0

(N)→ Σ′d,ν+N0

p,N0
(N + 1)

L−1
N : Σ′′d,νp,N0

(N)→ Σ′′d−1,ν+N0

p,N0
(N)

(4.3.25)
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such that L ◦ L−1
N : Σ′d,νp,N0

(N) → Σ′d,ν+N0+1
p,N0

(N) and L ◦ L−1
N : Σ′′d,νp,N0

(N) → Σ′′d,ν+N0

p,N0
(N)

coincide with identity. Actually, since L is injective by lemma 4.3.3,

L−1
N |Σ′d,νp,N0

(N+1)
= L−1

N+1, L
−1
N |Σ′′d,νp,N0

(N+1)
= L−1

N+1

which allows us to define L−1 satisfying (4.3.24).

If AN > 0 is a constant to be chosen, we decompose

Σ′d,νp,N0
(N) = F ′N ⊕ Σ′d,νp,N0

(N,AN ), Σ′′d,νp,N0
(N) = F ′′N ⊕ Σ′′d,νp,N0

(N,AN )

where F ′N , F
′′
N is the subspace made of symbols a satisfying a(·;n0, np+1) ≡ 0 for n0+np+1 > AN .

By (ii) of lemma 4.3.3, it is enough to construct

L−1
N : Σ′d,νp,N0

(N,AN )→ Σ′d,ν+N0

p,N0
(N + 1, AN )

L−1
N : Σ′′d,νp,N0

(N,AN )→ Σ′′d−1,ν+N0

p,N0
(N,AN )

(4.3.26)

for AN large enough. Remind decomposition (4.3.9) of L, and let us construct first an inverse

L−1
0,N to L0. We take ã respectively in Σ′d,νp,N0

(N,AN ) or Σ′′d,νp,N0
(N,AN ) and look for c1 in the

right hand side of (4.3.26) with L0(c1) = ã. We use expressions (4.3.12), (4.3.14) for L0(c1).

If we compose on the right with Jεp+1 defined in (4.3.18) and evaluate L0(c1) at Π`′,ε′
n′ U

′ =

(Π`1,ε1
n1 u1, . . . ,Π

`p,εp
np up), we get respectively the equalities

c̃1
D0

(Π`′,ε′
n′ U

′;n0, np+1)Jεp+1 + c̃1(Π`′,ε′
n′ U

′;n0, np+1)(D′0(np+1)∓D′0(n0))Jεp+1

= ã(Π`′,ε′
n′ U

′;n0, np+1)Jεp+1 .

Using (4.3.7) and (4.3.20), (4.3.23) we see that we may define c1 by
(4.3.27)

c̃1(Πn′U
′;n0, np+1) = −

∑

(`1,ε1),...,(`p,εp),εp+1

iF `
′,ε
∓ (n0, . . . , np+1)−1ã(Π`′,ε′

n′ U
′;n0, np+1)Jεp+1

where the sum is taken for `1, . . . , `p, ε1, . . . , εp+1 in a set of bounded cardinal, and where

F `
′,ε
∓ (n0, . . . , np+1) =

p∑

j=1

εjωm(nj , `j) + εp+1(ωm(np+1)∓ ωm(n0)).

It is enough to check that each term in the sum (4.3.27) belongs to the right hand side of

(4.3.26). Remark that F `
′,ε
− is a function of type (3.3.10) that satisfies (3.3.11): if |n0 − np+1|

is large relatively to |n′|, this follows from the fact that ωm(n) = n + O(1/n), n → +∞. If
|n0 − np+1| ≤ C|n′| this is a consequence of proposition 4.3.1. By inequalities (3.3.12), in the case

of sign − in (4.3.27), we see that c̃1 is a symbol in Σ′d,ν+N0

p,N0
(N+1, AN ) (taking eventually for N0

a larger value than the one of (3.3.11)). In the case of F `′,ε
+ , we remark that it satisfies (3.3.13).

So (3.3.12) will be controlled in terms of (3.3.14). This implies that for ã ∈ Σ′′d,νp,N0
(N,AN ),

(4.3.27) defines a symbol c̃1 in Σ′′d−1,ν+N0

p,N0
(N,AN ). Consequently we have defined a bounded

inverse L−1
0,N to L0, acting on space (4.3.26). To define L−1

N as

L−1
N = (L0(Id + L−1

0,NL1))−1 = (Id + L−1
0,NL1)−1L−1

0,N
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we just need to check that the operator norm of L−1
0,N ◦ L1 from Σ′d,ν+N0

p,N0
(N + 1, AN ) (resp.

