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Long-time Sobolev stability for small solutions of quasi-linear
Klein-Gordon equations on the circle

J.-M. Delort
Laboratoire Analyse Géométrie et Applications, UMR CNRS 7539
Institut Galilée, Université Paris-Nord,
99, Avenue J.-B. Clément,
F-93430 Villetaneuse

Abstract

We prove that higher Sobolev norms of solutions of quasi-linear Klein-Gordon equations
with small Cauchy data on S! remain small over intervals of time longer than the ones given
by local existence theory. This result extends previous ones obtained by several authors in
the semi-linear case. The main new difficulty one has to cope with is the loss of one derivative
coming from the quasi-linear character of the problem. The main tool used to overcome it
is a global paradifferential calculus adapted to the Sturm-Liouville operator with periodic
boundary conditions.

0 Introduction

We address in this paper the question of long time Sobolev stability for small solutions of
nonlinear Klein-Gordon equations on S*. Let us recall some known results. Consider V : ST — R
a smooth nonnegative potential and consider u a solution of the equation

*u  B*u )
1 w—@+(V(m)—|—m)u—f(u)

atu\tzo = €Uy,

where € > 0 is a small parameter, m €]0,+oo], f is a nonlinearity vanishing at order x + 1 > 2
at 0. Tt is well known that such an equation has a unique CO(R, H') N C*(R, L?) solution if
up € HY(SY,R),u; € L?(S',R) and e is small enough. The question is to decide whether, when
up € H¥PL(SYR), up € H5(SYR) (5> 1), [Ju(t,-)||gs+1 + ||Osu(t, )| gs stays bounded over long
intervals of time when e — 0, i.e. over intervals of length ce "1 with r > x + 1 (the case
r = k + 1 would correspond to the bound given by local existence theory). The difficulty of
the problem comes from the fact that on S' one does not have any dispersion making decay
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linear solutions at infinite times, in contrast to what happens for that equation on the real line
(We refer to chapter 7 of the book of Héormander [13] for results and references concerning the
nonlinear Klein-Gordon equation on R?).

Bourgain answered the above question for equation (0.0.1) in [5]. He showed that the solutions
remain bounded in H5t! x H® for intervals of time of length ce ™ for any N, when s > N,
and when the parameter m in (0.0.1) is taken outside a subset of zero measure of |0, +oo].
Bambusi [1] and Bambusi-Grébert [3] obtained later more precise versions of this result (see also
the lectures notes of Grébert [12]). Let us mention that, as far as we know, there is no example
of solutions which, when m is in the exceptionnal set excluded in the above result, would have an
H**! x H® norm blowing up when time goes to infinity. Nevertheless, Bourgain [6] constructed
an example of an abstract perturbation of the linear wave equation for which such a blowing up
property occurs.

Two natural questions arise: can such results be extended to equations with more general
nonlinearities that (0.0.1), and do they hold true in higher dimension? The latter question has
been answered affirmatively for equations of type (0.0.1) on the sphere S, or more generally on
Zoll manifolds, by Bambusi, Grébert, Szeftel and the author in [2]. The former one has been
taken up in [9, 10, 11], including in higher dimensions, for equations of type (0.0.1) in which
the right hand side is replaced by a general semi-linear non-linearity f(u,d:u,d,u). For such
non-linearities, the solution does not in general exist over an interval of time larger that the one
given by local existence theory (i.e. | — ce®, ce[ if f vanishes at order x + 1 at zero) — see [§]
for examples of blowing-up solutions. Nevertheless, a result proved in [9, 10] asserts that if,
for instance, f is homogeneous of even degree x + 1, then the solution of the equation exists
and remains bounded in H*t! x H*® over an interval of time of length ce~2*. The method of
proof was similar to the one used by Bourgain [5], Bambusi [1], Bambusi-Grébert [3], the main
novelty being its extension to a higher dimensional setting. Our goal in this paper is to address
the same question in one space dimension for quasi-linear Klein-Gordon equations. As we shall
explain below, the semi-linear methods of the above papers break down immediately because of
the extra loss of one derivative coming from the quasi-linear nature of the problem. Our main
theorem is stated in section 1 below. We shall in this introduction describe our method on the
example

(Di = (1 + alw, @) V=A+V+m?)u=0

uli=o = €uy,

(0.0.2)

where ug is a smooth complex valued function defined on S, A = %, and v — a(u, 1) is a real
valued polynomial in (u, %), homogeneous of odd degree x. Our aim is to prove existence of the
solution, and uniform control of its H*-norm (s > 1) by Ce, over an interval of time of length
ce~2% (instead of the length ce ™ given by local existence theory). Let us first recall how the
corresponding semi-linear result may be proved. Let us take, for simplicity, the case V = 0 and
consider

Q%-«-A+mﬂu:fmm)

uli=o = €uy,

where f(u,u) = uPu? with p+¢=r+1. Set A, = vV—-A+m?, A=+v—A+1 and let II, be

(0.0.3)



the spectral projector on the space generated by the eigenfunctions e** (n € N). Then the H*

norm is given by [[ul|%. = (ASu, A%u) = 3720 (1 4+ n?)*||IL,ul|2, and if u solves (0.0.3)
1d
(0.0.4) 55\\11(75, M3 = —TIm [(AS(Apu), ASu) + (A® f(u, @), ASu)).

The first term in the right hand side vanishes by self-adjointness of A,,,, and the second one may
be written —Im My (u, ..., u) with
(0.0.5)
My(u, ..., u,u u) = Z (1+n§+q+1)s/l My w- - Ty ully, w1y, udi.
S

Uy ooy U
n n
P q+1 1ye-sMptq+1

The idea of the method is to perturb the H?® energy of u by a multilinear expression

Re Mi(u,...,u,a,...,u)

prq+l=r+2

such that %Ml(u, ...,@) will cancel out (0.0.5) up to a remainder which will be O(|ul|35"?).
This gain on the order of vanishing at 0, versus the one of the last term in (0.0.4), allows one to

obtain the longer interval of time ce~2* by standart arguments. Using (0.0.3), one finds that

d

(0.0.6) %Ml(u,...,u,ﬁ,...,ﬂ) =iL(M1)(u,...,u,u,...,u)+ R(u,u)

where

(0.0.7)
P p+q+1

L(My)(u, i) = Mi(u, o Aty 8) = > My(tye T A, ),
1 p+1

and R(u,u) is a remainder obtained substituting if(u, %) to one of the arguments of M;. Since
f contains no derivative of u, R(u,) = O(||ul|355"?) as wanted. As ApILu = vVm? + n2I,u,
one may write

(0.0.8)

L(Ml)(l_[nlul, . ,an+q+1up+q+1) = Fm(nl, . ,np+q+1)M1(Hn1u1, e ,an+q+1up+q+1),

where we denoted

D p+g+1
(0.0.9) Fo(ni, ... npiqs1) = Z m? +n? — Z \/m? 4+ nd.
1 p+1
To eliminate in %[%Hu(t, 3. + Re M (u,...,1u)] terms homogeneous of degree x + 1, one has

to choose M so that L(M;) = —Mj i.e. according to (0.0.8) and (0.0.5)

My uns e My Uprg 1) =
(0.0.10) — Fn(n1, .o npigr1) L+ 02y 00)° /51 My uy =Tl Uptg i do.
Since p+ q is even, it may be proved that for m outside an exceptionnal subset of zero measure,
Fn(ni,...,npyq+1) does not vanish, and actually
|Em(na, ... 7np+q+1)|_1 < Cpu(ny,... anp+q+1)N0



for some Ny, p(n1,...,nprqs1) standing for the third largest among n1,...,np4g4+1. This shows
that |Fm\_l is bounded from above by a power of a small frequency, which allows one to prove,
combining this with convenient estimates of the integral in (0.0.10), that M; is a continuous
multilinear form on H?® x --- x H?® for s > Ny, and so a small perturbation of the H® energy
when w is small. Let us notice that related ideas are used for problems on R™ by Colliander,
Keel, Staffilani, Takaoka and Tao in [7].

Let us go back to the quasi-linear equation (0.0.2). In this case (0.0.4) will write
1d

(0.0.11) 5 It ) [Frs = ~Im (Aa(u, @) Ay, Au)

= % (ASIAT25 A, a®*]u, ASu).

Since the operator [A=2%A,,,,aA?¥] is of order 0, we still get a quantity well defined on H*, even
if its expression is now a little bit more complicated than (0.0.5). We would like to argue as
above and find a new contribution Re M; to add to i|lu(t,-)||%., so that its time derivative
would cancel out the right hand side of (0.0.11), up to remainders. The R(u,u) terms in (0.0.6)
would be given by

(0.0.12)

This quantity is no longer of order 0 in u, @ for a general M;, which means that R(u, @) could
no longer be estimated by C|lul|%5"2 but only by Cllul|35" ||ul|gs+1. This loss of derivative,
which is systematic in quasi-linear problems, cannot be recovered if M; is a multilinear form
which does not satisfy any structure condition. On the other hand, if we know that M; has
a structure similar to the quantity in the right hand side of (0.0.11), we may hope to make
appear a commutator that will kill the extra loss of one derivative. This is actually the usual
way of getting quasi-linear energy inequalities. The price we have to pay to be able to do so is
that we must get for My, M, expressions more explicit that just multilinear quantities satisfying
convenient estimates, like those used in the semilinear problems treated in the aforementionned
references. We must be able to write My or M as

(Op(c(u, ..., u;-))u,u)

where c(u1,...,up;-) will be a convenient paradifferential symbol, that may be computed from
the equation, and Op(c) is the operator associated to that symbol. The difficulty that arises
is the following: we must work globally on S!, and cannot restrict ourselves to open subsets
of R through local charts. This is because our class of symbols will have to contain functions
defined in terms of F,(n1,...,nptq+1)" ', where F,, is given in (0.0.9) (to be able to construct
the analogous of M; — see (0.0.10)). This quantity is well defined for m outside an exceptional
subset, only when the arguments n1,...,n,4441 stay in a discrete set. In other words, we cannot
use Bony’s calculus of paradifferential operators on R [4], since their symbols are functions of
a continuous phase variable. We must instead define a global paradifferential calculus on S?,



in terms of symbols whose phase variable varies in the (discrete) spectrum of — % +V on SL.
When V' = 0, this is done through Fourier series expansions. An example of the type of symbols
we have to consider is given by

o
)

ein1:c>

(no,m1) — (ae = a(n1 — no)
where a € C*°(S!). Such a quantity is rapidly decaying in ng — ny, and its 0, + 9, derivative
vanishes. In general, when V # 0, the class of symbols we want to consider has to include

quantities like
(n07 nl) - <a90n()7 Qpn1>7

where ¢, pn, are two eigenfunctions, and we want them to verify estimates of form
(0.0.13) |(Ong + Ony) (@B o )| < Cnv (o = m1) ™" (ng +m1) ™7,

The first section of this paper is devoted to the construction of nice basis of L?(S!), i.e. of
orthonormal basis of almost eigenfunctions for which estimates of form (0.0.13) hold true. This
. . . d2 . . . .

is done using quasi-modes for ——— + V' which resemble the imaginary exponentials of the free
case.

The second section of the paper is devoted to the definition of paradifferential operators associ-
ated to symbols whose phase argument varies in a discrete set. We establish the main symbolic
calculus properties of such operators.

The third section presents a special class of pseudo-differential operators, containing the oper-
ators involved in the writing of equation (0.0.1). These special operators enjoy more explicit
symbolic calculus properties that the general ones defined in section 2.

The fourth section is devoted to the proof of the theorem, using the machinery of sections 2 and
3 to be able to get the energy estimates we alluded to at the beginning of this introduction.
We first perform a paradifferential diagonalization of the principal part of the wave operator,
reducing (0.0.1) to a paradifferential version of (0.0.2). We then apply the energy method, as
explained after (0.0.11). The fact that we reduced ourselves to a diagonal principal symbol,
together with the symbolic calculus constructed in the preceding sections, allows us to show
that the remainders of form (0.0.12) that we get actually involve commutators compensating
the apparent loss of one derivative displayed by (0.0.11). In that way, we are able to obtain
energy inequalities of type & ||u(t, )||%. < C|lu(t, )|[%F2  which imply the long time existence
result we are looking for.

Let us conclude this introduction expressing our gratitude to Dario Bambusi for several conver-
sations about this work. Let us say also that we shall use in the text the following notation: we
write ng ~ n1 to mean that there is a (large) constant C > 0 with C~'ng < n; < Cng when
ng,n1 — +oo, and we set ng < n; to say that there is a small ¢ > 0 with ng < cny when
ng, N1 — +00.



1 Main results and nice basis

1.1 Statement of main theorem

We shall be interested in this paper in solutions of the periodic one dimensional quasi-linear
Klein-Gordon equation. We denote by A = % the Laplace operator on S', and take V : St —
R, a smooth nonnegative potential. We shall sometimes identify S with the interval [—, 7]
with periodic boundary conditions. We consider a polynomial map

c:RP— TR

(1.1.1)
(X07 Xl7 XQ) — C(XOJ Xl7 XQ)

which may be written

K1
(1.1.2) e(Xo, X1, X2) = Y cr(Xo, X1, X3)
k=k

where ¢ is homogeneous of degree k in (Xg, X1, X2). We denote by 7 the largest odd integer
satisfying k <r — 1 < 2k and

(1.1.3) for any even integer 2k satisfying x < 2k < r — 1, one has co(Xo, X1, X2) = 0.
We shall consider the following equation, where m > 0 is a parameter

020 4+ (14 ¢(v, 04, 90,0))2[-A + V +m?v =0
(1.1.4) V|t=0 = €vo

8tv|t:0 = €vy,

where vy and vy are smooth real valued functions defined on S', and € > 0 is a small parameter.
Our main result is the following:

Theorem 1.1.1 There is a zero measure subset N of 10, +00|, and for every m € N, there are
c > 0,s0 € N, such that for any s > so, any (vo,v1) € HTHSY R) x H*(SY, R), verifying for
€ €]0,1]

(1.1.5) lvoll gso+1 + [[v1ll a0 <,
equation (1.1.4) has a unique solution
veCY] - T, T.[, H*T (S, R) nCY(] — T, T.[, H* (S}, R))

with T. > ce"TY. Moreover, there is for any s > so a constant cs > 0, such that if (vo, v1)
satisfies (1.1.5) with so replaced by s, ||v(t, )| gs+1 + ||Ov(t, )||ms is uniformly bounded on the
interval | — T!, T![ with T! > cge " +1.



Remarks e It is enough to prove that for s large enough, condition (1.1.5) with e > 0 small
enough implies the existence of an H*°*! x H* bounded solution defined on | — T, T.[xS'. We
know then that if the Cauchy data (vg,v;) belong to H*™! x H* with s > s, their smoothness
will be propagated by the equation.

e The time of existence given by local existence theory is ce 7. If  is even and ¢, # 0 in (1.1.2),
then (1.1.3) gives r = k + 1, and the theorem is empty: it just asserts that there is a solution
defined on the interval of time given by local existence theory. Because of that, we shall assume
in the sequel that x is odd.

o If x is odd, and cop, = 0 if kK < 2k < 2k, we may take r = 2k + 1, and we get a solution on
an interval of length €72% i.e. on a much larger interval than the one given by local existence
theory.

e In the semi-linear case, theorem 1.1.1 has been proved (with more general assumptions on the
nonlinearity) in [9, 10] when the equation is posed more generally on S¢, or on a Zoll manifold
of any dimension.

e For semi-linear equations on Zoll manifolds, whose nonlinearities depend only on v, and not
on its derivatives, it has been proved in [2] that the solution of the problem is almost global, i.e.
defined on intervals of length cye ™ for any N. Moreover one has uniform Sobolev estimates
on such intervals. This result had been obtained previously in one dimension by Bourgain [5],
on a slightly weaker form, and by Bambusi [1] and Bambusi-Grébert [3].

e In the quasi-linear case, no result seems to have been known, except in case of equations of
form (1.1.4) with a quadratic nonlinearity on T9(d > 1): see [9].

e A natural question is to know if theorem 1.1.1 may be extended from S! to S%, as its semi-linear
counterpart. We are unable at the time being to perform such an extension. This is related to
the existence of “nice basis” which will be addressed in next subsection.

1.2 Nice basis

Let V : S' — R, be a smooth function. The large eigenvalues of —% + V are arranged in
couples (w;;)? < (w;)?, where w; and w,, have when n — +o00 a same asymptotic expansion at
any order of form

1 o o
(1.2.1) nt o — SIV(a;)dx+n—§+n—§+m
(see for instance the book of Marchenko [14]). We shall denote in this subsection for n large
enough by E,, the subspace of L%(S!,R) spanned by the eigenfunctions associated to (w; )2 and
(w;)?, and by II,, the spectral projection of L? onto that subspace. We shall choose a function
A — w(A), which is a symbol of order 1, having when A — +oo the expansion (1.2.1) (with n
replaced by A). If we write a, = O(n™°°) to mean that for any N € N there is Cy > 0 with

lan| < Oyn~™, then w(n) — wi = O(n~>). Consequently, we have

(122) || V —-A + VHn — w(n)Hn||L(L27L2) = O(TL_OO)



Our goal is to construct a basis of each E,, such that some scalar products involving elements of
these basis will have symbolic behaviour relatively to the spectral parameters. Before stating the
theorem, let us introduce the following notations. For 7 € N, we denote by N, = {n € N;n > 7}.
If a : N — C is given, we extend it by 0 to a function defined on Z, and we define da : N, — C
by

(1.2.3) da(n) =a(n+1) —a(n).

We denote by 0* the formal adjoint of 9 for the scalar product (a,b) = > - _a(n)b(n), that is

n>T
(1.2.4) 0%a(n) = —da(n — 1).
We have then for a function a defined on N, x N,

(1.2.5) (On — O5)a(n,n')y =a(n+1,n") —a(n,n’ —1).

We shall use below the following elementary formulas. For a function a(n), denote if k € Z
Tra(n) = a(n — k). One has then

Op(ab) = (Ona)(7-1b) + a(0,b)
Iy (ab) = (0a)b + (11a)(9,b)

(126) On(ab) = (Ona)b + a(0pb) + (9na)(0,b)
O (ab) = (0;a)b+ a(05b) + (05 a)(05b).

Moreover, if we consider functions a(n,n’),b(n,n’) defined on N; x N;, and if 7}, 77 are the

translation operators relatively to the first and second variable respectively, we have

(00 — ) (ab) = (7110)((8n — 85)b) + (80 — Dy)a)(71D)

(1'2'7) * >k * % *
(On = Opr)(ab) = a((9n = 0,1)b) + ((On — Fr)a)b + (9na)(Onb) — (pra)(0,b),

Onla(n,n)] = ((0n — 0}))a)(n,n + 1)

(1.2.8) dtla(n,n)] = —((On — 0%)a)(n — 1,n).

Remind that a pseudo-differential operator T, of order 0 on S', may be written when acting on
a periodic function u as

(1.2.9) Tu(z) = / > e Va(z, n)u(y) dy
st nez

where a is a smooth function on S x Z, satisfying for any «a, 3 € N,

(1.2.10) 1020Pa(x,n)| < Cap(l+|n|)~"

(where 0, means a usual derivative, and 0, is defined by (1.2.3)). We set

(1.2.11) la|p = sup sup sup (1 + |n|)?|0%dPa(z,n)).
0<a<P 0<B<P (z,n)eS! X Z



We may also use a local representation: Let x € C§°(R) be supported inside an interval of
length strictly smaller that 27. Take x € C§°(C), x = 1 close to 0, Supp x small enough and set
Xo = 1 — x. Define

“+o00

a(r,&) = Y a(z,n)O(z,¢ —n)

n=—oo

(1.2.12) .

K(z,y)= Y ™5™ —1)a(z,n)

with
Oa,n) = / eI (D) 1)y () dy.

Then we have if Suppu is contained in the domain where y = 1

Tu(z) =

Ru(z) = / K y)u(y) dy.

% / ¢"ii(x, €)a(€) dé + Ru(x)

(1.2.13)

If we set Xri1(2) = 27 x(2), we see that

K(z,y) = Z(ei(nﬂ)(z—y) _ em(z—y))il(ei(r—y) — Da(z,n)
= 3" D ()~ 1)05a(, n)

= 3 Ry (@ — 1)) ala, )

This shows that K is a smooth 27-periodic function of (z,y), whose derivatives up to order N
are bounded in L in terms of the constants Cyp of (1.2.10) for o + 8 < N + 2. Moreover, if
x € [—m, ] and Supp x has been taken small enough, we see that

9,0z, ) = / @Y 1) (2, y)x(y) dy

where Y!(z,y) = —i(z—y) (@Y —1)"1x(e!®¥) —1) € C®ify € Supp x €] -7, 7|, = € [, 7].
Consequently 0,0(z,n) = Ol(z,n — 1) — ©Y(x,n), for a function O, of the same form as O,
satisfying [020'(z,n)| < Cn(n) ™" for any «, any N. We may thus write

Oca(w,€) = Y a(z,n),[0' (x,& —n)] = Y _(Oha)(w,m)O" (z,& - n).

n n

Computing in the same way higher order derivatives, we get that a is a symbol on [—m, 7] X R,
whose semi-norms are controlled in terms of the corresponding semi-norms of a.

Our aim is to prove the following:



Theorem 1.2.1 There is T € N* and for any n > 7, there is an orthonormal basis (go}”gp%)
of Eyn, satisfying the following property: there is v € Ry and for any N,a, 3,7 € N there is a
constant C > 0, such that for any pseudo-differential operator of order 0 on S', T, of symbol a,
for any n,n’ € N;, any j,j' € {1,2}, one has

[k * i i’ —-N —
(1.2.14) 05 (05) (O — 03) (0], TEl) | < Cln =) " (n+1") Val,y nargin

An hilbertian basis (cp%)Jn of L*(SY,R), such that (1.2.14) is satisfied for n,n’ > 7 large enough,
will be called a nice basis.

Remark The functions ¢}, ¢ of the statement are not assumed to be eigenfunctions of —A+V.
Nevertheless, because of (1.2.2), they verify ||(V—A+V —w(n))(@h)|L2 = O(n™>).

Before starting the proof of the theorem, let us state a corollary.

