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Long-time Sobolev stability for small solutions of quasi-linear
Klein-Gordon equations on the circle

J.-M. Delort
Université Paris 13, Institut Galilée,
CNRS, UMR 7539, Laboratoire Analyse Géométrie et Applications
99, Avenue J.-B. Clément,
F-93430 Villetaneuse

Abstract

We prove that higher Sobolev norms of solutions of quasi-linear Klein-Gordon equations
with small Cauchy data on S! remain small over intervals of time longer than the ones given
by local existence theory. This result extends previous ones obtained by several authors in
the semi-linear case. The main new difficulty one has to cope with is the loss of one derivative
coming from the quasi-linear character of the problem. The main tool used to overcome it
is a global paradifferential calculus adapted to the Sturm-Liouville operator with periodic
boundary conditions.

0 Introduction

We address in this paper the question of long time Sobolev stability for small solutions of
nonlinear Klein-Gordon equations on S'. Let us recall some known results. Consider V : St — R
a smooth nonnegative potential and consider u a solution of the equation

Pu
otZ2  0z2
ul¢=0 = €ug

+ (V(2) + m®)u = f(u)
(0.0.1)

3tu\t:0 = €Uy,

where € > 0 is a small parameter, m €]0, +oo[, f is a nonlinearity vanishing at order x + 1 > 2
at 0. It is well known that such an equation has a unique CO(R, H') N C*(R, L?) solution if
up € HY(SY, R),u; € L?(S',R) and ¢ is small enough. The question is to decide whether, when
ug € H¥H(SYLR),ug € H3(SYR) (s> 1), ||u(t, )| gst1 + [|Opu(t, )| s stays bounded over long
intervals of time when ¢ — 0, i.e. over intervals of length ce~"*! with » > x + 1 (the case
r = k + 1 would correspond to the bound given by local existence theory). The difficulty of
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the problem comes from the fact that on S' one does not have any dispersion making decay
linear solutions at infinite times, in contrast to what happens for that equation on the real line
(We refer to chapter 7 of the book of Hérmander [13] for results and references concerning the
nonlinear Klein-Gordon equation on R, and to Shatah [15] for the first occurrence in this setting
of the normal form method that will play an essential role below).

Bourgain answered the above question for equation (0.0.1) in [5]. He showed that the solutions
remain bounded in H*t! x H® for intervals of time of length ce ™ for any N, when s > N,
and when the parameter m in (0.0.1) is taken outside a subset of zero measure of ]0,+ool.
Bambusi [1] and Bambusi-Grébert [3] obtained later more precise versions of this result (see also
the lectures notes of Grébert [12]). Let us mention that, as far as we know, there is no example
of solutions which, when m is in the exceptionnal set excluded in the above result, would have an
H**1 x H*® norm blowing up when time goes to infinity. Nevertheless, Bourgain [6] constructed
an example of an abstract perturbation of the linear wave equation for which such a blowing up
property occurs.

Two natural questions arise: can such results be extended to equations with more general
nonlinearities than the one of (0.0.1), and do they hold true in higher dimension? The latter
question has been answered affirmatively for equations of type (0.0.1) on the sphere S, or more
generally on Zoll manifolds, by Bambusi, Grébert, Szeftel and the author in [2]. The former one
has been taken up in [9, 10, 11], including in higher dimensions, for equations of type (0.0.1) in
which the right hand side is replaced by a general semi-linear non-linearity f(u,dyu,0yu). For
such non-linearities, the solution does not in general exist over an interval of time larger that
the one given by local existence theory (i.e. | — ce ™", ce#[ if f vanishes at order k + 1 at zero) —
see [8] for examples of blowing-up solutions. Nevertheless, a result proved in [9, 10] asserts that
if, for instance, f is homogeneous of even degree k + 1, then the solution of the equation exists
and remains bounded in H*t! x H® over an interval of time of length ce~2%. The method of
proof was similar to the one used by Bourgain [5], Bambusi [1], Bambusi-Grébert [3], the main
novelty being its extension to a higher dimensional setting. Our goal in this paper is to address
the same question in one space dimension for quasi-linear Klein-Gordon equations. As we shall
explain below, the semi-linear methods of the above papers break down immediately because of
the extra loss of one derivative coming from the quasi-linear nature of the problem. Our main
theorem is stated in section 1 below. We shall in this introduction describe our method on the
example

(Dt — (1 +a(u, @) V—A + V+m2>u ~0

uli=o = €uy,

(0.0.2)

. . 2 .
where v is a smooth complex valued function defined on S', A = dd7, and u — a(u,u) is a real

valued polynomial in (u, ), homogeneous of odd degree k. Our aim is to prove existence of the
solution, and uniform control of its H*-norm (s > 1) by Ce, over an interval of time of length
ce 2% (instead of the length ce™® given by local existence theory). Let us first recall how the
corresponding semi-linear result may be proved. Let us take, for simplicity, the case V' = 0 and

consider
(De = V=2+m?)u= flu,a)

U‘t:o = €Uo,

(0.0.3)



where f(u,u) = vPu? with p+qg=r+1. Set A\, = V—-A+m?, A =+—-A+1 and let II,, be
the spectral projector on the space generated by the eigenfunctions e** (n € N). Then the H*

norm is given by |jul|%. = (A%u, ASu) = 3121+ n?)%||[I,ul|, and if u solves (0.0.3)
1d 2 s s s = s
(0.0.4) (e, e =~ [(A" (), A"w) + (A° o, ), A%

The first term in the right hand side vanishes by self-adjointness of A,,, and the second one may
be written —Im My(u, ..., u) with
(0.0.5)
Mo(u, ... ,u,a,...,10) = Z (1—i—n127+q+1)8/1 oy -y ully, w1, ud.
S

—— ——
P g+1 N1 Mptq+1

The idea of the method is to perturb the H?® energy of u by a multilinear expression

Re My (u,...,u,1,...,u)

pHq+1=r+2

such that £ M(u,...,a) will cancel out (0.0.5) up to a remainder which will be O(|jul|35").
This gain on the order of vanishing at 0, versus the one of the last term in (0.0.4), allows one to
obtain the longer interval of time ce~2* by standart arguments. Using (0.0.3), one finds that

d
(0.0.6) EMl( Uy Uy, ) = iL(M1)(uy .., u, ..., 6) + R(u, @)
where
(0.0.7)
P p+q+1
LMy)(u, o) = Mi(u, ooy Aty ey, Ty, 8) = > My(ty o T, A, ),
1 p+1

and R(u,u) is a remainder obtained substituting i f(u, %) to one of the arguments of Mj. Since
f contains no derivative of u, R(u,a) = O(|ju||35"?) as wanted. As ApITu = vVm? + n2I,u,
one may write

(0.0.8)
L(Ml)(Hmul, e ,an+q+lup+q+1) = Fm(nl, e aanqurl)Ml(Hnlul, ey an+q+lup+q+1),

where we denoted

p+g+1
(0.0.9) Fo(ni, ... Npyg1) 21/7712-1- - Z 1/m2—|—n
p+1
To eliminate in %[%Hu(t, 3. + Re M (u, ..., u)] terms homogeneous of degree x + 1, one has

to choose M so that L(M;) = —Mj i.e. according to (0.0.8) and (0.0.5)

Ml(Hmul, e ,an+q+1up+q+1) =
(0.0.10) U
—Fp(ni, ... npygr1) (1 + np+q+1) . Hpyug Moy Up gt doo.



Since p+ ¢ is even, it may be proved that for m outside an exceptionnal subset of zero measure,

Fn(ni,...,npyq+1) does not vanish, and actually
-1 N
|Fm(n1, - npigr1)| < Cu(na, .o nprge1)™°
for some Ny, pu(n1,...,npiq+1) standing for the third largest among ny,. .., npyq+1. This shows

that \Fm\_l is bounded from above by a power of a small frequency, which allows one to prove,
combining this with convenient estimates of the integral in (0.0.10), that M; is a continuous
multilinear form on H® x --- x H® for s > Ny, and so a small perturbation of the H® energy
when v is small. Let us notice that related ideas are used for problems on R™ by Colliander,
Keel, Staffilani, Takaoka and Tao in [7].

Let us go back to the quasi-linear equation (0.0.2). In this case (0.0.4) will write

1d

(0.0.11) 5 g7 1t )iz = —Tm (A%a(u, @) A, Au)

= %(AS [A25 A0, aA%u, ASu).
i

Since the operator [A~25A,,, aA?®] is of order 0, we still get a quantity well defined on H*, even
if its expression is now a little bit more complicated than (0.0.5). We would like to argue as
above and find a new contribution Re M; to add to i|lu(t,-)||%., so that its time derivative
would cancel out the right hand side of (0.0.11), up to remainders. The R(u,u) terms in (0.0.6)
would be given by

(0.0.12)

This quantity is no longer of order 0 in u, @ for a general M, which means that R(u, %) could
no longer be estimated by C|lul|%52 but only by C|ul|/3st!||ul|gs+1. This loss of derivative,
which is systematic in quasi-linear problems, cannot be recovered if M; is a multilinear form
which does not satisfy any structure condition. On the other hand, if we know that M; has
a structure similar to the quantity in the right hand side of (0.0.11), we may hope to make
appear a commutator that will kill the extra loss of one derivative. This is actually the usual
way of getting quasi-linear energy inequalities. The price we have to pay to be able to do so is
that we must get for My, M7 expressions more explicit that just multilinear quantities satisfying
convenient estimates, like those used in the semilinear problems treated in the aforementionned

references. We must be able to write My or M; as

(Op(c(uy ... a;))u,u)

where c(ug,...,up;-) will be a convenient paradifferential symbol, that may be computed from
the equation, and Op(c) is the operator associated to that symbol. The difficulty that arises
is the following: we must work globally on S', and cannot restrict ourselves to open subsets
of R through local charts. This is because our class of symbols will have to contain functions



defined in terms of F,(n1,...,nprq11) ", where Fy, is given in (0.0.9) (to be able to construct
the analogous of M; — see (0.0.10)). This quantity is well defined for m outside an exceptional
subset, only when the arguments n1,...,ny4441 stay in a discrete set. In other words, we cannot
use Bony’s calculus of paradifferential operators on R [4], since their symbols are functions of
a continuous phase variable. We must instead define a global paradifferential calculus on S!,
in terms of symbols whose phase variable varies in the (discrete) spectrum of —% +V on St
When V' = 0, this is done through Fourier series expansions. An example of the type of symbols
we have to consider is given by

mnoT in1x>

(no,n1) — (ae" e = a(n1 —no)

where a € C*°(S!). Such a quantity is rapidly decaying in ng — nj, and its Oy, + 9y, derivative
vanishes. In general, when V # 0, the class of symbols we want to consider has to include
quantities like

(no, nl) - <a90n07 (10711>7

where ¢y, ¢, are two eigenfunctions, and we want them to verify estimates of form
(0.0.13) |(Ong + Ony) (@Png, ony )| < Cnv(ng — 1) ™ (ng +11) 7.

The first section of this paper is devoted to the construction of nice basis of L*(S!), i.e. of
orthonormal basis of almost eigenfunctions for which estimates of form (0.0.13) hold true. This
. . . d? . . . .

is done using quasi-modes for —— - + V' which resemble the imaginary exponentials of the free
case.

The second section of the paper is devoted to the definition of paradifferential operators associ-
ated to symbols whose phase argument varies in a discrete set. We establish the main symbolic
calculus properties of such operators.

The third section presents a special class of pseudo-differential operators, containing the oper-
ators involved in the writing of equation (0.0.1). These special operators enjoy more explicit
symbolic calculus properties that the general ones defined in section 2.

The fourth section is devoted to the proof of the theorem, using the machinery of sections 2 and
3 to be able to get the energy estimates we alluded to at the beginning of this introduction.
We first perform a paradifferential diagonalization of the principal part of the wave operator,
reducing (0.0.1) to a paradifferential version of (0.0.2). We then apply the energy method, as
explained after (0.0.11). The fact that we reduced ourselves to a diagonal principal symbol,
together with the symbolic calculus constructed in the preceding sections, allows us to show
that the remainders of form (0.0.12) that we get actually involve commutators compensating
the apparent loss of one derivative displayed by (0.0.11). In that way, we are able to obtain
energy inequalities of type 4| |u(t,)||%. < C|lu(t,-)||7="*, which imply the long time existence
result we are looking for.

Let us conclude this introduction expressing our gratitude to Dario Bambusi for several conver-
sations about this work. Let us say also that we shall use in the text the following notation: we
write ng ~ n1 to mean that there is a (large) constant C' > 0 with C~'ng < n; < Cng when
ng,n1 — +o0o, and we set ng < n; to say that there is a small ¢ > 0 with ng < cn; when
ng, N1 — +00.



1 Main results and nice basis

1.1 Statement of main theorem

We shall be interested in this paper in solutions of the periodic one dimensional quasi-linear
Klein-Gordon equation. We denote by A = % the Laplace operator on S', and take V : S! —
R, a smooth nonnegative potential. We shall sometimes identify S' with the interval [—, 7]
with periodic boundary conditions. We consider a polynomial map

c:RP—R

(1.1.1)
(X07 X17 X2) B C(X07 X17 X2>

which may be written
K1
(1.1.2) C(X(),Xl,XQ) :ch(Xo,Xl,Xg)

k=k

where ¢, is homogeneous of degree k in (Xg, X1, X2). We denote by r the largest odd integer
satisfying k < r — 1 < 2k and

(1.1.3) for any even integer 2k satisfying k < 2k < r — 1, one has co(Xo, X1, X2) = 0.
We shall consider the following equation, where m > 0 is a parameter

020 4+ (14 ¢(v, 00, 0,0))2[-A +V +m?v =0
(1.1.4) V|t=0 = €vo

Opv|¢=0 = €vy,

where vy and vy are smooth real valued functions defined on S', and € > 0 is a small parameter.
Our main result is the following;:

Theorem 1.1.1 There is a zero measure subset N of |0, +o00[, and for every m € N, there are
c > 0,50 € N, such that for any s > so, any (vo,v1) € H*T(S',R) x H*(S',R), verifying for
€ €]0,1]

(1.1.5) llvoll rso+1 + ||v1]|ms0 < €,
equation (1.1.4) has a unique solution
veCY - T, T, H*TH (S, R) nCY(] - T, T.[, H* (S, R))

with T. > ce "t Moreover, there is for any s > so a constant cs > 0, such that if (vo, v1)
satisfies (1.1.5) with so replaced by s, ||v(t,-)|| gs+1 + ||Owv(t, )| ms is uniformly bounded on the
interval | — T!, T![ with T! > cge " +1.



Remarks e It is enough to prove that for sy large enough, condition (1.1.5) with € > 0 small
enough implies the existence of an H*°*! x H* bounded solution defined on | — T, T,[xS'. We
know then that if the Cauchy data (vo,v1) belong to H*T! x H® with s > s, their smoothness
will be propagated by the equation.

e The time of existence given by local existence theory is ce ™. If x is even and ¢,; #Z 0 in (1.1.2),
then (1.1.3) gives r = k + 1, and the theorem is empty: it just asserts that there is a solution
defined on the interval of time given by local existence theory. Because of that, we shall assume
in the sequel that x is odd.

o If k is odd, and co = 0 if K < 2k < 2k, we may take r = 2k + 1, and we get a solution on
an interval of length € 2% i.e. on a much larger interval than the one given by local existence
theory.

e In the semi-linear case, theorem 1.1.1 has been proved (with more general assumptions on the
nonlinearity) in [9, 10] when the equation is posed more generally on S¢, or on a Zoll manifold
of any dimension.

e For semi-linear equations on Zoll manifolds, whose nonlinearities depend only on v, and not
on its derivatives, it has been proved in [2] that the solution of the problem is almost global, i.e.
defined on intervals of length c¢ye™® for any N. Moreover one has uniform Sobolev estimates
on such intervals. This result had been obtained previously in one dimension by Bourgain [5],
on a slightly weaker form, and by Bambusi [1] and Bambusi-Grébert [3].

e In the quasi-linear case, no result seems to have been known, except in the much simpler case of
equations of form (1.1.4) with zero potential and a quadratic nonlinearity on T¢(d > 1): see [9].
For such operators and nonlinearities, most of the difficulties we shall encounter in this paper
disappear. Actually, the fact that the potential is zero allows one to use Fourier series, and so
harmonic analysis. The combination of this and of the fact that the nonlinearity is quadratic
makes functions of type (0.0.9) always nonzero whatever the value of parameter m on the relevant
set of arguments. Because of that, the proof does not use the structure of the spectrum of the
Laplacian, and this explains why one is able to treat also the case of tori of higher dimension. On
the other hand, as soon as either the potential is nonzero, or the nonlinearity vanishes at order
strictly larger than two, the structure of the spectrum plays an essential role. This explains why,
in such cases, no result is known on T¢(d > 2), even for semi-linear equations.

e A natural question is to know if theorem 1.1.1 may be extended from S' to S¢, as its semi-linear
counterpart. We are unable to perform such an extension. This is related to the existence of
“nice basis” which will be addressed in next subsection.

1.2 Nice basis

Let V : S — R, be a smooth function. The large eigenvalues of —% + V are arranged in
couples (w;)? < (w;)?, where w} and w;, have when n — +00 a same asymptotic expansion at



any order of form

1 a3 as
(1.2.1) +m §1V(x)dx+$+$+”'
(see for instance the book of Marchenko [14]). We shall denote in this subsection for n large
enough by E,, the subspace of L%(S!,R) spanned by the eigenfunctions associated to (w,, )? and
(wF)?, and by II,, the spectral projection of L? onto that subspace. We shall choose a functlon
A — w(A), which is a symbol of order 1, having when A — +oo the expansion (1.2.1) (with n
replaced by A). If we write a,, = O(n~°°) to mean that for any N € N there is Cy > 0 with
lan| < Onyn~™, then w(n) — wi = O(n~>°). Consequently, we have

(1.2.2) IV=A+ VI, — w(n)L, z(12.12) = O(n~>).

Our goal is to construct a basis of each E,, such that some scalar products involving elements of
these basis will have symbolic behaviour relatively to the spectral parameters. Before stating the
theorem, let us introduce the following notations. For 7 € N, we denote by N, = {n € N;n > 7}.
If a : N; — C is given, we extend it by 0 to a function defined on Z, and we define da : N, — C
by

(1.2.3) da(n) = a(n+1) —a(n).

We denote by 9* the formal adjoint of 9 for the scalar product (a,b) =", -, a(n)b(n), that is
(1.2.4) J*a(n) = —da(n — 1).

We have then for a function a defined on N, x N

(1.2.5) (On — 02)a(n,n') = a(n+ 1,n') —a(n,n’ —1).

We shall use below the following elementary formulas. For a function a(n), denote if k € Z
Tra(n) = a(n — k). One has then

On(ab) = (Ona)(T-1b) + a(0,b)
Oy, (ab) = (9pa)b + (T1a)(9,b)
(1.2.6) A (ab) = (8pa)b + a(Opb) + (Ona)(8,b)
31 (ab) = (Fha)b + a(d%b) + (95a) (D).
(

Moreover, if we consider functions a

n,n’),b(n,n’) defined on N, x N, and if 7}, 72 are the
translation operators relatively to the first and second variable respectively, we have
(On — ) (ab) = (7110) (0 — 8)b) + (80 — Dy )a) (11b)
(O — 33 (ab) = (9 — D)b) + (D — D))+ (9na)(Dab) — (Flya) (Db,
Onla(n,n)] = (9 — 3iy)a)(n,m + 1)
Ila(n,n)] = =((On — Op)a)(n —1,n).

Remind that a pseudo-differential operator T, of order 0 on S!, may be written when acting on
a periodic function u as

(1.2.9) (x —/ Z ==Y (2, n)u(y) dy

nez

(1.2.7)

(1.2.8)



where a is a smooth function on S x Z, satisfying for any a, 3 € N,
(1.2.10) 0208 a(@,m)| < Cap(1 + )7
(where 0, means a usual derivative, and 9, is defined by (1.2.3)). We set

(1.2.11) la|p = sup sup sup (1 +|n|)?|0%d%a(z, n)).
0<a<P 0<B<P (z,n)€S xZ

We may also use a local representation: Let xy € C5°(R) be supported inside an interval of
length strictly smaller that 27. Take x € C5°(C), x = 1 close to 0, Supp x small enough and set
Xo = 1 — x. Define

+oo
a(r,€) = Y a(z,n)O(z,&—n)
’n——’_oooo
K(z,y)= > "5 —1)a(z,n)

n=—oo

(1.2.12)

with
Oan) = [ MR~ 1)x(y) dy.
Then we have if Supp u is contained in the domain where y = 1
1 )
Tua) = 5 [ e*ae.)a(e) d¢ + Rulo)
(1.2.13) i
Ru(a) = [ K(a,y)u(y)dy.

If we set Xpy1(2) = 27 1x(2), we see that

K(z,y) = Z(ei(nﬂ)(x—y) — ein(x—y));a(ei(w—y) —Da(z,n)
=Y e (Y — 1)z, n)

= 3 g (@Y — 1)(33)Fa(e, ).

This shows that K is a smooth 27-periodic function of (x,y), whose derivatives up to order N
are bounded in L™ in terms of the constants Cyp of (1.2.10) for « + 8 < N + 2. Moreover, if
x € [—m,m] and Supp x has been taken small enough, we see that

9,0 (z, ) = / eI 1) (2, y)x(y) dy

where Y (z,y) = —i(z—y)(e"®¥) —1)"1x(e!*¥) —1) € C® if y € Supp x €] -7, 7|, = € [-7, 7.
Consequently 9,0(x,n) = ©(z,n — 1) — ©!(x,n), for a function O, of the same form as O,
satisfying [0901(z,n)| < Cn(n) ™Y for any a, any N. We may thus write

Oei(x,&) = Y a(w,n)0,[0 (z,6 —n)] = Y (9ra)(x,n)0" (z,& — n).

n n



Computing in the same way higher order derivatives, we get that a is a symbol on [—m, 7] x R,
whose semi-norms are controlled in terms of the corresponding semi-norms of a.

Our aim is to prove the following:

Theorem 1.2.1 There is 7 € N* and for any n > 7, there is an orthonormal basis (oL, ¢2)
of En, satisfying the following property: there is v € Ry and for any N,a, 3,7 € N there is a
constant C' > 0, such that for any pseudo-differential operator of order 0 on S', T, of symbol a,
for any n,n’ € N, any j,j' € {1,2}, one has

(1.2.14) 0(0;)° (0 — 0 (£ Tl | < Ctn =)™ () al s

An hilbertian basis (go%)jyn of L2(SY,R), such that (1.2.14) is satisfied for n,n’ > 1 large enough,
will be called a nice basis.