Σ′′d−1,ν+N0

p,N0
(N,AN )) to itself is smaller than one if AN is large enough. But we have seen that

L1 sends Σd′,ν
p,N0

(N) to Σ−∞,0p,N0
(N) for any d′. By definition (4.3.11) of L1, the same is true for

the Σ′ or Σ′′ spaces, so the operator norm of L−1
0,N ◦ L1 on the above spaces is bounded from

above by CN/AN , where CN > 0 in independent of AN (it suffices to extract from the gain on
the order coming from L1 a factor 1

n0+np+1
≤ 1

AN
). The conclusion follows for large enough AN .

2

We shall need also a result, similar to proposition 4.3.2, but for remainder operators.

Proposition 4.3.4 Let d ∈ R, let p ∈ N an odd number and ν ∈ R+. For every M̃ ∈ Rd,νp+1

there is M̃1 ∈ Rd,ν+N0
p+1 such that for any u1, . . . , up+1 ∈ E

(4.3.28)

p+1∑

j=1

M̃1(u1, . . . ,M0uj , . . . , up+1) +M∗0 M̃1(u1, . . . , up+1) = M̃(u1, . . . , up+1).

Proof: We extend M̃, M̃1 as C-multilinear maps, replace uj bu P0uj and compose on the left
by P ∗0 . Since M0P0 = P0D0 and D∗0 = −D0 we get

p+1∑

j=1

P ∗0 M̃1(P0u1, . . . , P0D0uj , . . . , P0up+1)−D0P
∗
0 M̃1(P0u1, . . . , P0up+1) =

P ∗0 M̃(P0u1, . . . , P0up+1).

(4.3.29)

We use notations (4.3.19). We compose on the left (4.3.29) with Π`0,ε0
n0 and replace uj by

Π
`j ,εj
nj uj , for any possible values of n0, . . . , np+1, `0, . . . , `p+1, ε0, . . . , εp+1. If U = (u1, . . . , up+1),

n = (n1, . . . , np+1), ` = (`1, . . . , `p+1), ε = (ε1, . . . , εp+1) we set

Π`,ε
n U = (Π`1,ε1

n1
u1, . . . ,Π

`p+1,εp+1
np+1 up+1).

Using (4.3.20) we see that (4.3.29) may be written

Π`0,ε0
n0

P ∗0 M̃1(P0Π`,ε
n U) = −i

(p+1∑

j=1

εjωm(nj , `j)− ε0ωm(n0, `0)
)−1

Π`0,ε0
n0

P ∗0 M̃(Π`,ε
n P0U)

so that replacing U by P−1
0 U

Πn0M̃1(ΠnU) = −i
∑

(`0,ε0),...,(`p+1,εp+1)

(p+1∑

j=1

εjωm(nj , `j)−ε0ωm(n0, `0)
)−1

(P ∗0 )−1Π`0,ε0
n0

P ∗0 M̃(Π`,ε
n U)

where the sum is taken for `0, . . . , `p+1, ε0, . . . , εp+1 staying in a bounded set of indices. By
proposition 4.3.1 the first factor in the sum is bounded from above by Cµ(n0, . . . , np+1)N0 . If
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we use that M̃ satisfies estimates of type (2.1.15) the same is true for M̃1, with ν replaced by
ν +N0, since µ(n0, . . . , np+1) ≤ max2(n1, . . . , np+1). This concludes the proof. 2

Proof of theorem 1.1.1: We wrote equation (1.1.4) under the equivalent form (4.2.4) or (4.2.13).
It is enough to show that there is s0 large enough, such that if s ≥ s0, there is Cs > 0 and
R0 > 0 so that, if u(t, ·) is a solution of (4.2.4) defined on some interval [0, T ], with Cauchy data
in Hs, one has for any t ∈ [0, T ]

(4.3.30) ‖u(t, ·)‖2Hs ≤ Cs
[
‖u(0, ·)‖2Hs +

∫ t

0
‖u(τ, ·)‖r−1

Hs0‖u(τ, ·)‖2Hs dτ
]

as long as ‖u(t, ·)‖Hs0 ≤ R0. Actually, applying (4.3.30) with s = s0, assuming ‖u(0, ·)‖Hs0 ≤ ε
and taking R0 = (2Cs0)1/2ε, we see that we may extend the solution as an Hs0 function up to
time t0 = 1

2Cs0
R−r+1

0 = cs0ε
−r+1. If the Cauchy data are Hs with s ≥ s0, the solution is also in

Hs on the same interval. It will be bounded in Hs on an interval of length 1
2Cs

R−r+1
0 = csε

−r+1.