Corollary 1.2.2 Let (go%)]n be a nice basis of L*>(S',R). Let Ty, Ty be two pseudo-differential
operators of order 0 on S'. There is v € Ry, and for any N,o, 3,y € N, there is C > 0 such
that for any C™ function a on S', one has

a+pB+y+N+v
(1.2.15) |07(95)% (0 = 35 (Tiph, al@) ol )| < Cln =)y N (n4n)™ S " [0l
k=0

for any n,n’ € N*.
The corollary follows from (1.2.14) applied to T' = T aT5, which is a pseudo-differential operator

of order 0, whose symbol semi-norms |-| » are controlled in terms of ||0%al|p for k < P+ 1y, for
a fixed 1y € N.

We shall first construct quasi-modes satisfying convenient properties.

Proposition 1.2.3 There exists for n > 7 large enough, functions U,, € C°([—n,n|,C) satis-
fying the following properties:

(i) For anyn € N;, any k €N, ||U,[[12[—r - = 1 and okU, (m)—0kU, (—7) = O(n=>),n — +o0.

(ii) Let T be a pseudo-differential operator of order 0 on S'. Denote by U, (z) the function on
R obtained by 27 -periodization of U,,. Consider U, as an element of L*(S',C), and define for
n,n’ € N,

(1.2.16) I_(n,n') = (TU,,U,), I (n,n") = (TU,,U,).

There is v € Ry, and for any o, 8,7, N € N, a constant C > 0 such that, for any operator T as
above, defined in terms of a symbol a by (1.2.9), one has

(1.2.17) 105(03)% (D = O ) T-(n, )] < Cln =)™ (4 0) 7l ng g iy

10



(12.18) 02(03)% (0 — 95" L ()| < Cln+ 1)l e
for any n,n' € Ny with |n —n'| < 3(n +n’).

(iii) There is a sequence (hyp)nen of R such that h,' —w(n) = O(n™3) and
(1.2.19) I(=A+V = b2 1)Uy | -2 = O(n™°), |Unllgg1/2-s < Cshy,!

for anyn > 71,6 > 0.
We shall first construct U, such that (i) and (iii) hold true.

Lemma 1.2.4 There are 69 > 0 and smooth functions (z,h) — 0(x,h), (z,h) — b(z,h) defined
on [—m, 7| x[0, 0], real valued, even in h, and a sequence (hy,)y of points of 10, 1], with asymptotic
exTPansion

N
1 1 N —2k—1 —2N-3
(1.2.20) hy, = P /_7r V(z)dx + 322 Ve +O(n )

for any N € N, such that the following properties hold true:

1 1
(1.2.21) h—@(w, hyn) — h—@(—w, hyp) —2mn = O(n™)

0'(x,0) = 1,1(950,0") (=, h) — (920,6)(m, h)| = O(h™),
0b(—, h) — 9gb(m, h)| = O(h™)

and such that if one sets

(1.2.22) Va, 3 € N,
(1.2.23) U, (z) = e®@h)/hnp(z b))

conditions (i) and (iii) of the statement of proposition 1.2.83 hold true.

Proof:  'We look for a formal series in h, ®(x, h), with smooth coefficients in x € [—m, 7], such
that Im ®(z,0) = 0, and the semi-classical equation

(1.2.24) (—=h20% + 2V (z) — 1)’ ®@M/h — g
be satisfied formally. We get, denoting by ®', ®" z-derivatives, the formal equation
(1.2.25) ®'(z,h)? — 1 —ih®"(x,h) + K>V (z) = 0.

We look for a solution ®'(z, h) = >/ 2% hE®/ (x) with &) = 1, }, real, @5, purely imaginary.
Identifying powers of h we get for k > 1,

k—1 .
1 1 )
Vy(a) = =5 V(@2 = 3 3 Vy@)Ph_y(2) + 5] ()
=1

11



whence
1
(1.2.26) ) (z) =0, Py(z) = —§V(:E), @) (z) 2m-periodic for any k.
Taking the imaginary part of (1.2.25), we get
!/ !/ h 14
Re ®'(x, h)Im ®'(z, h) = §ReCI> (x,h).
We choose for the equation on Im ® the solution
h /
(1.2.27) Im®(x,h) = B log[Re ®'(z, h)],

where the right hand side is well defined since Re ®'(z,0) = 1. We thus see that Im ®(z, h) is
2m-periodic in z and odd in h. We may write using (1.2.26)

m h2 [T +00
(1.2.28) (7, h) — ®(—m,h) = / Re®'(z,h) dz = 21 — 5 V(z)dr + Z Aph?
—T —T k=2

for some real constants Ay. Then e'®@"/7 will be 2r-periodic if and only if there is n € N with

®(m,h) — ®(—m,h) = 2wnh. By (1.2.28), the h-solutions of this equation for n large enough
form a sequence (hy,), of R%, converging to zero, and having asymptotic expansion

1 1 4
— / Viz)dz+---

n  4mnd ) _
Comparison with (1.2.1) shows that h,' — w(n) = O(n=3).

We denote by 6(x, h) (resp. b(x,h)) a smooth function of (z,h) on [—m,x] x [0,8], even in h,
whose difference with Re ®(x,h) (resp. e ™ ®@h)/h) is tangent to 0 at infinite order, as well
as its derivatives, when h — 0, uniformly in « € [—7,7]. Since Im ®(x,h) and Re ®'(z,h) are
om-periodic for any h, (1.2.22) with b replaced by b holds true. Moreover, by (1.2.26), (1.2.27),
l;(:r,h) = 1+ O(h?) uniformly in x € [~7, 7], so ||l~)(-,h)||Lz([_7r,7r]) = V21 4+ O(h?). If we set
b(x,h) = b(x,h)/||b(-, h)|| 2, we thus obtain a function satisfying the last relation (1.2.22). The
equality (1.2.21) follows from the definition of h,. Define now U, (z,h) = e®@hn)/hnp(z h,).
It obeys the properties of (i) of proposition 1.2.3. Moreover, by (1.2.24), we have the equality
(~A+V - hHU, = Oh) on [—m,7]. If U, is the 27r-periodization of U,,, then U, is in
L3(SY,C), but not in C*°(S!), since it has, as well as its derivatives, jumps of magnitude O(h°)
at 7 mod 2m. Consequently, (—A+V —h2)U, = o,y + B8k + gn(x) where a,, B, = O(hS®),
gn is C° on [—m,w] and O(hS°). This gives the first inequality in (1.2.19). The second one
follows from the fact that by (1.2.23), VU,, = a0, + 7, with a;, = O(h°), ||rpllz = O(h, 1),
whence ||[VU,|| -1/2-s = O(hy, ') for any & > 0. 0

We want now to express the quantities (1.2.16) in terms of Fourier integrals. Remind that we
consider a pseudo-differential operator 7" of order 0, expressed in terms of its symbol a by (1.2.9).

12



Lemma 1.2.5 There is v € Ry, a finite set of indices J, and for any N € N, functions
r]j\E, : N, x N — C satisfying for any o, 3,y

(1.2.29) 105 85)7 (0 — 8 ) v (n,0)| < Cagan (4 0') N al g giysn
and a family of functions Ag\’,i (R3 x ]R?F — C,

(2,9, & w,0") — AE (2,9, & w, W),

compactly supported relatively to (x,y, &), smooth in (w,w’), satisfying for |w — w'| < 3(w + ')
estimates of type

(1.2.30) [990% (D0 + 0 ) AN (2,9, €, w0, w")]
N -N _
< Capynnlalyy Ny arprn (1 + |2 — ylw) NMw+d) N w+o)7

for any o, 8,7, N', such that if

(1.2.31) T w,u) = w /R 3 pilw(@—y)e+wb(y, 2)+wo(z, 1)) ALE (2, y, €, w, ') dedyde,

one has for [n —n/| < 3(n+n')

(1.2.32) Ii(n,n') =D I (hy b bty + 13 (nn)).
JjeET

Proof: If we use (1.2.9), (1.2.13) and a partition of unity in y, we may write T'v as the sum of
Rv — where R is a smoothing operator whose contribution will be discussed at the end of the
proof — and of a finite sum of integrals of form

(1.2.33) / G (0, y, €)uly) dyde
R2

where v is the 27-periodic extension of v € L2(S!,R), where @ is C* in (x,v,¢), compactly
supported in (z,y), and satisfies

(1.2.34) 020, 0% a(x,y,€)| < Capy(1+ €))7

with constants Cqg, controlled in terms of |al,, 5, Let x1 € C*°(R), x1 =0on [-1,1], x1 =1
outside [—2, 2], and define

(1.2.35) T"v(x) = / VG2, y, €)x1(n~2E)v(y) dyd.

Let us take v = U, 2m-periodic extension of the function U, defined on [—7, x| by (1.2.23).
Remind that U, is smooth outside 7 4+ 27Z, and that at all points of m + 27Z, U,, as well as its
derivatives, have a jump of magnitude O(n~°°). Consequently, when we perform in (1.2.35) one
integration by parts in y, we get

(n~%)

() = / I grry a0 9, €) e Uny) dydé + T

13



where T7" is an operator of order —1, acting on a distribution w which is a finite sum of Dirac
masses with coefficients O(n™°°). In particular, ||7T7'w| 2 = O(n™°). If we perform more
integrations by parts, we may write, remarking that each integration gains n =2 and looses one
0y derivative

1Tl 12 < Cnlaly 0 MU (o)

for a fixed v € R, Since by (1.2.23), |U,,||z~y = O(n'Y), we see that the contribution of T" to
I.(n,n) contributes to the last term in (1.2.32). This shows that we may, from now on, replace
T by the operator T,, defined by

T,o(z) = / VG (2, y, €)x(n2E)u(y) dyde

where x = 1—x1, and study instead of I_(n,n’) (resp. I1(n,n")) the quantity (T,,U, U,) (resp.
(T, Uyn,Uy)) ie. respectively

(1.2.36) / TSR E R SO Gy €)x (2B, )V (2, o) dyde
R3

with b+ = b,b~ = b. If we make in (1.2.36) integrations by parts in  or y, because § or b have
jumps at 7 + 27Z, we shall get boundary terms. But (1.2.21), (1.2.22), and the fact that & is
localized in a region where |¢| < Cn?, show us that these contributions will give rise to admissible
remainders of type (1.2.29). Consequently, we may argue like if § and b were C'*° 27-periodic
functions. Remark that by the first relation (1.2.22), we shall have [{ — ﬁ@’ (Y, ha)| = 75 if g
is small enough, and either || > Ah, ! or |¢| < A7'h 1 for a large enough constant A > 0.
Consequently, using y-integrations by parts, we see that up to admissible remainders of type
(1.2.29), we may in (1.2.36) replace the cut-off x(n=2¢) by ¢(hn&) with » € C°(R — {0}). We
are thus reduced to

_/ i (2 y) e+ 70y hn)F T 0 by )] ¢

1.2. >
(1.2.37) "

a(z,y, =) e(&)b(y, hn)bT (z, hy) dudydé.

Define the vector field
1 1.\2\ 1
L:F(:Evvavw/’aw + ay) - (1 + (w@’(y, ;) q:‘“‘)lel(x’ J)) )
1 1
X [1 + (w@’(y, ;) F w'@’(:z:, J)) (0x + Oy)].

Since 0'(x, h) is even in h, and 6'(z,0) = 1, we may write

(1.2.38)

1 1

(1.2.39) wd'(y, =) F'0' (2, =) =wF ' +o(y,w) Fo(z,w)
w w

where o(y,w) satisfies for any «,v € N (using (1.2.22))

05800 (y,w)| < Cay(14+w)™ ™7 VyeR—{r+2rZ}, Yw € Ry
[0y 9%0] = O(w™),

denoting by [-] the jump at 7w 4 27Z. Consequently, the coefficients ¢(z, y,w,w’) of L satisfy
for xz,y outside ™ + 2nZ,

§ a8’ qa 9B — -1
(1.2.40) 1050 050, (0 + Ou)e(z,y,w, )] < C(1+ w4+ ) VwFw)
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when |w — w'| < 3(w + w’), with jump conditions
(1.2.41) 0209 9287,¢] = O((w + ') ™).

We make in (1.2.37) integrations by parts using the vector field (1.2.38). Again, because of
(1.2.41) and (1.2.21), (1.2.22), boundary terms coming from the jumps give rise to remainders
of type (1.2.29), and up to such perturbations, we may rewrite (1.2.37) as

(1.2. 42

Lx )E+7=0(y,hn) F 72 0(,hyys -
- / A VSRR F R0 ) (41 a0, ) (€0l bV (0 ) iy,

If Lo(z —y,w,0) = (1 +w?(@ —y)?) (1 +w(z —y) - F), the coefficients of Ly satisfy estimates
(1.2.43) |0%c(x — y,w)| < Ca(l +wlz —y|) tw™®

Integrating by parts using Lo, we obtain that (1.2.42) may be written as Jy (hyt, b, ) with

Tiw,o) = w / e LT AT (2, y, €, w, ) dadyds

with
AT, = (L)Y (L)Y |, v, ) (€)b (v, %)bq[ (2, %)}

By (1.2.40), (1.2.43), and (1.2.34), AJ, satisfies (1.2.30). Finally, the contributions (RU,, Uy),
(RU,,,U,) of the smoothing operator in (1.2.13) to I, I_ contribute to r¥ in (1.2.32), using
(1.2.23) and integrations by parts. This proves the lemma. a

Proof of proposition 1.2.3: By lemma 1.2.4, conditions (i) and (iii) of the statement of the
proposition hold true. Let us prove (1.2.18). Since h,' = n + O(1/n), if we plug (1.2.30) with
a = (3 =+ =0 inside (1.2.31) and integrate in y, we get from (1.2.32) that there is a fixed
v € Ry such that for any N, |I;(n,n)| < Cn(n+n/)"N|a|y_, when [n —n/| < 3(n+n'). This
implies (1.2.18).

To show (1.2.17), let us prove first
(1.2.44) 10802 (B + B )TN (w, )] < Clw =)™ (@ + ) al gy g npe:

Remark first that if we make act 0, + J,» on the phase of J]{}_, we get by (1.2.39) either
a contribution which is O(w™2 + w'~2) or a quantity i(z — y)¢. The decay given by the N’
exponent in (1.2.30) allows one to transform such a term in a gain of one negative power of w.
Consequently, (1.2.44) follows from y-integrations of estimates (1.2.30). We have then to show
that (1.2.44) implies that

1 1
(1.2.45) 0% (87)P (8 — 02 )Th (—, —)

hy” oy
is estimated by the right hand side of (1.2.17). Call @(\) a symbol of order 1 defined on R,
).

such that according to (1.2.20), h,! —&(n) = O(n~ Up to terms verifying estimates of type
(1.2.29) we may, instead of (1.2.45), bound

05 (05)% (0 = O )V TR (@(n), & (n")).
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We use induction on « + 5+ «: set for t € [0, 1], Q(n,t) =to(n + 1) + (1 — t)©(n) so that
(On = Op) TN~ (@(n),6(n")) = T (@(n + 1),8(n") = J§~ (@(n),&(n’ — 1))
1 .
= /0 (DI )(QUn, t),2(n" —1,t)) dt(@(n + 1) — &(n))

1 .
+ / (O I (Q(n, 1), Q(n" — 1,t)) dt(@(n') — @(n' — 1)).
0

Since w(A) — A is a symbol of order —1, we may write this as
1 , 1 .
/ (D + 0T (Un, 1), Qn’ — 1,8)) dt + / DT (Qn, ), Q2 — 1,1)) dico_s(n)
0 0

1 .
+/ O I~ (Un, ), Qn — 1,8)) dtw_o(n' — 1)
0
for a new symbol of order —2, @_5(\). This shows that we gained one (actually two) negative
powers of n+n’ in the last two integrals — when [n — n/| < 3(n+n/) -, and also one such power
in the first one, because of (1.2.44). Moreover, 2(n,t) satisfies the same assumptions as w(n),
which allows one to proceed with the induction. This concludes the proof of the proposition. O

Lemma 1.2.6 Let A — w(\) be the symbol defined after (1.2.1). Then
(1.2.46) — —w(n) =0(n">).

Moreover, for n large enough, there is a real valued orthonormal basis (L, ©2) of the space E,,
such that

. U, +U,

(1.2.47) ( o

L2:

Proof:  We denote by F, the span of (U},U?2) in L*(S!,R), where U} = U";\/g",Ug = U";\[U_"

Then for v € F,,, if P = —% + V(z), we have by (iii) of proposition 1.2.3
(1.2.48) I(P = b2}l s = O(n)

uniformly for v staying in the unit ball of F),. In the same way, since FE,, is the range of the
spectral projector II,, associated to the couple of eigenvalues (w;, )? < (w;})?, we have by (1.2.2)

(1.2.49) (P —w(n)®)v| g2 = O(n">)

uniformly for v in the unit ball of E,, (actually, the above relation holds true even for the L?
norm). We shall denote by E;- the orthogonal complement of F,, in H=2, by It : H=2 — E;-
the orthogonal projection, and shall also use the notation II,, for the orthogonal projector from
H=2to E,. We set Q,, = II-(P — w(n)?Id)IL;}: considered as a bounded operator from E:- N L?
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to E;-. Since the eigenvalues of P different from (w;7)? and (w;;)? lie at a distance from w(n)?

bounded from below by a fixed constant, @, is invertible, with inverse Q' : B+ — E+n L2
whose norm in £(H 2, L?) depends on n, but with [|Q!|| z(zr—2, g-2) uniformly bounded. Since
we have seen in proposition 1.2.3 that w(n) — h,;! = O(n3), the operator

(1.2.50) Id — Q" (h,” — w(n)?)

will be invertible, as an operator from E:- to E;- endowed with the H~2 norm, for large enough
n. If v is in the unit ball of L?, we have

(1.2.51) Qnv =TI (P — w(n)X1d) It v = IT- (P — w(n)*1d)v — 1T (P — w(n)?1d),v.

By (1.2.2), the last term has L? (or H~2) norm O(n~°°). If we assume moreover that v € F),,
and write

(P — w(n)’Id)v = (h,*> — w(n)?)v + (P — hy, %),
the last term has H~2 norm O(n~>°) by (1.2.48). We deduce from this equality and (1.2.51)

(Qn — (hf — w(n)%ld)ﬂ#v =7,

with 7, € Ei-, ||ralg—2 = O(n=>°). We deduce from the invertibility of @Q,, and of (1.2.50) for
large enough n that

(1.2.52) 0| -2 = O(n™°).
We set for n large enough 1} = I1,U}, 12 = I1,,U2. The above equality implies
(1.2.53) [n = Upll—2=O0(n™>), |[$n = Ugllg—= = O(n~>).

. . _1luas
Moreover, since v, is in the range of I, HWLHH%4 < Chy 2% for any 6 > 0, so that using
(1.2.19) || — U£||H%_5 < Ch; ', Interpolating with (1.2.53), we get

(1.2.54) lf, = Ul = O(n™>) j =12

Since ||U,||z2 = 1, and (U,,U,) = O(n=>) by (1.2.16) and (1.2.18), we deduce from (1.2.54)
and the definition of U}, U2

(1.2.55) (W 02y =0(n™>), [[Pi]7. —1=0(n">).

We define now (L, ¢2) as a Gram-Schmidt orthonormalization of (¢}, 42). Then (1.2.47) follows
from (1.2.54), (1.2.55). To show (1.2.46), we take v € F, of norm 1. We write

(w(n)? = hy)w = —(P — w(n)®)IL,v 4 (P — h,?)v — Pl v 4 h; 21w,

By (1.2.48), (1.2.49) the H~2 norm of the first two terms in the right hand side is O(n=°°). By
(1.2.52), the H~* norm of the last two terms is O(n~°°). Consequently

(@(n)? = hy?) [yl -2 = O(n™).
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To get (1.2.46) and conclude the proof, we just need to see that ||II,v||g-4 ~ n= 4|1 v| 2 >
cn~*. We have, since v is in the unit ball of F},, |[IItv|| 1 < Cjv||z < Cn. Interpolating with
(1.2.52), we get ||II-v||2 = O(n~>°), whence the wanted lower bound, ||IL,v||z2 > c. O

Proof of theorem 1.2.1: For n large enough, we take for (¢}, ©?2) the orthonormal basis of E,
given by lemma 1.2.6. For small values of n, we take any orthonormal basis of F,,. Remark first
that if |n —n/| > ¢(n 4+ n’) for some ¢ > 0, estimate (1.2.14) holds true. Actually, one has a
general estimate

[Ty, Ty 0)| < Cov(n— ')~ fal, ¢ lful g2 o]l

for a fixed v € R (see for instance [10], proposition 1.2.2 and lemma 1.2.3). This implies that if
In—n'| > e(n+n'), |{h, T@fl,ﬂ is bounded from above by Cn(n+n')""l|al, . v, which is better
than the wanted estimate (1.2.14). We may thus assume |n —n’| < ¢(n + n') and n,n’ large
enough. Then using (1.2.47) we get that up to O((n+n’)~) terms, (¢, Tgp%} may be written
as linear combinations of I_(n,n’) and I (n,n’). Formulas (1.2.17), (1.2.18) of proposition 1.2.3
give then (1.2.14). This concludes the proof of the theorem. O

2 Paradifferential symbolic calculus

The aim of this section is to develop a symbolic calculus, analogous to Bony’s paradifferential
calculus [4], for symbols defined on a discrete set instead of an open subset of the euclidean
space. As will be clear in section 4, we shall need such an extension, as the symbols which will
naturally appear in reductions of the quasi-linear equation (1.1.4) will be defined on NP, and
will not have any nice extension to RP.

2.1 Symbols and quantization

We first fix some notations. We shall consider GG a finite dimensional real vector space, and
assume given an orthonormal decomposition

(2.1.1) L*(s",G) = P Ex

k>T1

where Ej is a finite dimensional subspace of dimension K(k) and 7 € N*. We assume K (k)
independent of k for % large enough, and denote by K this value. We assume that each £}, is
endowed with a nice orthonormal basis (@i)lg j<K(k) 1-6. an orthonormal basis such that, for any
k, k', for given pseudo-differential operators Ty, T of order 0, for any function a € C*°(S!,R),
we have estimates of type (1.2.15)

a+pB+v+N+v
(21.2) |0R(05) Ok — 5 ) (Trgh a@)Tagl) < O — 1Y V(4 ) S [0fallzee,
=0
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where 1 < j < K(k), 1 < j' < K(K') and v is a fixed positive constant. We shall denote by &
the algebraic direct sum of the F}’s, and will use £ as a space of test functions.

If n=(no,...,npr1) € No™2 we define

(2.1.3) n' = (ni,...,np), |[n'| = max(nq,...,ny).