Remark The functions ¢}, 2 of the statement are not assumed to be eigenfunctions of —A+V.
Nevertheless, because of (1.2.2), they verify ||[(V—A+V —w(n))(ph)|lL2 = O(n™>).

Before starting the proof of the theorem, let us state a corollary.

Corollary 1.2.2 Let ((p%)jn be a nice basis of L*>(SY,R). Let Ty, Ty be two pseudo-differential
operators of order 0 on S'. There is v € R, and for any N,a, 3,7 € N, there is C > 0 such
that for any C™ function a on S*, one has

a+pB+v+N+v
(1.2.15) (05 (93)° (00 — O) (T1p), a(@) Dol )| < Cln =) (n+0/)™ > [0l
k=0

for any n,n’ € N*.

The corollary follows from (1.2.14) applied to T' = T} aT%, which is a pseudo-differential operator
of order 0, whose symbol semi-norms |-| » are controlled in terms of ||0%al|p~ for k < P + 1y, for
a fixed vy € N.

We shall first construct quasi-modes satisfying convenient properties.

Proposition 1.2.3 There exists for n > 7 large enough, functions U,, € C*°([—m,7|,C) satis-
fying the following properties:

(i) For anyn € Ny, anyk € N, |U,, |p2(—rx) = 1 and okU, (m)—0kU, (—7) = O(n~>),n — +oo.

(ii) Let T be a pseudo-differential operator of order 0 on S'. Denote by U,(x) the function on
R obtained by 27 -periodization of U,,. Consider U, as an element of L*(S',C), and define for
n,n’ € N,

(1.2.16) I_(n,n') = (TU,,Uy), Ii(n,n") = (TU,,Uy).
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There is v € Ry, and for any o, 8,7, N € N, a constant C > 0 such that, for any operator T as
above, defined in terms of a symbol a by (1.2.9), one has

(1.2.17) 102 (05) (B — 05 I (n, )] < Cln — ') ™ (0 + 1) al,y ok pins

(12.15) 0202 (O — B L ()| < Ol + 1)Vl e
for any n,n' € Ny with |n —n'| < (n+ 7).

(iii) There is a sequence (hp)nen of R such that hy' —w(n) = O(n™3) and
(1.2.19) [(-A+V — BTl -2 = O(~), [Unllga-s < Cshi?

for anyn > 7,6 > 0.
We shall first construct U,, such that (i) and (iii) hold true.

Lemma 1.2.4 There are 6o > 0 and smooth functions (z,h) — 0(z,h), (z,h) — b(z, h) defined
on [—m, 7] %[0, do], real valued, even in h, and a sequence (hy)n of points of |0, 1], with asymptotic
expansion

N
1 1 &

1.2.2 = - _ —2k—1 —9N-3

(1.2.20) hn=——71—3 /_7r Vi(z)dr + k§:2 Ven +0(n )

for any N € N, such that the following properties hold true:

(1.2.21) hie(w, ) — hie(—w, hn) — 270 = O(n~)

0'(,0) = 1,1(950,0) (—, h) — (950,6') (w. h)| = O(h™),
02b(=m, h) = 2 b(m, h)] = O(h*)

and such that if one sets

(1.2.22) Yo, €N,
(1.2.23) U, (z) = eP@h)/bnp(g h,)

conditions (i) and (iii) of the statement of proposition 1.2.3 hold true.

Proof:  We look for a formal series in h, ®(z, h), with smooth coefficients in x € [—m, 7|, such
that Im ®(x,0) = 0, and the semi-classical equation

(1.2.24) (—h20% + W2V (z) — 1)e®@M/h —
be satisfied formally. We get, denoting by ®', ®” z-derivatives, the formal equation

(1.2.25) @' (x,h)* — 1 —ih®"(x,h) + h*V (z) = 0.

11



We look for a solution @ (z, h) = Y12 hE®) (x) with &) = 1, ®}, real, @Y, ., purely imaginary.
Identifying powers of h we get for k > 1,

k—1 .
1 1 1
B () = V(@) — 1 > BB (o) + 22 ()
(=1
whence
1
(1.2.26) ®) (z) =0, By(z) = —EV(J}), @) (z) 2m-periodic for any k.
Taking the imaginary part of (1.2.25), we get
h
Re ®'(z, h)Im &' (z, h) = ERe " (z,h).
We choose for the equation on Im ® the solution
h
(1.2.27) Im®(x,h) = B log[Re ®'(x, h)],

where the right hand side is well defined since Re ®'(z,0) = 1. We thus see that Im ®(x, h) is
27m-periodic in z and odd in h. We may write using (1.2.26)

™ 2 +oo
(1.2.28) O(m,h) — ®(—m, h) = / Re® (z,h)dzx = 2w — % V(z)dx + Z Aph?

for some real constants Aj. Then e/®@M/h will be 27r-periodic if and only if there is n € N with
®(m,h) — &(—m,h) = 2wnh. By (1.2.28), the h-solutions of this equation for n large enough
form a sequence (hy), of R, converging to zero, and having asymptotic expansion

11 7
hy =~ — /V(:c)da:+~-

n  4mn3

Comparison with (1.2.1) shows that h,,' — w(n) = O(n~3).

We denote by 0(x, h) (resp. b(x,h)) a smooth function of (x, k) on [—m, x| x [0,d¢], even in h,
whose difference with Re ®(z, h) (resp. e ™ ®@h)/h) js tangent to 0 at infinite order, as well
as its derivatives, when h — 0, uniformly in x € [—7,x]. Since Im ®(z,h) and Re ®'(z,h) are
om-periodic for any h, (1.2.22) with b replaced by b holds true. Moreover, by (1.2.26), (1.2.27),
b(z,h) = 1+ O(h?) uniformly in @ € [—m, 7], s0 [|b(, )| r2((_nn) = V27 + O(h%). If we set
b(z,h) = b(x, h)/||b(-, h)|| 2, we thus obtain a function satisfying the last relation (1.2.22). The
equality (1.2.21) follows from the definition of h,. Define now U, (z,h) = 0@ n)/hnp (g h,).
It obeys the properties of (i) of proposition 1.2.3. Moreover, by (1.2.24), we have the equality
(~A+V —h,HU, = Oh) on [—m,7]. If U, is the 27r-periodization of U,,, then U, is in
L3(S',C), but not in C°°(S!), since it has, as well as its derivatives, jumps of magnitude O(h3°)
at 7 mod 27. Consequently, (—A+V —h.2)U, = andy + B0k + gn(x) where o, B, = O(hS®),
gn is C*° on [—m, ] and O(hS°). This gives the first inequality in (1.2.19). The second one
follows from the fact that by (1.2.23), VU, = anéx + 7 with o, = O(RS), |7rallz2 = O(h, 1),
whence ||VU,| ;-1/2-5s = O(h,; ') for any § > 0. O

We want now to express the quantities (1.2.16) in terms of Fourier integrals. Remind that we
consider a pseudo-differential operator T of order 0, expressed in terms of its symbol a by (1.2.9).
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Lemma 1.2.5 There is v € Ry, a finite set of indices J, and for any N € N, functions
rﬁ : Ny x N — C satisfying for any o, 3,7

(1.2.29) 105 0)° (8 = Op) e (0, 0)| < Capyn (n+ 1) N aly oy gint
and a family of functions Ag\}i (R3 x ]R%r — C,

(x7 y7 57 w? w/) - A‘}\’[:t(x7 y? 57 w? wl)?

compactly supported relatively to (z,y,&), smooth in (w,w’), satisfying for |w — w'| < 3(w + ')
estimates of type

(1.2.30) |020° (8 + 0 )V A%E (2, y, €, w, ')
N —N —
< Caﬁ’YNN’|CL‘N+N/+a+ﬂ+7(1 + ]z — ylw) N (w= W/> (w+ W,) 7

for any o, 3,7, N', such that if

(1.2.31) JE W) = w /R 3 pilw(@—y)e+wb(y,2)+wo(z, 2)] ALE (2, y, €, w, W) dedyde,
one has for [n —n'| < 3(n+n')

(1.2.32) Ie(n,n') =I5 (' bty + s (n, ).
JjeT

Proof: If we use (1.2.9), (1.2.13) and a partition of unity in y, we may write Tv as the sum of
Rv — where R is a smoothing operator whose contribution will be discussed at the end of the
proof — and of a finite sum of integrals of form

(1.2.33) / G (1, y, €Yo (y) dyde
R2
where v is the 2m-periodic extension of v € L?(S!,R), where @ is C™ in (x,v,¢), compactly
supported in (z,y), and satisfies
(1.2.39) 070,08 a(w, 5, )| < Capy(1+[€) 7

with constants Cyg, controlled in terms of |a\a+ﬂ+7. Let xy1 € C®°(R),x1=0o0n [-1,1],x1 =1
outside [—2, 2], and define

(1.2.35) T"v(x) = /ei(x_y)gé(:v,y,f)xl(n_2£)v(y) dyd€.

Let us take v = U,, 2m-periodic extension of the function U,, defined on [—m, 7] by (1.2.23).
Remind that U, is smooth outside 7 + 277Z, and that at all points of w4 27Z, U,, as well as its
derivatives, have a jump of magnitude O(n~>°). Consequently, when we perform in (1.2.35) one
integration by parts in y, we get

(n"%¢)

1) = [ Ly gy, (.. 2 U ) dydt + T
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where T7" is an operator of order —1, acting on a distribution w which is a finite sum of Dirac
masses with coefficients O(n™°°). In particular, |1T7'w| 2 = O(n~°°). If we perform more
integrations by parts, we may write, remarking that each integration gains n =2 and looses one
0y derivative

1T > < Cnlalyn 2N Ul (=)

for a fixed v € R, Since by (1.2.23), [|U,,||z~y = O(n'V), we see that the contribution of T" to
I (n,n’) contributes to the last term in (1.2.32). This shows that we may, from now on, replace
T by the operator T;, defined by

To(z) = / e VG (2, y, €)x (n2E)u(y) dydE

where x = 1—x1, and study instead of I_(n,n’) (resp. I (n,n’)) the quantity (T,Uy, Up) (resp.
(TUn,Upy)) i.e. respectively

(1.2.36) a(z, y, )x(n2€)b(y, hn)bT (2, hn) dardydg

/ O RO hn)F g 0w )
R3

with b = b,b~ = b. If we make in (1.2.36) integrations by parts in = or y, because @ or b have
jumps at 7 + 27Z, we shall get boundary terms. But (1.2.21), (1.2.22), and the fact that £ is
localized in a region where |¢| < Cn?, show us that these contributions will give rise to admissible
remainders of type (1.2.29). Consequently, we may argue like if § and b were C*° 2m-periodic
functions. Remark that by the first relation (1.2.22), we shall have |{ — i@’(y, hn)l 2 3= if hy
is small enough, and either |¢| > Ah,! or [¢| < A7th,! for a large enough constant A > 0.
Consequently, using y-integrations by parts, we see that up to admissible remainders of type
(1.2.29), we may in (1.2.36) replace the cut-off x(n=2¢) by ¢(hn&) with p € C°(R — {0}). We
are thus reduced to

_/ [ @y 0 hn)F i 0@ b)) 3

1.2. =
(1.2.37) .

a(z,y, =) e(&)b(y, hn)bT (z, hy) dedydé.

Define the vector field
1 1 .72y -1
Le(z,y,w,w', 0y + Oy) = (1 + (wﬁ'(y, ;) F w'@'(l”, —,)) )
1 1
X [1 + <(,()9’(y7 ;) T w’@’(x, J)) (0y + ay)] .

Since #'(x, h) is even in h, and §'(z,0) = 1, we may write

(1.2.38)

1 1
(1.2.39) wt'(y, ;) Fu'0 (z, J) =wF +oy,w) Fo(z,w)
where o(y,w) satisfies for any «,v € N (using (1.2.22))

05000 (y,w)| < Cay(14+w) ™77 Vy € R—{m+2rZ}, Yw € Ry
[0y 9)o] = O(w™),

denoting by [-] the jump at m 4+ 27Z. Consequently, the coefficients ¢(z,y,w,w’) of Ly satisfy
for xz,y outside 7 + 27Z,

(1.2.40) 10209 000°, (8, + By ) Ve, y,w, )| < C1+w+ ) VwF o)

Yy Twrw!
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when |w — o'| < 3(w + '), with jump conditions
(1.2.41) 0209 9297, = O((w + ') ™).

We make in (1.2.37) integrations by parts using the vector field (1.2.38). Again, because of
(1.2.41) and (1.2.21), (1.2.22), boundary terms coming from the jumps give rise to remainders
of type (1.2.29), and up to such perturbations, we may rewrite (1.2.37) as
(1.2.42)
)E+ 7= 0(y,hn) F 9( hit) ~ §
—/ (@=y wh > ](tLjF)N[a(:E,y, h—)gp(f)b(y, hn)b7 (z, hn/)] dxdydé.

n

If Lo(z —y,w,0¢) = (1 +w?(@ —y)?) (1 +w(x —y) - &), the coefficients of Ly satisfy estimates
(1.2.43) 10%c(z — y,w)| < Co(l +wlz —y|) tw™™

Integrating by parts using Lo, we obtain that (1.2.42) may be written as J3 (h,t, b, ) with

Ti(w!) = [ et AT (0, ) dodyds

with
AT = (L)Y (‘L) [l y,w€)p ()b (v, é)lﬁ (=, 5)}

By (1.2.40), (1.2.43), and (1.2.34), A, satisfies (1.2.30). Finally, the contributions (RUy, Uy/),
(RU,,U,) of the smoothing operator in (1.2.13) to I, I_ contribute to r% in (1.2.32), using
(1.2.23) and integrations by parts. This proves the lemma. O

Proof of proposition 1.2.3: By lemma 1.2.4, conditions (i) and (iii) of the statement of the
proposition hold true. Let us prove (1.2.18). Since h,,! = n + O(1/n), if we plug (1.2.30) with
a = [ =~ = 0 inside (1.2.31) and integrate in y, we get from (1.2.32) that there is a fixed
v € Ry such that for any N, [I;(n,n/)| < Cn(n+n/)"N|a|y,, when [n —n'| < L(n+n’). This
implies (1.2.18).

To show (1.2.17), let us prove first that for |w — w'| < 2 (w + )
(1.2.44) 10500 (0 + 0 ) T (w,0)] < Clw = )™V (W + ) Valyy giq o

Remark first that if we make act 9, + d,+ on the phase of JJ{}_, we get either a contribution
which is O(w™ 4+ w'™1), or a quantity like i(z — y)¢ or i[0(y, 1) — 6(x, Z/)], in which, modulo a
O(w™! +w'™1) term, we may factor out & —y. The decay given by the N’ exponent in (1.2.30)
allows one to transform such a term in a gain of one negative power of w. Consequently, (1.2.44)
follows from y-integrations of estimates (1.2.30). We have then to show that (1.2.44) implies
that

i1 1
(1.2.45) 0505 (O — OV I ()

hy hy

is estimated by the right hand side of (1.2.17). Call @(\) a symbol of order 1 defined on R,
such that according to (1.2.20), h,;! —&(n) = O(n=>°). Up to terms verifying estimates of type
(1.2.29) we may, instead of (1.2.45), bound

07(05)% (O = 05 )V IR (@(n), & (n)).
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We use induction on « + 5 + «: set for t € [0,1], Q(n,t) =to(n+ 1) 4+ (1 — t)&(n) so that
(0 — 0T (@), D)) = Ty~ (@ (n + 1), 5(0")) — T4 (@), &' — 1))
1 .
= [ @R @00~ 1,0 dei(n+ 1) = 5(m)

1 .
+/ (0 T57)(QUn, 1), 2n’ — 1,8)) dt(@(n') — &(n’ — 1)).
0

Since w(A) — A is a symbol of order —1, we may write this as
1 , 1 ,
/ (D + 0) T (Qn, ), Q' — 1,8)) dt +/ DT (U, 1), R’ — 1,1)) did_s(n)
0 0

1 .
—i—/ O I~ (Un, ), Q(n' — 1,1)) dtw_o(n' — 1)
0
for a new symbol of order —2, @_5(A). This shows that we gained one (actually two) negative
powers of n+n' in the last two integrals — when |n — n/| < %(n +n’) —, and also one such power
in the first one, because of (1.2.44). Moreover, 2(n,t) satisfies the same assumptions as w(n),
which allows one to proceed with the induction. This concludes the proof of the proposition. O

Lemma 1.2.6 Let A\ — w(\) be the symbol defined after (1.2.1). Then
(1.2.46) — —w(n) =0(n").

Moreover, for n large enough, there is a real valued orthonormal basis (oL, ¢?) of the space E,
such that

. U+ U,

(1.2.47) ( oL

LQZ

Proof:  We denote by F, the span of (U},U?2) in L?(S!,R), where U} = U”;\@U", U2 = U";\/—U”

Then for v € F,, if P = —dCi—QQ + V(z), we have by (iii) of proposition 1.2.3
(1.2.48) 1P = hy2)oll -2 = O(n=)

uniformly for v staying in the unit ball of F,. In the same way, since E,, is the range of the
spectral projector II,, associated to the couple of eigenvalues (w;, )? < (w;")?, we have by (1.2.2)

(1.2.49) (P — w(n)®)v| g-2 = O(n™>°)

uniformly for v in the unit ball of E,, (actually, the above relation holds true even for the L2
norm). We shall denote by E;- the orthogonal complement of E,, in H=2 by I} : H=2 — E-
the orthogonal projection, and shall also use the notation II,, for the orthogonal projector from
H=2to E,. We set Q,, = IT;-(P — w(n)?Id)II;; considered as a bounded operator from E;- N L?
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to E;-. Since the eigenvalues of P different from (w;7)? and (w;;)? lie at a distance from w(n)?

bounded from below by a fixed constant, Q, is invertible, with inverse Q' : E;- — FE;- N L?
whose norm in £(H 2, L?) depends on n, but with [|@;, (| (-2, -2y uniformly bounded. Since
we have seen in proposition 1.2.3 that w(n) — h,;! = O(n=3), the operator

(1.2.50) Id — Q' (h;? — w(n)?)

n

will be invertible, as an operator from E- to E- endowed with the H~2 norm, for large enough
n. If v is in the unit ball of L?, we have

(1.2.51) Qnv =11 (P — w(n)X1d)[Itv = I+ (P — w(n)?1d)v — I (P — w(n)*1d)I,v.

By (1.2.2), the last term has L? (or H~2) norm O(n~°°). If we assume moreover that v € F},,
and write
(P —w(n)XId)v = (h,? —w(n)*)v + (P — h,*)v,

the last term has H~2 norm O(n~*°) by (1.2.48). We deduce from this equality and (1.2.51)
(@Qn = (hy” =)0 = 1y

with 7, € Ei-, ||ralg—2 = O(n=>). We deduce from the invertibility of @Q,, and of (1.2.50) for
large enough n that

(1.2.52) [T v -2 = O(n™).
We set for n large enough ! = I1,U}, 2 = I1,,U2. The above equality implies
(1.2.53) [ = Unll—= = O(n™%), |5 = Upllg—= = O(n™>).

. . _1lus
Moreover, since 97, is in the range of II,, HWLHH%J < Chp2 " for any 6 > 0, so that using
(1.2.19) ||, — U%'HH%_(S < Ch;!. Interpolating with (1.2.53), we get

(1.2.54) 145, = Uill2 = O(n=>) j=1,2.

Since ||Uyl|z2 = 1, and (U,,U,) = O(n=>) by (1.2.16) and (1.2.18), we deduce from (1.2.54)
and the definition of U}, U2

(1.2.55) (s i) = O(™), [[Uhl72 — 1= O(n™).

We define now (L, ¢2) as a Gram-Schmidt orthonormalization of (¥}, %2). Then (1.2.47) follows
from (1.2.54), (1.2.55). To show (1.2.46), we take v € F}, of norm 1. We write

(w(n)? = h, ) = —(P — w(n)) M + (P — by, ?)v — PlTEv + by, 2Tt w.

By (1.2.48), (1.2.49) the H~2 norm of the first two terms in the right hand side is O(n=>°). By
(1.2.52), the H~* norm of the last two terms is O(n~°°). Consequently

(w(n)? = hy ) ol -2 = O(n™).
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To get (1.2.46) and conclude the proof, we just need to see that ||[IL,v||g-1 ~ n~4|I,v|2 >
cn~*. We have, since v is in the unit ball of F,, |[IItv||g1 < Cljv||z < Cn. Interpolating with
(1.2.52), we get ||TIv||2 = O(n~°), whence the wanted lower bound, ||IT,v|[z2 > c. O

Proof of theorem 1.2.1: For n large enough, we take for (¢}, »2) the orthonormal basis of E,
given by lemma 1.2.6. For small values of n, we take any orthonormal basis of F,,. Remark first
that if |n —n/| > ¢(n 4+ n’) for some ¢ > 0, estimate (1.2.14) holds true. Actually, one has a
general estimate

[, TTy0)| < Cov(n =)™ fal, p yllulz2 o]l 2

for a fixed v € R4 (see for instance [10], proposition 1.2.2 and lemma 1.2.3). This implies that if
In—n'| > e(n+n'), |(£h, Tgp‘zll,>| is bounded from above by C(n+n')"|al,, v, which is better
than the wanted estimate (1.2.14). We may thus assume |n —n'| < ¢(n +n’) and n,n’ large
enough. Then using (1.2.47) we get that up to O((n+n')~) terms, (¢, TcpZL/,) may be written
as linear combinations of I_(n,n’) and I (n,n’). Formulas (1.2.17), (1.2.18) of proposition 1.2.3
give then (1.2.14). This concludes the proof of the theorem. O

2 Paradifferential symbolic calculus

The aim of this section is to develop a symbolic calculus, analogous to Bony’s paradifferential
calculus [4], for symbols defined on a discrete set instead of an open subset of the euclidean
space. As will be clear in section 4, we shall need such an extension, as the symbols which will
naturally appear in reductions of the quasi-linear equation (1.1.4) will be defined on NP, and
will not have any nice extension to RP.

2.1 Symbols and quantization

We first fix some notations. We shall consider G a finite dimensional real vector space, and
assume given an orthonormal decomposition

(2.1.1) L*(S',G) = P Ex

k>1

where Ej is a finite dimensional subspace of dimension K (k) and 7 € N*. We assume K (k)
independent of k for k large enough, and denote by K this value. We assume that each Fj, is
endowed with a nice orthonormal basis (@fc)lg j<K(k) 1-e. an orthonormal basis such that, for any
k, k', for given pseudo-differential operators Ty, T of order 0, for any function a € C*°(S!,R),
we have estimates of type (1.2.15)

a+pB+y+N+v
(2.1.2) 108(07)° 0k — 00 (Tigl a@ Tl < Clo— Y N+ K) S [0tallpee,
=0

18



where 1 < j < K(k), 1 < j' < K(K') and v is a fixed positive constant. We shall denote by &
the algebraic direct sum of the Fy’s, and will use £ as a space of test functions.