Because of (4.2.16), we may in (4.3.30) replace ‖u(t, ·)‖2
Hs by Θs

0(u(t, ·)). Moreover, if in the
right hand side of (4.2.17) we replace Op(c(u; ·)) by

(4.3.31)
1

2
[Op(c(u; ·))Op((1 + aχ)(u; ·)) + Op((1 + aχ)(u; ·))Op(c(u; ·))]

we make appear an error that may be written by corollary 3.3.5 (i) 〈Op(e(u; ·))ũ, ũ〉, where e is

a symbol in Σ̃2s,ν′
1 for some ν ′ independent of s, of valuation v(e) ≥ 2κ ≥ r − 1. Consequently,

by proposition 2.1.3 and (4.2.22)

‖Op(e(u; ·))ũ‖H−s ≤ C‖u‖r−1
Hs0‖u‖Hs

if s ≥ s0, and s0 is large enough relatively to ν ′. We thus see that if we modify the definition of
Θs

0 replacing in (4.2.17) Op(c(u; ·)) by (4.3.31), we still get a quantity equivalent to ‖u‖2
Hs when

‖u‖Hs0 is small enough. We may thus assume from now on that

(4.3.32) Θs
0(u) =

1

2
〈[Op(c0(u; ·))Op((1 + aχ)(u; ·)) + Op((1 + aχ)(u; ·))∗Op(c0(u; ·))]ũ, ũ〉

for a scalar self adjoint symbol c0 ∈ Σ̃2s,ν
1 , and c0 satisfying condition C(κ, r) of definition 3.3.2.

We may decompose c0 as a finite sum of homogeneous symbols c0
p ∈ Σ2s,ν

p,1 . Remark that the
contributions coming from the components homogeneous of degree p ≥ r − 1 give again a
contribution to Θs

0(u) which is O(‖u‖r−1
Hs0‖u‖2Hs). Modifying again the definition of Θs

0, we may
thus assume

c0 =
r−2∑

p=0

c0
p.

Since c0 satisfies C(κ, r), terms indexed by even p’s in the above sum are zero. We compute the
time derivative of (4.3.32) applying to each homogeneous component proposition 4.2.4. Remark
that assumptions (4.2.34), (4.2.35) are satisfied since c0 is scalar and self-adjoint. We get, by
(4.2.39)

d

dt
Θs

0(u(t, ·)) =〈Op(c0
M0

(u; ·))ũ, ũ〉+ 〈[Op(c0(u; ·))D0 +D∗0Op(c0(u; ·))]ũ, ũ〉
+ 〈Op(e0(u; ·))ũ, ũ〉+ 2Re 〈R0(u), u〉

69



where e0 ∈ Σ̃2s,ν′
N0

, R0 ∈ R̃2s,ν′ for some ν ′ independent of s, and with v(e0) ≥ κ, v(R0) ≥ κ+ 1.

Moreover e0 is self-adjoint and these symbols and operators satisfy condition C(κ, r). Since c0

is scalar and D∗0 = −D0, we get from corollary 3.3.5 (ii) that the second duality bracket may be

written 〈Op(b(u; ·))ũ, ũ〉 for a symbol b ∈ Σ̃2s,ν
1 for some ν independent of s. Moreover, since c0

satisfies condition C(κ, r), c0
M0

and b have valuation larger or equal to κ, and verify also C(κ, r).
We may thus write

(4.3.33)
d

dt
Θs

0(u(t, ·)) = 〈Op(g(u; ·))ũ, ũ〉+ 2Re 〈R0(u), u〉

for a new symbol g ∈ Σ̃2s,ν
1 with v(g) ≥ κ, g satisfying condition C(κ, r). In particular, the

homogeneous components of order p of g with κ ≤ p < r−1 vanish if p is even. Moreover we may
assume g self-adjoint. For odd p, κ ≤ p < r − 1, we decompose the corresponding contribution
gp as g′p + g′′p , where g′p satisfies assumption (HD) and g′′p satisfies (HND). By proposition 4.3.2,

for each such p, we may find c1
p
′ ∈ Σ2s,ν′

p,N0
, c1

p
′′ ∈ Σ2s−1,ν′

p,N0
for some ν ′ independent of s, such that

(4.3.5) holds true for c1
p = c1

p
′ + c1

p
′′, when its right hand side is replaced by gp. In particular,

these c1
p have the structure (4.2.34), (4.2.35) which allows us to apply proposition 4.2.4. More

precisely, define

Θs
1(u) =

1

2

∑

κ≤p<r−1
p odd

〈[Op(c1
p(u; ·))Op((1 + aχ)(u; ·)) + Op((1 + aχ)(u; ·))∗Op(c1

p(u; ·))]ũ, ũ〉.

By (4.2.39) and (4.3.5) we have

(4.3.34)
d

dt
Θs

1(u(t, ·)) = 〈Op(g(u; ·))ũ, ũ〉+ 〈Op(f 0(u; ·))u, u〉+ 2Re 〈S0(u), u〉

where f0 ∈ Σ̃2s,ν′
N0

, S0 ∈ R̃2s,ν′ for some ν ′ independent of s, with v(f0) ≥ 2κ, v(S0) ≥ 2κ + 1.
(We used again (4.2.20) to express ũ in terms of u in the last but one term coming from (4.2.39)).