Moreover, if n; is such that n; = max(ng,...,np41) we set

(2.1.4) maxa(ng, . .., Np+1) = max({no,...,npt1} — {ni})

and if nj, j # i, is such that n; = maxs(ng,...,np41) we define

(2.15) pw(no, ... ,npr1) = max({no,...,npr1} — {ni,n;})
S(ng,...,npt1) = |ni —nj| + p(no, ..., npy1).

By convention, we set maxong = 1, u(ng,n1) = 1. We denote by II; the orthogonal projector
on Fj; and set

Fp :L? — RE®)
(2.1.6)

u— ((u, @) 1<j<r(k)-

Then F, is an isometry when restricted to Ej, if we endow RE®) with the ¢2 norm. We denote
by Fj the adjoint of Fj, from (RE®)* ~ RE(K) to (L2) ~ L2 We have for V = (V})1<j<x k) €
RE(K)

K (k) '
(2.1.7) FiV=> Vigl(x)
j=1
and the relations
(2.1.8) Fi =1 o Ff, Iy, = Fj; o Fi, Fi o Ff = Idgrw), Fi = Fr o .

IfU = (u1,...,up) € (L?)P and n' = (n1,...,n,) € N? we denote
(2.1.9) LU = (o, ..., 1L, ).

We shall always denote by || - || the £(¢2,¢?) norm of linear maps between euclidean spaces (or
the corresponding norm of matrices). Let us define the first class of symbols we shall use.

Definition 2.1.1 Letd € R,v € Ry,p € N, Ny € N* be given. We denote by Ez’?vo the space of
maps

(UL, -5 Upy N, Npg1) — (U, - ., Up; N0,y Npt1)
(2.1.10) p b
Ex - xEx Ny x N, — L(RE(Mw+1) RE (o))
such that a is p-linear in (u1,...,up) and satisfies for some § €]0, 1] conditions:

19



(i)s For any U = (u1,...,up) € EP, any n = (ng,n’,npt1) € NEY2 (with ' = (n1,...,mp)),
a(Il,yU;ng, npy1) = 0 unless

(2.1.11) In| < d(ng + npy1) and [ng — npy1| < 3(ng + npt1).
(it) For any N € N, any «, 3,7 € N, there is C > 0 such that for any n = (ng,n',np41) € NP2
as above, any U = (u1,...,up) € EP, one has the estimate
|”aa (8;; +1) (8 8;: +1)’ya(Hn/U;TLO,TLP+1)”|
(2'1'12) | /|V+N+(Ot+f3+’7)

< C(ng+ np+1)d_ﬂ{ N H” ]”L2

(Ino = np+1| + [n'])

We shall call symbols in the preceding class paradifferential symbols.

Remarks ¢ When we make act J;, | several times on a(Il,yU;ng, npy1), we might, for small
values of n, 11, have to calculate a at integers smaller than 7. We decide to extend a(-;n9,np41)
as 0 for ng < 7 or npy1 < 7.

e When |n’| is bounded, estimate (2.1.12) is similar to the estimate (2.1.2) defining nice basis.
When |n/| — 400, we have an extra loss of powers of |n/|, coming from ||0%a| = in (2.1.2),
and from degenerate ellipticity estimates of some symbols that we shall have to include in our
classes.

e When p = 0, we set by convention |n/| = 1 in the above definition, and in all forthcoming
formulas.

Let us quantize the above symbols.

Definition 2.1.2 Fora € Zp N, and U = (uq, ... ,up) € &P, upp1 € €, we define

(2.1.13) Op(a(U;-))upt1 = Z Z a(U; 10, Npg1) Frp iy Upt1] -

no€EN, Np+1 eN;

Let us explain the origin of the above definition. Assume for instance that each Ej is one
dimensional, spanned by a function ¢y. If a,u € L?, we may write

au = Z a(z)(u, Prips1)Prpi1

Np+1

= Z Z <a90np+1790n0><u7 Sonp+1>90no

no Mp+1

- Z Z Fao [<a90"p+17 90no>'7:np+1u]

no Mp+1

using (2.1.6), (2.1.7), and the symbol (a@n,, ,,¥n,) satisfies by (2.1.2) estimates (2.1.12). Con-
dition (i)s of definition 2.1.1, which is not satisfied in this example, comes from the fact that we
want to consider paradifferential operators, instead of pseudo-differential ones.

Let us show that operators of order 0 are bounded on H?® for s large enough.
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Proposition 2.1.3 Let v € Ry, Ng € N*. There exists so € R and for any s € R, any d € R,
any p €N, any a € Zz’}’vo, there is a constant C' > 0 such that for any U = (uy,...,u,) € &P,
any upy1 € €

P

(2.1.14) 10p(a(U; ) upsill oo < C ] [llujllzrso lfepa| s
j=1

In particular, (U, upt1) — Op(a(U;-))upy1 extends as a bounded (p+1)-linear map from (H*0)P x
H?® to H 4,

Proof: Since |[v[|}. ~ 3, n?|[I,v[|3., let us estimate ||IL,,Op(a(U;-))ups1]|z2. We get using
(2.1.12) and condition (i)s,

nadH Z a(U;n0, Mps1)Fny s Upt1 » <
Np+1
‘n/|v+N p p
C ) nodl || [T | ([ PP [emeet 2
ni Npi1 (|n0 - np+1| + |n |) j=1 j=1

with (¢n,,;)n,., in the unit ball of 2. Moreover, by condition (i)s of definition 2.1.1, we have
np+1 ~ no on the summation. Consequently, if we take N > 1 and sq large enough relatively
to v, we obtain an estimate by Cng°d), for a new (*sequence (), )n,, Which is the wanted
conclusion. O

We shall define now a class of remainder operators.

Definition 2.1.4 Let d € R,v € R;,p € N. We denote by RZ’L the space of (p + 1)-linear
maps M : € x --- x & — L? such that for any {,N € N, there is C > 0 such that for any

+2
(nos .- np+1) ENETZany uq, ..., upp1 €E

HHHOM(Hnluh s 7an+1up+1)”L2 <

(2.1.15) gmaxa(ng,. .. ,np+1)”+£ pw(no, ... npt1

Cn,
O max(ng,...,np1)¢ S(no,...,npr1

)N p+1
T~ 1Tl 22
Jj=1

Remark that by definition Rz’fr’l C Rg’f:d*.

Let us show that up to a remainder operator we always may assume in definition 2.1.1 that
condition (i) is satisfied with an arbitrary small § > 0.

Lemma 2.1.5 Letd € R,v € Ry ,p € N, Ny € N* be given. There is V' € Ry such that for any

& €]0,1], any a € EZ:]VVO’ we may find a1 € ZZ:JVV()’ satisfying condition (i)s and R € Rg"/, 50

that for any U € EP, upq € €

OD(a(U ))ups1 = Op(ar (U: ) g1 + R(U, ).
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Before starting the proof, let us state a lemma that we shall use several times.
Lemma 2.1.6 Assume given a family of functions K (w,w’) defined on Ry x Ry, such that
there are positive constants Cyp, satisfying

C;ﬁlyKaﬁv(va/) < Kapy(w+ h,w' + 1) < CapyKapy(w,w)

for any w,w’ € R% large enough, any (h,h') € [=1,1]2. Let H be a smooth function on Ry x Ry
satisfying for any o, 8,7 € N, any w,w’ € RY

(2.1.16) 10205, (0 + 0) H (w, )| < Kopy(w,0).

Then, there are constants O&ﬁw such that for any o, 8,7 € N, any n,n’ € N large enough, with
In—n/| < %(n—i—n’)

(2.1.17) 102(82)% (0 — 05V H(n, )| < Clig Ko (n, ).

Proof of lemma 2.1.5: Let x be a smooth function, with support close enough to 0, equal to
one on a neighborhood of zero. Define

a(Uino,nps1) = Y X("O—an)X( n

no + Np41 no + Np+1

i

)a(Hn/U; nOs Npt1)-

n’'=(ni,...,np)

Then condition (i)y will be satisfied by ay if Supp x is small enough. Moreover, using lemma
1.2.6, we see that when |ng — npi1| < 3(ng + np+1)

* 8 % nog — Np+1 _
Ono (8”P+1) (Ono — anp+1)7x(m) ‘ < Capy(no + 1p11) ™"

(2.1.18) .

!/
le' * B ok ¥ |7’L | ) ‘ |’I’L
D10 (Dn11)" (Ono = Oy )X (no + npt1 < Cosn (no + np1)> A

Consequently, using also Leibniz formulas (1.2.6), (1.2.7), we see that estimates (2.1.12) are
satisfied by a;. Finally, since R = Op(a — ay),

Mg BTy w3 My, upia)ll 22 < (@ = @) (T U5 g, npn) [l upa [l 2

and since, for the indices to be considered, either [n'| > c(ng+np11) or [ng — npt1| > c(no+np+1),
estimate (2.1.12) gives the upper bound

_ N
C(no + npp) N /|
from which (2.1.15) follows, since

man(nl, s 7np+1) ~ |7’L,|, M(n()v s 7np+1) ~ |7’L,|, S(”Ov s 7np+1) < C(”O + np—i—l)

because of (2.1.11). O

Remainder operators act also on Sobolev spaces:
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Lemma 2.1.7 Let so > 1. There is for any v € Ry, any p € N* 51,50 € R, 51 + 59 > v + 2,
any d € R, any M € Rg’:l, a constant C > 0 such that for any ui,...,up+1 € €, any ng € Ny,
one has the estimate

(2.1.19)
T [M (1, g )]z < Cng ™ 542N g (e fugy e [ eklleo.
1<j1#£j2<p+1 1<k<p+1
k#j1,k#j2

In particular, M is bounded for any 0 from H® x --- x H® to HT9=9 if s is large enough with
respect to v and 0 and
1M (u, ... u) eso-a < Cllullzeg [l

Proof: We consider the contribution to M of

Ml(ul,...,upH) = Z M(Hnlul,... np+1up+1)

nlS Snp+l

Then by definition 2.1.4

4y pno, - np )N NI
(2.1.20) [T My (T s - - Tl upy1) [ 22 < Cno g T~ | |HHnJu]HL2
np (no, ..., Np+1)

For the summation for ny < --- < npyq and ny, > ng, we take £ = s1 — v, N = 0. We get the
upper bound

p—1
Cng Y i [ Tl lupllaes llupsa | 7s2

n1<-<npi1 1
Np>n0
which is bounded by the right hand side of (2.1.19) for s1+s2 > v+2,s9 > 1. When we sum for
ny < -+ <nppq and ny, < ng, we have p(ng, ..., npr1) = np, S(no, ..., Npr1) = [P0 — Npt1| +np.
We take in (2.1.20) ¢ = s; — v, and get

p—1

Cnj > a2 0 (fng — npea| + 1) TN T llugllaso llupllzes g [l 2252

n1<-<npi1 1
no>np

For the sum over n,.q > %no, we take N = 0 and get the upper bound (2.1.19). For the sum
over Ny < %no, we take N = s1 + s3 — v and get a bound in terms of

§ ' =50 | —50,, —S1—Ss2+V —s1—s2+v+2

nlS"'Snp+1<%no

whence again (2.1.19). O
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2.2 Symbolic calculus

We shall prove that the operators we just defined enjoy nice symbolic calculus properties.

Definition 2.2.1 Leta € Ez"]j\,o. We denote by a® the symbol defined by
(2.2.1) a®(U;ng,npt1) = a(U;npy1,n0)”

where a* means the adjoint of the operator a(U;npi1,m0) acting from REM0) o RE(p41),

Remark that since
(Ony = 0y, )[a* (Usno, npi1)] = [(0x — 05)a(Us; X, Y )| x=n, 41 -1,y =no+1
we get that a® € E;:}’VO. Moreover, it follows from definition 2.1.2 that
Op(a(Us;-))" = Op(a®(U; ),
where the star denotes here the adjoint of operators from L? to L?.

Let us study now composition.

Proposition 2.2.2 (i) Let v € R, Ny € N*. There is V' € Ry and for any p,q € N,d,d’ € R,
for any symbols a € Zz”j\,o,b € ZZ }\'70 satisfying condition (i)s of definition 2.1.1 with a small

[y
2d+d sV

enough & > 0, there is a symbol a#b € . No

U" = (Upt1s-- s Uppq) € EL, any Upigr1 € E

(2.2.2) Op(a(U’;-))Op(b(U"; ) )tprqr1 = Op(adtd(U', U"; ) Juptqr1-

such that for any U' = (ui,...,up) € EP,

(ii) Assume moreover that for any U',U" as above, any large enough no,npi1,n0, 1,1 € Np,

the symbols a(U';no, npi1) and b(U";ng,ng 1) commute. Then there is a symbol c € EZI?:X,&’”/
such that
(223) (OD(a(U;)), 0D Nt 11 = OD(e(U, U )it
for any U € EP,U" € £, uptq41 € €.
Proof: (i) Using definition 2.1.2 and (2.1.8) we get
OP(a(U"s NOPBU"s Niprgrr = S FialalU'sm0 (U by i) Fog s g1

n07k7np+q+1 >T

and we have to check that
def
(2.2.4) (a#b) (U, U";n0, nptgr1) = Za(U’;no,k)b(U";k,np+q+1)
k>T
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belongs to Ed+d,}\'7’ for some /. If we set n' = (n1,...,np,),n" = (Np41,...,Nptq) and replace U’
(resp. U”) by IL,, U’ (resp. I1,,»U") we get from condition (i)s of definition 2.1.1 applied to a, b,

[n'] < (o + k), [n"] <0(k~+npiqr1)

(2.2.5)
Ino — k| < 6(no + k), [k —nprqra] < 0(k+npiqr1)

which implies that a#b satisfies (i)4s if § > 0 is small enough. One has then to check estimate
(2.1.12) for a#b. We shall do that in the proof of (ii) below.

(ii) Before starting the proof, let us gather some formulas that we shall use. Let ¢(U;-) be a
symbol satisfying condition (i)s of definition 2.1.1 with a small enough 6 > 0. For h € Z we
have, forgetting the explicit U dependence in the notations, for any £,n € N,

(2.2.6) (& +h,n) —c(&;n—h) = S(9 = 9))e)(& n; h)

where ¢ (resp. ;) means derivation with respect to the first (resp. second) argument of ¢(, 7),
and where

T
L

(2.2.7) S(e)(&mih) =) c§+h—j—1n—=7j)

<.
Il
o

We shall denote also

(Ac)(§;m; k) = (&, € + k) —c(n —k,n)

(2.2.8) = S((0e — )N — k& + k€ —n+ k),

the last equality following from (2.2.6). By direct computation, one checks that

Oe[Ac(E,m k)] = (O = Fp)e)(&: €+ k + 1)
(2.2.9) OplAc(§,m k)] = (g = Gy)e)(n =k —1,m)
(0 — A, m; k)] = A((9 — Fp)e) (&, m k + 1)

and also that

9eS(c)(§,m;h) = S(0¢c)(&;m; h)
9,S(c)(&,m;h) = S(9p¢)(&, 5 h).

We consider now the symbol of [Op(a(U’;-)),Op(b(U”;-))]. By (2.2.4), this is equal to the
expression a#b(U’,U";ng, npiqr1) — b#a(U", U’ ng, npiqy1) iee.

(2.2.10)

> a(U'sn0, k)b(U"s kynyygi1) — bU” s n0, k)a(U's k, np g 1))
keN-

Using the assumption ab = ba and changing indexation, we get for large enough ng, npye+1

Z[G(U'; no,no + k)b(U";n0 + k, npygr1) — a(U'snpygr1 — ks npiqr)b(U” 10, np g1 — k)],
kez
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where because of the assumptions on the support of a,b, the k£ sum is for indices satisfying
|k| < eng ~ cnpiqe1 for some small constant ¢ > 0 (see (2.2.5)). We may rewrite this using
notations (2.2.6) and (2.2.8)

> (Aa)(U'sng, npiqi1; K)DU" 00 + kg 1)

(2.2.11) hez

+ Z a(U"s g1 — Ky My q41)S (9 — 8,’;)b)(U”; no, Nptq+1; k).
keZ

We now prove estimates of type (2.1.12) for each k£ sum above. We start with the second one.
If we evaluate the above symbol at I1,,U’, II,»U" instead of U’',U", we get from (2.2.7) and
(2.1.12)

IS((9 — 8;)b) (AL U"; 100, 1y g415 K) |
‘n//‘V—i-N—i-No p+q

HHU'HL2-
(Ino = nprq1 + k[ + ")V bl ’

< C(1 + |k[)(no + nzu-i-q-kl)d/_1

Moreover, if we make act derivatives on S((9¢ — 0;)b), we have, because of (2.2.10) the same
gains and losses as in (2.1.12). On the other hand, by (1.2.8), making act a 0, ,, derivative
on a(ILyU's npygi1 — k,Npyqt1) provides a gain of one negative power of np4 441, and a loss of
|n/|°. Using (1.2.6), (1.2.7), we thus see that the action of Ony (O )P (Opg — 0% )Y on the

Mp+q+1 Mpta+1
general term of the second sum in (2.2.11) is bounded from above by [[57%|u;| 2 times

/|V+N1+/i1 ( //‘V-I-Nz-i-/iz

n no + Npqr1) [0
[kl + [0/ )™ (Jn0 = nprger + K| + [n"[) N2

(2.2.12) C(1+ [k[)n p+q+1(

with dy +dy =d+d —1—7, k1 + k2 = (a«+ B+~ + 1)Ny, N1, Ny arbitrary. It is clear that the
sum in k satisfying |k| < ng ~ npqe4+1 of these quantities is bounded from above by

(|7”L/| + |n//|)2u+3+No (a+B+y+1)+N

2.2.13 C(no+n drd'—1-y
(221 (ot trt) (0~ Tpsara] & W1+ 0D

which is the (2.1.12)-like estimate wanted (with v replaced by v’ = 2v + 3 4+ Ny). Let us study
now the first sum in (2.2.11). It follows from (2.2.7), (2.2.8) and the fact that |k| < ng ~ npiq+1
that

+N+Ng P
R

H|(Aa)(ﬂn’U,3n07np+q+l3 E)| < C(14|ng — Nptg+1 + k|)(n0+np+q+l) (|k| + |n/|) N HHUJ”B

Moreover, if we make act 0,, — O} . Aa, we gain because of (2.2.9) a decay of type
(no+np+q+1) "L, and loose |n/| No ' In the same way, 9y, or 97 iqsy JoOSE [N |No_ Similar properties

hold true when derivatives act on b(IL,»U"; no+k, nptq+1)- Consequently, using Leibniz formulas
(1.2.6), we see that the action of 05 (0}, . +1) (Ong — 05, ,.,)7 on the general term of the first
sum (2.2.11) gives a quantity bounded from above by an expression similar to (2.2.12), but
where k has been replaced by —k — ng + np4q+1. We obtain as above that the k-sum is then

estimated by (2.2.13). This concludes the proof. O

Let us study now composition relatively to an inner argument.

26



Proposition 2.2.3 Let d' € R,v € Ry, Ny € N*. There is v/ = 2v + d/, + 1 such that for any
peN,ge N deR, for any a € Eg’xfo, b 6 Eg/ﬁo satisfying condition (i)s of definition 2.1.1
vraN, Such that for any U = (UMD, UP) ¢ grta with
v = (ur, ... up), U® = (upH,U( )), UB = (Upg2, .- Uptrq), for any upygi1 € E, one has

with a small enough 6 > 0, there is ¢ € e
(2.2.14) Op[a(OpBUD: Vg, UD: Yutpagar = Op(e(U D, U )y g 1.

Proof: By definition 2.1.2, we may write the left hand side as

Z Z Z Z f;oa[f,;kb(U(l); kynp 1) Frp i Uptt, U(?’);no,np+q+1].7-"np+q+lup+q+1

no Mptg+1 k Np+1

which is of form Op(c(UM,U®); ))uyy 441 if we define

(UM, U ing,mpigrn) =YY a[Fb(UW s knp 1) Fu,tpsr, Um0, mp g gia]
k Np+1
Let us check that if we denote by n) = (ny,...,n,), n® = (nyy1,n®), n0) = (40, ..., np1y),

c(Il, U M, 11 (z)U(Q)‘ N0, Npt+q+1) satisfies the conditions of definition 2.1.1. The support con-
dition ()25 holds true if (i); is verified by a,b with small enough 6 > 0. Moreover, it is
enough to check (2.1.12) when « = 8 = v = 0. Using the assumption on a,b, we get for
le(M, oy UM T, 2y U®);ng, npiqr1)]l an upper bound given by the product of C HerqHuJ lr2 and
of

|TL(1) |11+N2

k;_|_ n('?’) v+Np
Z(n0+np+q+1)d ( ’ |)

npi1 + k)7
k (Ino — npyqr1| + NG| + k)M (np+1+ k)

(Ik = npia] + [n(M])N2

for any Nj, Na. Moreover, by condition (i)s verified by a, b, the k-summation is made for
Npt1 ~ k K ng ~ nppqr1. We see that taking Ny = 0, we get for the sum the upper bound

|(Tl(1) ’ n(z))‘Qu-ﬁ-dﬁr-i-Nl—‘rl

O(no +n + +1)d
T (Ino = npgral + [0, n@) ™M

which gives the wanted conclusion with v/ =2v +d’ + 1. O

We shall study now composition of an operator associated to a paradifferential symbol with a
remainder operator.

Proposition 2.2.4 Let p e N* q e N, d,d’ ER v € Ry, Ny € N*. There are v/ =2v+d/, +1

and V" = 2v + 1 such that for any a € ne satisfying condition (i)s of definition 2.1.1

q+1 No
with 6 > 0 small enough, for any M € Rp , there are a symbol b € EZ’:q,No and an operator
R € RZIZ:’; , such that for any U = (U’ upsqr1) € EPTITL with U = (UM, UR), v0) =

(Ut up), UP = (upyt,. . Upig),

(2:2.15) Opla(M (UMW), U; )upigi1 = Op(bU'; ) upigr1 + R(U).
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We shall use several times below an inequality established in the proof of theorem 2.1.4 of [10]
(formulas (2.1.10) and (2.1.11) of that paper). We state this result as a separate lemma.

Lemma 2.2.5 Letvi,vy € Ry. There is, for any N > 1+ max(v1,12), a constant Cy > 0 such
that for any no, ..., Npyer1 €N,

vo+N

(2.2.16) yo oy )N ket )
no,...,np,k‘)N S(k’np+1"“7np+q+1)N

1s bounded from above by

v'+N'

C M(n()v s ’np+q+1)

2.2.17 /
(22.17) S(no, .., npiqr1)™

where N' = N — 1 — max(v1,v2),V =11 + 19+ 1.