If n=(no,...,npr1) € Ne™2 we define

(2.1.3) n' = (ni,...,np),|n'| = max(ny,...,ny).

Moreover, if n; is such that n; = max(ng,...,ny+1) we set

(2.1.4) maxa(ng, . .., Np+1) = max({no,...,npy1} — {ni})

and if nj, j # ¢, is such that n; = maxs(ng, ..., np41) we define

(2.1.5) p(no, ..., npe1) = max({no, ..., npr1} — {ni,n;})
S(ng,...,npt1) = |ni —nj| + p(no, ..., nps1).

By convention, we set maxong = 1, p(ng,n1) = 1. We denote by K either R or C and by IIj the
orthogonal projector from L?(S', G ® K) to Ej ® K and set

Fi :L*(S', G @ K) — KXW
(2.1.6) o J |
u— ((u, o)) 1<j<K(k)-

Then Fj, is an isometry when restricted to Er ® K, if we endow KX®*) with the ¢2 norm.
We denote by F; the adjoint of Fj, from (KK®))* ~ KKK o (12) ~ L[2. We have for
V = (Vi)i<j<rm € KXW

K(k)
(2.1.7) FiV=>_ Vigl(x)
j=1
and the relations
(2.1.8) Fi =l o Fp, Iy = Fj; 0 Fiey Fi o Ff = ldgrwy, Fr, = Fi, oIl
IfU = (uy,...,up) € (L?)? and n’ = (ny,...,n,) € N¥ we denote
(219) Hn/U = (Hnlul, ey anup).
We shall always denote by || - || the £(£?,¢?) norm of linear maps between euclidean spaces (or

the corresponding norm of matrices). Let us define the first class of symbols we shall use.

Definition 2.1.1 Letd € R,v € Ry,p € N, Ny € N* be given. We denote by Ez’]”\,o the space of
maps

(Ut, ...y Up, no, Npt1) — a(Ur, ..., Up; N0, Npt1)
(2.1.10)
Ex - xExN; x Ny — L(KEMwr1) KK M0))
such that a is R-p-linear in (uy, ..., up) and satisfies for some § €]0,1[ conditions:
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(i)s For any U = (u1,...,up) € EP, any n = (ng,n',npy1) € N2 (with n' = (ni,...,np)),
a(ll,yU;ng, npy1) = 0 unless

(2.1.11) In'| < 8(no + np+1) and [ng — npy1] < 8(np + npt1).

(it) For any N € N, any «, 3,7 € N, there is C > 0 such that for any n = (ng,n',ny41) € NE+2

as above, any U = (u1,...,up) € EP, one has the estimate
185, D5, )7 (g = 03y,,) (T U3 ng, 1 )|

(2'1_12) o | /|V+N+(a+ﬁ+7
v

< C(TLO + np+]_)

W~ HHUJHL2

We shall call symbols in the preceding class paradifferential symbols. We may of course extend

(2.1.10) to a C-p-linear map defined on (E @ C) x --- x (E®C) x N; x N;.

(Ino = npia] + |n'])

Remarks ¢ When we make act J;,  several times on a(IL,yU;ng, npy1), we might, for small

values of n,1, have to calculate a at integers smaller than 7. We decide to extend a(-; ng, np+1)
as 0 for ng < 7 or npy1 < 7.

e When |n/| is bounded, estimate (2.1.12) is similar to the estimate (2.1.2) defining nice basis.
When |n/| — 400, we have an extra loss of powers of |n’|, coming from |0%a||p~ in (2.1.2),
and from degenerate ellipticity estimates of some symbols that we shall have to include in our
classes.

e When p = 0, we set by convention |n/| = 1 in the above definition, and in all forthcoming
formulas.

Let us quantize the above symbols.

Definition 2.1.2 Fora € Zp N, ond U = (u1,...,up) € EP, upyy € €, we define

(2.1.13) Op(a(U; ) ups1 = Z Z a(U; 10, nps1) Fpy Upt1] -

no €Ny Np+1 eN,

Let us explain the origin of the above definition. Assume for instance that each Ej is one
dimensional, spanned by a function ¢y,. If a,u € L?, we may write

au = Z a(x) <u7 gpnp+1>(pnp+l

Np+1

= Z Z <a90np+1790n0><u’ Qan+1>(pno

o Mp+1

- Z Z ‘7:;0 [<a¢"p+1790n0>fnp+1u]

no Mp+1
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using (2.1.6), (2.1.7), and the symbol (apn, ., ¥n,) satisfies by (2.1.2) estimates (2.1.12). Con-
dition (i)s of definition 2.1.1, which is not satisfied in this example, comes from the fact that we
want to consider paradifferential operators, instead of pseudo-differential ones.

Let us show that operators of order 0 are bounded on H? for s large enough.

Proposition 2.1.3 Let v € Ry, Ng € N*. There exists so € R and for any s € R, any d € R,
any p €N, any a € ZZ’”O, there is a constant C > 0 such that for any U = (uq,...,up,) € &P,
any up+1 € €

P

(2.1.14) 10p(a(U; Nupsillgs— < O T Lllusllmeo lupsa s
j=1

In particular, (U, upt1) — Op(a(U;-))ups1 extends as a bounded (p+1)-linear map from (H®0)P x
H* to H™4.

Proof: Since |[v[|}. ~ 3, n*|[yv[|2;, let us estimate ||IL,,Op(a(U;-))ups1| 2. We get using
(2.1.12) and condition (i),

—d .
L) H E :a(UanO’nP—H)]:anup—&-l 2

Np+1

DY "

Np+1 |n0 - nPJrl‘ + ’nl|)

<

/|ll+N

p
5 L7 np i Huujumo et || s
1

Jj= Jj=1

with (¢n,,, )n,., in the unit ball of 2. Moreover, by condition (i)s of definition 2.1.1, we have
np+1 ~ ng on the summation. Consequently, if we take N > 1 and s large enough relatively
to v, we obtain an estimate by Cng°c}, for a new (*sequence (c}, )no, Which is the wanted
conclusion. O

We shall define now a class of remainder operators.

Definition 2.1.4 Let d € R,v € R;,p € N. We denote by Rz’f:l the space of (p + 1)-linear
maps M : € x --- x & — L? such that for any {,N € N, there is C > 0 such that for any
(no,...,npy1) € NP2 any g, ... S Upt1 € E

HHTLOM(Hmul? B an+1up+1)||L2 <

N p+1

/L(’I’Lo, ) np+1 HHU HLQ
max(ni,...,np+1)" S(no,...,npt1)N J

(2.1.15) gmaxa(ny, ..., npy1)"

Cng

Remark that by definition Rz’fl - Rg’:frd*, and that M extends to a C-(p+1)-linear map defined
on (ERC)---x (E®C).

Let us show that up to a remainder operator we always may assume in definition 2.1.1 that
condition (i)s is satisfied with an arbitrary small § > 0.
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Lemma 2.1.5 Let d € R,v € Ry, p € N, Ny € N* be given. There is V' € Ry such that for any
8 €)0,1[, any a € EZ:}/VO’ we may find a; € Zz:]”\fo, satisfying condition (i)s and R € RY", so
that for any U € EP, upiq € E

Op(a(U;-))up+1 = Op(ar(U; ) ups1 + R(U, up41).
Before starting the proof, let us state a lemma that we shall use several times.

Lemma 2.1.6 Assume given a family of real valued functions K,g(w,w’) defined on Ry xRy,
such that there are positive constants Cog satisfying

Cag,yKaﬂv(w7w,) < Kaﬁ'y(w + h,w' + h/) < CaﬁvKaﬁv(waw,)

for any w,w’ € R% large enough, any (h,h') € [=1,1]2. Let H be a smooth function on Ry x Ry
satisfying for any o, 3,7 € N, any w,w’ € R,

(2.1.16) 1020°, (0 + D) H (w,0")] < Koy (w,0").

Then, there are constants C&ﬁw such that for any o, 3,7 € N, any n,n’ € N large enough, with
In—n'| < %(n—i—n')

(2.1.17) 105(05)%(0n — 05) H(n,n')| < Chgy Kapy(n,n').

Proof of lemma 2.1.5: Let x be a smooth function, with support close enough to 0, equal to
one on a neighborhood of zero. Define

ng—n n
a1(U;no, npy1) = Z X(O p+1)X< ] )a(Hn’U;n07np+1)-

ng+n nyg +n
n'=(ni,...,np) 0 Pt 0 p+l

Then condition (i)s will be satisfied by ay if Supp x is small enough. Moreover, using lemma
2.1.6, we see that when |ng — npi1| < 3(no + npy1)

050 0y Ono = 0, )X () [ < Gl (0 + 1)

e et no + Np41
(2.1.18) w ’n/‘aJrﬂJr,y
o ES sk
<z (6%“) (Ong = Ony)? X<n0 + np-i-l)‘ = 7 (g + npp)oTBEY

Consequently, using also Leibniz formulas (1.2.6), (1.2.7), we see that estimates (2.1.12) are
satisfied by a;. Finally, since R = Op(a — a1),

Mg BTy wis - oy My, upa)l| 22 < ll(@ = a0) (T U o, np 1) [l upafl 2

and since, for the indices to be considered, either [n’| > ¢(no+np41) or [ng — npy1| > c(no+np+1),
estimate (2.1.12) gives the upper bound

_ N
C(no + np) N[
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from which (2.1.15) follows, since
maXQ(nl’ T np+1) ~ |7’L/’,/,L(TLO, <o 7np+1) ~ ’n/’7 S(’I’Lo, oo 7np+1) < C(TL() + np+1)

because of (2.1.11). O

Remainder operators act also on Sobolev spaces:

Lemma 2.1.7 Let so > 1. There is for any v € Ry, any p € N* s1,50 € R)s1 + 59 > v + 2,
any d € R, any M € RZ’L, a constant C > 0 such that for any u,...,upy1 € €, any ng € N,
one has the estimate

(2.1.19)
g [M (un, - upgn)]l[ 2 < Crg ™ 7527520 N g g fugs e [ usllarso.
1<j1#ja<p+1 kl;i;cﬁg;,l
J1,R7F]2

In particular, M is bounded for any 0 from H® x --- x H® to H¥19=? if s is large enough with
respect to v and 0 and
1M (u, . )| groo-a < ClullfrgllullFre

Proof: We consider the contribution to M of

Mi(ur, ..., uptp1) = Z M (I ugy e Tl Uprn).

n1 < <npii

Then by definition 2.1.4

dnu+e 1u(no n +1)N p+1
2.1.20 I M1 (I, u, ..., I, 0 < Cnd-2 P | J et S
( ) ” no 1( ny U1, s Hnp p+1)HL2 > Onf;-i-l S(no,...,an)N : H n; JHL2
For the summation for ny < --- < npyq and n, > ng, we take £ = s; — v, N = 0. We get the
upper bound
p—1
d — — —_ —
Cng Y s o ] g o lupll o g || 7o
n < <npi 1

np>ng

which is bounded by the right hand side of (2.1.19) for s1 4+ s2 > v+2, 59 > 1. When we sum for
ny < -+ <npyp and ny, < ng, we have p(ng, ..., npr1) = nyp, S(No, ..., Npr1) = [P0 — Npt1| +1p.
We take in (2.1.20) ¢ = s; — v, and get

p—1
Cng Ym0 B0 (Ing — npga] 4 np) TN T Tl o llup e lupya [|ass

ny<-<npiq 1
no>np
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For the sum over ny1 > %no, we take N = 0 and get the upper bound (2.1.19). For the sum
over Ny < %no, we take N = s1 + s9 — v and get a bound in terms of

=50 —80,, —51—S2+V —s1—s2+v+2
g ny ey, T Ny < Cn, ,

nlS"'S”p+1<%no

whence again (2.1.19). O

2.2 Symbolic calculus

We shall prove that the operators we just defined enjoy nice symbolic calculus properties.

Definition 2.2.1 Let a € E;lzjy\,o. We denote by a® the symbol defined by
(2.2.1) a®(U;ng, npt1) = a(U;npy1,n0)”

where a* means the adjoint of the operator a(U;npi1,n0) acting from KE®0) ¢ KE(Mp+1),

Remark that since
(Ong — On,,)1a® (Usno, npi1)] = [(0x — 0y)a(U; X, Y) ] x=np1—1,y =no+1
we get that a® € Ez:]VVO. Moreover, it follows from definition 2.1.2 that
Op(a(U;-))" = Op(a®*(U;+)),
where the star denotes here the adjoint of operators from L? to L?.

Let us study now composition.

Proposition 2.2.2 (i) Let v € R, Ng € N*. There is V' € Ry and for any p,q € N,d,d" € R,

for any symbols a € Z;l’]”\fo,b € ZZ,}\V,O satisfying condition (i)s of definition 2.1.1 with a small
d+d' v/

enough & > 0, there is a symbol a#b € Zp+q,No

U" = (Upti,. .- Upiq) € EL, any Upyqr1 € E

(2:2.2) Op(a(U’;)Op(b(U"; ) )up+q+1 = Op(agtb(U', U"; ) Juptq+1-

such that for any U' = (ui,...,up) € EP,

(i) Assume moreover that for any U',U" as above, any large enough no,npr1,n0, 1,1 € Ny,
d+d -1,

the symbols a(U';no, np+1) and b(U";ng,ng 1) commute. Then there is a symbol c € XN

such that

(2.2.3) (0p(a(U;)), Op(b(U"; Mt g1 = OP(e(U, U": )ty

for any U € EP,U" € E9,upyqq1 € E.
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Proof: (i) Using definition 2.1.2 and (2.1.8) we get

Op(a(U'; )OPBU"; Nupigir = D Fugla(U's10, )DU"3 by 1 g1) Fray 1 g1

nOakanp+q+1 >T

and we have to check that

ef
(2.2.4) (a#b) (U, U"; 10, nprgi1) e Z a(U"sno, k)bU"; k, 1y q41)
k>1
belongs to Zdid VO for some v/. If we set n’ = (n1,...,np),n" = (Npy1,...,np1q) and replace U’

(resp. U") by IL, U’ (resp. IL,»U") we get from cond1t10n (i )5 of deﬁmtlon 2.1.1 applied to a, b,

In'| <d(ng+k), In"| <6(k+nprgr1)

(2.2.5)
Ino — k| < 6(no + k), |k = nprge1] < 0(k + npigs1)

which implies that a#b satisfies (i)4s if § > 0 is small enough. One has then to check estimate
(2.1.12) for a#b. We shall do that in the proof of (ii) below.

(ii) Before starting the proof, let us gather some formulas that we shall use. Let ¢(U;-) be a
symbol satisfying condition (i)s of definition 2.1.1 with a small enough 6 > 0. For h € Z we
have, forgetting the explicit U dependence in the notations, for any &, n € N,

(2.2.6) (&4 h,n) — (& n—h) = S — 9;)c)(&,m; h)

where ¢ (resp. 0;) means derivation with respect to the first (resp. second) argument of c(§, 7),
and where

T
L

(2.2.7) S()&mh) =) c(§+h—7—1,1n—7j).

<.
I
o

We shall denote also

(Ac)(&,m; k) = c(§,6+ k) —c(n —k,n)

(2.28) = S((0 — )e)(n — k& + ki€ — i+ k),

the last equality following from (2.2.6). By direct computation, one checks that
Oe[Ac(&,m: k)] = (9 = 0p)e) (&6 +k+1)
(2.2.9) RA(E n; k)] = (0 — 9;)e)(n =k —1,m)
(0 — Op[Ac(E,m; k)] = A((9g — 9,)e) (& m; ke + 1)

and also that
8 S sh) =8(9cc)(&,m h
(C)(§ 7; ) S(9pc) (& m; h).
We consider now the symbol of [Op(a(U’;-)),Op(b(U”;-))]. By (2.2.4), this is equal to the
expression a#b(U’, U";ng, nptq+1) — b#a(U”,U 10, Mptgt1) 1-€.

> [a(U'sn0, R)B(U"s kynpsgr1) — (Um0, k)a(U'; by nypg g 1))
keN,
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Using the assumption ab = ba and changing indexation, we get for large enough ng, np4q+1

> [a(U'sno,mo + E)D(U" 0o + k,nprgi1) — alU's npigar — ks page)D(U” 10, g1 — K],
keZ

where because of the assumptions on the support of a,b, the k sum is for indices satisfying
|k| < eng ~ cnpyg1 for some small constant ¢ > 0 (see (2.1.11)). We may rewrite this using
notations (2.2.6) and (2.2.8)

> (Aa) (Um0, npsqir; K)BU" 10 + by g 1)

(2.2.11) hez

+ Z a(U'snpyqr1 — Ky p1gr1)S((0 — 8;;)5)((]”; no;s Np+q+13 k).
keZ

We now prove estimates of type (2.1.12) for each k sum above. We start with the second one.
If we evaluate the above symbol at I1,,U’, IL,»U" instead of U',U", we get from (2.2.7) and
(2.1.12)

IS ((0 — 07)b) (T U ng, peg15 K) |

/_1 ‘TL

//‘V+N+No p+q
Tl 2
(Ino = nprg1 + K[+ [N 25 ’

< C(1+ k) (no + np—i—q—l—l)d

Moreover, if we make act derivatives on S((9¢ — 0;)b), we have, because of (2.2.10) the same
gains and losses as in (2.1.12). On the other hand, by (1.2.8), making act a 0y, ,,, derivative
on a(ILyU'snpygr1 — k,npyqt1) provides a gain of one negative power of npiq+1, and a loss of
|n/|°. Using (1.2.6), (1.2.7), we thus see that the action of On (O, )2 (Ong — O )Y on the

Mptq+1 Mp+q+1
general term of the second sum in (2.2.11) is bounded from above by [[5%%||u;]| 2 times

| /’V+N1+fi1 ( d2|n//‘V+N2+R2

no + Npig+1)
[kl + [0/[)M (Ino — npigra + K| + [n"])N

(2.2.12) C(1+ |k|)n? p+q+1(

with dy +dy =d+d —1—7, k1 + k2 = (a+ S+~ +1)Ny, Ny, Ny arbitrary. It is clear that the
sum in k satisfying |k| < ng ~ npiqe41 of these quantities is bounded from above by

( ’n/ | + |n// ‘ )2u+3+No (a+B+y+1)+N

2.2.13 C(no +n dtd'—1-y
R (ot trtas) (0~ mprgra | + 10T+ 0D

which is the (2.1.12)-like estimate wanted (with v replaced by v’ = 2v + 3 + Np). Let us study
now the first sum in (2.2.11). It follows from (2.2.7), (2.2.8) and the fact that |k| < ng ~ nptq+1
that

. ‘n |V+N+N0 p

I(Aa) (LU’ 0, npgia; K| < C(A14-[no — npiga + k|)(n0+np+q+1) (k| + 7] N l_IHUJHL2

Moreover, if we make act 0,, — O}, . Aa, we gain because of (2.2.9) a decay of type
(no+nptq+1) "L, and loose 1n/[°. In the same way, 0, gordy . . loose |n/|™°. Similar properties

hold true when derivatives act on b(I1,,»U"; ng+k, np+q+1) Consequently, using Leibniz formulas
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(1.2.6), we see that the action of 95 (0, VP (O — O )Y on the general term of the first

. . Tp+q+1 Tp+q+1 . O
sum (2.2.11) gives a quantity bounded from above by an expression similar to (2.2.12), but

where £ has been replaced by —k — ng + n,144+1. We obtain as above that the A-sum is then
estimated by (2.2.13). This concludes the proof. O

Let us study now composition relatively to an inner argument.

Proposition 2.2.3 Let d' € R,v € R, Ny € N*. There is v/ = 2v + d_ + 1 such that for any
peN,ge N, deR, forany a € EZ:;’VO, bec E;l:}ffo satisfying condition (i)s of definition 2.1.1
with a small enough 6 > 0, there is ¢ € E;C)l’—:q,No such that for any U = (UM, UR)) € £PT9 with
U = (uq,. .. L Up), U@ = (up+1, U®), UG = (Upt2, .- Upiq), for any upiqr1 € E, one has

(2:2.14) Opla(Op((UM; ) up 1, UP; upigi1 = Op(e(UD, U ))upigpr.

Proof: By definition 2.1.2, we may write the left hand side as

Z Z Z Zf:;oa[f]:b(U(l);kunp+1)fnp+1up+17U(3);nO)np+q+1]fnp+q+1up+q+l

ng Nptgt+l k Nptl

which is of form Op(c(UM, U )uyyq41 if we define

C(U(1)7 U(Q)v no, np+q+1> = Z Z a/[f];kb(U(l)a ka np+1>fnp+1up+17 U(g);n(ﬁ np+q+1] .

k npt1

Let us check that if we denote by n(\) = (ny,...,n,), n® = (ny11,n®), ) = (ny10, ..., npry),
C(Hn(l)U(l),Hn(2)U(2); no, Np+q+1) satisfies the conditions of definition 2.1.1. The support con-
dition (i)gs holds true if (i)s is verified by a,b with small enough 6 > 0. Moreover, it is
enough to check (2.1.12) when o« = = 7 = 0. Using the assumption on a,b, we get for

eI, 1y UMD T, 2, UP); ng, npygr1)]l an upper bound given by the product of C H?J:”fHujHLz and
of
(k 4 @) [nt"

Z(no + np+q+1)d )d,

k

(anrl + k

(Ino — nptgi1| + nG)| + k)M (|k = npga| + [n(M])N2

for any N, No. Moreover, by condition (i)s verified by a, b, the k-summation is made for
Np+1 ~ k < ng ~ npprqr1. We see that taking No = 0, we get for the sum the upper bound

’(n(l) : n(2)) ’21/+d/++N1+1

C(no + ”p+q+1)d
(1o = npga1] + [ (nD,n@))™

which gives the wanted conclusion with v/ = 2v +d/, + 1. O

We shall study now composition of an operator associated to a paradifferential symbol with a
remainder operator.
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Proposition 2.2.4 Letpe N*,q e N,d,d GR v € Ry, Ny € N*. There are v/ =2v +d/, +1

and V" = 2v + 1 such that for any a € nd N, Satisfying condition (z')5 of definition 2.1.1

q+1
with § > 0, S’I;I;lall enough, for any M € Rp , there are a symbol b € Ep+q No
R € sz;jfly , such that for any U = (U’ uprqr1) € EPTIHL with U = (UM, UR?), U0 =
(ut,...,up), U® = (Upt1s - Upiq),

(2.2.15) Opla(M(UW),UP; upigs1 = Op(b(U'; ) tpigrr + R(U).

and an operator

We shall use several times below an inequality established in the proof of theorem 2.1.4 of [10]
(formulas (2.1.10) and (2.1.11) of that paper). We state this result as a separate lemma.