Let us define also a perturbation to get rid of the 〈R0(u), u〉 term in (4.3.33). We may decompose
R0 = R′0 + R̃0 with R′0 =

∑
κ≤p<r−1 R

0
p+1 and R̃0 ∈ R̃2s,ν of valuation larger or equal to r,

and where R0
p+1 ∈ R2s,ν′

p+1 and the sum is indexed by odd p (since R0 satisfies condition C(κ, r)).

Define M̃p+1 as the solution of equation (4.3.28), when the right hand side is replaced by R0
p+1.

Then M̃p+1 ∈ R2s,ν′+N0
p+1 and if we set

Θs
2(u) = 2Re

∑

κ≤p<r−1
p odd

〈M̃p+1(u, . . . , u), u〉

it follows from proposition 4.2.5 that

(4.3.35)
d

dt
Θs

2(u(t, ·)) = 2Re
[
〈R′0(u), u〉+ 〈R1(u), u〉+

∑

κ≤p<r−1
p odd

〈M̃p+1(u, . . . , u), R2
p+1(u)〉

]
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where R1 ∈ R̃2s+1,ν′′ , R2
p+1 ∈ R̃0,ν′′ for some ν ′′ independent of s and v(R1) ≥ 2κ + 1 ≥ r,

v(R2
p+1) ≥ κ+ 1. Combining (4.3.33), (4.3.34), (4.3.35) we get

d

dt
[Θs

0(u(t, ·))−Θs
1(u(t, ·))−Θs

2(u(t, ·))] =

− 〈Op(f0(u; ·))u, u〉+ 2Re 〈R̃0(ũ)− S0(u)−R1(u), u〉
− 2Re

∑

κ≤p<r−1
p odd

〈M̃p+1(u, . . . , u), R2
p+1(u)〉.

(4.3.36)

The right hand side is bounded from above by

C[‖Op(f0(u; ·))u‖H−s‖u‖Hs + ‖R̃0(ũ)− S0(u)−R1(u)‖H−s‖u‖Hs

+
∑

κ≤p<r−1
p odd

‖M̃p+1(u, . . . , u)‖H−s‖R2
p+1(u)‖Hs ].(4.3.37)

By proposition 2.1.3, and using that v(f 0) ≥ 2κ, there is some s0, depending on ν ′ but not
on s, such that when s ≥ s0 the first term in (4.3.37) is bounded by C‖u‖2κHs0‖u‖2Hs , as long

as ‖u‖Hs0 ≤ 1. In the second term of (4.3.37), S0, R1, R̃0 belong to R̃2s+1,ν′′ for some ν ′′

independent of s, and have valuation larger or equal to r. By lemma 2.1.7 and inequality (2.1.19),
for s large enough relatively to ν ′′, the second term in (4.3.37) is controlled by C‖u‖r−1

Hs0‖u‖2Hs .

Since R2
p+1 ∈ R̃0,ν′′ with v(R2

p+1) ≥ κ + 1, lemma 2.1.7 implies ‖R2
p+1(u)‖Hs ≤ C‖u‖κHs0‖u‖Hs

for some s0 large enough. Since M̃p+1 ∈ R2s,ν′′
p+1 with ν ′′ independent of s and p + 1 ≥ κ + 1,

the same lemma gives the estimate ‖M̃p+1(u, . . . , u)‖H−s ≤ C‖u‖κHs0‖u‖Hs if s0 is large enough
(independently of s), and ‖u‖Hs0 ≤ 1. Finally we get for (4.2.34) an upper bound in terms of

C‖u‖r−1
Hs0‖u‖2Hs .

using that 2κ ≥ r − 1. It then follows from (4.3.36) that for t ≥ 0

Θs
0(u(t, ·))−Θs

1(u(t, ·))−Θs
2(u(t, ·)) ≤

Θs
0(u(0, ·))−Θs

1(u(0, ·))−Θs
2(u(0, ·)) + C

∫ t

0
‖u(τ, ·)‖r−1

Hs0‖u(τ, ·)‖2Hs dτ
(4.3.38)

when s ≥ s0 large enough and when for 0 ≤ t′ ≤ t, ‖u(t′, ·)‖Hs0 ≤ 1. Again by proposition 2.1.3
and lemma 2.1.7, we get when ‖u(t, ·)‖Hs0 ≤ 1

(4.3.39) |Θs
1(u(t, ·))|+ |Θs

2(u(t, ·))| ≤ C‖u(t, ·)‖κHs0‖u(t, ·)‖2Hs .

Inequality (4.3.30) follows from (4.3.38), (4.3.39) when ‖u(t′, ·)‖Hs0 stays small enough on the
interval [0, t]. This concludes the proof. 2
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