Proof of proposition 2.2.4: Let x € C§°(R),x = 1 close to zero, 0 < x < 1 with Suppx
small enough. If for n = (ng,...,npiqer1) we set nM = (n1,...,np), n® = (npi1,...,1p1g),

n' = (M, n®), we define

[n®)]

(2.2.18) b(U'sn0, Nptgi1) = ZX( )G(M(Hn(l)U(l))aU(2)§n07np+(I+1)'

no + Np4q+1
n()

Remark that if Supp x is small enough, condition (i) of definition 2.1.1 will be satisfied by b.
We use (2.1.12) for a to estimate ||b(IL,U’; ng, nptq+1)| by

k+ |n(2)|)u+N ptq
C N ( I M (I, UM [ 2 T g
o Mot 2 G gl + ko oy M e U L lee

where the summation is made for k + |[n(?)| < ng ~ 1,441, and where moreover || < ng ~

Nptq+1. In other words, using notation (2.1.5), we may write the first factor in the k-sum as,
M(n()v ka 7’L(2) ; np+q+1)V+N

S(?’Lo, k, n(? ) np+q+1)N

We estimate the second factor using (2.1.15). We get for any N an upper bound given by the
product of [[5%||u;| 2 and of

d +v+N (1)\N
§ : n07 k n y TV 1)+ ]{5, n
C(TLO +np+q+1 1 + |n lu’ p+q+ ) lu( )

7”L0 k’ n( ) np—i—q—l—l)N S(k‘,n(l))N
By lemma 2.2.5, we obtain the bound

v (1o, n(V, n(2),np+q+1)dl++V+N/+l
S(no, n, ”(2)anp+q+l)N/

C(no + npyqr)*(1 + [n))
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Since we have by assumption |n(2)| < Ny ~ Npyqgt+1, and on the support of the cut-off (2.2.18)
In(D| < ng, we see that

p(no,n 0@ ny 1) = 0|, S(no,nM, 0@ npyg 1) = Ing — npygral + 0.

We thus get for b an estimate of form (2.1.12) since derivatives are controlled in the same way.
The remainder in (2.2.15) will be given by

)|
o) W)
;%%ngl no + Np4q+1

X ]:;0 [Q(HkM(Hn(l)U(l))a IL,2) U(2)§ 1o, np+q+1)fnp+q+1up+q+l]7

where x; = 1 — x. The L? norm of HnOR(Hn(l)U(l), Hn(z)U(Q),HanHuerqH) will be bounded
Hp+q+1
1

(2.2.19)

from above using definitions 2.1.1 and 2.1.4 by l|luj||L2 times

Ing — np+q+1| +|n

Z (k + [n® N d

X1 ( ) (no + np+q+1)
ng +n @) 4+ k)N

(2.2.20) 0+ Npig1/ | z

o (maxg (nM))+ u(k, nW)N
(max(nM))¢  S(k,nM)N

and because of condition (i) of definition 2.1.1, we may restrict the summation to those k satis-
fying k+[n?| < ng ~ npyqr1. Moreover, the cut-off x; localizes for [n(M)| > cng. Consequently
(2.2.20) will be bounded from above by

d+d), (maxy(n(D))V+

Cnyg

Z p(no, kyn®, 1 g1)" N p(k, n)N
max(ng, nM), n, npq11)¢ S(no, k,n®,np i)V S(k,n@)N

Using again lemma 2.2.5, we get an upper bound

11 E N//
C d+d!, maX?(nlv s 7np+q+1)u + /.L(TL(), R 7np+q+1)
nO ( )g S NG
max(ni, ..., Npyq+1 (R0, -+, Nptg+1)
for new values v = 2v + 1, N” of v, N. This is the wanted remainder estimate. O

Let us study now the action of an operator on a remainder.

Proposition 2.2.6 Letp € Njg € N d € R,d € Rjv € Ry,v/ € Ry, Ny € N*. There is
V' =v+ v +1 such that for any a € EpN , any M € Rg ¥ the operator

(2.2.21) (Ui, .oy Uppq) = ODP(alu, ..., up; )M (Uptis - - Uptq)

. . d-‘rdl,I/”
18 1n Rp+q

Proof: We denote by UM = (Ut ..., up), U® = (Upt1s - Uptq), nd) = (n1,...,np), n? =
(Np+1,- -+ Mpiq)- The value of operator (2.2.21) at (IT,u UM T, U?) is

ZZ a(TL, 0, UW ;s ng, k) Fi M (T1,, 2, U®)).
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We make act II,,, on this expression, and compute the L?-norm. Using definitions 2.1.1 and 2.1.4,
we get an estimate in terms of the product of [[¥*%||u;| 2 by

v+N !
n)] o (maxgn )Y+ yy(k, N
[no — k[ + [nMWPN " (maxn@)f S(k,n@)N

(2.2.22) C (no+ k:)d(
k

and we have on the support of the summation k ~ ng > [n(M].

e If moreover k ~ ng > |n?|, we get for (2.2.22) an estimate

V'+N

N

: v @)
O i o )
k

Since we sum for |k — ng| < eng by condition (i) of definition 2.1.1, this gives the upper bound

!

(maxg(n(), n@))y++ 14 yng g, )Y

d+d +14v—N VAN < o dtd
Cn ( = Oo (max(n),n))  S(no, ..., npyg)"’

maxyn(?)

if we take N = ¢ + N’ + v + 1. This is a remainder type estimate.
o If [n(?)| > ¢eng for some ¢ > 0, we bound (2.2.22) from above by

Cnd-i-d/ (HlaXQ (n(l) ) n(2)))l/+£ ,u(no, n(l)’ k)V—HV :u(k> n(2))N
O (max(nM,n@))f 2= 8(ng,n™, k)N S(k,n@)N’

Using again lemma 2.2.5 to estimate the k-sum, we obtain finally in this case

C?’Ld+dl (maxQ(n(1)7 n(2)))y/+€ ,LL(TIO7 n(l),n(z))l"*‘N'-H
0 (max(n(),n(2))? S(ng, n®, n@)N’

for a new N’. This implies the wanted remainder estimate. O

Proposition 2.2.7 Letd,d € R,v,v € R,.

(i) Let p € N,q € N*, Ny € N*. There is vV =dy + v + V' + 1 such that for any a € E;:}’VO, any
M e RYY the operator

(2.2.23) R(ui, ..., uptrq) = M(Op(a(ui, ..., Up;))Uptr1, Upt2, - - s Uptq)

d/ﬂ/”
belongs to R, -

1) Let p € N*, g € N*. There is v = v+ v +1+d', such that for any M; € Rd’”, M,y € RLV
+ q P
the operator

(2224) (Ul, v 7Up+q_1) — Ml (Mg(ul, RPN ,up), Up+1,y--- 7Up+q_1)

d7 11
belongs to Rpfr'q_l.
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Proof: (i) Denoting again UM = (uy,...,up), UP = (upy1,UD), UG = (upia,..., upiq),
and using similar notations n® n@ 1B for the indices, we have to estimate the quantity

(2.2.25) > T M(Fra@, UV b,y 1) oy tip1, Ly UD)).
k

The L?*norm of the general term of (2.2.25) is bounded from above by T[54 %||u; | .2 times

maxa(k, )+ y(ng, k,n3)N |n(l)|y+N

C
0 max(k,n®)¢  S(ng, k,nG))N

k+n d .
)

Moreover the summation is restricted to [n(V]| <« k ~ np+1, which allows one to bound this
quantity by
Hla,XQ(TL(l), n(2))u’+£ N(n07 k, n(3))N N(kv n(l),np+1)y+N

max(nM), n@)t  S(ng, k,nGHN  S(k,nM), n, )N -

C"0 p+1

Using again lemma 2.2.5 to estimate the k-sum, we get an expression of type

Vit M(n()a ’I’L(l), n(2))N

max(nM, n@)t  S(ng,nM n@)N

gy maxa(n n?)
N

for v/ =dy + v+ +1, and new values of N, /.

(i) We need to estimate the L2norm of

(2.2.26) D T My [T My(TL, ) UM, T ) U )]
k

if we denote here U) = (uy,...,up), U® = (upi1,...,upsq—1) and use similar notations for
nM n?). The L%norm of the general term of (2.2.26) is bounded from above by

Cnd gmaxy(k,n@)r+e y(ng, k,n(2))N2 L maxo (nM)Y' 0 (e, n(M))M

?)
max(k,n@)2  S(ng, k,n2)N max(nM)f S(k,n1)M

Assume for instance n1 < --- <np, Nyprq—1 < -+ < nypp1. The above expression may be written
V4l Y
@ Mp—1 maxy(k, Npio2, np+1)”+ 2

Cnlk
0
ngl Inax(k', np+1)£2

(2.2.27) N N
:u(k;7np—27np—l7np) ! N(n07k7np+37np+2anp+l) 2
S(kv Np—2,MNp—1, np)Nl S(n07 k) Np+3, Np+-2, np+l)N2

Remark first that, changing eventually the definition of ¢2, we can control the kY term by
maxa (k, np42, np+1)d+. In the following we thus remove the k% term and replace v by v+ d’, .

o If n, > %npﬂ for a large enough constant A > 0, we take /1 = £,¢5 = 0 and we get an upper
bound of type

(2 2 28) Cndmax2 (n(1)7 n(2))1/+1/+d’++£ N(k7 n(l))Nl /L(no, k, n(z))N2
2. 0 max(n(1), n(2))* Sk, nONT S(ng, kb, n@)Ne”
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o If k£ < An, < npi1, we see that in (2.2.27),
maxa(k, Npyo, Npy1) < A(np + npia) < C maxy(nM, n?).

We take ¢1 = 0,03 = ¢ and get again an estimate by (2.2.28).

Ny
o lfn, < %npﬂ and n, < %k, the last but one factor in (2.2.27) may be written Y;‘}V’ll . Moreover
maxa (k, npy2, npr1) < kif we assume k > njpio. Taking in (2.2.27) £; = by = 0, N| < Ny—v—d',,

when np41 < k, and ¢1 =0, fo = N| < Ny —v —d/, when n,4q > k we get the upper bound

V' +Nj+v+d’ , ’
O’I’Ldnp_l 1 (ke n YN =Ny g (2))Ns
Tl Sk )Mo N S(ng, k,n()Ne
p

which again gives an estimate of type (2.2.28) (changing the definition of the exponents).

If k < npyo, we take in (2.2.27) £ = 0 and get an estimate by

v+d! +4lo
O’I’Ld np+2+ ’I’LV, N(kv n(l))Nl ,U,(no, kv n(2))N2
a8k, n )N S (ng, k, n@)N:”

We get again an estimate of type (2.2.28). To finish the proof, we just have to sum (2.2.28)
using again lemma 2.2.5 to get the wanted upper bound

v +L N

f(no,nM, n?)
max(nM, n@)¢  S(ng,nM) n@)N

Ond maxy(n!), n?)
0

with v =v+0v +d, + 1. O

3 Special pseudo-differential operators

3.1 An introductory example

In addition to the paradifferential symbols introduced in section 2, we shall need classes of
pseudo-differential operators. These classes will be more peculiar than the corresponding para-
differential ones. Let us explain this, and justify their definition through an example. Assume
that we are given an orthogonal decomposition L? = @ E,,, and assume that F,, is one dimen-
sional, spanned by a normalized eigenfunction ¢,,. Let (X,n) — b(X,n) be a linear real valued
function of X € R, which is a symbol of order 0 relatively to n (05b(X,n) = O(n™%), n — +00).
If u; € &€, we can define the action of the pseudo-differential operator with symbol b(u1,n) on a
function ug by the formula

(3.1.1) D b(ur,n2) (U2, Pny)en, -

n2
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We denote, for future generalization, by B(X,n) the map from FE,, to E, given for any fixed
X €R by

(3.1.2) B(X,n) : on — b(X,n)py

so that (3.1.1) may be written, if we remember that the orthogonal projection on E,, is given
by Iyu = (u, on)@n,

(3.1.3) > B(u1, o)y, us.

n2

Remark also that (3.1.1) may be rewritten

(3.14) ZZ@no(aij(uhn2)90n2790n0><u2790n2>

no mn2

i.e. with notations (2.1.6), (2.1.7)

(3.1.5) Z Z c(u1;m0,n2) Fnyu2

no n2

with
(316) C(ul;n07n2) = <b(u17n2)90n2’90n0>‘

In other words, the operator (3.1.1) may be written under form (2.1.13) with a symbol ¢ which
may be proved to satisfy estimates (2.1.12).

Our aim in this third section is to introduce a general class of operators of form (3.1.1). We
shall see that they may be expressed in terms of quantities like (3 1.5) ie. from (a sum of)
paradifferential operators associated to symbols of the classes v "No studied in section 2, up to
remainder operators. The interest of operators defined through formula (3.1.1) instead of (3 1.5),
is that they obey more explicit calculus rules, in particular for the symbol of the composition
of two operators. On the other hand, we do not escape the necessity of introducing more
general operators, of form (3.1.5), since to prove our main theorem, we shall have to define from
operators of type (3.1.1) more general ones, given by symbols of type (3.1.6).

3.2 Definition and calculus of special symbols

Remind that we denoted at the beginning of subsection 2.1 by G a finite dimensional real vector
space. Let (g;); be a basis of G. We fix a nice basis (apn)w of L?(S',R), where (gpn) is a basis of
the subspace E], generated by the eigenfunctions associated to the eigenvalues w_(n) < wy(n)
of V=AFV. For £ = (j,i) we set o' = ¢}, ® gi. Then (¢%); is a basis of E, = E/, ® G and
(@5 )n.e is a nice basis of L2(S!, G) ~ L2(S!,R) ® G, and we have L2(S!,G) = @, ., En.

n>T

Definition 3.2.1 Letd € R, p € N. We denote by Sg the space of maps

(’LLl, s 7up)np+1) - b(ul’ s 7up)np+1)

(3.2.1) ,
Ex -+ xEXN, — L(E,L7)
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such that one can find

e A map
B:Gx---GxN;— L(,E),(X1,...,Xp,n) = B(X1,...,Xp,n)

which is for any fized value of n, p-linear in (X1,...,X,), such that for any Xy,...,X, € G,
any n € Ny, B(Xq,...,Xp,n) is an element of L(Ey, Ey,), whose matriz elements in the nice
basis (!¢ of B, satisfy for any o € N

P
(3.2.2) 105 Bur (X1, .., Xp, )| < Can®* ] 1X5len

1
o A family of pseudo-differential operators of order 0 on S, Ty, ... , Ty, such that one may write
for any uy,...,up € €, npp1 € Ny
(323) b(ul, <oy Up, TLp_;,_l) = B(Tlul, ‘e 7Tpup, Tlp+1).

We shall quantize the above operators in the following way:

Definition 3.2.2 Let b € Sg. We define an operator évl)(b) acting on EPTL by

(3.2.4) Op(b) (u, - - up, Ytpr1 = 3 b(u, ., Up, iyt )y U

Tip+1

We want now to define from an element of Sg and from a cut-off function a symbol in the class
d7

ij.

Proposition 3.2.3 Let x € C§°(R), x even with small enough support, p € N*. There is

v € Ry such that for any d € R, if we define for b € Sg, Ul ..., up € E, nog,nNpt1 € Ny

(3.2.5)

| no — Np41
by (U1, ..., upy;ng,n :E g ( ) ( P )f o b(IL, U, n o F¥
xlu Upi 0, p+1) - - X no + Npy1 X ng +npy1/ " (L r+1) © Py
P

where U = (uq,...,up), n' = (n1,...,np), then b, € Zi:'{. When p = 0, we shall set by (ng,n1) =
Fno 0b(n1) o Fy., which is supported for ng = n1.

Remark We assume in the statement that y is even since this implies when, in (3.2.3), B(X) is a
self-adjoint linear map independent of np41, that the symbol b, defined by (3.2.5) is self-adjoint
i.e. satisfies with notations (2.2.1) that b5, (U’;no, np+1) = by (U’ 10, npr1)-

Proof of proposition 3.2.3: Remark first that condition (i)s of definition 2.1.1 is satisfied if
Supp x is small enough. Remind that we set K (n) = dim E,,. Since F,, sends the basis (¢,)s of
E,, onto the canonical basis of R¥ (”), the matrix of b, (II,,U’; ng, np4+1) in the canonical basis of
REp+1) and RE(M0) js

i

(3.2.6) x( I

1o — Np+1 l 1)
X ) (O g )0t )

ng + Npt1 Lo, lpt1
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Remind also that for ng,n,41 large enough, the size of this matrix is independent of ng,np41.
Using (2.1.18) to estimate derivatives of the cut-offs, and Leibniz formulas (1.2.6), (1.2.7), we
see that we just have to get estimates of type (2.1.12) for the matrix in (3.2.6). Decompose
X, € G on the basis (g;); of G as X; =), X;gi. Then the entries of the matrix of the map

B(X1,...,Xp,nps1) in the nice basis (¢4)s of E, may be decomposed as

By, +1£p+1(X » Xps pt1) = ZB‘{;H%H(nPH)XI
I

where we denote by I a p-tuple I = (iy,...,1p), by X! = 1;:1 X;j, and by B,
p
quantity B£/+1 i1 (Girs - Gips p1). By (3.2.3)

+1bpr1 (np+1) the

(3.2.7) O U' )it plo ) = Z Z (1) (TTL U)oy pfo )

br1to+

where TTL,U" = (T111y, w1, . . ., Tplly, up). Since £, 1 € {1,..., K(np41)} and K(n) is indepen-
dent of n — 400, and since I describes also a finite set, we actually just need to estimate each
term of the above sum, namely

(3.2.8) Béﬂgpﬂ (np+ )(TTLyU")! sonifu Pr)-

We apply inequality (2.1.2) with 77 = T5 = Id to the bracket. We get the following estimate

* * Ep
|8TL ( np+1) (8 anp+1) <SD£O()7 (THTL, U )ISOnpill >|

< Clng — npr1) N (no +nps1) sup 10" [(TTL U") "] oo
0<k<a+B+y+N+4v

(3.2.9)

for any o, 3,7, N € N. By Sobolev injection, and the L2?-boundedness of pseudo-differential
operators of order 0, we get for the last term in the above formula the upper bound

p
C(L+ [/t T g 2
1

for a new value of v. If we combine (3.2.9) with (3.2.8) and (3.2.2), and use Leibniz formulas
(1.2.6), (1.2.7), we see that (3.2.7) satisfies estimate (2.1.12) of definition of symbols (with
Ny = 1). This concludes the proof. |

We shall need estimates of type (2.1.12) for some functions of type (3.2.5), but depending on
extra parameters. We state theses estimates as a corollary of the proof of proposition 3.2.3.

Corollary 3.2.4 (i) Let b € Sg. One has the following estimate for any indices ng,n’ =
(N1, np), Npg1, ke
[

N
(Ino = np+1| + [n'])

d

(3.2.10) [T 0Ly U B, [l 212, 02) < C
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for some v € Ry, independent of d.
(ii) Let B: G x --- x G x N x N, — L(E,€) be a function
(Xl, N ,Xp,np+1, k‘) — B(Xl, N ,Xp;np+1, k’),
p-linear in (X1,...,Xp), and such that B(X1, ..., Xp;npi1, k) is an element of L(Ey, Ey), whose

matriz elements in the nice basis of Ey satisfy instead of (3.2.2)

p
(3.2.11) |00 052 Beor (X1, ., Xpi 1, k)| < Clnpya + k)72 [ 1X5l 6

Np+1

Define as in (3.2.5),

by(ut, ..., up, npr1;n0, k) Z Z <n(‘)n—i—|k> (ZEI_Z)}"“Oob(Hn/U';an,k:)o]:,;k.

Then by satisfies
105, (85) 7 (07, ) (g — ) = Oy, ) 0 (T U 1m0, K|

Np+1 Np+1
| /|V+N+Oz+51+,32+“/ p
< C(ng + k)2

(3.2.12)
- LTl ce
(Ino — K + WDV L

for some v € Ry, independent of d.

Proof: (i) The left hand side of (3.2.10) equals || Fy,b(IL, U’, k)F +1|” by (2.1.8) and (2.1.6),
(2.1.7). Consequently (3.2.10) is nothing but (2.1.12) in the case « = § = 7 = 0, when the
symbol b depends on an extra parameter k, instead of being a function of n,;q as in (3.2.5).
Estimate (3.2.10) follows from (3.2.7) to (3.2.9) in the proof of proposition 3.2.3, in which

B%+1 ot is evaluated at k instead of npy.

(ii) One has just to replace in the proof of proposition 3.2.3 the reference to (3.2.2) by the

reference to (3.2.11), k playing now the role of n,,1. Remark that since in (3.2.12) Op,, -

derivatives act only on the B t{/ o term in (3.2.8), they gain one negative power of k ~ ng+k.
p1

|

Our next task will be to express a quantity of form évr)(b(ul, ey Up,*))Upy1 in terms of the
action of paradifferential operators on w1, us,...,up41 and of a remainder operator. This is, in
our framework, analogous to Bony’s paradecomposition of a product [4].

Proposition 3.2.5 Letp € N*. Let x € C§°(R), x = 1 close to zero, with small enough support.

There is v € Ry and for any d € R, any symbol b € Sg a family of symbols b; € ZO vrdy
7=1,...,p, and a remainder operator M &€ Rgffd+ such that for any uq,...,upp1 € €

Op(b(ut, .- up, ))tp1 = 0p<b (1, U3 )t
(3.2.13) +ZOp (U, gy ;) )y

+ M(Ul,. .. 7up+1)'
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When p = 0, we have 6})(()())1/4 = Op(by (u;-))us.