Lemma 2.2.5 Let vy, vy € Ry. There is, for any N > 1+ max(vy,v2), a constant Cy > 0 such
that for any no, ..., Npyg+1 €N,

)I/2+N

N
Z H n07 -y N, k)l/1+ (ka Np+1y- -5 Nptg+1
nO

2.2.16
( ) v, K)N Sk npya, s prgrn) Y

1s bounded from above by

C M(nﬂv s 7np+q+1)yl+Nl

S(”O) s 7np+q+1)N/

where N' = N — 1 — max(v1,v2),V =11 + 19+ 1.

(2.2.17)

Proof of proposition 2.2.4: Let x € C°(R),x = 1 close to zero, 0 < x < 1 with Suppx
small enough. If for n = (ng,...,npier1) we set nM = (ny,...,n,), n® = (npy1,...,np1g),
n' = (nM,n®?), we define

]

(2.2.18) b(U"s 10, Npgt1) = ZX( )G(M(Hnu)U(l)),U(Q);no,anﬂ)-

no + Np4q+1
n(1)

Remark that if Supp x is small enough, condition (i) of definition 2.1.1 will be satisfied by b.
We use (2.1.12) for a to estimate ||b(IL, U’;ng, nprq+1)| by

o Y G il Rl S VI SNON I | (O
no + Npyq+1 k n() L2 Uj|| 2
e A (Ino = nprgir] + &+ [nP)N 1 !

where the summation is made for k + [n(?)| < ng ~ Nptq+1, and where moreover InM] < ng ~
Nptq+1. In other words, using notation (2.1.5), we may write the first factor in the k-sum as,

M(n()v k? TL(Z), np+q+1)V+N

S(nOa k? 7’L(2), np+q+1)N

We estimate the second factor using (2.1.15). We get for any N an upper bound given by the
product of [[2%|uj| ;2 and of

Z (0, k0@, g i) N ke, n)N
S(no, k,n®, nprgi)N Sk, n)N

C(no + npsgr1)(1 + [nM
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By lemma 2.2.5, we obtain the bound

1 2 d', +v+N'+1
V,LL(TLO,TL( )7 n( )vnp-l—q—l-l) +

C(no + nprgs1)"(1 + [0V S(ng,nW, n@ nyy )N
) ’ y'pTq

Since we have by assumption |n(?)| < ng ~ Np+q+1, and on the support of the cut-off (2.2.18)
In(V| < ng, we see that

M(n07 n(l)v n(2)7np+q+1) = |7’L,’, S(”O? n(l)v n(2)>np+q+l) = |n0 - np+q+1| + |n,’

We thus get for b an estimate of form (2.1.12) since derivatives are controlled in the same way.
The remainder in (2.2.15) will be given by

_YYY S (-

no+n
(2.2.19) 20 (D 0 Marain 0 + p+a+1

X fzo [Q(HkM(Hn(l) U(l))7 Hn(2) U(Q); 1o, np+q+1)f”p+q+1up+’1+1] ’

where x; = 1 — x. The L? norm of HnOR(Hn(l)U(l),Hn(Q)U(Q),an+q+1UP+q+1) will be bounded

from above using definitions 2.1.1 and 2.1.4 by [[?T%" || 12 times

ZX1< > (k + [n® )N (o + s gs1)?
ng + np+q+1 (Ino — np—&-q—f—l’ + |n(2)| + k)N r

(2.2.20)
o (maxa(n))+ p(k,n()N

(max(nM))t  S(k,nM)N

and because of condition (i) of definition 2.1.1, we may restrict the summatlon to those k satis-
fying k +[n?)| < ng ~ npiqr1. Moreover, the cut-off x; localizes for [n(1)| > eng. Consequently
(2.2.20) will be bounded from above by

et mmsa(n)y ¢ z“ (n0, b, 0 1) gl n )N
* max(no,nM,n® nyy401)! S(no, k0@, nprgi)V Sk, nM)N

Using again lemma 2.2.5, we get an upper bound

1"

/1!
0
Oondtds maxz (N, -, Mptq+1)” 7 p(no, -+ Npigt1)
"o max(n n e S( )V
1o Mptg+l N, -« - Nptqtl
for new values v/ = 2v + 1, N” of v, N. This is the wanted remainder estimate. O

Let us study now the action of an operator on a remainder.

Proposition 2.2.6 Let p e Nyg e N*d e R,d € R,v € R,V € Ry, Ny € N*. There is
V' =v+ v +1 such that for any a € EpN , any M € Rg Y the operator
(2.2.21) (Ul, .y Uppq) = Op(alur, ..., up;)) M (Upt, - .- Uptq)

. . der/,V”
18 in Rpﬂ
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Proof: 'We denote by UM = (uy,. .. L Up),s U@ = (Upt1s -+ Uptq)s nM = (ng,.. S Np), n? =
(Npi1, - - Mpiq). The value of operator (2.2.21) at (I, UM TI, o) U?) is

S a0 UD: ng, k) FLM (1L, U ).
no k

We make act I1,,, on this expression, and compute the L2norm. Using definitions 2.1.1 and 2.1.4,
we get an estimate in terms of the product of [[¥"||u;]| 12 by

(1) |V+N

, (2))y’+£ (k n(2))N
2.2.22 C k d |7’L d (maXQn w(k,
( ) zk:(no + k) (Jno — k| 4+ [nMN (maxn®)? S(k, n@)N

and we have on the support of the summation k ~ ng > [n(M].

e If moreover k ~ ng > |n(?|, we get for (2.2.22) an estimate

2)\v'+N
S
sl

o
Since we sum for |k — ng| < cng by condition (i) of definition 2.1.1, this gives the upper bound

/

VAN < C d+d/ (ma.XQ( (1) n(Z)))V+1/+1+€’ #(no’ o np+q)N
(max(n(®), n(2)) S(no, ... npiqg)N

if we take N = ¢’ + N’ + v + 1. This is a remainder type estimate.

Cnd—l—d’—l—l—i—l/—N(

0 maxyn(?)

o If [n?)| > ¢ny for some ¢ > 0, we bound (2.2.22) from above by

dt-d’ (maX2(”(1) @)+ Z p(ng, M, k)N ik, nENHN
nOv

C
"o (max(n( n(2) nM, k)N S(k,n@)N

Using again lemma 2.2.5 to estimate the k—sum, we obtain finally in this case

v'4+L v+N'+1

Cn d+d/ (maxz( @) n(2))) N(n07n(l)7n(2))
(maox(n®), )T (g, 0, i)

for a new N’. This implies the wanted remainder estimate. |

Proposition 2.2.7 Let d,d € R,v,v/ € R,.

(i) Let p € N,q € N*, Ny € N*. There is V" =dy + v+ + 1 such that for any a € Epr any
M e Rg " the operator

(2.2.23) R(ui, ..., uptrq) = M(Op(a(ui, ..., up; ) Upti, Upt2, - - - s Uptq)

d’ )
belongs to Rerl; .

(ii) Let p € N*,q € N*. There is v" = v+ 1"+ 1+ d/_ such that for any M, € Rg’y,Mz € 73;‘5"”/
the operator

(2224) (ul, ce ,up+q_1) — Ml(Mg(ul, ceey up), Up+1, - - - ,up+q_1)

belongs to Rgf;_l.
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Proof: (i) Denoting again UM = (uy,...,up), UP = (upy1,UD)), UG = (upra, ..., upiq),
and using similar notations n™@, n n® for the indices, we have to estimate the quantity

(2.2.25) > T M(Fra(@, UV b np 1) oy tip1, Ly U,
k

The L?*norm of the general term of (2.2.25) is bounded from above by [[2"||u;]| 2 times
|n(1)|l/+N

(Ik = npia| + [nM)N

Ond maxs (k, )+ u(ng, k,n®)N
O max(k,n®)’  S(ng, k,n®)N

(k + "erl)d

Moreover the summation is restricted to |[n(V| <« k ~ np+1, which allows one to bound this
quantity by
Cnd'nd max?(n(l)vn(Q))yl—M M(no, k, n(3))N /L(k, n(l)vnp-i-l)VJrN
0P max(n®, n@) S(ng, k,n®)N  S(k,nM ny, )N

Using again lemma 2.2.5 to estimate the k-sum, we get an expression of type

ymaxa(n, 0@+ (o, n®, 1)
o max(n), n2)¢  S(ng,nM), n2)N

for v =dy + v+ + 1, and new values of N, /.

(ii) We need to estimate the L2norm of

(2.2.26) > Ty My [T My (I, UD), T, 0 U]
k

if we denote here UM = (uy,...,uy), U®

= (Up+1,---,Up+q—1) and use similar notations for
n), n2 . The L2-norm of the general term of

2.2.26) is bounded from above by

Na v maXZ(n(l))zx’+€1 u(k, n(l))Nl
Na max(nM)f  S(k,n1))N"

Lamaxa(k, )2 p(ng, kb, nl
O max(k,n®)  S(ng, k,n®

~— [~— —~~ ~~

Assume for instance n1 < --- <ny, Npyg—1 < --- < nyp1. The above expression may be written

nyl+£1 k V“I‘ZZ
Cndpd Zp=1 maxy (K, npt2, Npy1)
0 b max(k, n,. 1)t
np » Thp+-1

(2.2.27) N N
:u’(kanp—zanp—hnp) ! u(n07 kanp-i-?nnp-‘r?anp-i-l) 2
S(ka np—2,MNp—1, np)Nl S(?’LO, k? Np+3, Np+-2, np+l)N2

Remark first that, changing eventually the definition of ¢5, we can control the k% term by
maxsy(k, npy2, np+1)d+. In the following we thus remove the k% term and replace v by v + dl,.

o Ifn, > %npﬂ for a large enough constant A > 0, we take {1 = £, ¢5 = 0 and we get an upper
bound of type

(2 9 28) CndmaX2 (n(1)7 n(2))u+y’+dq_+l u(k, n(l))Nl M(ng, k, n(Q))N2
- O max(n® @) Sk n0)N S(rng, b, n)N
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o If kK < An, < nyq1, we see that in (2.2.27),
maxao(k, npi2, npr1) < A(np + npy2) < C maxy(nM, n?).

We take ¢; = 0,¢3 = ¢ and get again an estimate by (2.2.28).

Ny
o If n, < %np41 and n, < Lk, the last but one factor in (2.2.27) may be written T;’}\,’l. Moreover
maxa(k, npy2, Npt1) < k if we assume k > ny,yo. Taking in (2.2.27) £, = o = 0, N| < Ny—v—d/,,

when npy1 <k, and {1 =0, {p = N <Ny —v-— d’Jr when n,41 > k we get the upper bound

; dn;fle{erd; pu(le, nWYNI=Ni=v=d\ 0 ke (2))N2
n 7 7 7
0 névil S(k, nMYN=Ni—v=d\ S(ng, k,n(2)N2

which again gives an estimate of type (2.2.28) (changing the definition of the exponents).

If k < npyo, we take in (2.2.27) ¢; = 0 and get an estimate by

V"!‘d;"r@g
Ond2 ik nt D) plng, k)

ny P Sk, ()N S (ng, b, n)Ne

We get again an estimate of type (2.2.28). To finish the proof, we just have to sum (2.2.28)
using again lemma 2.2.5 to get the wanted upper bound

£ gmsa(n. a7+ g, D n)
" max(n), n)  S(ng,nM) n2)N

with v/ =v+v +d, +1. |

3 Special pseudo-differential operators

3.1 An introductory example

In addition to the paradifferential symbols introduced in section 2, we shall need classes of
pseudo-differential operators. These classes will be more peculiar than the corresponding para-
differential ones. Let us explain this, and justify their definition through an example. Assume
that we are given an orthogonal decomposition L? = @ E,,, and assume that F,, is one dimen-
sional, spanned by a normalized eigenfunction ¢,. Let (X,n) — b(X,n) be a linear real valued
function of X € R, which is a symbol of order 0 relatively to n (95b(X,n) = O(n™%), n — +00).
If u; € &€, we can define the action of the pseudo-differential operator with symbol b(u1,n) on a
function ug by the formula

(3.1.1) > b(ur, n2)(ug, Pny)ns-

n2
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We denote, for future generalization, by B(X,n) the map from E,, to E, given for any fixed
X € R by

(3.1.2) B(X,n) : on — b(X,n)pn

so that (3.1.1) may be written, if we remember that the orthogonal projection on E, is given
by Iu = <u7 (Pn>()0n7

(3.1.3) > B(uy, o), ua.

n2

Remark also that (3.1.1) may be rewritten

(3.1.4) ZZ(Pno(‘rxb(ul?n?)‘pnza(pno><u2790?"b2>

ng no

i.e. with notations (2.1.6), (2.1.7)

(3.1.5) DN Foelun;ng, o) Foyus

no n2

with
(3.1.6) c(ur;no, n2) = (b(u1,m2)Pny; Pno)-

In other words, the operator (3.1.1) may be written under form (2.1.13) with a symbol ¢ which
may be proved to satisfy estimates (2.1.12).

Our aim in this third section is to introduce a general class of operators of form (3.1.1). We
shall see that they may be expressed in terms of quantities like (3.1.5) i.e. from (a sum of)
paradifferential operators associated to symbols of the classes ndv "No studied in section 2, up to
remainder operators. The interest of operators defined through formula (3.1.1) instead of (3 1.5),
is that they obey more explicit calculus rules, in particular for the symbol of the composition
of two operators. On the other hand, we do not escape the necessity of introducing more
general operators, of form (3.1.5), since to prove our main theorem, we shall have to define from
operators of type (3.1.1) more general ones, given by symbols of type (3.1.6).

3.2 Definition and calculus of special symbols

Remind that we denoted at the beginning of subsection 2.1 by G a finite dimensional real vector
space. Let (g;); be a basis of G. We fix a nice basis (cp%)w of L?(SY,R), where (gon) is a basis of
the subspace E], generated by the eigenfunctions associated to the eigenvalues w_(n) < wy(n) of
V=AFV. For £ = (j,i) we set o, = ¢}, @ gi. Then (¢!), is a basis of E,, = E/,® G and (08 )ne
is a nice basis of L%(S',G) ~ L%*(SY,R) ® G, and we have L*(S',G) = @.._FE,. Of course
(¢%)¢ provides also a basis of E, ® C and (¢%),,, is a nice basis of L2(S!, G ® C) considered as
a C-vector space.

n>T
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Definition 3.2.1 Letd € R, p € N. We denote by Sg the space of maps

(3.2.1) (W1, Up, Npt1) — b(ul,...z,uf,npﬂ)
Ex-xEXN, — L(IE,L*(S", G ®K))
such that one can find
e A map
B:Gx---GxN; - LE®K, E®K), (X1,...,Xp,n) = B(X1,...,Xp,n)

which is for any fized value of n, p-linear in (X1,...,X,), such that for any X1,..., X, € G, any
n € Ny, B(X1,...,Xp,n) is an element of L(E, @K, E, @ K) (extended by zero on (E, @ K)*),
whose matriz elements in the nice basis ((pfl)g of En, ® K satisfy for any o € N

P
(3.2.2) |05 Beer (X1, Xp,n)| < Can® [ Xl
1
o A family of pseudo-differential operators of order 0 on S*, Ty, ..., T,, such that one may write
for any uy,...,up € €, npp1 € Ny
(3.2.3) b(ur, ..., up, npt1) = B(Thua, ..., Tpup, npi1).

We shall quantize the above operators in the following way:

Definition 3.2.2 Let b € Sg. We define an operator ONp(b) acting on EPT1 by

(3.2.4) OP(b) (t1, - - Uy Yipr1 = 3 b(u, -+, Up, 1 ), U

Tp+1

We want now to define from an element of Sg and from a cut-off function a symbol in the class

d,v
Ep’l.

Proposition 3.2.3 Let x € C§°(R), x even with small enough support, p € N*. There is

v € Ry such that for any d € R, if we define for b € Sg, Uty ..., Up € E, ng,Npy1 € No
(3.2.5)
|n’| no — Np+1
by(ut, ..., up;ng,n = ( )( P )]: o b(IL, U, n o F*
x(n pi "0 1) %: %:X no + Npt1 Xno—l-npﬂ o © b(IT rr1) ©

where U’ = (u1,...,up), ' = (ni,...,np), thenb, € EZ:'{. When p = 0, we shall set by (ng,n1) =
Fno 0 b(n1) o Fr., which is supported for ng = ny.

Remark We assume in the statement that x is even since this implies when, in (3.2.3), B(X) is a
self-adjoint linear map independent of n,1, that the symbol b, defined by (3.2.5) is self-adjoint
i.e. satisfies with notations (2.2.1) that b$,(U’; no, np+1) = by (U’ n0, np11)-
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Proof of proposition 3.2.3: Remark first that condition (i)s of definition 2.1.1 is satisfied if
Supp x is small enough. Remind that we set K (n) = dim E,. Since F,, sends the basis (%),

of E, ® K onto the canonical basis of KX the matrix of by (IL,U’; ng, nps1) in the canonical
basis of KE(p+1) and KX (o) ig

W’ 1o — Np+1 / 1
3.2.6 ( ) ( )(bH/U, i1 ) .
(3.2.6) X\ — X e (I U’ nps1 ) on 050 ) ot

Remind also that for ng,n,41 large enough, the size of this matrix is independent of ng, 7,41.
Using (2.1.18) to estimate derivatives of the cut-offs, and Leibniz formulas (1.2.6), (1.2.7), we
see that we just have to get estimates of type (2.1.12) for the matrix in (3.2.6). Decompose
X; € G on the basis (g;); of G as X; = ), X;gi. Then the entries of the matrix of the map

B(X1,...,Xp,nps1) in the nice basis (¢f)¢ of E, ® K may be decomposed as

p+1

By 0y (X1 Xy ) = Y Bh o () X
I

where we denote by I a p-tuple I = (i1,...,i,), by X! = Hp , and by B}, tpst (np+1) the
1
quantity By o1 (Girs -5 Gipypt1). By (3.2.3)

(3.2.7) B U’ et )it o) Z Z (1) (TTL U oy pfo )

p+1 P+1

where T1L,U" = (T111p, w1, . . ., Tplly,up). Since £,,1 € {1,..., K(np41)} and K(n) is indepen-
dent of n — 400, and since I describes also a finite set, we actually just need to estimate each
term of the above sum, namely

(3.2.8) B,

p+1°P

f p+1 (np+1)<(T]'_‘[TL/ U/) sanz;-:-ll 9y SOTL0>
We apply inequality (2.1.2) with 77 = T = Id to the bracket. We get the following estimate

1070 D5,,1)" (Ong — 05, ) (o, (T U Lodih))

< C{ng — np+1>_N(n0 +np1) sup Hak[(THn/U/)I]HLoo
0<k<a-+B+v+N+v

(3.2.9)

for any o, 3,7, N € N. By Sobolev injection, and the L?-boundedness of pseudo-differential
operators of order 0, we get for the last term in the above formula the upper bound

p
O+ |/ PN T g 2
1

for a new value of v. If we combine (3.2.9) with (3.2.8) and (3.2.2), and use Leibniz formulas
(1.2.6), (1.2.7), we see that (3.2.7) satisfies estimate (2.1.12) of definition of symbols (with
Ny = 1). This concludes the proof. )

We shall need estimates of type (2.1.12) for some functions of type (3.2.5), but depending on
extra parameters. We state theses estimates as a corollary of the proof of proposition 3.2.3.
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Corollary 3.2.4 (i) Let b € Sg. One has the following estimate for any indices ng,n’ =
(n1,...,np), npg1, k:

n/V+N
(3.2.10) T b U7 k)l 2,2y < C ] k?

(Ino — npe| + 1)~

for some v € Ry, independent of d.

(it) Let B: G x -+ x GxN; xN; — L(ERK,E®K) be a function
(X1, Xp,npy1, k) — B(Xq, ..o, Xpinpyr, k),

p-linearin (X1,...,X,), and such that B(X1, ..., Xp;npt1, k) is an element of L(EQK, E,QK),
whose matrix elements in the nice basis of E @ K satisfy instead of (3.2.2)

p
(3.2.11) 052,002 Bor (X1, ., Xps 1, k)| < Clnprn + k)2 [T 1Ko
1

Tp+1

Define as in (3.2.5),

bX(U1,...,Up,np+1;n0, Z Z <n(|)n—'_|k> (Zg;:)fnoOb(Hn/U/;np_i_l,k)Of]:.

Then b, satisfies

05, (87) (85, )72 (g — B — 85 ) by (U’ mpp 1m0, )|
| /’V+N+a+ﬁ1+62+'y p
< Olng + k)50

(3.2.12)
— T~ [ Tl
(no — K[+ DN L.

for some v € Ry, independent of d.

Proof: (i) The left hand side of (3.2.10) equals || 7, b(IL, U’ k) F; || by (2.1.8) and (2.1.6),
(2.1.7). Consequently (3.2.10) is nothing but (2.1.12) in the case « = § = v = 0, when the
symbol b depends on an extra parameter k, instead of being a function of n,.1 as in (3.2.5).
Estimate (3.2.10) follows from (3.2.7) to (3.2.9) in the proof of proposition 3.2.3, in which
Bz&+1 ot is evaluated at k instead of n,41.

(ii) One has just to replace in the proof of proposition 3.2.3 the reference to (3.2.2) by the

reference to (3.2.11), k playing now the role of ny,;1. Remark that since in (3.2.12) Op,, -

derivatives act only on the Bl{, it term in (3.2.8), they gain one negative power of k ~ ny+ k.
p+1

|

Our next task will be to express a quantity of form (,)Y)(b(ul, ... Up, ))Upy1 in terms of the
action of paradifferential operators on uy,us,...,up+1 and of a remainder operator. This is, in
our framework, analogous to Bony’s paradecomposition of a product [4].
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Proposition 3.2.5 Letp € N*. Let x € C°(R), x = 1 close to zero, with small enough support.

There is v € Ry and for any d € R, any symbol b € S;,l, a family of symbols b; & Zg:’f+d+
7=1,...,p, and a remainder operator M &€ Rg’fjﬁ such that for any uq,...,upt1 € E

C,)I)(b(ula sty ) )uppr = Op(by(ur, .o ups ) upt
P

(3.2.13) + ) 0D (u, .l ) U
=1

+ M(U1, .. ,up+1).

When p = 0, we have ONp(b())ul = Op(by (u;-))us.