Proof: ~ We first define the symbols b;, and check that they belong to Eg:?+d+. Define for
j=1,...,p

|(n1,..., 15, .o, npg1)] ny —n;
3.2.14 (no, ..., _ ( ) ( )
( ) Xj(no, -, mpy1) = X o+ A\l by
so that on Suppx; we have
(3.2.15) ng < c(ng+n;), ke{l,...,p+1} —{j}, |no —nj| <c(no+ n;)
for a small constant ¢ > 0. Moreover, x; = 1 on a domain of type (3.2.15) when c is replaced
by some smaller constant. We define a linear map b;(u1,...,%;,. .., Upy1;n0,75) from RE() 4o
RE(0) a9
(3.2.16)
V- Z X (105 - s 1) Fng (DM ua, oo T Voo Iy, 1), U]

nyske{l,...p+1}—{j}

By (3.2.15), condition (i)s of definition 2.1.1 will be satisfied if ¢ > 0 is small enough. We
must check the estimates of condition (ii). To simplify notations, take from now on j = 1,

and set ' = (n",npq1), ' = (ng,...,np), U = (U, ups1), U = (ug,...,up), LyU =
(M, uz, ... My, upy1). Then for Ve RE(M) p, (IL, U’;ng,n1)-V is the product of the function
X1(no, .. .,np+1) by the vector of RE(m0) with components

(3.2.17) (b(F Vi T U )T 1, 010,

We use expression (3.2.3) for b in terms of B. Let (V;, ), be the coordinates of F;; V on (£ )e,
i.e. using Einstein’s conventions F; V = Vglgoflll. We may rewrite (3.2.17)

<W1 B(Tl QOZI T/,Hn// Uﬁy Np41 )an+1 Up+1, Spfzoo >g0

ni?

where T"11,nU" = (ToIl,,ug, . .., Tpll, u,). In other words, the (£o,f;) entry of the matrix of
b1 (IL,,U’; ng,n1) in the canonical basis is

(3.2.18) X1(10, -« s 1) (B(T1olL T L U 1y 1) i1, 020).

Since T3 gof}l is a function with values in the finite dimensional vector space G, with basis (g;);,
we decompose it as (T1¢f})'g; and write the bracket in (3.2.18) as

(3.2.19) aw (@) (T, )" i)
with
(3220) An! 4 (ZE) = B(gi, T”Hn” U”’ np+1)an+1up+1'

By (3.2.2), Sobolev injection, and the L? continuity of zero order pseudo-differential operators,
we get for any k

p+1
(3.2.21) 108 @ s(@)l o < Cr(1+ /)4 T gl 2
2
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for some fixed v € Ri. We apply estimate (2.1.2) to (3.2.19) and insert in it (3.2.21). If we
use estimates of type (2.1.18) for x; (replacing in (2.1.18) n,41 by n1) and the Leibniz formulas
(1.2.6), (1.2.7), we see that we get for (3.2.18) estimates of type (2.1.12) as wanted.

We must now prove formula (3.2.13). Let us compute Op(b;(u1,...,uj,...,Upt1;-))u; using
definition 2.1.2: we must in the right hand side of (3.2.16) replace V' by Fnjuj, compose on the
left with F: , and sum in ng,n;. Using (2.1.8), we get

Z Z X5 (105 - -y g 1) g [0y, oo Ty, 1)y, U 1]

Np+1

Consequently, because of the definition of by, b;, the operator M defined by equality (3.2.13)
may be written as
(3.2.22)

M(uy,. .., ups1) Z Z X(no, -+ npy 1) g [0y wy, - o Ty, pg 1)y, Up 1]

Np+1

where x cuts-off outside a neighborhood of the region where one of the x; j = 1,...,p+1 equals
one. In other words, x is supported inside

p+1

(3.2.23) ﬂ{(no, e Mpy1); no — njl > e(ng+mnj) or Ik € {1,...,p+1} — {j} with ny > cnp}
j=1

for some small ¢ > 0. We estimate the L2 norm of I M (Il uss .. Iy, upyr) . of the

general term of (3.2.22). Using (3.2.3), we must bound

(3.2.24) IX(n0, -+ s Np 1) || T B(T1 1T s - o Tl i, mp 1), U1 ][ 12
or equivalently the product of |x(no,...,np+1)| by

(3.2.25) (B(T1 Iy uy, .. Tplly up, np 1), tp g1, g o)

for any ug € L? of norm 1. If for instance n; and nsy are the largest two among ny, . . . s Mpt1, We
decompose again for j = 1,2

TanjU] ZZ U],Sé’n] ]9011]) ‘gij

where h% denotes the ijth coordinate of an element of G on the basis (g)r. We set n” =
(n3,...,np), ' = (n”,npy1) and define
Aiqion/ ($) = B(gipgig)T”Hn” UU? np+1)an+1up+l'

Then (3.2.25) may be written as the sum in ¢y, ¢o, 41,72 of

(3'2'26) <u17 901%11 > <u27 901%22 > <az’1i2n’ (‘T) (Tl 805;11 )il (T2 805;22 )iz ) Hno u0> .

The last bracket is estimated by (2.1.2). Using Sobolev injections to control the L norms of
derivatives of a;,,, and (3.2.2), we may bound the modulus of (3.2.26) by

p+1
C(ny —n2) N (1 +no + [n/)"nd,, HHwHLz
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for any N and some fixed v. Since i1, 19,1, 2 in (3.2.26) run in a finite set of indices, we get the
same estimate for (3.2.25). Consequently, when the largest two among no,...,ny+1 are among
{n1,...,n,}, we have for (3.2.24) an upper bound

+1
d u(no,...,np+1)”+N b

H Uil 1.2
p+1 S(”wawnp-i-l)N ; H ]H

(3.2.27) Cn

for any N. One checks in the same way that this formula holds true when one at least of the
largest two among (ng,...,np+1) equals ng or ny4q1. To conclude the proof, we have to show
that estimate (3.2.27), together with the support conditions (3.2.23), implies the upper bound

dy—+¢ N
maX?(nlv s 7np+1) +Hery /.L(TL(), cee 7np+1)
(3.2.28) C ; -
max(nlv"'7np+1) S(”Ov"'vnp-i-l)
for any ¢, N. If there is ¢; > 0 with maxy(n1,...,np41) > ¢g max(ng,...,np41), this is trivial.
Assume now
maxa(ni,...,Npy1) < 1 Max(nNi, ..., Np41)-
If, for instance, ny,41 = max(ny,...,np+1), we have nyq > énj, j=1,...,p. Assume moreover

|no — npt1| > c(ng + nps1) where ¢ > 0 is the constant of (3.2.23). Then, if ¢; is small enough
S(no, o ,np+1) > C/(TL() + np+1)

and inequality (3.2.27) implies (3.2.28). We are thus reduced to the case when |ng —npq1| <
c(no + npt1). By (3.2.23) we must have then ny > cng ~ cnpyq for some k € {1,...,p}. This
implies again that maxa(ni,...,np41) ~ max(ni,...,n,11) and the conclusion follows. O

We shall now study symbolic properties of elements in Sg. To be able to get for the symbol of a
composition a more explicit formula than the one of the proof of proposition 2.2.2 (ii), we shall
have to limit ourselves to symbols which are “scalar” according to the following definition.

Definition 3.2.6 Let d € R,p € N. We denote by S¢

psc the space of maps

(Ut .oy Up, npr1) — b(ur, ... up, Npt1)

(3.2.29) )
Ex--xExXNy — L(E, L)

such that there is
e A function
Bs:Gx---xGxN; = L(G,G), (X1,...,Xp,n) = Bs(Xq,...,Xp,n)
p-linear in (X1,..., X)), satisfying for any o € N
p

(3.2.30) 08 Bo(X1, ..., Xp, )| < Can® [ [ 1K1
1
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e A map
By :Gx---xGxNy = L(G,G), (X1,...,Xp,n) = Boo(X1,...,Xp,n)

p-linear in (X1,...,X,), such that for any X;,...,X, € G, any n € N, B(X1,...,Xp,n) is an
element of £(E,, E,) whose matrix elements in the nice basis (%) of E,, satisfy for any N € N

(3.2.31) | Boootr (X1, Xp,m)| < Cyn M [ 1%
e A family of pseudo-differential operators of order 0 on S!, 71, ... , T}, such that one may write
for any uq,...,up, € &, npy1 € Ny

(3232) b(ul, e Up, np+1) = Bs(Tlul, .. ,Tpup, np_H) & IdEfllp+1 + Boo(Tl’LLl, e ,Tpup, np+1).

Remark that an element of Sg’sc is in particular an element of Sg as shown by (3.2.32). In the
sequel, we shall have to work with G = R?. In this case, B, can be identified with a 2 x 2 matrix

and the first term in the right hand side of (3.2.32) may be written

Bs 11 ® Idg: Bs 1o ® Idgy

(3.2.33) ’ "pt1 ’ mp+1
Bs21 @ ldg: Bs 20 @ Idp:,

p+1 p+1

i.e. elements of S;C;l,sc are given, up to a perturbation of order —oo, by a matrix in which each

block is a scalar operator acting on E,.

We shall use in the proof of the following proposition the fact that we can make act the scalar
part of (3.2.32) not just on E,, ., but as well on any E}, (replacing - ® Idg/, » by - ®Idg ).
P

Proposition 3.2.7 Let p,q € N. Let x € C§°(R), x =1 close to zero, and assume that Supp x

is small enough. There is v € R and for any d,d’ € R, for any symbols a € S’;{Smb € Sg:sc
there are a symbol e € Eziil_l”’ and a remainder operator M &€ Rzigjr”l such that for any

U= U"U") withU' = (u1,...,uq) € EY, U" = (Ugt1,-- - Uptq) € EP, any Upyq+1 € €, one has

Op(ax (U';))Op(by (U"; ) tuptg+1 = Op((a 0 b)y (Us ) tp+g+1
(3.2.34) + Op(e(Us ) )up+q+1

+ M(Ul, e ,Up+q+1),

where ay, by are defined in terms of a,b by (3.2.5), and aob stands for the symbol associated to
the composition Ao B of the linear maps defining a,b through (3.2.3).

Proof: 'We decompose according to (3.2.32) a = as+auo, b = bs+bs. Then by proposition 3.2.3,
(o, and bs , belong to E; Y. Consequently by proposition 2.2.2, their contribution to the
left hand side of (3.2.34) may be incorporated to the term e of the right hand side. In the same
way, the terms (ax 0 b)y or (aobs)y in the right hand side may be incorporated to e. We may
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thus assume from now on that a = ag, b = bs. Using notations (3.2.14), the definition (3.2.5) of
ay, by, definition 2.1.2 of quantization of a paradifferential symbol and (2.1.8), we get

Op(ay (U';-))Op(by (U";- ))up+q+1
k

no Mpigtl
x Iy, [CL( wU’, k)L, [b(Hn" U, np+Q+1)an+q+1up+Q+l]]
setting n' = (n1,...,nq), " = (ng41,...,Mptq). We write this expression I + II where
I= Z e Z qu+1(n07 7’Ll, k)Xp-i-l(k? TL”, np+q+1)
(3236) no Np4q+1 k
X g [a( U7, 1y gy )T [0 U 104 1) gy U]
and
1T = Z 0D Xarrmo, ' k) xpaa (ks nprg i)
(3237) Nptq+1 k
X Fro @Iy U 104 1500, )DL U5 by g 1) Fy g 42 Uptq1
with
M, U, k) — a(IL, U,
ATy U 1 g3 10, k) = Fg [a( n ) — a(11,, np+Q+l)] o F
(3238) k— np+q+1

B(Hn” U"; k, Np+q+1) = Fj 0 [b(Hn”U”a Np+q+1)] 0 ]:"p+q+1 (k = npigr1)-

We used in the definition of I and I1 that a is scalar, so that in (3.2.36) it is meaningful to make
act a(Il,, ,U’,np1q11) on an element of Ey, as remarked before the statement of proposition 3.2.7.

Study of term [

We further decompose I = I’ + I” where

E E Xp+q+1( ng,n’, n' np—i—q—i—l)

Np+q+1

x Mo [a(Ty U g g11) (T U 1y 1) iy 4 gy U 1] -

Remark that I’ is nothing but the first term in the right hand side of (3.2.34). Let us show that
I"” is a remainder operator. We have

= Z Z Z[Xqﬂ(no,n',k)Xp+1(k7n",np+q+1) — Xpta+1(n0, 7', 0" npygi1)]
(3.2.39) no Nptq+1 k

Xy @My U 10 4 1) T U, 1y g 1) iy g4 Uy g 1] -

The first cut-off in the above expression is supported in a domain of form

Ino — k[ <d(no+k), |k—npigr1| <k +npigr1)

3.2.40
(3240 7] < 8o+ K), [n"] < (K + mprgr)
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and is equal to one on a domain of the same type. The second cut-off is supported inside a
domain

(3.2.41) N0 = ptgr1] < 0(no + Npigr1),  max(|n'], [n") < (no + nprq+1)

and is equal to 1 on a similar domain. By formula (3.2.10) of corollary 3.2.4, the general term
of (3.2.39) has £(L?, L?) norm bounded from above by

WY i

n .
[0 — K[+ W)Y PR = prga] + )N

(3.2.42) Cng+q+l(

Remark moreover that by (3.2.40), (3.2.41), ng ~ npyq+1 > max(|n’'[, |n”]) and if
(3.2.43) 70 — bl + I — gl + '] + 1] < &m0 + mpi 1)

for small enough ¢ > 0, both cut-offs in (3.2.39) equal one. Consequently, on the support, we
may always extract from one of the factors of (3.2.42) a term decaying like (g + npyqr1) "
This shows that we get for I” remainder type estimates of form (2.1.15) with d replaced by
d+d.

Study of term II

We shall show that IT gives the term Op(e(U;-))uptq+1 in (3.2.34). We shall need the following
technical lemma:

Lemma 3.2.8 Let d € R and f : Z — C be a function satisfying |02 f(n)| < Can=% for any
a € N. Define for a,b € Z,a # b, g(a,b) = W. Then one may extend g to the diagonal
a="b and on the domain |a — b| < L|a + b| one has the estimate

(3.2.44) 1059, 9(a,b)| < Capla+b)*1o"

for any o, B € N.

Proof: Let us construct first x € S(R) real valued such that x(0) = 1, x(n) =0 Vn € Z* and,
for any k € N, there is x € S(R) with

(3.2.45) Ve e R, x¥)(2) = 8 yi(z)

where we denote dx(x) = x(x + 1) — x(z) (extending notation (1.2.3) to real arguments). Take
first v € Cg°(]— 1, 1[, R) with v(0) = 1, § € Cg°(] =7, 7[,R) even, such that ), ., 0({ —27k) = 1.
Define y by x(&) = 0(€) >272°  4(€ 4 2kn). Then, for n € Z

k=—00
1 [ <=
X = o= [ 0E)( 3 (€ +2km) de = ().
k=—o00
Moreover 1
V@) = o= [ = DO de = xale+ 1) - (@)



if we define x1(§) = 6155 == X(§), which belongs to S(R) by construction of x. We deduce (3.2.45)
from this equality by induction.

Write now, denoting by (-,-) the scalar product (f1, f2) = 3.7 f1(n) fa(n),

+00 +oo
o00) = 5= > fn =) —xtn—a) = Y (. Hlnab)

where )
Hn,a,b) = —/ V(= (1= Db —ta)dt.
0
This defines an extension of g(a,b) to a = b. If we make act the finite difference operator d; on
H(n,a,b), we get

O H(n, a,b) / / (D (1 — (1 = )b ta— (514 -+ 55)(1 — 1)) (t — 1)° dsy ... dspdt.

Using (3.2.45) in the right hand side, we see that we may write
8£H(n,a,b) = 9P Hy(n, a,b)

where Hg satisfies for any N € N an estimate
1

|Hs(n,a,b)| < CN/ (n— (1 —t)b—ta) " dt.
0

Consequently, if we write
9y 9(a,b) = (f.0) H(n.a,b)) = (9;)"""f, Hp(n,a,b))

and use the above upper bound, and the assumption |a — b| < 3|a + b|, we obtain |8fg(a, b)| <

Cla+ b|d_1_ﬁ . One treats in the same way the action of difference operators acting on the first
variable of g. a

End of proof of proposition 3.2.7: Denote by (Xi,...,Xq,n) — A(X1,..., X4, n) the function
on G x -+ x G x Ny in terms of which the symbol a(ui,...,uq,n) is defined according to
definition 3.2.6 (see formula (3.2.32)). Set

A(Xl, ‘e ,Xq,np+q+1) — A(Xl, ‘e ,Xq, ](I)

Ar( X1, Xy ptgr1, k) = Nptg+r1 — K
p+q

(taking by convention the quotient to be the extension of lemma 3.2.8 when np, 441 = k). By
lemma 3.2.8, A; satisfies when |npiq41 — k| < £(npiqs1 + k) and npyqi1 ~ k is large enough

q
102, O ALK, Xy g, K)| S Cag(k A+ npgen) T 70702 [T 1XG 60

Nptg+1
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In other words, assumption (3.2.11) of corollary 3.2.4 holds true. We denote by a, the product
of a given by (3.2.38) with x4+1(no,n, k), and by b, the product of b by xp11(k,n”, npiq+1)-
By (3.2.12)

195, (0 (D5, )2 Oy = 0 = 85 ) A (M U g1 10, )|

Np+q+1 Np+q+1
1w+N+a+Bi+B2+y 4

(3.2.46) J /|
< C(ng + k)71 [ [l ze-
> (TLO ) (‘nO _ ]C’ + |n/|)N : ”u]”L2

Moreover, by proposition 3.2.3 and Leibniz formulas (1.2.6), (1.2.7), by € E " for some v.
Define now

(3247) €(U, 7’L0,7’Lp+q+1 ZZZ&X /U’,?’Lp+q+1;’l’b0,]{)BX(HHHU”; k,np+q+1).

!

n n//

By the second Leibniz formula (1.2.7)
(a 8;:/p+q+1) (HTL' Ul? Hn” U”; no, np-i-q-i-l) = Z((a 8;:/p+q+1 8;)6%()5)(
(3.2.48) + Z ay Ok — Op .1 )bx

*
"p+q+1 X np+q+1 x)‘

Using (3.2.46), and the fact that b, obeys symbol estimates of type (2.1.12), we see that the
action of 0y, — 0, on e gains one unit either on the order of a, or of b, in (3.2.48), loosing

Mptq41

a power of |n’| or |n”|. In the same way, one sees that a 8 or a o derivative does not
) no Np+q+1

d+d

change the order. Consequently, to check that e € E , we just have to check that (3.2.47)
satisfies property (i) of definition 2.1.1, and estlmate (2 1 12) when o = =v=0.

Since inequalities (3.2.40) are valid on the supports of a,, l;x, (i) of definition 2.1.1 holds true

(if § > 0 in (3.2.40) is small enough). Moreover, by (3.2.46) and the fact that b, € nd'w

pi1 o We get
for |e(IL, U’ I1,»U"; ng, npyq+1)]| an upper bound given by

> P+a
Z(no +k)d—1 p(no, 0/, k) p(k, 0" np—i—q-‘rl

k &
% S(no,n’,k’)]\h ( +7”Lp+q+1) S(]{ 7 Mpiq +1 H||u]||L2

Since on the support we have k ~ ng ~ npy441, we may use lemma 2.2.5 to get the upper bound
(for new values of v, N)

p+q
d+d'—1ﬂ(n07n n' np—i—q—i—l) N
¥ Hlluglle

S(no,n/, 1", nptq+1)

O(”O + np—i—q—i—l)

which is the wanted estimate. O
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3.3 Polyhomogenous symbols

We collect in this subsection corollaries of the results obtained in subsections 3.1 and 3.2, which
apply to symbols which are not necessarily multilinear in the arguments wu1,. .., u,.

Definition 3.3.1 (i) For d € R,v € Ry, Ny € N*, we denote by i’]i\,g the space of functions

b: & xN; x Ny — L(£2,0?) such that there is a finite family (bp)p=0.,...p of elements b, € Zz:]”\,o
with

M~

(3.3.1) b(u; o, npy1) = bp(u, ..., u;n0,Npt1)

p times

Il
=)

D
for any no,np11 € Ny, u € €.

(ii) For d € N, we denote by S? the space of functions b: £ x Ny — L(E,L?) such that there is
a finite family (by)p—o,...p of elements b, € Sg with,

P
(3.3.2) b(u,n) = by(ty ..., u,n)
I;) p ——

p times

for anyn € N ju € £. We define in a similar way §gc from S¢

p,sc*

(iii) For v € Ry, d € R, we denote by RV the space of all maps M : € — L? such that there is
a finite family of maps M, € Rg’” p=1,..., P with

P
3.3.3 M(u) = My(u,...,u
(3.3.3) (u) pz:; o A )
p times

for any u € £. Some times, we shall use the same notation for maps (u,v) — M (u,v) depending
on two arguments u,v € &£, and which may be written as a sum of multilinear expressions of
form Mp(u, ... ,u,v...,v) where the total number of arguments is p and 1 <p < P.

We define the valuation v(b) of a symbol b (resp. v(M) of an element M of R%") as the smallest
p > 0 (resp. p > 1) such that b, # 0 in (3.3.1), (3.3.2) (resp. M, # 0 in (3.3.3)). The modified
valuation v'(b) of a symbol is the smallest p > 1 such that b, # 0 in (3.3.1), (3.3.2).

In section 4 below, we shall have to use symbols verifying conditions of type (1.1.3). We introduce
the following definition.

Definition 3.3.2 Let x be an odd integer, r € N with k < r —1 < 2x. We say that a symbol
b e Z’]i\}g (resp. b € S, resp. an operator M € R) satisfies condition C(k,r) if and only if
b=0bo+ 3 5L, by (resp. M =300 Myi1) with by € Zz:]”\,o (resp. by € S2, resp. Mpi € Rz’:l)
and b, =0 (resp. Mp1 =0) when p is an even integer 2k satisfying k < 2k <r — 1.
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We shall use below several times the following remark. Let L be a linear map (resp. B be a
bilinear map) from one (resp. the product of two) of the above spaces of symbols or operators
to a third space of that type. Assume that L (resp. B) respects the natural graduations of these
spaces. Then L (resp. B) sends symbols or operators satisfying C'(k,7) to symbols or operators
satisfying C'(k, ).

This is trivial for linear maps. In the bilinear case, this follows from the fact that in an expression
of form B(a,b), the contributions of type B(ag,b,) with ¢ > 0 and p > 0 are homogeneous of
degree p+q > 2k > r — 1 (since v'(a) > &k, v'(b) > k), so the condition imposed by C(k,r) on
B(ag,bp) is void. Only terms of type B(ao,b,), B(aq,by) have to be taken into consideration,
and they satisfy the condition of the definition.

We extend the definition of the quantization of operators by linearity, setting for b € fljdvg or

be S respectively

»
Op(b(us;-)) = > Op(bp(u, ..., u;-))
(3.3.4) =0

Il

@
=
S
=
=
=

p=0

By proposition 2.1.3 and lemma 2.1.7, maps like (u,v) — Op(b(u;-))v, for b € f];l\’,g (resp.
u — R(u) for R € R%) extend from € x & (resp. &) to H*(S*, G)? (resp. H*(S!,@)) if s is large
enough. We use this in the following corollaries, which are stated for arguments u,v smooth
enough, but need only to be checked when u,v € £ by density.

Corollary 3.3.3 Let P € N* be given. There is v € Ry such that if we define for d € R,
be Sy e CPMR),x =1 close to zero, Suppx small enough, by = Zf:o by € E'f”’, we may

find a symbol b° € i(l)’u+d+ and an operator M € ROV guch that for any smooth enough u
(3.3.5) Op(b(u, -))u = Op(by(u; -))u + Op(b”(u; -))u + M (u).

Moreover, one has

(3.3.6) v(by) > v(b), v(B°) > ' (b), v(M) >'(b) +1

and by, b°, M satisfy condition C(k,r) if b does so.

Proof: ~ We decompose b = Z;I;:o b, and apply to each component proposition 3.2.5. We
obtain (3.3.5) and (3.3.6), remembering that for p = 0, by does not depend on u, so that
Op(bo) = Op(bo,y) for any x as in the statement of the theorem. Consequently by does not
contribute to the last two terms in (3.3.5), which implies the last two inequalities (3.3.6). O
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Corollary 3.3.4 Letd,d e R,ae S.be Sd Let x € C*(R), x =1 close to zero, with small

scr
Sd+d' —1,v

enough support. There are v € Ry independent of d,d’, a symbol e € ] and a remainder

operator M € Ra+d'w o ROvFdi+dy gych that for any smooth enough u,v,

(3.3.7) Op(ay(u;-)) o Op(by(u;-))v = Op((a 0 b)y (u; -))v + Op(e(u; -))v + M (u,v).
Moreover
(3.3.8) v(e) > min(v'(a), v’ (b)), v(M) > min(v'(a),v' (b)) + 1.

If v(a) = v'(a) > 0, v(b) =v'(b) > 0, we have
(3.3.9) v(e) > v'(a) +0'(b), v(M) >'(a) +'(b) + 1.

Moreover aob, e and M satisfy C(k,r) if a and b do so.

Proof: We decompose a = ZQQ:O ag, b = Z;I::o b, and apply proposition 3.2.7 to each contri-
bution, remarking that Op(ag,)Op(boy) = Op((ap © bo)y), so that all contributions to e and M
come from compositions with p > 0 or ¢ > 0. The last statement comes from the remark after
definition 3.3.2. a

Corollary 3.3.5 (i) Let v € Ry, Ny € N*. There is v/ € Ry, and for any d,d' € R, any
a € E]d\}ol’, be Z?V(’)V satisfying condition (i)s of definition 2.1.1 with small enough 6 > 0, there is
a symbol a#b € Z?th Y such that for any smooth enough u

Op(a(u;-)) o Op(b(u; -))u = Op(a#b(u; -))u.
Moreover v(a#b) > v(a) + v(b), and a#b satisfies C(k,r) if a,b do so.

(ii) Assume moreover that the homogeneous components aq(u;ng,nqt1) and by(u;ng, ny,, ;) of

a,b commute for large enough ng,ng41,nH,n p+1 and that agby = boag. There is ¢ € Ed+d -1,/

such that
[Op(a(u;-)), Op(b(u; -))Ju = Op(c(u; -))u

);
for any smooth enough u, and v(c) > min(v’'(a),v’(b)). If moreover v(a) = v'(a) > 0 and
v(b) = v'(b) > 0, then v(c) > v'(a) +0'(b). Finally if a,b satisfy C(k,r), the same holds true for
c.

Proof: 'We decompose again a = ZZI;:O ap,b = Z?:o by and define a#tb or c using the linearity
in (i), (ii) of proposition 2.2.2. The statement concerning valuations in (ii) of the corollary comes
from the fact that [Op(ag),Op(bg)] = 0 since these operators are constant coefficient ones. O
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Corollary 3.3.6 (i) Let d,d’ € R,p € N*, v € R, Ny € N*. Let a € Z;l’”NO, b € f]‘]i\,,(’)y, and
assume that they satisfy condition (i)s of definition 2.1.1 with a small enough § > 0. Then there
arevV' =2v+d, +1andce E]d\}g with
Opla[Op(b(u; -))u, u, ..., u;-JJv = Op(c(u; -))v
——
p—1 times
for any smooth enough w,v. Moreover v(c) > p+v(b) and c satisfies C(x,r) if b does so and p
is odd, p > K.
(ii)) Let d € R, d € R, v € Ry,p € N*, Ny € N*a € EZ’]VVO satisfying condition (i)s of
definition 2.1.1 with a small enough § > 0. Let M € RYY. There are v/ = dy +2v +1,
Vi=2v+1,b€ i?\}g, and R € RV « ROV'+detdy guch that for any smooth enough u,v
Op(a(M(u),u,...,u;-))v = 0p(b(u;-))v + R(u,v
p(a(M (u) ) p(b(u;-)) (u,v)
p—1
with v(b) > v(M)+p—1, v(R) > v(M) 4+ p. Moreover b, R satisfy C(k,r) if M does so and p
is odd, p > K.

(i1i) Let d € R,d' € R, v,/ € Ry, Ny € N*,a € i‘]i\}g,M e RYY. There is v = v+ 1 + 1 such
that u — R(u) = Op(a(u;-)) M (u) is in R and v(R) > v(a) +v(M). Moreover R satisfies
C(k,r) if a and M do so.

These statements follow from propositions 2.2.3, 2.2.4 and 2.2.6. In the same way, we deduce
from proposition 2.2.7:

Corollary 3.3.7 (i) Let d,d' € R,v,v) € Ry,Ng € Nyg € N*. Let a € X% and M €
Rgl’”l. There is V" = dy + v + v + 1 such that the operator u — R(u) given by R(u) =
M(Op(a(u;))u, u, ..., u) is in RTY" with v(R) > q + v(a). Moreover R satisfies C(k,r) if a
does so and q — 1 is an odd integer ¢ — 1 > K.

(i1) Let My € RZ’V,MQ e RYY . Then there is V" = v+ 1V + d, + 1 such that R(u) =
My (Ma(u),u, ... u) is in R with v(R) > v(My) +q — 1.

Let us conclude this subsection with the following technical lemma.

Lemma 3.3.8 (i) Let a()\) be a smooth function on R satisfying for any k, |05a(\)| < CpAF
when A — +oo. Let (ni,...,n,) =n' — G(n') be a real valued function defined on N%, such
that there is C' > 0 with |G(n')| < C(1 + |n/|). Consider the function

(3.3.10) F(ng,n1,...,npt1) = a(ng) — a(npt1) + G(na, ..., ny)

and assume that there is ¢ > 0,Ng € N* such that for any ng,npt1 € N.,n' € N¥ satisfying
Ing — np+1| < H(no + npt1), [0’ < 3(no+ np41) one has

—N,
(3.3.11) |F(no, . ..,np41)| > (1 + |ng — npa])|n'| 7.
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Then we have for any o, 3,7 € N, any (ng,n',n,11) € NE+2 satisfying the preceding inequalities
g p+

o (o * 1
811() (anp+1)ﬁ(ano - anp-‘-l)’y F(n()’ e 7np+1)

)—’y‘n/|N0(Oé+B+'Y+1) (

(3.3.12)

< Cagy(no + nps1 1+[no — ”p+l|)_l'

(ii) If instead of (3.3.11), F satisfies when |ng — npy1| < 3(no + np+1), 0’| < 2(no + np1)
(3.3.13) [F(no. - npia)| > (g + mpen)n] =,
then (3.3.12) holds true with the right hand side replaced by

(3.3.14) Copy(ng + npy1) 17|/ NOOHIHHD,

Proof: (i) We may assume in (3.3.12) that a+ 8+~ > 0 since the inequality without derivatives
follows from (3.3.11). Remark that we have then
(33.15) 105 (0%,.) Bno — 05y ) Flr, - s1ps)] < CCL+ Ino — mpsal) (o + mpsn) .

Tip+1 Tip+1

a(no)—a(npy1)
no—"Np+1

(1.2.6), (1.2.7). We shall show that for any a, 3,7 we may write the quantity estimated in the
left hand side of (3.3.12) as a linear combination, indexed by k = 1,...,a+ 3+, of expressions
of form

This follows from lemma 3.2.8 applied to g(ng,np+1) = and from Leibniz formulas

Hy,

3.3.16 Sl N
(3:3.16) Fi Fro

(no, .., Np+1),

where each function H}, satisfies

/

)7 (Ony = 85,,,) Hi(no, - 1) < C(L+ |no = st ) (no + my) 777

Np+1

(3.3.17) [0 (9, .,
and where Fi,..., Fq verify (3.3.11). Inequality (3.3.12) will then follow from (3.3.17) with
o =3 =+ =0.

To obtain the structure (3.3.16), we just have to show that if we apply to (3.3.16) a deriva-

tive 8,2‘8(8:p+1)ﬁ0(8n0 — 0Op,.)"° with ag + o + 70 = 1, we get the sum of an expression

I?k(Fl ;--Fktl)_l, where I?k satisfies (3.3.17) with « replaced by v + 79, and of a quantity
Hk+1(~Fl <o Frpo)™t, with Hy 1 satisfying (3.3.17) with & replaced by k+1 and ~y by v +70, and

with F} verifying (3.3.11). This follows from Leibniz formulas (1.2.6), (1.2.7) and from (3.3.15),
(3.3.17). This concludes the proof.

(ii) The proof is the same, replacing in (3.3.15), (3.3.17) the 1+ |ng — ny11| factor by ng+npy1.
O
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4 Long time existence

4.1 Strategy of proof

The aim of this section is to prove theorem 1.1.1. Our strategy will be to combine the meth-
ods used by Bourgain [5], Bambusi [1], Bambusi and Grébert [3], Delort and Szeftel [10] for
semi-linear equations, with the well-known approach allowing one to obtain quasi-linear energy
inequalities, namely diagonalization of the principal symbol of the equation.

Let us describe the steps that we shall follow, forgetting the necessary technicalities we shall
have to introduce later on. We denote by A,, = vV—A +V +m?2, and we shall consider an
equivalent system to the scalar equation for u = [%TU”}, of type Oyu = (%(M (u,-))u, where M
will be a symbol of order 1, belonging to the class introduced in subsection 3.1. We would like
to control over long time intervals the Sobolev energy of u

(4.1.1) (A% u(t, ), A% ult, ).

m

If one computes the time derivative of this expression, one gets
(4.1.2) 2Re (A2, Op(M (u, -))u, A2 u).

If M(u,-) = My(-)+M"(u,-) is the sum of two anti-self-adjoint matrices, with M independent of
u and M" homogeneous of degree x > 0 in u, symbolic calculus shows that the above expression
may be written as

(4.1.3) <6£)(b(u7 ))’LL,’LL>

where b is a self-adjoint symbol of order 2s vanishing at least at order x at u = 0. Consequently,

for s large enough, this bracket is bounded from above by C|u||;:?, and one gets the estimate

LT
dt

This is a way to recover the local existence result asserting that for smooth data of size ¢ — 0,
the solution exists at least over an interval of time of length ce ™. Our goal here is to obtain a
better result when x is odd (and when the parameter m is outside a subset of zero measure).
Namely we want to obtain a solution over a time interval of length ce~2~. From (4.1.1) to (4.1.3)
we know that

(4.1.4) () e < Clut, )52

d —
(4.1.5) 5 Amult, ), Apu(t, -)) = (Op(b(u, -))u, u).
We would like to add in the left hand side a new contribution, of form (Op(a(u, -))u, u), vanishing
at order k42 at 0, with a symbol a of order 2s, determined in such a way that the time derivative

of this quantity will cancel out the right hand side of (4.1.5), up to remainders O(||ul|35"2). If

we compute %(Op(a(u,-))u,u) we get from the action of d/dt on the u’s which are not in the

argument of a, a contribution of type

(4.1.6) ([Op(a(u,-))Op(M (u,-)) + Op(M (u, -))*Op(a(u, -))]u, u).
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Remember that M(u,-) = My(-) + M"(u,-). Consider the expression obtained replacing in
(4.1.6) M(u,-) by M"(u,-): we get a term homogeneous of degree 2x + 2 in u. In a semi-linear
framework, i.e. when M" is a symbol of order 0, this gives a contribution to (4.1.6) which is
O(||u||%:2), since a is of order 2s. In our quasi-linear framework, M*(u, -) is a symbol of order 1,
which a priori looses one extra derivative. The way to circumvent that difficulty is well known:
one has to arrange so that a be self-adjoint and commute to M"*. Then since M"(u, -) is assumed
anti-self-adjoint, the contribution of M" to (4.1.6) may be written in terms of a commutator
[(%(a(u, ), (Sf)(M ®(u,-))]Ju. The symbolic calculus we studied in the preceding sections shows
that this commutator gains one derivative, so that again the contribution of M* to (4.1.6) is
O(||u||%572). In other words, up to such nice remainders, %((%(a(u, ))u,u) will be given by
contributions of type (4.1.6) with M replaced by My, and by similar terms coming from the
action of % on those u inside the argument of a. The last step of the proof will be to show that

we may choose a so that these contributions to %((%(a(u, ))u, u) will cancel out the right hand
side of (4.1.5).

To ensure the commutator property of a with M, we start instead of (4.1.1) with

where 4 is a new unknown defined in terms of u by @ = Q(u)u, @ being a matrix such that
D(u,-) = Q(u)M (u,-)Q(u)~! is diagonal. Computing the time derivative of (4.1.7), we shall get
instead of (4.1.5) an expression

(4.1.8) (Op(b(u, )i, ii)
that we will try to cancel out adding to (4.1.7) a quantity
(4.1.9) (Op(a(u, ), i)

where a is again a symbol to be determined. When we shall compute the time derivative of
(4.1.9), the contribution corresponding to (4.1.6) will be

(4.1.10) ([Op(a(u,))Op(D(u, ) + Op(D(u, -))*Op(a(u, )i, @),

Since now D is diagonal, and since we shall look for a diagonal symbol a, the commutation
property between symbols aD = Da will hold true automatically. Moreover a will be taken
self-adjoint and D will be anti-self-adjoint. Because of that, the contribution of the part of D
which is homogeneous in u of order  to (4.1.10) will be expressed through a commutator, and
will provide a remainder of type ||ul|75"2. As explained above, the terms coming from the part
Dy of D independent of u will cancel out (4.1.8), if the symbol a is conveniently defined in terms
of b. Finally, since for small functions u, (4.1.7) will be equivalent to ||u(t,-)||%. we shall get

d .
St < Clhult, 3

as long as ||u(t,-)|| g+ stays small enough, which is what we need to get a solution defined on an
interval of length ce™ 2.

Let us mention that the computations we outlined above will have to be done using paradif-
ferential operators instead of pseudo-differential ones. This is the justification for our study of
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the former in section 2. The diagonalization of the principal symbol of the equation, i.e. the
construction of « in terms of u, will be described in subsection 4.2. The last subsection 4.3 will
be devoted to the construction of the correcting terms (4.1.9) and to the proof of the theorem.

4.2 Diagonalization of principal part

We shall denote by A,,, = vV—A + V + m?2. This is a scalar invertible pseudo-differential operator
of order 1 on S!. If v € H5TY(S! R) for a large enough s, we set

(4.2.1) u = [Aa:;ﬂ v = A tuy, B = us.
We define
(4.2.2) a(u) = e(A uy, ug, Op A )

where c is the function defined in (1.1.1), (1.1.2). In particular, a(u) may be written as a sum of
multilinear expressions in T'u, uz for pseudo-differential operators of order 0, T'. Consequently
a(u) will be, according to definitions 3.3.1 and 3.2.1, a symbol of S%. (independent of n). Its
valuation will be equal to x which, according to assumption (1.1.3), may be assumed to be odd.
Moreover it will satisfy condition C'(k,r) of definition 3.3.2 i.e.

K1
(4.2.3) a= Zak(u) where ay, € S92, ag, =0 for k < 2k <r — 1.
k=k

The first equation (1.1.4) may be written

u.

(4.2.4) Dy — [_ ( 0 Ao

1+ a(u))?A,
We shall denote by G the vector space R?, and consider the operator —% + V(x) acting
on L%(S!,G). As in section 2.1, we denote by (w,;)? < (w;5)? the couple of eigenvalues with
asymptotics (1.2.1), and by II, the spectral projector on the subspace of L?(S', G) generated
by the eigenfunctions associated to these two eigenvalues for n > 7 4 1 large enough. We
denote by E,, the range of II,,. Then F,, is four dimensional for n > 7 + 1. We define E, to
be the orthogonal complement in L*(S', G) of the Hilbert sum €p,,~,.; Fn. Then E; is even
dimensional and we have the Hilbert decomposition

+00
(4.2.5) L’s',G) = E..

At times we shall denote by E/ ,n > 7 + 1 the subspace of L?(S',R) generated by the two

eigenfunctions associated to the eigenvalues (w,, )? and (w;)? of the operator —% +V(z) acting
on L?(S',R). We define E. in a similar way as E,. We have for n > 7, E,, ~ E/, x E!,. We
denote by & the algebraic direct sum of E,, for n > 7. We introduce the following matrices

IK/(n) IK,(”)
42. P = '
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and

:i —z’(1+a(u))IK/(n) _IK’(n)
(427) Q) =5 i+ ey Loy
so that

where K'(n) = dimE!, = 2 when n > 7. (We prefer to use Q(u,n) instead of P(u,n)~!
to always work with matrices whose coefficients are polynomial in u). Then, according to
definitions 3.3.1 and 3.2.1, P and @) are elements of S0, Actually these matrices define, according
to definition 3.2.6 and (3.2.33) elements of SU., since each block of P(u,n), Q(u,n) is a scalar
matrix (the contribution of order —oo of definition 3.2.6 is zero in this case). Moreover

(42.9) o(P) = o(Q) =0, v/(P) = /(Q) =
and P(u,n) and Q(u,n) satisfy condition C(k,7).

Remind that we have constructed in theorem 1.2.1 a nice basis of L?(S', R), which was adapted
to the decomposition given by the E! (which were then denoted by E,). We construct from
this nice basis a natural basis of F,, = E! x E', which makes a nice basis of L?(S!, @), as at the
beginning of subsection 3.2. We denote by A,,,(n) the matrix of A,,|g; in the above nice basis.
For n > 7+ 1, A\p(n) is a 2 x 2 matrix. We denote by w(A) a symbol of order 1 on Ry with
asymptotics given by (1.2.1) and we define

(4.2.10) wm(n) = y/m? + w(n)?

so that the difference between the eigenvalues of vV—A 4+ V + m?|g and wy,(n) is O(n™>°) when
n — +o00. The matrix A,,(n) may be written

(4.2.11) Am (1) = Wi (M)gr () + Am(n)

where S\m(n) is a matrix whose norm decays like n~°° when n — +o00. We introduce for n > 7
the matrix

_ 0 Am(n)
(4.2.12) M(u,n) = [_(1 F a(w)2Am(n) 0 } .

This is a K(n) x K(n) matrix (where K(n) = dim E,, = 2K’(n)) and since a(u) € S°, we get
that M(u,-) € S'. Actually, decomposition (4.2.11) shows that M(u,-) € SL since we may
0 wm (M)Id g7 ()
—(1+a(u))2wm(n)IdK1(n) 0
contribution of order —oo. Moreover the coefficients of M (u,n) satisfy condition C(k, 7).

write it as the sum of }, which is scalar by blocks, and of a

According to definition 3.2.2, (A)i)(M(u, -))u is nothing but the right hand side of (4.2.4). We
may thus write this equation

(4.2.13) dyu = Op(M (u,-))u.
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Let us introduce the energy of solutions of (4.2.13) that we shall consider. We denote by Am
the operator Ay, = Op(wm ()l (n)) acting on L*(S', G), so that ApIL, = wp,(n)IL,. For s large
enough we set

(4.2.14) O (ut,-)) = 2(A}, 0p(Qx(us ))u, A3, OP(Qx (u; -) Ju)

where x € C§°(R), x = 1 close to 0, x even, Supp x small enough, and where @, € i(l)’y (for
some v € Ry) is defined from @ in corollary 3.3.3 (see also (3.2.5)). Because of (4.2.9)

(4.2.15) v(Qy) = 0,V (Qy) = k.

The following lemma asserts that ©F(u) is indeed equivalent to ||u||%. for small u, and gives an
alternative expression for ©f(u), which will be useful in the sequel.

Lemma 4.2.1 There is sg > 0 and for any s > sqg there are constants C' > 0, Ry > 0 such that
for any u € H5(S', G) with ||u||gs0 < Ro, one has

(4.2.16) C M ulFr: < ©5(uw) < CllulFs.

Moreover, we may find a self-adjoint scalar symbol c(u,-) € i%s’l’, for some v > 0 independent
of s, with v(c) > K, and satisfying condition C(k,r), such that if & = Op(Qy(u;-))u
(4.2.17) B B B B

O5(u) = (AL OP((1 + ay)(u;-))a, A3, ) + (Ag, 0, A7, Op((1 4 ay)(us ) i) + (Op(c(u; ), w).

Proof: We prove first (4.2.17). Remark that the left hand side and the sum of the first two
brackets in the right hand side of (4.2.17) are real, so if we find a symbol ¢ satisfying (4.2.17),
the equality remains true replacing ¢ by %(c—i— c*) where ¢*® is defined by (2.2.1). In other words,
as soon as we have found a ¢, we can construct from it a self-adjoint one.

Compute the difference between %@S(u) and the first bracket in the right hand side of (4.2.17).
We get

(4.2.18) —(A%0p(ay(u; )i, @).

We may always write K?,f as a paradifferential operator associated to the symbol of ngéo given

by

(no — nl) (u)m(no) + wm(nl))%‘

no + nq 2

Moreover a, defined from a in corollary 3.3.3 belongs to f](f”’ for some v € R;. By corol-
lary 3.3.5 (i), we may thus write (4.2.18) as (Op(c(u;-))u, @) for some symbol ¢ € Efs’y, for a
new value of v independent of s. This gives (4.2.17).