Proof: ~ We first define the symbols b;, and check that they belong to Zg:'ﬁd*. Define for
J=1....p

](nl,...,ﬁ},...,np_;_l)\ ng —ny
3.2.14 (no, . .., - ( ) ( )
( ) Xi (o np+1) X ng +n; X ng +n;

so that on Supp x; we have

(3.2.15) np < c(ng+ny), ke{l,...,p+1} = {j}, |no —nj| < c(no + n;)
for a small constant ¢ > 0. Moreover, x; = 1 on a domain of type (3.2.15) when c is replaced
by some smaller constant. We define a linear map b;(u1,...,4;, ..., upt1;n0,n;) from KX ()
to KK(m0) ag
(3.2.16)

V — Z X5 (10, - s Mpg1) Fg [0y s - - ,]::;],V, ey i up, np+1)an+1Up+1]-

ng;ke{l,...p+1}—{j}

By (3.2.15), condition (i)s of definition 2.1.1 will be satisfied if ¢ > 0 is small enough. We
must check the estimates of condition (ii). To simplify notations, take from now on j = 1,

and set ' = (0", npy1), 0 = (ne,...,np), U = (U upy1), U = (ug,...,up), IyU =
(M, uz, ..., My, upy1). Then for Ve KEM) g, (I, U’; ng, n1)-V is the product of the function
X1(no, ..., npy1) by the vector of KE(0) with components

(3.2.17) (O(F VT U 1y )1, 000

We use expression (3.2.3) for b in terms of B. Let (V;, ), be the coordinates of F; V on (f)e,
i.e. using Einstein’s conventions 7 V = Vp, ¢4 . We may rewrite (3.2.17)

<‘/€1 B (Tl Spqt;ll s T//Hn// U//, Np+1 )an+1 Up+1, 901{2) >g0

where T"IL,nU" = (ToIy,us, . .., TpIl,,up,). In other words, the ({o,¢1) entry of the matrix of
b1 (I1,,U’; ng,n1) in the canonical basis is

(3.2.18) X1(n0, - s e ) (BTl T U )M, 1, 070 ).
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Since T 1<pr11 is a function with values in the finite dimensional vector space G, with basis (g;);,

we decompose it as (T1¢f})'g; and write the bracket in (3.2.18) as

(3.2.19) (an i (2)(Trof)', ol2)
with
(3.2.20) i 4(2) = Bgi, Tl )Tty

By (3.2.2), Sobolev injection, and the L? continuity of zero order pseudo-differential operators,
we get for any k

p+1
(3.2.21) 108w i)l < Co(L+ |0/ Tl 2

2

for some fixed v € Ri. We apply estimate (2.1.2) to (3.2.19) and insert in it (3.2.21). If we
use estimates of type (2.1.18) for x; (replacing in (2.1.18) np41 by n1) and the Leibniz formulas
(1.2.6), (1.2.7), we see that we get for (3.2.18) estimates of type (2.1.12) as wanted.

We must now prove formula (3.2.13). Let us compute Op(b;(u1,...,j,. .., Upy1;+))u; using
definition 2.1.2: we must in the right hand side of (3.2.16) replace V' by Fn;uj, compose on the
left with F; , and sum in ng,n;. Using (2.1.8), we get

Z . Z Xj (TLQ, v ,np+1)1_[n0 [b(Hnlul, e ,anup, np+1)an+1up+1].
no

Np+1

Consequently, because of the definition of by, b;, the operator M defined by equality (3.2.13)
may be written as
(3.2.22)

M(ui, ... upt1) = Z . Z X105 - - s Mpr1) g [0y uay o Tl gy 1 ) U]
o

Np+1

where x cuts-off outside a neighborhood of the region where one of the x; j = 1,...,p+1 equals
one. In other words, x is supported inside

p+1

(3.2.23) ﬂ{(no, s Mpt1); ng — ng| > e(no+nj) or 3k € {1,...,p+1} —{j} with ny > cng}
j=1

for some small ¢ > 0. We estimate the L? norm of II,,, M (1L, u1, .. 3, upy1) ie. of the

general term of (3.2.22). Using (3.2.3), we must bound

(3.2.24) IX(n0, -+ s p ) [ Wi B(T1 I s oo Tplyy i, 1)y, Upt || 2
or equivalently the product of |X(no,...,np+1)| by

(3.2.25) (B(Th Iy uy, ..o Tplly up, np 1 )T, tp g, Hinguo)

for any ug € L? of norm 1. If for instance n; and ny are the largest two among ny, . . . s Npt1, We
decompose again for j = 1,2

£ OiNgs
Tl uy =Y > (uj, 00) (Tin,) " gi,
KJ iJ
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where h% denotes the ijth coordinate of an element of G on the basis (gi)r. We set n” =
(n3,...,np), ' = (n",npy1) and define
Ajqi9m/ (17) - B(gi1ugi27T//Hn”U”7 np+l)an+1up+l'

Then (3.2.25) may be written as the sum in ¢y, ¢o, 41,72 of

(3.2.26) (w1, 05 ) (w2, O ) (@i (2) (T105, ) (To 02 )2, Tng uo).

The last bracket is estimated by (2.1.2). Using Sobolev injections to control the L> norms of
derivatives of a;, i, and (3.2.2), we may bound the modulus of (3.2.26) by

pt1
Clny —n2) N (1 +ng + ')+ ng 1_[||W||L2

for any N and some fixed v. Since i1, 19, f1, 3 in (3.2.26) run in a finite set of indices, we get the
same estimate for (3.2.25). Consequently, when the largest two among nyg,...,n,41 are among
{n1,...,np,}, we have for (3.2.24) an upper bound

,/ +N pFl

d p(no, . . ”p+1
(3.2.27) e Ty Hnujnm

for any N. One checks in the same way that this formula holds true when one at least of the
largest two among (ng,...,npt1) equals ng or nyrq. To conclude the proof, we have to show
that estimate (3.2.27), together with the support conditions (3.2.23), implies the upper bound

di+t N
maxa (n1, . .., Mpy1) T plno, . . mpia)
(3.2.28) ; .
max(ni, ..., Np4+1) S(ng, ..., Np+1)
for any ¢, N. If there is ¢; > 0 with maxa(ni,...,np41) > ¢1 max(ni,...,np41), this is trivial.
Assume now
maxa(ni,...,Npt1) < c1max(ni, ..., Np41).
If, for instance, n,y1 = max(ny,...,npy1), we have nyyq > nj, j=1,...,p. Assume moreover

|no — np+1] > ¢(ng + npy1) where ¢ > 0 is the constant of (3 2.23). Then, if ¢; is small enough
S(no, -, npy1) = ¢ (no +npi1)

and inequality (3.2.27) implies (3.2.28). We are thus reduced to the case when |ng — npy1| <
c(no + npy1). By (3.2.23) we must have then ny > cng ~ cnpyq for some k € {1,...,p}. This
implies again that maxs(ni,...,np41) ~ max(ni,...,ny+1) and the conclusion follows. O

We shall now study symbolic properties of elements in Sg. To be able to get for the symbol of a
composition a more explicit formula than the one of the proof of proposition 2.2.2 (ii), we shall
have to limit ourselves to symbols which are “scalar” according to the following definition.

Definition 3.2.6 Let d € R,p € N. We denote by S¢

psc the space of maps

(U1, .y Up, p1) = b(ur, ..., Up, Npy1)

(3.2.29) o
Ex -+ xExXN - LIERK, L*(S",G®K))
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such that there is
e A function
Bs:Gx---xGxN - LIGRK,G®K), (X1,...,Xp,n) = Bs(X1,...,Xp,n)

p-linear in (X7,..., X)), satisfying for any o € N
P
(3.2.30) 05 Bo(X1, ..., Xp,n)| < Can® ]| X;l¢
1

e A map
By:Gx---xGxN; - LIGRK,G®K), (X1,...,Xp,n) = Boo(X1,...,Xp,n)

p-linear in (X1,...,X,), such that for any Xi,...,X, € G, any n € N, Bo(X1,...,Xp,n) is an
element of £(E, ® K, E,, ® K) whose matrix elements in the nice basis (¢%,), of E, satisfy for
any N € N

(3.2.31) |Boo.ser (X1, . .. n)| < Can N[ 1%l
e A family of pseudo-differential operators of order 0 on S, 11, ..., T, » such that one may write
for any uq,...,up € £,npy1 € Ny
(3.2.32)
b(ut,. .. y Up, np—l—l) = By(Thuq, ... s Tpup, np+1) ® IdE;LpH@K + Boo(T1uy, - - . s Tpup, np—l—l)-

Remark that an element of Sp s 1s in particular an element of S’g as shown by (3.2.32). In the
sequel, we shall have to work with G = K?2. In this case, By can be identified with a 2 x 2 matrix

and the first term in the right hand side of (3.2.32) may be written

Bs11 ®@ldgr gk Bsi2®Ider gk
p+1 p+1

3.2.33
( ) Bso1 ®Idg;, @k Bs2e ®@ldg, gk
p+1 p+1

i.e. elements of Sp <« are given, up to a perturbation of order —oo, by a matrix in which each

block is a scalar operator acting on E!, ® K.

We shall use in the proof of the following proposition the fact that we can make act the scalar
part of (3.2.32) not just on E, ,, ® K but as well on any Ej; ® K (replacing - ® Idg:, 1K by
P

Proposition 3.2.7 (i) Let p,g € N. Let x € C°(R), x = 1 close to zero, and assume that

Supp x s small enough. There isv € R and for any d,d’ € R, for any symbols a € Sgsc, be ngsc

there are a symbol e € EZ+31 Y and a remainder operator M € Rdigfl such that for any

U= U U")withU = (u1,...,uq) € EL, U" = (Ugt1,.-.,Uptq) € EP, any upiqr1 € E, one has
Op(ax(U/; '))Op(bx(UHQ Niptq+1 = Op((a o b)x(Us;-))up+q+1

(3.2.34) + OD(e(Us )t git

+ M(uh ey up+f1+1)7
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where ay, by are defined in terms of a,b by (3.2.5), and aob stands for the symbol associated to
the composition Ao B of the linear maps defining a,b through (3.2.3).

satisfies a(U';-)* = a(U’;-). Then there

(ii) Assume moreover that x is even and that a € qu
d— 1V
such that

C

is a symbol e € X

(3.2.35) Op(ax(U';:))" = Op(ax(UU's)) = Op(e(U";))
for any U’ € £9.

Proof: (i) We decompose according to (3.2.32) a = as + Goo, b = bs + boo. Then by proposi-
tion 3.2.3, aoo,y and b, belong to E;TO’V. Consequently by proposition 2.2.2, their contribution
to the left hand side of (3.2.34) may be incorporated to the term e of the right hand side. In
the same way, the terms (aoo 0 )y Or (a0 bs)y in the right hand side may be incorporated to e.
We may thus assume from now on that a = as, b = bs. Using notations (3.2.14), the definition
(3.2.5) of ay, by, definition 2.1.2 of quantization of a paradifferential symbol and (2.1.8), we get

Op(ax(U/' -))Op(b (U”' '))up+q+1 =
(3.2.36) Z Z ZXq—i—l no, 7', k) Xp1(k, 0" npygi1)

Npt+q+1 K
x Iy, [a( w U k) [b(IL,n U’ 7np+q+1)an+q+1up+q+1H
setting n’ = (n1,...,nq), " = (Ng41,...,Np+q). We write this expression I + IT where
I= Z Z qu+1 no, ', k) Xpt1 (k0" nptgt1)
(3.2.37) Nptg+1 k
x Iy, [a( wU’ s Nptqt1) g [b(IT w0, ”p+q+1)an+q+1up+q+1H
and
1T = Z DD Xar1(no, 0 k)xpea (ks npygin)
(3.2.38) Nptgt1 k
x Fpoa(lly U ,np+q+1;n0,k‘)5( n”UHS]‘C7np+q+1)-7'—np+q+1up+q+1
with

1L,/ / k) — 11,/ /
(MU' iy 11510, k) = Frg © a(llyU', k) — a(l U’ np4g41)
(3.2.39) —
b(Hn//U//; k’ np+q+1) = fk‘ o [b(Hn”U”’ np+q+1)] o fnp+q+1 (k _ np+q+1)'

o5

We used in the definition of I and I7 that a is scalar, so that in (3.2.37) it is meaningful to make
act a(Il, U ! Nptq+1) on an element of Ey, as remarked before the statement of proposition 3.2.7.

Study of term [

We further decompose I = I’ + I"” where

Z Z Xpta+1(no, 7', 0" mpiqi1)

Np+q+1

X Ip, [G(Hn’U »np+q+1)b( w0, np+q+1)an+q+1 up+q+1] .
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Remark that I’ is nothing but the first term in the right hand side of (3.2.34). Let us show that
I" is a remainder operator. We have

I" = Z T Z Z[Xq—i—l(”Ov n,v k)Xp—i—l(kv n”, np+q+1) - Xp—l—q-l—l(nOa n/7 n”a np+q+1)]
no

Nptq+1 K

(3.2.40)

XMy, [a(TLy U’ g g )T (T U 1y g4 1) Ty g Ut g ]

The first cut-off in the above expression is supported in a domain of form

Ino — k| <d(no+ k), |k —nprgra| <(k+ npyqr1)

3.2.41
(3241 7] < 6(no 4+ K), "] < (k + mpegsr)

and is equal to one on a domain of the same type. The second cut-off is supported inside a
domain

(3.2.42) 0 = Nprgi1] < 0(no + npigr),  max(|n'],[n"]) < d(no + npygi1)

and is equal to 1 on a similar domain. By formula (3.2.10) of corollary 3.2.4, the general term
of (3.2.40) has £(L?, L?) norm bounded from above by

Y N

n, .
[0 — K[+ W)Y P (R = ] + )N

(3.2.43) Cny 1 (

Remark moreover that by (3.2.41), (3.2.42), ng ~ npyq+1 > max(|n'], |n”|) and if
(3.2.44) 70 — bl + 16 = g ]+ [0'] + 1] < 8'(mo + mpigs)

for small enough ¢ > 0, both cut-offs in (3.2.40) equal one. Consequently, on the support, we
may always extract from one of the factors of (3.2.43) a term decaying like (ng + npyqi1) ™
This shows that we get for I” remainder type estimates of form (2.1.15) with d replaced by
d+d.

Study of term II

We shall show that 171 gives the term Op(e(U;-))uptq+1 in (3.2.34). We shall need the following
technical lemma:

Lemma 3.2.8 Let d € R and f : Z — C be a function satisfying |02 f(n)] < Con®=* for any

a € N. Define for a,b € Z,a # b, g(a,b) = %a(a) Then one may extend g to the diagonal

a="b and on the domain |a — b| < |a + b| one has the estimate
(3.2.45) 1020] g(a,b)] < Ca,pla +b)4=17o=F

for any o, 6 € N.

Proof:  Let us construct first x € S(R) real valued such that x(0) = 1, x(n) = 0 Vn € Z* and,
for any k € N, there is x; € S(R) with

(3.2.46) vz e R, ¥ (z) = 8%xi(2)
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where we denote dx(z) = x(z + 1) — x(z) (extending notation (1.2.3) to real arguments). Take
first v € C§°(] —1,1[, R) with v(0) =1, 0 € C5°(] =7, 7[,R) even, such that >, ., 0({ —27k) = 1.
Define x by X(&) = 0(¢) >242° . 4(¢ + 2km). Then, for n € Z

1 [, =
Xn) = oo [ €m0 ( 3 A(e+2bm) de = 1(n).
k=—oc0
Moreover 1
@) = o [ (e = a9 de = xale+1) - ()

if we define x1(§) = eié—f_lfg({), which belongs to S(R) by construction of y. We deduce (3.2.46)
from this equality by induction.

Write now, denoting by (-,-) the scalar product (f1, f2) = 3.7 fi(n) fa(n),

+o00
gab) = 5 3 F)xn =)~ x(n— a)) = (f, H(-a,b))

n=—oo
where

1
H(n,a,b) = —/0 X' (n— (1 —t)b—ta)dt.

This defines an extension of g(a,b) to a = b. If we make act the finite difference operator 9 on
H(n,a,b), we get

O H(n,a,b) / / (4D (1 — (1= )b — ta— (514 -+ s5)(L— ) (¢ — 1)P dsy ... dst.
Using (3.2.46) in the right hand side, we see that we may write
85H(n,a, b) = 8£+1Hg(n,a, b)

where Hg satisfies for any N € N an estimate
1

Hy(n, a,b)| < CN/ (n—(1— )b —ta) dt.
0

Consequently, if we write
0y 9(a.) = (£,07 H(n,a,b)) = (9;)"" f, Hy(n, a,))

and use the above upper bound, and the assumption |a — b| < 1|a + b|, we obtain \8bﬁg(a, b)| <

Cla+ b[dil*ﬂ . One treats in the same way the action of difference operators acting on the first
variable of g. O

End of proof of proposition 3.2.7: Denote by (Xi,...,X,,n) — A(Xy,..., X4, n) the function
on G x --- x G x Ny in terms of which the symbol a(ui,...,uq,n) is defined according to
definition 3.2.6 (see formula (3.2.32)). Set

A(Xl, ce ,Xq, np+q+1) - A(Xl, ce ,Xq, k)

Al(X17~--7XQ7np+q+17k): Tpt +1—k
pTq
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(taking by convention the quotient to be the extension of lemma 3.2.8 when nyiq41 = k). By
lemma 3.2.8, A; satisfies when |npyq+1 — k| < %(np+q+1 + k) and npyq41 ~ k is large enough

q
051, 02 AN(X, ., Xgynpagit, k)| < Capl(k + nprgr) ™77 T 1X 6
In other words, assumption (3.2.11) of corollary 3.2.4 holds true. We denote by a, the product
of a given by (3.2.39) with x4+1(no, 7/, k), and by b, the product of b by xpt1(k,n", nptgs1)-
By (3.2.12)

195, (00) (5,2 ) 2 (Ong — O = Oy, ) Vi (L U gm0, )|
‘n ’V+N+a+ﬁ1+52+’Y q

(3.2.47)
erEra | Gl

< C(ng + k)31

Moreover, by proposition 3.2.3 and Leibniz formulas (1.2.6), (1.2.7), b, € E " for some v.
Define now

(3.2.48) e(Uino,npigr1) = > 3> an (Ml i gi15m0, K)oy (MU by 1 g11).-

By the second Leibniz formula (1.2.7)

(Ono a:bp+q+1) e(ILy U’ Ly U"; mo, nP—H}—H) = Z((a a;;p+q+1 31?)&x)5x

(3.2.49) + Zax = On i )Ox
_Z Nptq+1 ) ;p+q+1bx>

Using (3.2.47), and the fact that Bx obeys symbol estimates of type (2.1.12), we see that the
action of On, — 9y, on e gains one unit either on the order of a, or of by in (3.2.49), loosing
a power of [n/| or [n”|. In the same way, one sees that a On, or a 0; . derivative does not
change the order. Consequently, to check that e € Ed+d,_1’y we just have to check that (3.2.48)
satisfies property (i) of definition 2.1.1, and estlmate (2 1. 12) when o = =v=0.

Since inequalities (3.2.41) are valid on the supports of @y, by, (i) of definition 2.1.1 holds true

(if § > 0 in (3.2.41) is small enough). Moreover, by (3.2.47) and the fact that b, € Ep 1, we get
for ||e(IL, U’ IL,,»U"; ng, npyq+1)|| an upper bound given by
+q
_ p(ng,n/, kv ke, npyger) N2 B
Z(no +k)d ! S(no n! :IC)Nl (k+np+fI+1)d S(k n' f'l/ 1 H”u]”L2

k

Since on the support we have k& ~ ng ~ npy44+1, we may use lemma 2.2.5 to get the upper bound
(for new values of v, N)
ptq
d+d'—1 p(no, ', n” np+<1+1 o HH I
S(ng,n',n",n N il
0, p+q+1

C(no + Nptq+1)
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which is the wanted estimate.

(ii) We have using notations (2.2.1), (3.2.5) and the fact that x is even

ay (U,' no, Ng+1) — ax(U/’ no, Ng+1) =

no—nq+1)]_- [ .U (Tl U o
Z Z <n0+nq+1>x(n0+nq+1 ng © a( n 7n0) CL( n ,nq+1) o Ngi1

One has just to apply the proof of proposition 3.2.3 together with estimate (3.2.45) to check
that the above formula defines an element of Ei—ll’”. O

3.3 Polyhomogenous symbols

We collect in this subsection corollaries of the results obtained in subsections 3.1 and 3.2, which
apply to symbols which are not necessarily multilinear in the arguments uq, ..., u,.

Definition 3.3.1 (i) For d € R,v € R, Ny € N*, we denote by id’y the space of functions

b:Ex Ny x Ny — L(0% %) such that there is a finite family (by)p—o... p of elements b, € Ep No
with

P
3.3.1 b(u;ng,n = by(u,...,u;ng,n
( ) ( 0 p+1) pzop( - 0 p+1)
p times

for any ng,np11 € Ny, u e €.

(ii) For d € N, we denote by S? the space of functions b : £ x Ny — L(E,L?) such that there is
a finite family (by)p—o,....p of elements b, € Sg with

P
(3.3.2) b(u,n) =Y by(

for anyn e Noju e £ We define in a similar way 4 from S

p,sc”

(i1i) For v € Ry,d € R, we denote by RV the space of all maps M : € — L? such that there is
a finite family of maps M, € R;,l’” p=1,..., P with

P
3.3.3 M) =S Myu,...,
(3.3.3) (u) p; p(u X w)
p times

for any u € £. Some times, we shall use the same notation for maps (u,v) — M (u,v) depending
on two arguments u,v € £, and which may be written as a sum of multilinear expressions of
form My(u,...,u,v...,v) where the total number of arguments is p and 1 < p < P.



We define the valuation v(b) of a symbol b (resp. v(M) of an element M of R%") as the smallest
p > 0 (resp. p > 1) such that b, # 0 in (3.3.1), (3.3.2) (resp. M, # 0 in (3.3.3)). The modified
valuation v'(b) of a symbol is the smallest p > 1 such that b, # 0 in (3.3.1), (3.3.2).

In section 4 below, we shall have to use symbols verifying conditions of type (1.1.3). We introduce
the following definition.

Definition 3.3.2 Let x be an odd integer, r € N with k < r —1 < 2x. We say that a symbol
be Z;i\}: (resp. b € S%, resp. an operator M € R ) satisfies condition C(k,r) if and only if
b=1bo+> L, by (resp. M =31 Myiq) with by € ZZ:]”\,O (resp. by € S, resp. Mpi € Rz’fl)
and b, =0 (resp. Mpy1 =0) when p is an even integer 2k satisfying k < 2k < r — 1.

We shall use below several times the following remark. Let L be a linear map (resp. B be a
bilinear map) from one (resp. the product of two) of the above spaces of symbols or operators
to a third space of that type. Assume that L (resp. B) respects the natural graduations of these
spaces. Then L (resp. B) sends symbols or operators satisfying C'(k, ) to symbols or operators
satisfying C'(k,r).