Before starting the proof of (4.2.16), let us express u in function of % and conversely. Denote

Leon Lxim i =il —Lirn
(42.19)  Py(n) = P(0,n) = .IK( : _-II{( ' 1, Qon) = Q(0,n) = 3 _Z.IK( ) I K'(n)
gy —tlgrn) UK'(n)  1K'(n)
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If we denote og(u;n) = Q(u;n) — Qo (n), we get a symbol in f](l)’y for some v, with v(og) > k,
satisfying condition C'(k,r), such that by definition of @

(4.2.20) @ = Qou+ Op(ao(u;-))u,

where for short we write Qo for (%(Qo(-)) = Op(Qo(+)). Multiplying by Py = Q;" we get,
using the same type of notation convention,

(4.2.21) u = Pyt + Op(Go(u;-))u

for another symbol ¢ with g € f](l)’y, v(dp) > K, ¢ satisfying C'(k,r). Using proposition 2.1.3,
we obtain that there are C' > 0,sg > 0 and for any s > sg, there is Ry > 0 small enough such
that for any u € H*® with ||ul|gs0 < R,

(4.2.22) CYallas < llullms < Cllllas,

since the last terms in (4.2.20), (4.2.21) are O(||u|/%so |ullas), v — 0. If we apply proposi-

tion 2.1.3 to the operators of order 2s K%Op(ax(u; -)) and Op(c(u;-)), we see that there is a
new value of sy, independent of the order of these operators, such that for s > s( there is Cs > 0
so that (4.2.18) as well as the last bracket in (4.2.17), are smaller than C||ul/%, ||u/|%s. This
shows that B B

O3 () — 2(A%y Kyt) = O(ullfeo ll3), 1w — 0.

Inequalities (4.2.16) follow from that and (4.2.22). O

The interest of the preceding lemma is that it gives for ©¢ an expression in terms of %, and the
equation written on u will be essentially diagonal. Let us introduce some more notations. We
set

(4.2.23) D(u,n) = Q(u,n) M (u,n)P(u,n) = i(1 + a(u))? |:)\m(n) 0 } '

0 —Am(n)
We write also
(4.2.24) Dy(n) = D(0,n), D"(u,n) = D(u,n) — Dy(n)

so that D*(u,n) € SL with valuation larger or equal to x. Moreover D(u,-) satisfies condition
C(k,r). We set also

(4.2.25) My(n) = M(0,n), M"(u,n) = M(u,n) — My(n)

so that M"(u,n) is an element of §Slc of valuation larger or equal to . In the same way, the
expressions

(4.2.26) P®(u,n) = P(u,n) — Py(n), Q%(u,n) = Q(u,n) — Qo(n)

are symbols of SO with valuations larger or equal to k.

SCY
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Lemma 4.2.2 There is some v € Ry and there are symbols bo(u;-) in X0, by (u;-), by (u;-) in
S0 with v(bo),v(b1) > k, there are operators R, R in R®", with v(R),v(R) > k + 1, satisfying
condition C(k,r), such that one may write for all u € H*(S', G) solution of (4.2.13)

(4.2.27) % = PyDyii + Op(by (u; -))u + R(u)
ot
(4.2.28) ar = Op(b1(u; )u + R(u)
(4.2.29) OD((1+ ay)(u:) 55 = Op(Dy o)) + Op{bo(es ) + R(w)

where we denoted by Dy the operator (%(Do(n)).

Proof:  Let us show first (4.2.27). We apply corollary 3.3.3 to (4.2.13). We get

(4.2.30) O — Op (M (15 ))u + Op(Bo(u: ) + R(w)

where by € ig’y, R € R% for some v € Ry, v(bg) > k, v(R) > k+1, by and R satisfying condition
C(k,r). Using (4.2.25), we further decompose Op(My(u;-)) = My + Op(My (u;-)), where M
denotes for short the operator with symbol Mo(n). Since My (u,n) € i%’”, satisfies v(My) > K,
and verifies condition C'(k,r), we just have, to deduce (4.2.27) from (4.2.30), to express Mou in
terms of 4. This follows from (4.2.21) together with the expression MyPy = PyDy, which is a
consequence of (4.2.23) and (4.2.8).

We shall prove now (4.2.28) and (4.2.29). We compute first

ouw 0 ou
(1231) 70— 0 {0p(@uu))1] = Op(@u (1) 2%+ Op(Q} (U3 )
where U = (u, dyu) and Q'(U, -) is the symbol obtained by time derivation of Q(u, -). Let us show,
using the equation, that Q' (U;-) is an element of Z(l)’” for some v, satisfying v(Q’ (u;-)) > &
and verifying condition C(k,r). By (4.2.7) we may write Q) (U;-) as a finite sum indexed by
p > Kk of quantities of type

31K (1) 0}

ap (Opu, u, .. U g, Mpt1) LI 0
2 K/(np+l)

where a,, is the component homogeneous of degree p in the expansion of a. If we plug in this
expression (4.2.30), we see using corollary 3.3.6 (i) and (ii) that we get a contribution of type
Op(bo(u;-))u + R(u), like the last two terms in the right hand side of (4.2.29). In particular,
such terms are of the form of the right hand side of (4.2.28). To finish the proof of (4.2.28), we
just have to study the first term in the right hand side of (4.2.31). If we replace in that term
Owu by (4.2.30) and use corollaries 3.3.5 (i) and 3.3.6 (iii), we obtain that this contribution is
again of the same form as the right hand side of (4.2.28). Let us prove (4.2.29), making act
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Op((1+ay)(u;-)) on (4.2.31). We have seen already that the last term in the right hand side of
(4.2.31) has the structure of the last two terms in the right hand side of (4.2.29). This remains
true if we make act Op((1 + a,)(u;-)) on it, by corollary 3.3.5 (i) and corollary 3.3.6 (iii). So,
we just have to study, using (4.2.30)

ou

OP((1 + ax)(u;))Op(Q@x (u; ) 57 = OP((1 + ax)(u;-))Op(Qx (s ) OP(My (u; -) Ju

(4.2.32) FOP((L + ay)(u: ) Op(Qx (u5))Op (o (us ) )u
+OD((1 + ax) (u; 1)) Op(Q@x (u; ) R(w).
Again by corollaries 3.3.5 (i) and 3.3.6 (iii), the last two terms give a contribution to the last
two terms in (4.2.29). Since a is a scalar symbol we may, by corollary 3.3.5 (ii), commute in the
first term in the right hand side of (4.2.32), Op((1 + ay)(u;-)) and Op(Qy(u;-))Op(M,y (u;-)),

up to errors that may be incorporated inside the Op(bg(u;-))u term in (4.2.29). We are thus
reduced to

(4.2.33) Op(Qx (u; +))Op(My (u; -))Op((1 + ay)(u; -))u.

We apply corollary 3.3.4 to the symbols P and @ satisfying (4.2.8). Using also corollary 3.3.5 (i)
and corollary 3.3.6 (iii), we obtain that (4.2.33) may be written as

[Op(Qy (u;-))Op(My (u; ) ) Op(Py (us; +))|Op(Qy (u; ) )u

up again to contributions to the last two terms in (4.2.29). To conclude the proof, we just
have to apply again corollary 3.3.4 to the bracket in the above formula, making use of the first
equality (4.2.23) and of corollaries 3.3.5 (i), 3.3.6 (iii) and 3.3.7 (i). O

We want to obtain a formula giving the time derivative of expressions generalizing the first term
in the right hand side of (4.2.17). We introduce first some notations. We shall consider symbols
ceE Z;l’VNO satisfying the following conditions

(4.2.34) c(U;) = (U;) + "(U;-) with ¢ € EZ,_Z\}O’V and self-adjoint,
d(U;-) is self-adjoint and for any ng,ny41 > 7+ 1,
(4'2'35) / Cll(U' no, n 1) 0
d(U;ng,n = P70 et with 2 x 2 matrices ¢11, ¢29.
( 0 P+1) 0 622(U; no, np-i-l) 11, €22

(Remind that our symbols of EZ:}/VO are 4 x 4 matrices when evaluated at (ng,np41) with
no, Np+1 > 7+ 1).

When ¢ € Eg’]”\,o we shall associate to it two other functions defined by

c(a;ng, npr1) = c(Pot, . .., Pot; ng, np41)
4.2.36 5 P . _ _
( ) cDy (W; o, Npt1) = Z c(Pot, ..., PyDoa,. .., Pyl;ng, npt1)
j=1

where as before Dy denotes the operator with symbol Dg(n), and where the term PyDya is the
jth argument of the general term of the sum. We first prove a lemma.

57



Lemma 4.2.3 Letv € R,. There isv' € Ry such that for anyd € R, Ny € N*, pe N,c € Ep No’

one can find a symbol e; € ENO/ with v(e1) > k+p and Ry € RV with v(R1) > k+p+1, such
that for any smooth enough solution u of (4.2.18), any smooth enough v
0

(4.2.37) Op(=

8tc(u, . u;))v = Op(ep, (@;-))v + Op(er (u; -))v + Ri(u,v).

Moreover, if p is odd and p > k, then e; and Ry satisfy condition C(k,r).

Proof: The left hand side of (4.2.37) is a sum of expressions

(4.2.38) Op(c(u,. .., %, Ce U ))v

We replace in this expression u by (4.2.21) and 7 by (4.2.27). According to (4.2.36), the linear
contributions given by these formulas to each argument of (4.2.38) give the first term in the
right hand side of (4.2.37). The remaining contributions are of type

Op(c(wr, ..., wp;+))v

where either w; = PyDo@ and at least one wy, k # j equals Op(do(u;-))u with the notations of
(4.2.21), or w; = Op(by(u;-))u + R(u) and wy, = u for k # j. In the latter case, we apply (i)
and (ii) of corollary 3.3.6. We get contributions to the last two terms in (4.2.37), with indices v’
independent of d. When w; = PyDot and say wi = Op(o(u;-))u and wy, = Pyt or u for k # 1, j,
we may express all @ from u through (4.2.20), and conclude again using (i) of corollary 3.3.6
that we get a contribution to the last two terms in (4.2.37). O

Let us state now the main proposition.

Proposition 4.2.4 Let veR,, peN,NyeN* be given. There is V' € Ry and for any d € R,
for any symbol ¢ € xd ’N satisfying (4.2.34), (4.2.35), one can find

e self-adjoint symbols e € E]dv” ,f € ZN with v(e) > p+ K, v(f) > p+ 2k,

e operators R, S € R satisfying v(R) > p+k+ 1, v(S) > p+ 2k + 1,
such that for any smooth enough u satisfying equation (4.2.13) one has

&|Q‘

2 {L0p(e(u;-))OP((1 + ax)(u; ) + Op((1 + ax)(u; -))"Op(e(u; -))ld, @)
= (Op(epy (u;-))a, @)
+ ([Op(&(a;-)) Do + D Op(é(as; -))]a, @)
+(Op(e(a;-))u, a) + (R(a), a)
+(Op(f (u;-))u, w) + (S(u), u).

Moreover, if p is odd, p > Kk then cp,,¢,e, f, R, S satisfy condition C(k,r).

N =

(4.2.39)
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Proof: Remark that since c is self-adjoint, ¢ and cp, defined by (4.2.36) are also self-adjoint,
so the left hand side and the first two terms in the right hand side of (4.2.39) are real valued.

Consequently, we may always ensure that e, f will be self-adjoint replacing them respectively
by 6-28.7 f';f'.

Let us show that we can write as the right hand side of (4.2.39) the time derivative

L Op(e(u; ))OD((L + ay) (u: )i, ) =

dt
(4240)  (Op(e(u:)Op((1 + ay)(u: )i, 1) + (Ople(us )Op(Ta(u: )i 1)
0D (et )OD((1L+ ax) (5 ), ) + (Op(eu: ))Op((1 + ax)u; )i, ).

The idea of the proof is the following: we shall express % using (4.2.28) or (4.2.29) and u using

(4.2.21). The linear contributions coming from these expressions will give the first two terms in
the right hand side of (4.2.39). The contributions which are at least of order x in u (or @) will
contribute to the last four terms. The key point will be not to loose derivatives, i.e. to check
that e, f are of order d and not d+ 1. This will follow from the fact that Op(e(a;-)), Op(f(u;-))
will be expressed from commutators of operators with commuting symbols. Symbolic calculus
will thus bring the needed gain of one derivative. Let us proceed with the implementation of
such a strategy.

Study of first term in RHS of (4.2.40)

Let us consider J
Op(EC(U; NOP((1 + ay)(u; -)).

By lemma 4.2.3, we may write this as
(4.2.41)
Op(cpy (@;-))Op((1 + ay)(u; )@ + Op(er (u; -))Op((1 + ax)(u; -))a + Ri(u, Op((1 + ay)(u; -))a).

The first term gives on one hand the first term in the right hand side of (4.2.39), and on the
other hand a contribution Op(cp, (@; -))Op(ay(u;-))i. We may in this expression replace u (resp.
@) by (4.2.21) (resp. (4.2.20)) which gives us, using corollary 3.3.5 (i) and corollary 3.3.6 (i),
and the fact that og, 79 in (4.2.20), (4.2.21) have valuations larger or equal to x, a contribution
to (Op(e(u;-))a, u) and (Op(f(u;-))u,u) in (4.2.39). Remark that the index v’ given by corol-
laries 3.3.5 and 3.3.6 is independent of the order d of ¢. The second term in (4.2.41) is treated
in the same way. For the third term, we use again (4.2.20), (4.2.21), corollary 3.3.5 (i) and
corollary 3.3.7 (i) to write it as a contribution to (R(@), @) + (S(u),u) in (4.2.39).

Study of second term in RHS of (4.2.40)

If we apply lemma 4.2.3 to the symbol of order 0 a,, we see that

d B - . o ~
Op(Zax(u; )it = Op(ay,py ()i + Op(e (u; )i + Ra(u, @)
where a, p, € i(l)’u7 e1 € i(l)’uly Ry € RO for some v/ € R4, with moreover v(ay,p,) > K
2

v(er) > 2k, v(R1) > 2k + 1. If we make act on the left Op(c(u;-)) and use as before (4.2.20),

59



(4.2.21) and corollaries 3.3.5 (i), 3.3.6 (i), 3.3.6 (iii) and 3.3.7 (i), we see that we obtain a
contribution to the last four terms in (4.2.39).

Study of third and fourth terms in RHS of (4.2.40)

We write the sum of the last two terms in (4.2.40) as

du du

Eﬂ” + <[Op(c(u; ))7 Op(ax(u; ‘))]ﬂ’? _>

(4.2.42) 2Re (Op(c(u;))Op((1 + ay)(u;-)) dt

using that ¢ and a, are self-adjoint symbols. We may apply corollary 3.3.5 (ii) to the bracket in
(4.2.42), since a,, is scalar and so commutes to c¢. There is v/, independent of d, and a symbol

be iﬁlv_ol’yl with v(b) > k + p such that the last term in (4.2.42) equals

_ du

(Op(b(u; )i, T
Using (4.2.28), we reduce ourselves to the study of
(4.2.43) (i, Op(b(u; ) (Op(bi (15 ))u + R(w))).

Using, as in the study of the preceding cases, (4.2.20), (4.2.21) and corollaries 3.3.5 (i), 3.3.6 (i)
and (iii), and 3.3.7 (i), we may write this expression as a contribution to the last four terms in
(4.2.39), using that the sum of the orders of the involved symbols is at most d.

Let us study now the first term in (4.2.42). We write using (4.2.29)

du -

Op(e(u;))OP((1 + ax)(u; -))— = Op(c(u; ) Op(Dy (u; ))a

(4.2.44) +Op(e(s;))Op (bo(u: )

+O0p(c(u; ) R(u).
The contribution of the last two terms to the first bracket in (4.2.42) is of form (4.2.43), since
the sum of the orders of the symbols is at most d, and R(-) € R%", and has been treated yet. To
study the first term in the right hand side of (4.2.44), where D, is a symbol of order 1, remind

decomposition (4.2.24), which allows us to write

(4.2.45) Dy (u;-) = Doy (+) + Dy (u; ).
We study first the contribution of the last term i.e.

2Re (Op(c(u; -))Op(Dy (u; +)), 1) =

(4.2.46) o
([Op(c(u;-))Op(Dy (u;-)) + Op(Dy (u; ) *Op(e(u; -))*]a, @)

Remind decomposition (4.2.34) of ¢. Since ¢’ € Z;l_]\}o’”, we may write by corollary 3.3.5 (i)

Op(c”(u;-))Op(Dy(u;-)) = Op(g(u;-)) for a new symbol g € i?\}gl with v/ independent of d and
v(g) > p+ k. This term will give in (4.2.46) a contribution which can be treated as (4.2.43).
The ¢’ contribution to (4.2.46) may be written, since ¢ is self-adjoint

(4.2.47) ([Op(c’(u;-))Op(DY (u; ) + Op(DY (us ) *Op(c’ (u; )], @)
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By (4.2.23), (4.2.24) and (4.2.11), we may decompose
D"(u,n) = D*'(u,n) + D*(u,n)
with

D™ (u,n) = i(2a(u) + a(u)*)wm(n) [IKé(n) _hgw]

D"(u,n) of order — oco.

The contribution of D"(u,n) to (4.2.47) may be treated as expression (4.2.43). Since we may
write D" (u,n)* = —D"(u,n), we are left with

(4.2.48) ([Op(¢(u;-)), Op(D™ (u;-))]a, @).

Remark now that by assumption (4.2.35) and the expression of D", we have ¢ (u,-)o D" (u,-) =
D" (u,-) o ¢(u,-) (for large enough phase arguments of the symbols). We may therefore apply
corollary 3.3.5 (ii) to write the commutator as an operator associated to a symbol in f]’]i\}g,, of
valuation larger or equal to x + p, for some v’ independent of d. Reasoning as for (4.2.43), we
get again a contribution to the last four terms in (4.2.39).

To finish the proof, we are left with studying the contribution to the first term in (4.2.42) coming
from the first term in the right hand side of (4.2.45) plugged in the first expression in the right
hand side of (4.2.44) i.e.

(4.2.49) ([Op(c(u; -)) Do + DoOp(c(us; -))a, ).

We express v in the argument of ¢ using (4.2.21). When we substitute Pyu to each occurrence
of u, we get the second term in the right hand side of (4.2.39) according to (4.2.36). When we
substitute to one u the Op(&¢(u;-))u term of (4.2.21), we obtain according to corollary 3.3.6 (i)
a contribution to (4.2.49) which may be written

(4.2.50) ([Op(c(u; ) Do + DgOp(c(u; -))]a, @)

where ¢ is a new symbol in i?\}gl for some v independent of d, of valuation v(c) > p+£. Moreover,
by (4.2.34), ¢ may be written as ¢ = ¢ + ¢’ where ¢ is block diagonal and ¢’ € i?\,_ol’yl. The
contribution of ¢’ to (4.2.50) is again of form (4.2.43) since the sum of the orders of the involved
symbols is d, and the total valuation is at least p + k. Since Dy = Dj + Dy according to

(4.2.23), (4.2.24), (4.2.11), where D{(n) = iwp(n) [IK&”) ‘ ] and Dy is of order —oo, the

_IK/(n)
contribution of Op(c/(u;-))Do + D§Op(c (u;-)) gives again a contribution to the last four terms
in (4.2.39). Finally, we are left with

([Op(¢(us ), Dol i)

which may be treated like (4.2.48), since ¢/ (u;-) commutes with D{(-), and has valuation at least
p + k. This concludes the proof of the proposition. O
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Proposition 4.2.5 Let v € Ry. There is V' € Ry and for any pe N*, d e R, M € Rg’y, there
are operators Ry € R4 Ry € RO with v(Ry) > k4 p, v(Rg) > k + 1 such that for any
smooth enough u solving equation (4.2.13)

d P . N o
M, u),u) = > (PsM(Pyi,..., PyDyi, ..., Pyil), i)
(4.2.51) 7=l

— (Do Py M (Pot, . .., Pyti), @)

+ (Ry(u),u) + (M (u,...,u), Ro(u)).

Proof:  We compute first M(Cfl—?,u, ...,u) using formulas (4.2.21) and (4.2.27). The term in @
coming from these formulas brings the term indexed by j = 1 in (4.2.51). In the same way,
when we use (4.2.21) and (4.2.27) in (M(u,...,u), Cfl—?> we get the second term in the right
hand side of (4.2.51). The contribution to (M (%%, u,...,u),u) or (M(u,...,u), %) coming from
the remainders in (4.2.20), (4.2.21), (4.2.27) contribute to the last two terms in (4.2.51), by

corollaries 3.3.6 (iii) and 3.3.7. This concludes the proof. O

4.3 Refined energy inequalities and proof of the main theorem

The objective of this subsection is to prove proposition 4.3.1 below, which will imply theo-
rem 1.1.1. Remind that we defined in (4.2.14) for a solution u of equation (4.2.4) the quantity
O§(u(t,-)) which, as long as |Ju(t,-)| gs remains small enough, is equivalent to ||u(t,-)||%.. We
shall see that £©3(u(t,)) may be written essentially as (Op(a(;-))i, @) for a symbol a of order
2s and valuation k. We shall next find a correction ©%(u(t,-)) so that %(@S(u(t, ) =05 (u(t,-)))
may be written as (Op(b(w;-))u, a) with b of order 2s and valuation » — 1 > k. This gain on
the valuation will give us the long time existence result we look for. The correction ©F will be
constructed solving an equation on symbols involving the right hand side of (4.2.39). This is
the main technical part of this subsection.

Let us first recall some notations, and a result of [10] that will play a crucial role. Remind from
subsection 1.2 that the large eigenvalues of P = v/—A + V come by pairs w_(n) < wy(n) having
the same asymptotics (1.2.1). We denote as before by w(-) a symbol on Ry with asymptotics
(1.2.1) at infinity. We fix a large enough integer 7 so that the spectrum H of P may be written

“+oo
(4.3.1) H=MnI)u |J (KNI,

n=1t+1

where for n > 7 +1, I, are disjoint intervals of length O(n~°°) centered at w(n) and containing
w—(n) and w(n), and where I, contains the small eigenvalues. We set H = H U {w(n);n € N},
and write for H a decomposition of form (4.3.1). The decomposition of L2(S!,R?) associated
to (4.3.1) is given by (4.2.5). Let us recall a special case of proposition 2.2.1 of [10]. We use

notation (2.1.5).
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Proposition 4.3.1 For any& € H (or ﬁ), denote by n(§) the unique n € Ny such that § € L.
Let p be an odd positive integer. There is a zero measure subset N of ]0,+00| such that for any

€]0,4o00[—N, there are ¢ > 0, Ng € N, so that for any &,....{p+1 € H (or H), any
0<g<p+1

q p+1
(4.3.2) S 3 w2+ = (o) nlgpi)) T

j=0 J=q+1

From now on, we fix a value of m outside N, and so an integer Ny. We shall state and prove
a proposition relying on division by quantities of form (4.3.2). We need first to introduce some
notations. If a is a paradifferential symbol, a € ydv ‘No» remind that for any wui,...,u, € &,
no, Np+1 € Ny, a(ui, ..., up;no, npt1) is a K(ng) x K(np+1) matrix, where for n € N, K(n) is
an even integer (and K (n) =4if n > 741). We can write a block decomposition of a involving
K (no)/2 lines and K (np41)/2 columns

(4.3.3) [* *}.
We shall consider the following two assumptions

(Hp) In (4.3.3) each block outside the diagonal is zero.
(Hyp) In (4.3.3) each block on the diagonal is zero.

In accordance with notations (4.2.36), if ¢! is a symbol in Z;l’VNO we shall set

El(ul, e Upi N, Npg1) = cl(Poul, ooy Poup;ng, npy1)
4.3.4 P
( ) cbo(ul,...,up;no,npﬂ) :ch(Poul,...,PoDouj,...,Poup;no,np+1).
j=1

Proposition 4.3.2 Let v € R,. There is v/ € Ry such that for any d € R,p € N odd, a €
Zi N, Satisfying assumption (Hp) (resp. assumption (Hyp)), we may find a symbol cte Zp No

satisfying (Hp) (resp. a symbol c' € Ed Ly satisfying (Hyp)) such that
(4.3.5)
c}jo(ul, e Upi N, Npge1) + El(ul, ey Upi N, Npt1) Do (Npg1) — Do(no)él(ul, ey Up N, Npt1)

= a(ula cee Ups nOvnp-i-l)-

Before starting the proof, let us introduce some notations. We shall denote by Zd’V , (V) the space
of functions a of type (2.1.10) satisfying condition (i) of definition 2.1.1 for some 5 €]0, 1] small
enough, and inequalities (2.1.12) only when oo+ S+~ < N. We endow this space Wlth the norm
la |Z’IZJV0 N given by the best constant in inequality (2.1.12). Of course, EzZVNO Ny Z, No( ). If
ct e Z O(N) we denote by L(c!) the symbol defined by the left hand side of (4.3.5). Remind
that by (4.2.23), (4.2.24), (4.2.11), the matrix Do(n) = D(0,n) may be decomposed as
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where Dy(n) is a symbol of order —co. When n = 7, we may take Dj(r) = 0. We then
decompose

(4.3.7) L(c') = Lo(c") + Li(cY)

with, if U = (u1,...,up),
(4.3.8)
Lo(c")(U'sn0,mp41) = cpy (U300, np41) + (U’ 0, npp 1) Dy (1) — Dy(no)é (U'sng, 1)

and

A~

(4.3.9) Li(c") (Um0, np11) = & (U’ 0, nps1) Do(npy1) — Do(no)e (U's o, npya)-

Remark that L; sends Ez’]'j\,o (N) into E;?VOO’O(N) since Dy is of order —co. On the other hand, if
c! satisfies condition (Hp), ¢! (U’;ng, npt1) commutes when ng,np11 € Ny1q to Dfj(ng) whence

(43.10)  Lo()(U'sno,nps1) = chy (Um0, mpin) + E-(U's 0y ny1) (Dh(npe1) — Dh(no)).

Remark that because of definition (4.2.10) of wyy,, wp (npt1) —wm (no) satisfies when |n,11 — ng| <
+(np41 + no) inequalities (3.3.15). This shows that if

Z’z:}’vo ={ac€ EZ:]VVO; a satisfies (Hp)}

e e (N) = S N S5 (),
then Lo sends X'0'% (N) into X0 (N — 1),
If ¢! satisfies assumption (Hyp), then for ng, Np+1 € Noyq,
& (U"sng, np11) Dy(no) = —Dy(no)e (Um0, np41)
whence
(4312)  Lo(e)(U'imo,mpi1) = ey (U mo,mpa) + & (U'smo,mp 1) (Dh () + Dp(no)).
If we define

B0, = {a € B0%, s satisfies (Hyp)}

d, d, d,
EHPJVVO (N) = Z”p,y]\fo n EPJVVO (N),

(4.3.13)

we obtain that L sends Z”z:?vo(N ) in sz\};’(]\f ). Let us prove the following lemma:

Lemma 4.3.3 (i) For any d € R,v € Ry,p € NN € N, the operator L is injective on
S (V).

(ii) Let F' be a subspace of Eg:}’vo(N) such that there is a finite subset K of N x N so that

for any a € F, a(-;n0,npt1) = 0 if (ng,npt1) € K. Then F is stable by L and L : F — F is
bijective.
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Proof: (i) We denote by II,, the spectral projector on the space E,, of the decomposition (4.2.5)
of L?(S;R?). We shall use the notation II/, for the similar projector acting on L%(S;R). For
every n, we denote by (w(n,f)), the K'(n) eigenvalues of the restriction of P = v—A +V to
the range of IT/, acting on L?(S';R). We choose an orthonormal basis of that range made of
eigenfunctions of P associated to these eigenvalues (this is not in general a nice basis). We write

(4.3.14) m, =Y 1"

l
the corresponding decomposition of IT/,. The sum in (4.3.14) is finite, and for n > 7+ 1 made of
only two terms as the range of II/, is two dimensional. We set wy,(n,f) = y/m? + w(n, £)? and
we have
(4.3.15) A Il = Wy (n, T

and (wm,(n,?)), are the eigenvalues of the matrix \,,(n) defined in (4.2.11). We define

(4.3.16) Ty (n) = PK(’;") 8] L J(n) = [8 IK?(n)] L J(n) = Jo(n) = J_(n)

and set

s, 0 0 0
H£7+:[ ' }’Hé,_:[ ]’
" 0 of”"™ 0 I

Ir. o 0 O
+ _ n - _
mi= [ o m=fo ]

so that IT,, = I} + 1T, and, denoting by Dy the operator with symbol Dy(n) given by (4.2.23),
(4.2.24),

(4.3.17)

(4.3.18) DolT5* = diw,, (n, OI5E.
By (4.3.6), we have also

(4.3.19) DUITE = Hiw,, (n)ITE.
Remind the map F, : L2(S';R?) — RX(™ defined by (2.1.6) and set
(4.3.20) 5% = F o llS* o FF, TIE = F o [T o Fr

These are projectors on R¥(™ and we have

Do(n)II5* = TS+ Dy (n) = iwy, (n, £)IIHF

(4.3.21) Lo _
D}(n)IIE = TIE DY (n) = Fiw, (n)IIE,

Let ¢! € EZ:}/VO (N) be such that L(c!) vanishes identically. Compose L(c!) (given by the left
hand side of (4.3.5)) on the left by T and on the right by IIZ"1"*' | and evaluate it at

Np+1

AR 01, Ly,e
U = (M, T ,)
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where ¢; € {+,—-} j=0,...,p+ 1. We get

p
T4 s 1 41, L €5 Lp,€ . ~lpt1,€p+1
E HnOOGOC (P()Hnllqul, e ,P()D()Hn]]. ]’LLj, ce ,P()anp pup, no, np+1)anp+1 P
Jj=1
740,60 .1 01, lpep, . lp+1,€p+1
HILY O (Pl M ug, . ., Polly) Pup; no, np1) Do (np 1) I, 7
100, 1 £1,€ Lpsep, . lp+1,€p+1 _
o L °Dy(ng)e (Pol_lnl1 Yy, . Pollyl P upy ng, npe)ILDLTT = 0.

Using (4.3.18), (4.3.21) we may write this as

p+1
. = ~ ! e lp+1, —
i( E €jwm(nj, ;) — eowm(no,fo))ﬂﬁ%’eocl (Hf;,’E U'sng, np 1) ILEEPH = 0.
J=1

Condition (4.3.2) shows that for m outside N, the scalar coefficient above never vanishes, which
implies ¢! = 0, whence ¢! = 0. This proves (i) of the lemma.
To prove (ii), we remark that if a € F is given, we may define ¢! € F with L(c!) = a by

T4 ~1 7l € 7. ~lpt1,€pt1
Hn%’EOC (Hn’ UanO,np—i-l)H p+1:¢p+1

Np+1
p+l _1 ! ! e
. 140,60 ~ e 11, 1ép+1,€p+1
- z( E €jwm(nj, ) — eowm(no,ﬁo)) IL2a(Il ;" U'sng, npy)IL5 7
Jj=1

Since by definition of F', ng,n,4+1 stay in a bounded set of indices, the estimates of definition of
a symbol hold true trivially. O

Proof of proposition 4.3.2: Using notations (4.3.11), (4.3.13), we shall construct operators
—1 . yvdyv 1d,v+Ng
L : E p7N0 - E P7N0

-1, ywdyv nnd—1,v+Ny
L% p.No % p,No

(4.3.22)

such that Lo L™! = Id. This will give the wanted conclusion. It will be enough to construct for
any N

- d, d,v+N,
Lyt 0% (N) — SR (v 4 1)

Ly R (V) = D T ()

(4.3.23)
such that Lo Ly' @ % (N) — /@Mt (N) and Lo Lyt + 2785 (N) — xmbi iMoo
coincide with identity. Actually, since L is injective by lemma 4.3.3,
~1 _r-1 ~1 _r-1
Ly ‘E’z:’;VO(N+1) =Lyt Ly ‘E”Z:’I’VO(N+1) =Lyt
which allows us to define L™! satisfying (4.3.22).

If Ay > 0is a constant to be chosen, we decompose

Sy (V) = Fy @ % (N, Aw), 5570 (N) = F @ 5757 (N, A)
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where Fy, F; is the subspace made of symbols a satisfying a(-; ng, np41) = 0 for ng+mnp1 > An.
By (ii) of lemma 4.3.3, it is enough to construct

- d, d,v+N,
Lyt X0 (N, Ax) — SO (N 41, Ay)

(4.3.24)
Lyt S0 (N, Ay) — D70 0N (N, Ay)

for Ay large enough. Remind decomposition (4.3.7) of L, and let us construct first an inverse
L(;,le to Ly. We take a respectively in E’;lZVNO(N, Ap) or E”Z:IZJVO(N7 Apn) and look for ¢! in the
right hand side of (4.3.24) with Lo(c') = a. We use expressions (4.3.10), (4.3.12) for Lg(c!).
If we compose on the right with J. ., defined in (4.3.16) and evaluate Lo(c') at Hfb,’e U =

(Hf}l’elul, . ,Hf{;’éy up), we get respectively the equalities
E/ ! - él /
CIDO (Hn/’e U” nO’ np+l)J€p+1 + Cl (Hn;E U” TLO, np+1)(D6 (np+l) :F ‘D(I) (no))J€p+1
6/7 /
=a(IL,; U'sno, npy1)Je, .y -

Using (4.3.4) and (4.3.18), (4.3.21) we see that we may define ¢! by

(4.3.25)

"~ . 617 _ gl’ /

cl(Hn/U’;no,an) =— Z iF (noy- .-, npt1) 1a(Hn/€ U';no,npﬂ)Jep+1

(61761)"“7(ZP76P)7EP+1
where the sum is taken for £,...,¢p,€1,...,€,41 in a set of bounded cardinal, and where
e _ . y
+ (o, npi1) = Z'fjwm(”w i) T epr1(Wm(nps1) F wm(no)).
j=1

It is enough to check that each term in the sum (4.3.25) belongs to the right hand side of
(4.3.24). Remark that F%* is a function of type (3.3.10) that satisfies (3.3.11): if |ng — npq1|
is large relatively to |n/|, this follows from the fact that w,,(n) = n+ O(1/n),n — +oo. If
|ng — np41| < C|n'| this is a consequence of proposition 4.3.1. By inequalities (3.3.12), in the case
of sign — in (4.3.25), we see that ¢l is a symbol in E’Z:;’V—ENO (N +1, Ay) (taking eventually for Ny
a larger value than the one of (3.3.11)). In the case of Ff’e, we remark that it satisfies (3.3.13).
So (3.3.12) will be controlled in terms of (3.3.14). This implies that for a € E”z:]”VO(N, An),
(4.3.25) defines a symbol ¢ in E”Z’_A}O’WFNO (N, Ay). Consequently we have defined a bounded
inverse L I to Lo, acting on space (4.3.24). To define L' as

Lyt = (Lo(ld + Ly L)~ = (Id + Lo N L) Lo iy

we just need to check that the operator norm of Ly y o Ly from E’i’]”VJgNO(N + 1,An) (resp.

Z”Z_]\}()’VJFNO(N ,AN)) to itself is smaller than one if Ay is large enough. But we have seen that
Ly sends Zzlf,o(N) to E;?VOO’O(N) for any d’. By definition (4.3.9) of L, the same is true for the

> or X" spaces, so the operator norm of L ]1\, o L1 on the above spaces is bounded from above
by Cn/An, where Cy > 0 in independent of Ay (it suffices to extract from the gain on the

order coming from L; a factor < ﬁ) The conclusion follows for large enough Ay. O

1
no+np+1 —

We shall need also a result, similar to proposition 4.3.2, but for remainder operators.
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Proposition 4.3.4 Let d € R, let p € N an odd number and v € Ry . For every M € Rp—i-l

there is My € Rd ”+N° such that for any uq,...,up11 €€

(4.3.26)
p+1

ZP§M1(POU1, s PoDoug, . .. Poupy1) — Doy My (Poua, ..., Poupi1) = M(u, .., upy).
j=1

Proof: 'We use notations (4.3.17). We compose on the left (4.3.26) with Hﬁ%’ﬁo and replace u; by
4

1L Juj, for any possible values of ng, ..., npq1, o, .- lps1, €05y €pr1- HU = (ug, ..., upt1),
n = (nl, .. Tlp_H) { = (fl, .. Ep—i—l) = (61, . 76p+1) we set
Lerr l1,€ Lpt1,€6p+1
U = (T g, TR P, ).

Using (4.3.18) we see that (4.3.26) may be written

p+1

-1
100 Py My (P14 U ) = —z(Z jm(ng, £) = cowm(no, o)) T M(IIU)
so that
p+1 o
I, Py My (IL,U) = —i 3 (Z ¢jwm(ng, b;) — eowm(n0,€0)> %< M (114 Py 'U)
(Z07€0)7"'7(ZP+17€P+1) j:1

where the sum is taken for fp,...,¢p11, €o,...,€p41 staying in a bounded set of indices. By
proposition 4.3.1 the first factor in the sum is bounded from above by Cu(nyg,... ,np+1)N0. If
we use that M satisfies estimates of type (2.1.15) the same is true for My, with v replaced by
v + Ny, since p(ng, ..., np+1) < maxa(ni,...,np41). This concludes the proof. O

Proof of theorem 1.1.1: 'We wrote equation (1.1.4) under the equivalent form (4.2.4) or (4.2.13).
It is enough to show that there is sy large enough, such that if s > sg, there is Cs > 0 and
Ry > 0 so that, if u(t,-) is a solution of (4.2.4) defined on some interval [0, 7], with Cauchy data
in H®, one has for any ¢ € [0, 7]

(4.3.27) ;s < Calllu(0, )l + /Hu Mo llu(r, )17 dr]

as long as ||u(t, )| gs0 < Rp. Actually, applying (4.3.27) with s = s¢, assuming ||u(0, )| gs0 < €
and taking Ry = (2050)1/ 2¢, we see that we may extend the solution as an H*° function up to
ST — o€ "L If the Cauchy data are H® with s > s, the solution is also in

time tg = 261

H? on the same interval. It will be bounded in H* on an interval of length 5 RO Tl = e

Because of (4.2.16), we may in (4.2.27) replace ||u(t,)||%. by ©§(u(t,-)). Moreover, if in the
right hand side of (4.2.17) we replace Op(c(u;-)) by

(43.28) 510D (e(u: ))OP((1 +ay)(u5-)) +Op((1 +ay)(us ))Op(e(us )]
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we make appear an error that may be written by corollary 3.3.5 (i) (Op(e(u;-))a, @), where e is

a symbol in i%s’yl for some v/ independent of s, of valuation v(e) > 2k > r — 1. Consequently,
by proposition 2.1.3 and (4.2.22)

1Op(e(us ))all - < Ol lull s

if s > s, and sp is large enough relatively to v’. We thus see that if we modify the definition of
O} replacing in (4.2.17) Op(c(u;-)) by (4.3.28), we still get a quantity equivalent to ||u|%. when
||u|| =0 is small enough. We may thus assume from now on that

(4.329)  Og(u) = <[Op(( DOD((L + ax)(u; ) + Op((1 + ay) (us )" Op(c” (us )], @)

for a scalar self adjoint symbol 0 € £3%”

0

, and ¥ satisfying condition C(x,r) of definition 3.3.2.
We may decompose ¢’ as a finite sum of homogeneous symbols c € 228 " Remark that the
contributions coming from the components homogeneous of degree P 2 r — 1 give again a
contribution to ©F(u) which is O(||u|sss [[ul|%.). Modifying again the definition of ©F, we may
thus assume

Since ¢ satisfies C'(k,7), terms indexed by even p’s in the above sum are zero. We compute the
time derivative of (4.3.29) applying to each homogeneous component proposition 4.2.4. Remark
that assumptions (4.2.34), (4.2.35) are satisfied since ¢ is scalar and self-adjoint. We get, by
(4.2.39)

L 4 ult, ) =(Op(c, (1)) )

+ ([Op(&°(it; -)) Do + DGOp(&(
+ (Op(e°(@; )i, @) + (R°(@), @
+ (Op(f° (u; ))u, u) + (S°(u),u

0

u; ))ML 'L~L>

where €0 € f]if(;l/, foe f]if(;l/, R0, S0 ¢ R25V for some v/ independent of s, and with v(e®) > &,
v(f%) > 2k, v(R%) > Kk + 1, v(SY) > 2k + 1. Moreover these symbols and operators satisfy
condition C(,7). Because & is scalar since ¢ is, and D§ = —Dy, we get from corollary 3.3.5 (ii)
that the second duality bracket may be written (Op(b(w;-))a, a) for a symbol b € i%w for some
v independent of s. Moreover, since ¢’ satisfies condition C(x,7), c%o and b have valuation
larger or equal to x, and verify also C'(k,r). We may thus write

(13.30) 3 3(u(t, )) =(Op(g(iis )i i) + (R(a). )

for a new symbol g € i%s’l’ with v(g) > &, g satisfying condition C'(k,r). In particular, the
homogeneous components of order p of ¢ with xk < p < r — 1 vanish if p is even. For odd
p,k < p <r—1, we decompose the corresponding contribution g, as 91,7 + gg , Where gz’g satisfies
assumption (Hp) and g, satisfies (Hyp). By proposition 4.3.2, for each such p, we may find
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17 25,0 1nm 25—1,0/
¢ € EpJVo’ Cp € EP,NO

C}D = c;’ + C;// , when its right hand side is replaced by g,. In particular, these c; have the
structure (4.2.34), (4.2.35) which allows us to apply proposition 4.2.4. More precisely, define

for some v/ independent of s, such that (4.3.5) holds true for

O1(u) = % > (10p(ep(us )OP((L + ax)(us ) + Op((L + ay)(u; )  Op(ey(us )], @).
"edd
By (4.2.39) and (4.3.5) we have

d ., o~ ~
(4.3.31) L0i(u(t. ) = (Oplg(@ ), @) + (Op(F(u ), u) + (S (w), u)
where f! € f]?\‘;(;”l, St e R%V for some v/ independent of s, with v(f1) > 2x, v(S!) > 2k + 1.
(We merged in f! and S! the contributions coming from the last four terms in (4.2.39) using
again (4.2.20) to express @ in terms of u).

Let us define also a perturbation to get rid of the <R~0 (@), ) term in (4.3.30). We may decompose
R’ = RY + R® with R =} R 41 and RO € R?$" of valuation larger or equal to 7,

k<p<r—1-""p
0 2s,0'
and where RpJrl IS Rp+1

Define M, 11 as the solution of equation (4.3.26), when the right hand side is replaced by Rg 11

Then My € R;‘il{ N0 and if we set

and the sum is indexed by odd p (since R? satisfies condition C(x,7)).

O5(u) = Y (Myya(u,...,u),u)
K<p<r—1
p odd

it follows from proposition 4.2.5 that
d ., .
(4.3.32) 7 92(ult, ) = (RO(@), @) + (R (w),u) + Y (Mppa(u,...,u), Rpyq(w)

K<p<r—1
p odd

where R! € R2s+1v" R127+1 € R%" for some v" independent of s and v(R!) > 2k +1 > r,
v(R2,,) > k + 1. Combining (4.3.30), (4.3.31), (4.3.32) we get

P
%[@S(u(t ))=01(ult, ) — O5(ult, )] =
. (OB((1° — 1)1 )t ) + (S°(w) + (@) — S (w) — B (w), )
_ Z (Mpt1(u, ... u), R§+1(u)>.
" add

The right hand side is bounded from above by

ClIOP((f” = 1w Null g llull s + 118 (u) + BO(@) — S*(w) = R ()| s [l s
(4.3.34) ) My (a0l Ry ()] 1]

K<p<r—1
p odd
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By proposition 2.1.3, and using that v(f°) > 2k, v(f') > 2k, there is some sg, depending on v/
but not on s, such that when s > sg the first term in (4.3.34) is bounded by CHUHHSO |ul/%s, as
long as ||u]| s < 1. In the second term of (4.3.34), $°, 5, R*, R® belong to R%=+1+" for some 1"
independent of s, and have valuation larger or equal to . By lemma 2.1.7 and inequality (2 1.19),
for s large enough relatively to ", the second term in (4.3.34) is controlled by C'||ul|%e ||u/|%s-
Since R2,, € RO with v(R2,,) > £+ 1, lemma 2.1.7 implies ||R2, ; (u)||ms < C|lullFslull ms

2s,0"

for some sq large enough. Since My € Rp with " independent of s and p +1 > k + 1,
the same lemma gives the estimate |M(u,...,u)||g-s < C|lul/%so|lullmsif so is large enough
(independently of s), and ||ul|gs0 < 1. Finally we get for (4.2.34) an upper bound in terms of

Cllullggeo llul s
using that 2k > r — 1. It then follows from (4.3.33) that for ¢ > 0
Op(u(t, ) — O1(u(t,-)) — O5(u(t,-)) <

4.3.35
339 ©5(u(0,-)) = O1(u(0,-)) — O3(u +C/Hu Mo llur, s dr

when s > sg large enough and when for 0 <t <t, ||u(¥,-)||gs0 < 1. Again by proposition 2.1.3
and lemma 2.1.7, we get when ||u(t, )|/ gs0 < 1

(4.3.36) 103 (u(t, )| + 103 (u(t, )| < Cllult, )IFzso lult, )l

Inequality (4.3.27) follows from (4.3.35), (4.3.36) when |u(t’,-)||gso stays small enough on the
interval [0, ¢]. This concludes the proof. O
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