This is trivial for linear maps. In the bilinear case, this follows from the fact that in an expression
of form B(a,b), the contributions of type B(agq,b,) with ¢ > 0 and p > 0 are homogeneous of
degree p+ ¢ > 2k > r — 1 (since v'(a) > k, v/(b) > k), so the condition imposed by C(k,r) on
B(aq,bp) is void. Only terms of type B(ag,bp), B(aq,bo) have to be taken into consideration,
and they satisfy the condition of the definition.

We extend the definition of the quantization of operators by linearity, setting for b € fljdvg or
be Sd respectively

P
Op(b(u, )) = Z Op(bp(u7 > Us ))

(3.3.4) ”;0
@(b(uv )) = Z 6£)(bp(u7 s Uy ))

p=0

By proposition 2.1.3 and lemma 2.1.7, maps like (u,v) — Op(b(u;-))v, for b € f]?lvg (resp.
u — R(u) for R € R%") extend from € x & (resp. €) to H*(S*,G @ K)? (resp. H*(S',G @ K))
if s is large enough. We use this in the following corollaries, which are stated for arguments u, v
smooth enough, but need only to be checked when u,v € £ by density.

Corollary 3.3.3 Let P € N* be given. There is v € Ry such that if we define for d € R,

be gd,x € C°(R), x =1 close to zero, Supp x small enough, b, = Z;::O bpy € if’”, we may

find a symbol b° € i?’wrd* and an operator M &€ ROV Fd+ such that for any smooth enough u
(3.3.5) Op(b(u, -))u = Op(by (s -))u+ Op(b” (us -))u + M (u).

Moreover, one has

(3.3.6) v(by) > v(b), v(b°) > ' (b), v(M) > v'(b) +1
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and by, b°, M satisfy condition C(k,r) if b does so.

Proof: ~ We decompose b = 25:0 b, and apply to each component proposition 3.2.5. We
obtain (3.3.5) and (3.3.6), remembering that for p = 0, by does not depend on wu, so that
Op(bo) = Op(bo,y) for any x as in the statement of the theorem. Consequently by does not
contribute to the last two terms in (3.3.5), which implies the last two inequalities in (3.3.6). O

Corollary 3.3.4 Let d,d € R,a € Sd be Sd Let x € C°(R), x =1 close to zero, with small

" Sd+d
21-‘1- —17V

enough support. There are v € Ry independent of d,d’, a symbol e € and a remainder

operator M € Ratdw « ROVt guch that for any smooth enough u,v,

(337)  Oplay(u;-)) o Op(by(; ))v = Op((a o b)y (w5 ))v + Op(eus ))o + M(u, ).
Moreover
(3.3.8) v(e) > min(v'(a),v'(b)), v(M) > min(v'(a), v’ (b)) + 1.

If v(a) = v'(a) > 0, v(b) ='(b) > 0, we have
(3.3.9) v(e) > v'(a) +0'(b), v(M) > v'(a) +'(b) + 1.

Moreover aob, e and M satisfy C(k,r) if a and b do so.

Proof: We decompose a = Zquo ag, b = Z;I;D:o b, and apply proposition 3.2.7 to each contri-
bution, remarking that Op(ag,y)Op(bo,) = Op((ap o bo)y), so that all contributions to e and M
come from compositions with p > 0 or ¢ > 0. The last statement comes from the remark after
definition 3.3.2. a

Corollary 3.3.5 (i) Let v € Ry, Ny € N*. There is V' € Ry, and for any d,d € R, any
a € E?\}Z, be Ejlv(’)’j satisfying condition (i)s of definition 2.1.1 with small enough 6 > 0, there is
a symbol a#b € i?\?;dl’”, such that for any smooth enough u

Op(a(u;-)) o Op(b(u; -))u = Op(a#tb(u; -))u.
Moreover v(a#b) > v(a) 4+ v(b), and a#b satisfies C(k,r) if a,b do so.

(i1) Assume moreover that the homogeneous components aq(u;no,ng+1) and by(u;ng,ny,, 1) of
a,b commute for large enough n07nq+1,n/0,n;,+1 and that agby = boag. There is ¢ € Ed+d —Lv
such that

[Op(a(u; -)), Op(b(u; -))Ju = Op(c(u; -))u
for any smooth enough u, and v(c) > min(v'(a),v'(b)). If moreover v(a) = v'(a) > 0 and
v(b) = v'(b) > 0, then v(c) > v'(a) +0'(b). Finally if a,b satisfy C(k,r), the same holds true for
c.
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Proof: We decompose again a = Zf:o ap,b = Z(?:o by and define a#b or c using the linearity
in (i), (ii) of proposition 2.2.2. The statement concerning valuations in (ii) of the corollary comes
from the fact that [Op(ag), Op(bg)] = 0 since these operators are constant coefficient ones. O

Corollary 3.3.6 (i) Let d,d' € R,p € N*,v € Ry, Ny € N*. Let a € X0% b€ =47, and
assume that they satisfy condition (z)(; of deﬁmtzon 2.1.1 with a small enough 6 > 0. Then there
are V' =2v+d, +1 anchZN with

Opla|Op(b(u; ))u, u, ..., u; |Jv = Op(c(u;-))v
pla[Op(b(us;-)) Il p(c(u;-))

p—1 times
for any smooth enough u,v. Moreover v(c) > p+ v(b) and c satisfies C(x,r) if b does so and p
is odd, p > K.
(ii) Let d € R, d € R, v € Ry,p € N* Ny € N*,a € EZ’]”VO satisfying condition (i)s of
definition 2.1.1 with a small enough § > 0. Let M € RY". There are v/ = dy +2v+1,
V=2+1,b€ f]?l\}g, and R € R4V « ROV +detdy guch that for any smooth enough u,v

Op(a(M(u),u,...,u;-))v = 0p(blu;-))v+ R(u,v
p(a(M (u) ) p(b(u;-)) (u,v)
p—1
with v(b) > v(M)+p—1, v(R) > v(M) + p. Moreover b, R satisfy C(k,r) if M does so and p
s odd, p > K.
(i1i) Let d € R,d' € R, v, € Ry, Ny € N*,a € f]?\};’,]\/[ e RYY. There is V" = v+ 1/ + 1 such

that u — R(u) = Op(a(u;-)) M (u) is in R4V and v(R) > v(a) +v(M). Moreover R satisfies
C(k,r) if a and M do so.

These statements follow from propositions 2.2.3, 2.2.4 and 2.2.6. In the same way, we deduce
from proposition 2.2.7:

Corollary 3.3.7 (i) Let d,d’ € R,v,v' € Ry, Ny € Ng € N*. Let a € Y and M €
Rg/’yl. There is V" = dy + v + V' + 1 such that the operator u — R(u) given by R(u) =
M(Op(a(u; ))u,u, ... u) is in RY*" with v(R) > q + v(a). Moreover R satisfies C(k,r) if a
does so and q — 1 is an odd integer ¢ — 1 > k.

(i) Let My € R¥ My € RYY . Then there is V' = v+ 1/ + d, + 1 such that R(u) =
My (My(u),u, ... u) is in RYY" with v(R) > v(Ms) + q — 1.

Let us conclude this subsection with the following technical lemma.

Lemma 3.3.8 (i) Let a()\) be a smooth function on R satisfying for any k, |05a(\)| < CpAtF
when A\ — +oo. Let (n1,...,ny,) =n' — G(n') be a real valued function defined on N, such
that there is C' > 0 with |G(n')] < C(1+ |n'|). Consider the function

(3.3.10) F(ng,n1,...,npt1) = a(ng) — a(nps1) + G(na, ..., np)
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and assume that there is ¢ > 0, Ng € N* such that for any no,np+1 € Ny,n' € NY satisfying
[m0 — npti] < 10+ mpsa), 0] < Lo +nps1) one has

—N,
(3.3.11) |F(no, ...,npt1)| > e(1+ |ng — npa])|n'| 7.

Then we have for any o, 8,y € N, any (ng,n/,npy1) € NE*2 satisfying the preceding inequalities

05, (%,.)(Ony — .

v
e Tlp+1) F(nOa s 7np+1)

—y ‘ n/ | No (OH'B"F'Y"‘I) (

(3.3.12)
< Cocﬁ’y(n() + anrl) L+ [ng — np+1|)_1-

(ii) If instead of (3.5.11), F satisfies when |ng — npy1| < 3(no + npt1), 0’| < 2(no + npy1)
—N
(3.3.13) |F'(no, ... np41)| > c(no + npe1) 0’| 7,

then (8.3.12) holds true with the right hand side replaced by

(3.3.14) Coapry(no + np+1)—1—v|n/|No(a+6+7+1)‘

Proof: (i) We may assume in (3.3.12) that a4 8+~ > 0 since the inequality without derivatives
follows from (3.3.11). Remark that we have then
(3:315)  10%(0% ) (Bna — B ) Flnos- - ymps)| < C(L+ ng = mpia ) + mpi) 7.

Mp+1 Np+1

a(no)—a(np+1)
no—"Np+1

(1.2.6), (1.2.7). We shall show that for any «, 3, we may write the quantity estimated in the
left hand side of (3.3.12) as a linear combination, indexed by k = 1,...,a+ 3+, of expressions
of form

This follows from lemma 3.2.8 applied to g(ng, np+1) = and from Leibniz formulas

Hy,

3.3.16 _F
(3.3.16) FFro

(nOa s 7np+1)7

where each function Hj, satisfies

(3.3.17) \ag;(aépﬂ)ﬁ,(ano =05 ) Hi(no, ... .np1)| < C(L+ ng — npaa)F(no + npg) 777,

Tp+1

and where F,..., Fiq1 verify (3.3.11). Inequality (3.3.12) will then follow from (3.3.17) with
o =p =+ =0.

To obtain the structure (3.3.16), we just have to show that if we apply to (3.3.16) a deriva-

tive agg(a;p+l)ﬁ0(8no — 0, )" with ag + 8o + 7 = 1, we get the sum of an expression

I?k(Fl e Fktl)*l, where lL:Ik satisfies (3.3.17) with « replaced by v + 7, and of a quantity
Hypa1(F1- - Fyy0)7!, with Hyy satisfying (3.3.17) with k replaced by k+ 1 and v by v+, and

with F} verifying (3.3.11). This follows from Leibniz formulas (1.2.6), (1.2.7) and from (3.3.15),
(3.3.17). This concludes the proof.

(ii) The proof is the same, replacing in (3.3.15), (3.3.17) the 1+ |ng — np41| factor by ng+npy1.
g
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4 Long time existence

4.1 Strategy of proof

The aim of this section is to prove theorem 1.1.1. Our strategy will be to combine the meth-
ods used by Bourgain [5], Bambusi [1], Bambusi and Grébert [3], Delort and Szeftel [10] for
semi-linear equations, with the well-known approach allowing one to obtain quasi-linear energy
inequalities, namely diagonalization of the principal symbol of the equation.

Let us describe the steps that we shall follow, forgetting the necessary technicalities we shall
have to introduce later on. We denote by A,, = vV—A +V +m?2, and we shall consider an

A

equivalent system to the scalar equation for u = { Ei }, of type dyu = ONp(M(u, ))u, where M

will be a symbol of order 1, belonging to the class introduced in subsection 3.1. We would like
to control over long time intervals the Sobolev energy of u

(4.1.1) (A% ult, ), AS ult, ).

m

If one computes the time derivative of this expression, one gets
(4.1.2) 2Re (A2, 0p(M (u, -))u, AS,u).

If M(u,-) = My(-)+M"(u,-) is the sum of two anti-self-adjoint matrices, with My independent of
u and M" homogeneous of degree x > 0 in u, symbolic calculus shows that the above expression
may be written as

(4.1.3) (Op(b(u, ), u)

where b is a self-adjoint symbol of order 2s vanishing at least at order x at u = 0. Consequently,

for s large enough, this bracket is bounded from above by C||u|/%:?, and one gets the estimate

LT
dt

This is a way to recover the local existence result asserting that for smooth data of size ¢ — 0,
the solution exists at least over an interval of time of length ce™". Our goal here is to obtain a
better result when k is odd (and when the parameter m is outside a subset of zero measure).
Namely we want to obtain a solution over a time interval of length ce=2*. From (4.1.1) to (4.1.3)
we know that

(4.1.4) () e < Clut, ) 1522

d

E(AS u(tv ')vAfnu(t7 )> - <0Np(b(u7 ))u7u>

(4.1.5) s
We would like to add in the left hand side a new contribution, of form (Op(a(u, -))u, u), vanishing
at order k42 at 0, with a symbol a of order 2s, determined in such a way that the time derivative

of this quantity will cancel out the right hand side of (4.1.5), up to remainders O(|ju||35t?). If

we compute %(Op(a(u, ))u,u) we get from the action of d/dt on the u’s which are not in the

argument of a, a contribution of type

(4.1.6) ([Op(a(u, -))Op(M (u,-)) + Op(M (u, -))*Op(a(u, -))]u, u).
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Remember that M (u,-) = My(-) + M*(u,-). Consider the expression obtained replacing in
(4.1.6) M(u,-) by M"(u,-): we get a term homogeneous of degree 2« + 2 in u. In a semi-linear
framework, i.e. when M" is a symbol of order 0, this gives a contribution to (4.1.6) which is
O(||u||%:F2), since a is of order 2s. In our quasi-linear framework, M*(u, -) is a symbol of order 1,
which a priori looses one extra derivative. The way to circumvent that difficulty is well known:
one has to arrange so that a be self-adjoint and commute to M"*. Then since M"(u, -) is assumed
anti-self-adjoint, the contribution of M* to (4.1.6) may be written in terms of a commutator
[@)(a(u, ), Op(M*(u, -))Ju. The symbolic calculus we studied in the preceding sections shows
that this commutator gains one derivative, so that again the contribution of M" to (4.1.6) is
O(||u||%5"2). In other words, up to such nice remainders, %((f)\f)(a(u, ))u,u) will be given by
contributions of type (4.1.6) with M replaced by My, and by similar terms coming from the
action of % on those u inside the argument of a. The last step of the proof will be to show that

we may choose a so that these contributions to %(@)(a(u, ))u, u) will cancel out the right hand
side of (4.1.5).

To ensure the commutator property of a with M, we start instead of (4.1.1) with

where @ is a new unknown defined in terms of u by & = Q(u)u, @ being a matrix such that
D(u,-) = Q(u)M (u, )Q(u)~! is diagonal. Computing the time derivative of (4.1.7), we shall get
instead of (4.1.5) an expression

(4.1.8) (Op(b(u, )i, @)
that we will try to cancel out adding to (4.1.7) a quantity

where a is again a symbol to be determined. When we shall compute the time derivative of
(4.1.9), the contribution corresponding to (4.1.6) will be

(4.1.10) ([Op(a(u, -))Op(D(u, ) + Op(D(u, -))*Op(a(u, -)))i, @),

Since now D is diagonal, and since we shall look for a diagonal symbol a, the commutation
property between symbols aD = Da will hold true automatically. Moreover a will be taken
self-adjoint and D will be anti-self-adjoint. Because of that, the contribution of the part of D
which is homogeneous in u of order k to (4.1.10) will be expressed through a commutator, and
will provide a remainder of type [lu||3"2. As explained above, the terms coming from the part
Dy of D independent of u will cancel out (4.1.8), if the symbol a is conveniently defined in terms
of b. Finally, since for small functions u, (4.1.7) will be equivalent to ||u(t,-)||%;. we shall get

d K
gt e < Clludt, Il

as long as ||u(t, )| ms stays small enough, which is what we need to get a solution defined on an
interval of length ce~2~.

Let us mention that the computations we outlined above will have to be done using paradif-
ferential operators instead of pseudo-differential ones. This is the justification for our study of
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the former in section 2. The diagonalization of the principal symbol of the equation, i.e. the
construction of 4 in terms of u, will be described in subsection 4.2. The last subsection 4.3 will
be devoted to the construction of the correcting terms (4.1.9) and to the proof of the theorem.

4.2 Diagonalization of principal part

We shall denote by A,,, = v—A + V + m2. This is a scalar invertible pseudo-differential operator
of order 1 on S!. If v € H*T!(S!,R) for a large enough s, we set

(4.2.1) u= [%Tvv} v = A tuy, B = us.
We define
(4.2.2) a(u) = (A g, ug, A u)

where c is the function defined in (1.1.1), (1.1.2). In particular, a(u) may be written as a sum of
multilinear expressions in T'uy, us for pseudo-differential operators of order 0, T'. Consequently
a(u) will be, according to definitions 3.3.1 and 3.2.1, a symbol of S%. (independent of n). Its
valuation will be equal to x which, according to assumption (1.1.3), may be assumed to be odd.
Moreover it will satisfy condition C(k,r) of definition 3.3.2 i.e.

K1
(4.2.3) a= Zak(u) where ay, € S, ag, =0 for k < 2k <r — 1.
k=kK

The first equation of (1.1.4) may be written

Uu.

(4.2.4) Dy — [_ ( 0 Ao

1+ a(u)?An,
We shall denote by G the vector space R?, and consider the operator —% + V(z) acting
on L%(S!,G). As in section 2.1, we denote by (w,;)? < (w;5)? the couple of eigenvalues with
asymptotics (1.2.1), and by II,, the spectral projector on the subspace of L?(S', G) generated
by the eigenfunctions associated to these two eigenvalues for n > 7 + 1 large enough. We
denote by E,, the range of II,,. Then F, is four dimensional for n > 7+ 1. We define E, to

be the orthogonal complement in L?(S', G) of the Hilbert sum D571 En. Then E; is even
dimensional and we have the Hilbert decomposition

+00
(4.2.5) L’s",G) = E..

At times we shall denote by E! n > 7 + 1 the subspace of L%(S',R) generated by the two

eigenfunctions associated to the eigenvalues (w,, )? and (w;)? of the operator —% +V(z) acting
on L?(S',R). We define E. in a similar way as E,. We have for n > 7, E,, ~ E/, x E!,. We
denote by £ the algebraic direct sum of F,, for n > 7. We introduce the following matrices

IK’(n) IK{(”)
4.2, P =1 '
(4.2.6) @) =1 4 a(w) e i1+ a(u)) i

52



and

_ =il Fa(u)lkmy —Ikm)
so that
(4.2.8) P(u,n)Q(u,m) = Q(u, m) Pluy ) = (1 + a(u)) Lo

where K’(n) = dimE!, = 2 when n > 7. (We prefer to use Q(u,n) instead of P(u,n)™*
to always work with matrices whose coefficients are polynomial in w). Then, according to
definitions 3.3.1 and 3.2.1, P and @) are elements of S0 Actually these matrices define, according
to definition 3.2.6 and (3.2.33) clements of S%.. since each block of P(u,n), Q(u,n) is a scalar
matrix (the contribution of order —oo of definition 3.2.6 is zero in this case). Moreover

(4.2.9) v(P)=v(Q) =0, vV(P)=v(Q) =&
and P(u,n) and Q(u,n) satisfy condition C'(k, ).

Remind that we have constructed in theorem 1.2.1 a nice basis of L?(S!, R), which was adapted
to the decomposition given by the E! (which were then denoted by FE,). We construct from
this nice basis a natural basis of E,, = E! x E', which makes a nice basis of L?(S!, G), as at the
beginning of subsection 3.2. We denote by A.,(n) the matrix of A,,[g; in the above nice basis.
For n > 7+ 1, App(n) is a 2 x 2 matrix. We denote by w(\) a symbol of order 1 on Ry with
asymptotics given by (1.2.1) and we define

(4.2.10) wm(n) =y/m? + w(n)?

so that the difference between the eigenvalues of v—A + V' +m?2|g, and wy,(n) is O(n™°) when

n — 4o00. The matrix A\, (n) may be written

(4.2.11) Am (1) = wimn (M) g () + Am(n)
where A, (n) is a matrix whose norm decays like n~>° when n — +oo. We introduce for n > 7
the matrix
- 0 Am(n)
(4.2.12) M(u,n) = [_(1  a(u)2Am(n) 0 ] .

This is a K(n) x K(n) matrix (where K(n) = dim E,, = 2K’(n)) and since a(u) € 5°, we get
that M(u,-) € S'. Actually, decomposition (4.2.11) shows that M(u,-) € Sk since we may
0 wm (n)Id g7y,
—(1+a(u))2wm(n)IdK1(n) 0
contribution of order —co. Moreover the coefficients of M (u,n) satisfy condition C(k,r).

write it as the sum of }, which is scalar by blocks, and of a

According to definition 3.2.2, 6%)(M(u7 -))u is nothing but the right hand side of (4.2.4). We
may thus write this equation

(4.2.13) dyu = Op(M (u, -))u.
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Let us introduce the energy of solutions of (4.2.13) that we shall consider. We denote by Am
the operator A, = Op(wim(n)Ig(n)) acting on L3(S', G), so that A,,IT,, = wy,(n)IL,. For s large
enough we set

(4.2.14) O (ut, ) = 2(A,0p(Qu(u; ), A3, Ob(Qx (us ))u)

where x € C§°(R), x =1 close to 0, x even, Supp x small enough, and where @, € i(l)’” (for
some v € Ry) is defined from @ in corollary 3.3.3 (see also (3.2.5)). Because of (4.2.9)

(4.2.15) v(Qy) = 0,0'(Qy) = k.

The following lemma asserts that ©§(u) is indeed equivalent to ||u|%. for small u, and gives an
alternative expression for ©§(u), which will be useful in the sequel.

Lemma 4.2.1 There is sg > 0 and for any s > sg there are constants C > 0, Ry > 0 such that
for any u € H*(S', G) with ||ul|gs0 < Ry, one has

(4.2.16) C Ml < O5(w) < CllulFs.

Moreover, we may find a self-adjoint scalar symbol c(u,-) € i%s’”, for some v > 0 independent
of s, with v(c) > K, and satisfying condition C(k,r), such that if & = Op(Qy(u;-))u
(4.2.17) N N N N

O (u) = (A, O0p((1 + ay)(u; ), A3, ) + (A7, 0, A7, Op((1 + ay)(us -))a) + (Op(e(u; -))a, @).

Proof:  We prove first (4.2.17). Remark that the left hand side and the sum of the first two
brackets in the right hand side of (4.2.17) are real, so if we find a symbol ¢ satisfying (4.2.17),
the equality remains true replacing ¢ by %(C-i- c®) where ¢*® is defined by (2.2.1). In other words,
as soon as we have found a ¢, we can construct from it a self-adjoint one.

Compute the difference between 0§ (u) and the first bracket in the right hand side of (4.2.17).
We get

(4.2.18) —(A%0p(ay (u; )i, @).

We may always write 7\3;‘ as a paradifferential operator associated to the symbol of 2(2)360 given

by

(no - nl) <wm(no) + wm(nl))%.

ng + N1 2

Moreover a, defined from a in corollary 3.3.3 belongs to ENJ?’V for some v € Ry. By corol-
lary 3.3.5 (i), we may thus write (4.2.18) as (Op(c(u;-))@, @) for some symbol ¢ € £2°¥, for a
new value of v independent of s. This gives (4.2.17).

Before starting the proof of (4.2.16), let us express v in function of 4 and conversely. Denote

Lo Lirn i (=il —~Tgrn
VK (n) 7K (n) LK/ (n)  LK'(n)
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If we denote og(u;n) = Qy(u;n) — Qo (n), we get a symbol in f](l)’” for some v, with v(og) > &,
satisfying condition C'(k,r), such that by definition of @

(4.2.20) i = Qou + Op(ao(u; -))u,

where for short we write Qo for 6{)(@0(-)) = Op(Qo(+)). Multiplying by Py = Q;"' we get,
using the same type of notation convention,

(4.2.21) u = Pyt + Op(Go(u;-))u

for another symbol ¢ with &g € i(l]’y, v(cg) > K, ¢ satisfying C'(k,r). Using proposition 2.1.3,
we obtain that there are C' > 0,59 > 0 and for any s > sg, there is Ry > 0 small enough such
that for any u € H® with ||u||gse < Ry,

(4.2.22) CHallas < lullus < Cllams,

since the last terms in (4.2.20), (4.2.21) are O(]|ul|%s |ullas), v — 0. If we apply proposi-
tion 2.1.3 to the operators of order 2s K?,fOp(ax(u; -)) and Op(c(u;-)), we see that there is a
new value of sg, independent of the order of these operators, such that for s > s¢ there is Cs > 0
so that (4.2.18) as well as the last bracket in (4.2.17), are smaller than Cj||ul|%s [|ul/%s. This
shows that N B

05 (w) — 20K, 3, K2,0) = Ol ull3), w— 0.

Inequalities (4.2.16) follow from that and (4.2.22). O

The interest of the preceding lemma is that it gives for ©( an expression in terms of %, and the
equation written on 4 will be essentially diagonal. Let us introduce some more notations. We
set

(4.2.23) D(u,n) = Q(u,n)M(u,n)P(u,n) = i(1 + a(u))? [)\m()(n) —)\z(n)} .

We write also
(4.2.24) Dy(n) = D(0,n), D"(u,n) = D(u,n) — Dy(n)

so that D*(u,n) € SL with valuation larger or equal to x. Moreover D(u, -) satisfies condition
C(k,r). We set also

(4.2.25) My(n) = M(0,n), M"(u,n) = M(u,n) — Mp(n)

so that M"(u,n) is an element of §Slc of valuation larger or equal to x. In the same way, the
expressions

(4.2.26) P"(u,n) = P(u,n) — Py(n), Q%(u,n) = Q(u,n) — Qo(n)

are symbols of SO with valuations larger or equal to k.

sc)
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Lemma 4.2.2 There is some v € Ry and there are symbols by(u;-) in i(l)’”, by (u;-), by (u; ) in
E%’V with v(bg),v(b1) > k, there are operators R, R in R*", with v(R),v(R) > k + 1, satisfying
condition C(k,7), such that one may write for all u € H*(S', Q) solution of (4.2.13)

(4.2.27) ‘2—1: = PyDoii + Op(by (u; -))u + R(u)
o0u
(4.2.28) 5 = Op(b1(us-))u + R(u)
(4.2.29) OD(1 -+ ay) 1) 2 = Op(Dy ()i + Op(boles )+ R(w)

where we denoted by Dy the operator Op(Dg(n)).

Proof: Let us show first (4.2.27). We apply corollary 3.3.3 to (4.2.13). We get

(4.2.30) % = Op(My (u; -))u + Op(bo(u; -))u + R(u)

where by € ig’”, R e R for some v € Ry, v(by) > k, v(R) > k+1, by and R satisfying condition
C(k,7). Using (4.2.25), we further decompose Op(My(u;-)) = My + Op(My (u;-)), where My
denotes for short the operator with symbol Mo(n). Since My (u,n) € i%’”, satisfies v(My) > K,
and verifies condition C'(k,r), we just have, to deduce (4.2.27) from (4.2.30), to express Mou in
terms of 4. This follows from (4.2.21) together with the expression MyPy = PyDy, which is a
consequence of (4.2.23) and (4.2.8).

We shall prove now (4.2.28) and (4.2.29). We compute first

(12.31) o D 10p(@ulus )] = Op(Qy (1) 2+ Op(Q (U )
where U = (u, dyu) and Q'(U, ) is the symbol obtained by time derivation of Q(u, -). Let us show,
using the equation, that Q;((U; -) is an element of i?’” for some v, satisfying U(Q&(u; )) > kK
and verifying condition C(k,r). By (4.2.7) we may write Q) (U;-) as a finite sum indexed by
p > k of quantities of type
1

ap (Opu, u, ..., u; g, Npt1) [ﬁK'("pﬂ) g}
2 K (np+1)
where a,, is the component homogeneous of degree p in the expansion of a. If we plug in this
expression (4.2.30), we see using corollary 3.3.6 (i) and (ii) that we get a contribution of type
Op(bo(u;-))u + R(u), like the last two terms in the right hand side of (4.2.29). In particular,
such terms are of the form of the right hand side of (4.2.28). To finish the proof of (4.2.28), we
just have to study the first term in the right hand side of (4.2.31). If we replace in that term
Owu by (4.2.30) and use corollaries 3.3.5 (i) and 3.3.6 (iii), we obtain that this contribution is
again of the same form as the right hand side of (4.2.28). Let us prove (4.2.29), making act
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Op((1+ay)(u;-)) on (4.2.31). We have seen already that the last term in the right hand side of
(4.2.31) has the structure of the last two terms in the right hand side of (4.2.29). This remains
true if we make act Op((1 + a,)(u;-)) on it, by corollary 3.3.5 (i) and corollary 3.3.6 (iii). So,
we just have to study, using (4.2.30)

ou

Op((1 + ax)(u;-))OP(Qx(u; ) 57 = OP((1 + ax)(u;-))Op(Qx (u; -)) Op (M (us -) Ju
(42:32) +OP((1 + ax) (11:+)) Op(Qx (u: ) Op(bo (u: ) )u
+OD((1 + ay) () Op(Qx (ui ) R(w).

Again by corollaries 3.3.5 (i) and 3.3.6 (iii), the last two terms give a contribution to the last
two terms in (4.2.29). Since a is a scalar symbol we may, by corollary 3.3.5 (ii), commute in the
first term in the right hand side of (4.2.32), Op((1 + ay)(u;-)) and Op(Qy(u;-))Op(My (u;-)),
up to errors that may be incorporated inside the Op(bo(u;-))u term in (4.2.29). We are thus
reduced to

(4.2.33) Op(Qx(u;+))Op(My (u; -))Op((1 + ay)(u; -))u.

We apply corollary 3.3.4 to the symbols P and @ satisfying (4.2.8). Using also corollary 3.3.5 (i)
and corollary 3.3.6 (iii), we obtain that (4.2.33) may be written as

[Op(Qy (u; -))Op(My (u; ) ) Op( Py (u; +))]Op(Qy (u; -))u

up again to contributions to the last two terms in (4.2.29). To conclude the proof, we just
have to apply again corollary 3.3.4 to the bracket in the above formula, making use of the first
equality (4.2.23) and of corollaries 3.3.5 (i), 3.3.6 (iii) and 3.3.7 (i). O

We want to obtain a formula giving the time derivative of expressions generalizing the first term
in the right hand side of (4.2.17). We introduce first some notations. We shall consider symbols
cE EZ’;’VO satisfying the following conditions

(4.2.34) c(U;+) = (U;-) + "(U;+) with ¢ € E;;Vlo’” and self-adjoint,
d(U;-) is self-adjoint and for any ng,npt1 > 7+ 1,
(4235) , Cll(U' no, n 1) 0
d(U;ng,n = » 70y Tt with 2 x 2 matrices ci1, co2.
( 0 p+1) 0 CQQ(U;TLO, an) 11, C22

(Remind that our symbols of Ez’VNO are 4 x 4 matrices when evaluated at (ng,n,4+1) with
10, Np+1 > T+ 1).

When c € Ez’?vo we shall associate to it the following function
(4.2.36) ey (usno, npr1) = Z c(u,...,Mou,...,u;ng,nps1)
j=1

where as before My denotes the operator with symbol My(n), and where the term Myu is the
jth argument of the general term of the sum. We first prove a lemma.
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Lemma 4.2.3 Letv € Ry. There isv' € Ry such that for anyd € R, Ny € N*,pe N,c € Ez No’

one can find a symbol e1 € i];l\}gl with v(e1) > k+p and Ry € R* with v(Ry) > k+p+1, such
that for any smooth enough solution w of (4.2.13), any smooth enough v

(4.2.37) Op(—=c(u,...,u;-))v = Op(cag (u;-))v + Op(er(u; -))v + Ri(u,v).

ot

Moreover, if p is odd and p > k, then ey satisfies condition C(k,r).

Proof: The left hand side of (4.2.37) is a sum of expressions
(4.2.38) Op(c(u, .. ., ETRRRRELE ).

We use for % expression (4.2.30) and decomposition (4.2.25). We get

gt = MOU—FOP(M”( ))U+Op(l~)0(u,))U+R(u)

When we plug this decomposition inside (4.2.38), we get from the Moyu term, according to
(4.2.36), a contribution to the first term in the right hands side of (4.2.37). The remaining
terms in the above expression of 8“ contribute to the last two terms in (4.2.37), using (i) and
(ii) of corollary 3.3.6. O

Let us state now the main proposition.

Proposition 4.2.4 Let v € Ry, p € N, Ng € N* be given. There is V' € Ry and for any d € R,
for any symbol ¢ € Zz’jy\,o satisfying (4.2.34), (4.2.35), one can find

e a self-adjoint symbol e € f)‘]j\}gl with v(e) > p+ K,

e an operator R € R satisfying v(R) > p+ k + 1,

such that for any smooth enough u satisfying equation (4.2.13) one has, denoting c(u;-) =
c(u, ... u;-),

(4.2.39)

L2 j0p(e(u: ))OP((1 + ax)(u; -)) + Op((1 + ax)(u; -))*Op(e(u; -))]a, @)

2dt
= (Op(ens (u;-))a@, @) + ([Op(c(u; -)) Do + D5Op(e(u; )], @)
+ (Op(e(us -))u, @) + ((R(u), u) + (u, R(u))).

Moreover, if p is odd, p > k then cpp,, €, R satisfy condition C(k,r).

Proof: Remark that since c is self-adjoint, so is ¢y, defined by (4.2.36). So the left hand side and
the first two terms in the right hand side of (4.2.39) are real valued. Consequently, it is enough to
prove (4.2.39) for some non necessarily self-adjoint symbol e, and replacing ((R(u), u)+(u, R(u)))
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by ((R1(u),u) 4+ (u, R2(u))) for some Ry, Ry satisfying the same conditions as R. Then taking
real parts, we replace e by % and R; by w to get (4.2.39).

Let us show that we can write as the right hand side of (4.2.39) the time derivative

(4.2.40) (Op(ic(u; ))Op((1 + ay)(u; )@, @) + (Op(c(u; ‘))Op(ia (u;-))a, i)

dt dtx
d_ _ _d
+(0p(e(u; ))OP((1 + ax)(u; ) 2, @) + {Op(e(u; ) Op((1 + ax)(u; -))d, — ).
The idea of the proof is the following: we shall express % using (4.2.28) or (4.2.29). The linear

contributions coming from these expressions will give the first two terms in the right hand side
of (4.2.39). The contributions which are at least of order x in u will contribute to the last two
terms. The key point will be not to loose derivatives, i.e. to check that e is of order d and not
d + 1. This will follow from the fact that Op(e(u;-)) will be expressed from commutators of
operators with commuting symbols. Symbolic calculus will thus bring the needed gain of one
derivative. Let us proceed with the implementation of such a strategy.

Study of first term in RHS of (4.2.40)

Let us consider p
Op(@C(U; )OP((1 + ay)(u; -))a.

By lemma 4.2.3, we may write this as
(4.2.41)
Op(eary (u;))OP((1 + ax)(u; )@ + Op(ex (u; -))Op((1 + ax) (u; 1))@ + Ra(u, Op((1 + ay)(u; -))i).

The first term gives on one hand the first term in the right hand side of (4.2.39), and on the
other hand a contribution Op(cag, (u;-))Op(ay (u;-))a. Using corollary 3.3.5 (i), we see that this
expression can be incorporated in the Op(e(u;-))u term in (4.2.39). Remark that the index v/
given by corollary 3.3.5 is independent of the order d of ¢. The second term in (4.2.41) gives
similarly a contribution to the e-term in (4.2.39). In the last term, we express 4 from u using
(4.2.20). From corollaries 3.3.5 (i) and 3.3.7 (i), we see that we obtain a contribution (R(u), %)
for some R satisfying the requirements of the statement of proposition 4.2.4. If we express 4
from u by (4.2.20) and use (iii) of corollary 3.3.6, we see that we obtain a contribution to the
fourth term in the right hand side of (4.2.39).

Study of second term in RHS of (4.2.40)

If we apply lemma 4.2.3 to the symbol of order 0 a,, we see that

d

Op( - ax(u; )i = Op(ay,a (u; )@ + Op(ea (u; )i + R (u, @)

where aya, € 207, €1 € i?’”l, Ry € R™ for some v/ € Ry, with moreover v(ay ar,) >
K, v(er) > 2k, v(Ry) > 2k + 1. If we make act on the left Op(c(u;-)) and use as before
corollaries 3.3.5 (i), 3.3.6 (iii), (4.2.20) and corollary 3.3.7 (i), we obtain a contribution to the
third and fourth terms in (4.2.39).
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Study of third and fourth terms in RHS of (4.2.40)

We write the sum of the last two terms in (4.2.40) as

O )+ {[OD(e(us ), Oplax (s ], T

(4.2.42) 2Re (Op(c(u; -))Op((1 + ay)(u;-)) dt

using that c and a, are self-adjoint symbols. We may apply corollary 3.3.5 (ii) to the bracket in
(4.2.42), since a,, is scalar and so commutes to c. There is 1/, independent of d, and a symbol

be i]?lv_ol’”/ with v(b) > k + p such that the last term in (4.2.42) equals

da
b(u; )i, —).
(Op(b(u; )7, 5
Using (4.2.28), we reduce ourselves to the study of
(4.2.43) (i, Op(b(u; )" (Op(bi (5 ))u + R(1))).

Using, as in the study of the preceding cases, (4.2.20), and corollaries 3.3.5 (i) and 3.3.6 (iii),
we may write this expression as a contribution to the third and fourth terms in the right hand
side of (4.2.39), using that the sum of the orders of the involved symbols is at most d.

Let us study now the first term in (4.2.42). We write using (4.2.29)

Op(e{u; ))OP((1 + ax) ;1) 5 = Op(e(us ))Op(D (u; )

(4.244) +Op(e(u;))Op(bo(us )

+0p(c(u; ) R(w).
The contribution of the last two terms to the first duality bracket in (4.2.42) is of form the
conjugate of (4.2.43), since the sum of the orders of the symbols is at most d, and R(-) € R%",

and has been already treated. To study the first term in the right hand side of (4.2.44), where
D, is a symbol of order 1, remind decomposition (4.2.24), which allows us to write

(1.2.45) Dy(us-) = Do () + D (us-).

We study first the contribution of the last term i.e.

. 2Re (Op(c(u; ) Op( D% (u; ), @) = B
([Op(c(u; -))Op(DY (u; -)) + Op(DF(u; ) Op(c(u; +)*1a, ).

d—1,v
p,No

Op(c”(u;-))Op(Dy(u; ) = Op(g(u; -)) for a new symbol g € f]‘f\’,g/ with v/ independent of d and
v(g) > p+ k. This term will give in (4.2.46) a contribution which can be treated as (4.2.43).
The ¢ contribution to (4.2.46) may be written, since ¢’ is self-adjoint

(4.247) ([Op(c’(us ) Op(DY (u; -)) + Op(DY (u; ) "Op(c'(us )], @)
By (4.2.23), (4.2.24) and (4.2.11), we may decompose

Remind decomposition (4.2.34) of ¢. Since ¢’ € ¥ we may write by corollary 3.3.5 (i)

D*(u,n) = D¥(u,n) + D"(u,n)
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with

D"(u,n) of order — oco.

The contribution of D"(u,n) to (4.2.47) may be treated as expression (4.2.43). Since we
may write D"'(u,n)* = —D"(u,n), (ii) of proposition 3.2.7 shows that Op(Dy'(u;-))* =
—Op(DY(u;-)) modulo an operator of order zero, whose contribution may be treated as (4.2.43).
Consequently, we are left with

(4.2.48) ([Op(¢(u3 )), OB(D™ (us )], ).

Remark now that by assumption (4.2.35) and the expression of D"/, we have ¢/ (u,-)o D" (u,-) =
D" (u,-) o d(u,-) (for large enough phase arguments of the symbols). We may therefore apply
corollary 3.3.5 (ii) to write the commutator as an operator associated to a symbol in i?\}gl, of
valuation larger or equal to k + p, for some v/ independent of d. Reasoning as for (4.2.43), we
get again a contribution to the last two terms in (4.2.39).

To finish the proof, we just have to remark that the contribution to the first term in (4.2.42)
obtained plugging the first term in the right hand side of (4.2.45) inside the first term in the right
hand side of (4.2.44) gives the second term in the right hand side of (4.2.39). This concludes
the proof of the proposition. O

Proposition 4.2.5 Let v € Ry. There is V' € Ry and for any p € N*, d € R, M € RZ’V, there
are operators Ry € R¥W' Ry € RO with v(R1) > k4 p,v(R2) > Kk + 1, such that for any
smooth enough u solving equation (4.2.13)

d — po *
(4‘2.49) E<M<u77u)7u> —;(M(U,...,Mou,...,u),u>+<M0M(u,._,’u>7u>

+ (Ry(u),u) + (M(u,...,u), Ra(u)).

Proof: We compute first M (%, U, ..., u) using formulas (4.2.30) and decomposing
Op(M (u; ) (u;-)) = Mou + Op(My (u; -) (u; -)).

Using corollary 3.3.7, we get a contribution to the first and third terms in the right hand side of
(4.2.49). In the same way, we get from (M (u,...,u), Ccll—?>, using corollary 3.3.6 (iii) contributions

to the last two terms in (4.2.49). O
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4.3 Refined energy inequalities and proof of the main theorem

The objective of this subsection is to prove proposition 4.3.2 below, which will imply theo-
rem 1.1.1. Remind that we defined in (4.2.14) for a solution u of equation (4.2.4) the quantity
O§(u(t,-)) which, as long as ||u(t,)||g= remains small enough, is equivalent to [u(t,)||%.. We
shall see that %@8 (u(t,-)) may be written essentially as (Op(a(u;-))a, @) for a symbol a of order
2s and valuation k. We shall next find a correction Of(u(¢,-)) so that %(Gg(u(t, ) =065 (u(t,-)))
may be written as (Op(b(u;-))u,u) with b of order 2s and valuation » — 1 > k. This gain on
the valuation will give us the long time existence result we look for. The correction ©F will be
constructed solving an equation on symbols involving the right hand side of (4.2.39). This is
the main technical part of this subsection.

Let us first recall some notations, and a result of [10] that will play a crucial role. Remind from
subsection 1.2 that the large eigenvalues of P = v/—A + V come by pairs w_(n) < wy(n) having
the same asymptotics (1.2.1). We denote as before by w(:) a symbol on R with asymptotics
(1.2.1) at infinity. We fix a large enough integer 7 so that the spectrum H of P may be written

+o0
(4.3.1) H=HnI)u | (HN1L),

n=71+1

where for n > 7+ 1, I, are disjoint intervals of length O(n™°°) centered at w(n) and containing
w_(n) and w4 (n), and where I, contains the small eigenvalues. We set H = H U {w(n);n € N},
and write for H a decomposition of form (4.3.1). The decomposition of L2(S!, R?) associated
to (4.3.1) is given by (4.2.5). Let us recall a special case of proposition 2.2.1 of [10]. We use
notation (2.1.5).

Proposition 4.3.1 Forany& € H (or ﬁ), denote by n(&) the unique n € Ny such that§ € L, g).
Let p be an odd positive integer. There is a zero measure subset N of 10, +oo[ such that for any

€]0, +oo[—N, there are ¢ > 0, Ny € N, so that for any &o,...,&p41 € H (or H), any
0<g<p+1

q p+1
(4.32) S 3 (w2 = (&) i) T
j=0 j=q+1

From now on, we fix a value of m outside A/, and so an integer Ny. We shall state and prove
a proposition relying on division by quantities of form (4.3.2). We need first to introduce some
notations. If a is a paradifferential symbol, a € Ep No» temind that for any wi,...,up € &,
no, Np+1 € Ny, a(ui, ..., up;no, npt1) is a K(ng) x K(np+1) matrix, where for n € NT, K(n) is
an even integer (and K (n) =41ifn > 741). We can write a block decomposition of a involving
K(np)/2 lines and K (n,11)/2 columns

(4.3.3) [* *].

We shall consider the following two assumptions
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(Hp) In (4.3.3) each block outside the diagonal is zero.
(Hyp) In (4.3.3) each block on the diagonal is zero.

In accordance with notations (4.2.36), if ¢! is a symbol in 22’]”\,0 we shall set

(4.3.4) c}\/[()(ul, e Upi N, Mpg1) = Z ctug, ... s Moug, ... up;no, Npy1)-
j=1

Proposition 4.3.2 Let v € Ry. There is V' € Ry such that for any d € R,p € N odd, a €
ZZ’]VVO satisfying assumption (Hp) (resp. assumption (Hxp)), we may find a symbol c* € ZZ’]VVO

satisfying (Hp) (resp. a symbol c' € Ez_]\;o’yl satisfying (Hyp)) such that

(4.3.5)
(U, -y Upi 0, Mpg1) 4 € (ua, - tps no, N1 ) Do(nps1) — Do(no)e! (ua, - . ., upi o, nipy1)

= a(ui,...,Up;no, Npt1)-

Moreover, if a is self-adjoint, we may assume that c' is also self-adjoint.

Remark that the last statement follows from (4.3.5) and the fact that if ¢! satisfies (4.3.5), then
c'* defined by (2.2.1) satisfies also (4.3.5) with right hand side replaced by a® (since D(n)* =

—D(n)).

The proof of (4.3.5) will use several lemmas. We remark first that we may extend c! and a,
which are R-mulitilinear maps in (u1,...,u,) as C-mulitilinear maps. This allows us to make
the change of function u; — Pyu; in (4.3.5), where Py is defined in (4.2.19) and satisfies by
(4.2.23) PyDy = MyPy. This equation is thus equivalent to

(4.3.6)
5%)0 (U1, ..., up;no, Npt1) + 61(u1, e Ups o, Npt1) Do(np1) — Do(no)él(ul, e Ups O, Npt1)
= a('dl, -y Ups T, np+1)
where we denoted
a(ur, ..., up;ng, npt1) = a(Pour, . . ., Potp; no, np41)
& (ur, ... up;no,npy1) = ¢ (Poua,. . ., Pouping, npi1)
(4.3.7)
E%)O(ul, e ,up; no, np_H) = Z Cl(Poul, ey P()Douj, veny Poup; no, np+1).
j=1

We shall denote by Zz:]'jvo (N) the space of functions a of type (2.1.10), defined on (£ ® C) x
<+ x (E®C) x N x Ny instead of € x -+ x £ x N7 x N7, which are C-p-linear in (u1,...,up)
and satisfy condition (i)s of definition 2.1.1 for some § €]0, 1] small enough, and inequalities
(2.1.12) only when oo+ 8+ v < N. We endow this space with the norm ‘a|ZZIZIVO,N given by the

best constant in inequality (2.1.12). Of course, EzzJVVo is the restriction of Ez:VNO(N ) to real

63



arguments (uq,...,up). If ¢! € EdVO(N) we denote by L(c!) the symbol defined by the left
hand side of (4.3. 6) Remind that by (4.2.23), (4.2.24), (4.2.11), the matrix Do(n) = D(0,n)
may be decomposed as

(4.3.8) Do(n) = Dj(n) + Do(n), Dh(n) = iwm(n) [IK(/)(n) _IEI(nJ

where Dy(n) is a symbol of order —co. When n = 7, we may take Dj(7) = 0. We then
decompose

(4.3.9) L(c') = Lo(c') + Li(c)

with, if U’ = (w1, ..., up),
(4.3.10)
Lo(c") (Um0, mp11) = ep, (U's 10, nip1) + & (U's 110, 1p1) Dy (np41) — Dy (110) @ (U no, mp+1)

and

~

(4.3.11) Li () (U5 n0,mp11) = (U500, mp11) Do(npy1) — Do(no)e (U’ ng, np11).-

Remark that L; sends E ( ) into Z;JOVO’O(N ) since Dy is of order —oo. On the other hand, if
¢

c! satisfies condition (HD) L(U';ng,npy1) commutes when ng,n,41 € Nyyq to Djj(ng) whence

(43.12)  Lo(c")(U'sn0,mpr1) = py (U's 10, mp 1) + € (U's 10, mps1) (D (1np41) — Dy (o))

Remark that because of definition (4.2.10) of wyy,, W (np41) —wm (no) satisfies when |ny11 — ng| <
2(np41 + no) inequalities (3.3.15). This shows that if

d7 d: . 3 o
S0 = {a € )= (V); a satisfies (Hp)}
(4.3.13) N
Zld,V (N) _ E/d,V m Ed,u (N)
p,No — “p,No p,No ’
then Lo sends X'0% (N) into X/PiCHH (N — 1),
If ¢! satisfies assumption (Hyp), then for ng, ny+1 € Nyyq,
& (U'; no, np+1) Dy(no) = —Dy(10)é! (U'; no, np+1)
whence
(4.3.14)  Lo(c))(U'sn0,np11) = py (U'3 0, npi1) + & (U5 0, mp1) (D (mp1) + Dy(n0)).-
If we define
Z“;l N, = la € ﬂEp N, (V); a satisfies (Hyp)}
(4.3.15)
Z”d’y (N) Z//d v N Ed v (N)
p,No p,No p,No

we obtain that Ly sends Z”;’”NO(N ) in E;J]r\}o’l'(]\f ). Let us prove the following lemma:
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Lemma 4.3.3 (i) For any d € R,v € Ry,p € NN € N, the operator L is injective on
d7

Epjvo(N).

(ii) Let F' be a subspace of Zz’]”VO(N) such that there is a finite subset K of N x N so that

for any a € F, a(-;n0,np41) = 0 if (no,npy1) € K. Then F is stable by L and L : F' — F is

bijective.

Proof: (i) We denote by II,, the spectral projector on the space E, ® C, where E,, is defined by
the decomposition (4.2.5) of L?(S'; R?). We shall use the notation II/, for the similar projector
acting on L2(S'; C). For every n, we denote by (w(n, £)), the K’(n) eigenvalues of the restriction
of P = +/—A +V to the range of I/, acting on L?(S';C). We choose an orthonormal basis of
that range made of eigenfunctions of P associated to these eigenvalues (this is not in general a
nice basis). We write

(4.3.16) m, =) 1},
4

the corresponding decomposition of IT/,. The sum in (4.3.16) is finite, and for n > 7+ 1 made of

only two terms as the range of II/, is two dimensional. We set wy,(n,£) = \/m? + w(n, £)? and
we have
(4.3.17) A Il = (0, O

and (wp,(n,£)), are the eigenvalues of the matrix A, (n) defined in (4.2.11). We define

Ity O] 0 0
(43.18) syt = [ G = [0 2] g = e - o
| K'(n)
and set
1t o 0 0
0+ n l— __
(4319) Hn - I 0 O:|a Hn - |:0 H/fl:|a
o g+ [@n 0] q-_ [0 0
mT o oo I,

so that II,, = IL} + 11 and, denoting by Dy the operator with symbol Dy(n) given by (4.2.23),
(4.2.24),

(4.3.20) DollS* = +iw,, (n, OIS,
By (4.3.8), we have also
(4.3.21) D)ITE = Hiw,, (n)ITE.

Remind the map 7, : L2(S'; K?) — KX (K = R or C) defined by (2.1.6) and set

(4.3.22) IF = F, o lT%* o Ff, T = F o ITE o Fr.
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These are projectors on KX (™ and we have

Do(n)II5F = TT5* Do(n) = +iwy, (n, O)ITH*

4.3.23) o .
( DY) TEE — T D) = i (n)EE.

Let ¢! € Ez’JVVO(N ) be such that L(c!') vanishes identically. Compose L(c!) (given by the left

hand side of (4.3.6)) on the left by II:% and on the right by ﬁf{;fl’ep *1 and evaluate it at
05U = (M, . TP u,)

where ¢; € {+,—-} j=0,...,p+ 1. We get

P

oot b, £joej Lpep, . lp+1,€p+1
Z Hn00€OC (POHn11 61“17 .. 7P0D0Hn]j ]u]', . 7P0an; pup, no, anrl)anerl »
Jj=1
17%0,€0 .1 l1,€ lp € . ~ i1 epit
LG O (Bl -, Pl ™ ups o, mp1) Do (np1) g "
1700,€ 1 ly,¢ Lp,€ . ~ 1 eprl
_Hn% "Do(no)e (Ponnll tug, ’POH”pp "up; no, anrl)anpH =0,

Using (4.3.20), (4.3.23) we may write this as

p1
. ~ _ o ~ , B
(D ejwm(ng, £5) — cowm(no, €))% (T, U’ ng, npy1 ) TLE Y = 0.
7=1

Condition (4.3.2) shows that for m outside N, the scalar coefficient above never vanishes, which
implies ¢! = 0, whence ¢! = 0. This proves (i) of the lemma.
To prove (ii), we remark that if a € F is given, we may define ¢! € F with L(c!) = a by

lo.e0 =1 (178 € 777, lp+1,€p+1
1L (1L, " U ng, np 1 )15 0P =

Np+1
. p+1 71~fo,€0~ Z’,Gl /. ~£p+175p+1
—1 E €jwm(nj, 1) — eowm(no, fo) )  TLCa(Il,;” U'sno, npr) I
j=1

Since by definition of F', ng, np+1 stay in a bounded set of indices, the estimates of definition of
a symbol hold true trivially. O

Proof of proposition 4.3.2: Using notations (4.3.13), (4.3.15), we shall construct operators
—1 . yvd,v 1d,v+ Ny
L2 pNo X p,No

—1 . ywd,v 11d—1,v+Ng
L X pNo % p,No

(4.3.24)

such that Lo L™! = Id. This will give the wanted conclusion. It will be enough to construct for
any N

1w, dv+N,
Ly : E'p’]VVO(N) — E'p,]"vo (N +1)

LJ_Vl . E//Z:]VVO (N) N Z//;;l,_J\}O’V—FNO (N)

(4.3.25)
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— d,v d,v+No+1 -1 . d,v d, v+ N
such that L o'LNl': S () = X T(N) and Lo Lyt 00 (V) — S ()
coincide with identity. Actually, since L is injective by lemma 4.3.3,

b ‘E/g:?vo(NH) =Ly Iy ‘E/’ZZJVVO(NH) =Ly
which allows us to define L1 satisfying (4.3.24).

If Ay > 0 is a constant to be chosen, we decompose
d, d, d, d,
SR (N) = Fy @ 208 (N, A), £70% (N) = Fy @ 2705 (N, Ay)

where F}, F}; is the subspace made of symbols a satisfying a(-; ng, np+1) = 0 for ng+np1 > An.
By (ii) of lemma 4.3.3, it is enough to construct

Lyt X0 (N, Ay) = SO0V (N 41, A)

(4.3.26)
Lyt S0 (N, Ay) — B0 0N (N, Ay)

for Ay large enough. Remind decomposition (4.3.9) of L, and let us construct first an inverse
La’]lv to Lg. We take a respectively in E’z:JyVO(N, Ap) or E”ngNo (N, Ay) and look for ¢! in the
right hand side of (4.3.26) with Lo(c!) = a@. We use expressions (4.3.12), (4.3.14) for Lo(c').
If we compose on the right with J.,,, defined in (4.3.18) and evaluate Lo(c!) at Hfl,’e U =

Iy, . ,Hf{;’e” up), we get respectively the equalities
- Z/, / - ZI, !
ey (I, U510, 1p41) Jey 1 + ¢ (I, U3 00, 1 41) (D (1) F D(n0)) Ty
- K/ !
= a(Hn,’6 U/; no, np+1)J5p+1 .

Using (4.3.7) and (4.3.20), (4.3.23) we see that we may define ¢! by

(4.3.27)

~ e 1. o e

cl(Hn/U’; no, Np41) = — Z iFy “(ngy .., Npt1) 1a(Hn,’E U';no, Npt1)Jepin

(51751)7-~~,(€pa5p)7€p+1
where the sum is taken for ¢1,...,¢p,€1,...,€p41 in a set of bounded cardinal, and where
F£/76 — . . E
0y 1) = D €jwm (14, 45) + €yt (Win(npi1) F wm(no)).
j=1

It is enough to check that each term in the sum (4.3.27) belongs to the right hand side of

(4.3.26). Remark that FY* is a function of type (3.3.10) that satisfies (3.3.11): if |ng — npy1|
is large relatively to |n/|, this follows from the fact that w,,(n) = n+ O(1/n),n — +oo. If
|ng — np+1| < C|n/| this is a consequence of proposition 4.3.1. By inequalities (3.3.12), in the case
of sign — in (4.3.27), we see that ¢ is a symbol in E'Z’?VtNO (N+1, An) (taking eventually for Ny
a larger value than the one of (3.3.11)). In the case of Ff:’e, we remark that it satisfies (3.3.13).
So (3.3.12) will be controlled in terms of (3.3.14). This implies that for a € 2”?]”\[0 (N, An),
(4.3.27) defines a symbol &' in E”Z_A}O’WFNO (N, An). Consequently we have defined a bounded

inverse Ly 5 to Lo, acting on space (4.3.26). To define Ly as

Lyt = (Lo(ld + Ly y L))~ = (Id+ Loy L) ' g
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we just need to check that the operator norm of L(ﬁv o L from E’ﬁ:;’VJgNO(N + 1, An) (resp.
E”z;\}O’VJFNO(N ,AN)) to itself is smaller than one if Ay is large enough. But we have seen that
L, sends EZ:%O(N) to E;?VO(;O(N) for any d’. By definition (4.3.11) of L1, the same is true for
the Y or Y spaces, so the operator norm of Ly ]lv o L1 on the above spaces is bounded from

above by Cn /AN, where Cy > 0 in independent of Ay (it suffices to extract from the gain on

the order coming from L; a factor m < ﬁ) The conclusion follows for large enough Ap.
|

We shall need also a result, similar to proposition 4.3.2, but for remainder operators.

Proposition 4.3.4 Let d € R, let p € N an odd number and v € Ry. For every M e R

p+1
there is My € RZ’_KIFNO such that for any uq,...,upp1 € €
p+1 N N N
(4328) ZMl(ul, e Mouj, e up+1) + MSMl(’U,l, e ,up+1) = M(ul, e Up+1).
j=1

Proof: We extend M , Ml as C-multilinear maps, replace u; bu Pyu; and compose on the left
by Fy. Since MoFPy = PoDg and Dj = —Dg we get

p+1
Z Png (P(]ul, ce ,P()D(]Uj, ce ,P(]up+1) - DOP(TMI(POUL cee ,P(]uerl) =

(4.3.29) o

PJM(Poul, PN ,Poup+1).

We use notations (4.3.19). We compose on the left (4.3.29) with Hf{’o’eo and replace u; by

l;,€; .
11,77 uj, for any possible values of ng, ..., np1, o, ..., lp1, €0, €pr1. U = (u1, ..., ups1),
n=ny,...,npt1), £ = l1,.... lpt1), € = (€1,...,€py1) We set
lerr l1,€ Lp41,€p+1
Hn U= (Hnll lul,...,Hn2+1 P up+1).

Using (4.3.20) we see that (4.3.29) may be written

— prl -1 —
0 P My (RITU) = =i (D swmng, £) — cowm(no, b)) T Py M (I ByU)
j=1
so that replacing U by P u
— Pl -1 —
I, M, (ILU) = —i S (Z ejwm(nj,ﬁj)—eowm(no,zo)) (Py)~ Tl pe M (TS
(€0,€0) -+, (bp+1,€6p41) T=1
where the sum is taken for {p,...,¢p11, €o,...,€p41 staying in a bounded set of indices. By
proposition 4.3.1 the first factor in the sum is bounded from above by Cu(ng,...,np41)N0. If
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we use that M satisfies estimates of type (2.1.15) the same is true for Ml, with v replaced by
v + Ny, since p(no, ..., npt1) < maxg(ng,...,npe1). This concludes the proof. O

Proof of theorem 1.1.1: We wrote equation (1.1.4) under the equivalent form (4.2.4) or (4.2.13).
It is enough to show that there is sy large enough, such that if s > sg, there is Cs > 0 and
Ry > 0 so that, if u(t, -) is a solution of (4.2.4) defined on some interval [0, 7], with Cauchy data
in H*®, one has for any t € [0, 7]

t
(4.3.30) lut, Mz < Cs[llu(0, )| +/0 (T, ) ggeo (T, )l 7]

as long as ||u(t,)||gs0 < Ro. Actually, applying (4.3.30) with s = s¢, assuming ||u(0,-)||gs0 < €
and taking R(] = (2050)1/ 2¢, we see that we may extend the solution as an H* function up to
time tg = 20 R_r'H = csoe_’"H. If the Cauchy data are H® with s > sg, the solution is also in
H? on the same interval. It will be bounded in H® on an interval of length 2_(133Ra Tl = et
Because of (4.2.16), we may in (4.3.30) replace |u(t,-)||%, by ©§(u(t,-)). Moreover, if in the
right hand side of (4.2.17) we replace Op(c(u;-)) by

(4.3.31) 5[0p(0(us-))0p(( +ay)(u;-)) + Op((1 + ay)(u; -))Op(c(u; -))]

we make appear an error that may be written by corollary 3.3.5 (i) (Op(e(u;-))a, @), where e is

a symbol in i?s’yl for some v/ independent of s, of valuation v(e) > 2k > r — 1. Consequently,
by proposition 2.1.3 and (4.2.22)

1Op(e(u; -))all -« < Cllullgo llullzs

if s > 50, and sq is large enough relatively to /. We thus see that if we modify the definition of
O} replacing in (4.2.17) Op(c(u;-)) by (4.3.31), we still get a quantity equivalent to ||u||%. when
||u|| grso is small enough. We may thus assume from now on that

(4.3.32) @S(U)=1<[Op(( )OD((1 + ax)(u; ) + Op((1 + ay) (u; ) Op(c” (us -))]a, @)

for a scalar self adjoint symbol ¢V € 225 g

0

, and c” satisfying condition C(x,7) of definition 3.3.2.
We may decompose ¢’ as a finite sum of homogeneous symbols c € 228 . Remark that the
contributions coming from the Components homogeneous of degree P 2 r — 1 give again a
contribution to ©(u) which is O(||ul|} [|ul|%:). Modifying again the definition of @, we may

thus assume
r—2

_ 0
= E Cp-
p=0

Since ¥ satisfies C'(x,7), terms indexed by even p’s in the above sum are zero. We compute the
time derivative of (4.3.32) applying to each homogeneous component proposition 4.2.4. Remark
that assumptions (4.2.34), (4.2.35) are satisfied since " is scalar and self-adjoint. We get, by
(4.2.39)

d

7 9o(u(t, ) =(0p(chy, (us )@, @) + {[Op(c®(u; -)) Do + D5OP(c’(u; -))]a, @)

+(0p(e°(u; )@, @) + 2Re (R(u), u)
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where €’ € 225 ' RO € R%" for some v/ independent of s, and with v(e®) > «, v(R°) > & + 1.
Moreover € is self—adjoint and these symbols and operators satisfy condition C(k,r). Since c”
is scalar and D§ = —Dy, we get from corollary 3.3.5 (ii) that the second duality bracket may be
written (Op(b(u; -))@, @) for a symbol b € £2*" for some v independent of s. Moreover, since
satisfies condition C(k, 1), c?\/lo and b have valuation larger or equal to s, and verify also C'(k,r).

We may thus write

(4.3.33) 9 04ult, ) = (Op(g( )i, 1) + 2Re (R(u). )

for a new symbol g € i%s’y with v(g) > k, g satisfying condition C(k,r). In particular, the
homogeneous components of order p of g with k < p < r—1 vanish if p is even. Moreover we may
assume ¢ self-adjoint. For odd p,x < p < r — 1, we decompose the corresponding contribution
9p as g, + g,, where g, satisfies assumption (Hp) and gg satisfies (Hyp). By proposition 4.3.2,

2s—1
1//628 v

for each such p, we may find ¢, € y2sr for some v/ independent of s, such that

p.No® €p p,No
(4.3.5) holds true for cllj = c}p’ + cl” , when its right hand side is replaced by g,. In particular,
these cll, have the structure (4.2.34), (4.2.35) which allows us to apply proposition 4.2.4. More

precisely, define

@{(u):% > ([Op(ey(us )OP((1+ ay)(u; ) + Op((1+ ay)(u; -))* Op(ep(u; )i, @).
r<p<r—1
p odd

By (4.2.39) and (4.3.5) we have

(4.3.34) i@&( (t,-)) = (Op(g(u; -))a, @) + (Op(f°(u; ) u, u) + 2Re (S°(u), u)

dt
where f0 € i?\}z”/, 59 € R%V for some v/ independent of s, with v(f0) > 2k, v(S°) > 2k + 1.
(We used again (4.2.20) to express @ in terms of u in the last but one term coming from (4.2.39)).

Let us define also a perturbation to get rid of the (R%(u), u) term in (4.3.33). We may decompose
RY = R'® + R® with R'® = D r<p<r_i RY p+1 and R® € R®" of valuation larger or equal to r,

and where R) 1 € 722‘111/ and the sum is indexed by odd p (since R satisfies condition C(k,7)).
Define Mp+1 as the solution of equation (4.3.28), when the right hand side is replaced by Rg 1

Then Mp+1 € R?)j_ll/ N0 and if we set

()S(u) = 2Re j{: <EZ;+1(U,...,U),U>
K<p<r—1
p odd

it follows from proposition 4.2.5 that

(4.3.35) %@5(( ) = 2Re [(R(u),u) + (R'(w),u) + > (Mpra(u,...,u), Ry ()]
K<p<r—1
p odd
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where R! € ﬁ25+1’”//, R;121+1 e RO for some v” independent of s and v(R') > 2k +1 > r,

v(R2, ) > £+ 1. Combining (4.3.33), (4.3.34), (4.3.35) we get

%[%(u(t, ))=01(u(t, ) — O5(u(t, )] =
— (Op(f°(u; ))u, u) + 2Re (R%(@) — S°(u) — R'(u), u)
—2Re > (Mppi(u,...,u), R, (u)).

rK<p<r—1
p odd

(4.3.36)

The right hand side is bounded from above by
ClIOP(f* (us ))ull -l s + | RO (@) — $%(w) — R ()l llull 1<
(4.3.37) + > My ) || Ry gy () 2]

Kr<p<r—1
p odd
By proposition 2.1.3, and using that v(f") > 2k, there is some sg, depending on v/ but not
on s, such that when s > sg the first term in (4.3.37) is bounded by C||ul|?%,||ul/%s, as long
as |lulgso < 1. In the second term of (4.3.37), S° R, RY belong to R2+1" for some v/
independent of s, and have valuation larger or equal to r. By lemma 2.1.7 and inequality (2 1.19),
for s large enough relatively to v/”, the second term in (4.3.37) is controlled by C|lul| s ||l

Since R2,; € RO with v(R2,)) >k +1, lemma 2.1.7 implies |R2,; (u)l|lmzs < Cllullfs lull ms
for some sy large enough. Since Mp+1 € Rp +’1 with v/ 1ndependent ofsand p+1>k+1,
the same lemma gives the estimate ||Mp+1( ooy w)| g-s < Clul|%so ||ul| m#sif so is large enough

(independently of s), and ||u|/fso < 1. Finally we get for (4.2.34) an upper bound in terms of
Olull o el Zrs
using that 2k > r — 1. It then follows from (4.3.36) that for ¢ > 0
Op(ult,-)) = O1(u(t,-)) = O3(u(t,-)) <

4.3.38
| ) 05 ((0,-)) = ©7(u(0,-)) — O3 (u +C/\u Migso llu(r, )17 dr

when s > sg large enough and when for 0 < ¢/ <t¢, ||u(t',-)||gs0 < 1. Again by proposition 2.1.3
and lemma 2.1.7, we get when |lu(t, )| gs0 <1

(4.3.39) 103 (u(t, )] + 105 (ult, )| < Cllult, ) s llult, )l

Inequality (4.3.30) follows from (4.3.38), (4.3.39) when |[u(t',-)| g0 stays small enough on the
interval [0, ¢]. This concludes the proof. a
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