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For general risk processes, the expected time-integrated negative part of the process on a xed time interval is introduced and studied. Dierentiation theorems are stated and proved. They make it possible to derive the expected value of this risk measure, and to link it with the average total time below zero studied by Dos Reis [1], and the probability of ruin. Dierentiation of other functionals of unidimensional and multidimensional risk processes with respect to the initial reserve level are carried out. Applications to ruin theory, and to the determination of the optimal allocation of the global initial reserve which minimizes one of these risk measures, illustrate the variety of application elds and the benets deriving from an ecient and eective use of such tools.

Introduction

For unidimensional risk processes R t = u + X t (representing the surplus of an insurance company at time t, with initial reserve u and with X t = ct -S t , where c > 0 1 {u+Xt<0} dt using Gerber's work [START_REF] Gerber | Mathematical fun with ruin theory[END_REF].

All these random variables are drawn from the innite time ruin theory, or involve the behavior of the risk process between ruin times and recovery times. It seems interesting to consider risk measures based on some xed time interval [0, T ] (T may be innite).

One of the simplest penalty functions may be the expected value of the time-aggregated negative part of the risk process:

E(I T ) = E   T 0 1 {Rt<0} |R t |dt   .
Note that the probability P (I T = 0) is the probability of non ruin within nite time T. I T may be seen as the penalty the company will have to pay due to its insolvency until the time horizon T. From an economical point of view, it seems more consistent to consider

I g,h (u) =   T 0 1 {u+Xt≥0} g(|u + X t |) -1 {u+Xt≤0} h(|u + X t |) dt  
with 0 ≤ g ≤ h, where g corresponds to a reward function for positive reserves, and h is a penalty function in case of insolvency. As for utility functions, g and h should be both increasing and convex in the classical case. g ≤ h because usually the cost of ruin is higher than the reward of the opposite wealth level.

These risk measures may be dierentiated with respect to the initial reserve u, which makes it possible to compute them quite easily as integrals of other functions of u such as the probability of ruin or the total time in the red. Moreover, they have the advantage that the integral over t and the mathematical expectation may be permuted thanks to Fubini's theorem.

Dierentiation of some functionals of risk processes 3 Statement and proofs of dierentiation theorems can be found in sections 1 and 2.

Section 3 presents examples of applications to unidimensional risk measures, in particular a closed-form formula is derived for E(I ∞ (u)) in the Poisson-exponential case.

One can also use these concepts to construct risk measures for multidimensional risk processes, modelling dierent lines of business of an insurance company (car insurance, health insurance, ...). In this framework, determining the needed global initial reserve for the global expected penalty to be small enough requires to nd the optimal allocation of this reserve. Dierentiation of unidimensional risk measures are useful to nd this optimal reserve allocation. All this is illustrated in section 4.

Dierentiation theorems

Theorem 1. Let (X t ) t∈[0,T ) be a stochastic process with almost surely time-integrable sample paths. For u ∈ R, denote by τ (u) the random variable corresponding to the time spent under zero by the process u + X t between the xed times 0 and T:

τ (u) = T 0 1 {u+Xt<0} dt,
Let τ 0 (u) correspond to the time spent in zero by the process u + X t :

τ 0 (u) = T 0 1 {u+Xt=0} dt.
Let I T (u) represent the time-integrated negative part of the process u + X t between 0 and T: (u) represents the time spent by the process u + X t in the interval ] -ε, ε[ between dates 0 and T.

I T (u) =   T 0 1 {u+Xt<0} |u + X t |dt   and f (u) = E(I T (u)). For u ∈ R, if Eτ 0 (u) = 0, then f is dierentiable at u, and f (u) = -Eτ (u). I T (u) is illustrated by gure 1. Proof. Fix u ∈ R. For ε ≥ 0, set τ ε (u) = T 0 1 {|u+Xt|<ε} dt. 4 Stéphane Loisel τ ε
For each sample path (considered as a function of time t), t → 1 {|u+Xt|<ε} pointwise converges, decreasingly to

t → 1 {u+Xt=0} .
Besides, each of the integrals of the indicator functions is bounded by T. From the monotone convergence theorem, τ ε is decreasing with respect to ε and surely converges to τ 0 .

From the monotone convergence theorem (for mathematical expectation this time),

Eτ ε ↓ Eτ 0 as ε ↓ 0, because for all ε ≥ 0, Eτ ε ≤ T . Lemma 1.1. For ε ∈ R, |I T (u + ε) -I T (u) + ετ (u)| ≤ |ε|τ ε (u) Proof of the lemma. For ε > 0, {u + ε + X t < 0} ⊂ {u + X t < 0}, whence I T (u + ε) -I T (u) = T 0 (|u + ε + X t | -|u + X t |) 1 {u+Xt<0} dt - T 0 |u + ε + X t |1 {-ε<u+Xt<0} dt I T (u + ε) -I T (u) = -ε T 0 1 {u+Xt<0} dt - T 0 |u + ε + X t |1 {-ε<u+Xt<0} dt (1)
On the right side of (1), the left term corresponds to -ετ (u). The absolute value under the integral of the second term is less than ε on the support of the indicator function.

Hence |I T (u + ε) -I T (u) + ετ (u)| < T 0 ε1 {-ε<u+ct+St<0} dt,
which proves the lemma for ε > 0. A symmetrical procedure solves the case ε ≤ 0, which ends the proof of the lemma.

From lemma 1.1,

|EI T (u + ε) -EI T (u) + εEτ (u)| ≤ |ε|Eτ ε (u)
and

EI T (u + ε) = EI T (u) -εEτ (u) + εv(u, ε)
where

|v(u, ε)| ≤ Eτ ε (u) → Eτ 0 (u) = 0
as ε → 0, which proves that f is dierentiable with respect to u and that for u ∈ R,

f (u) = -Eτ (u).
Corollary 1. Using notations of theorem 1, let X t = ct -S t , where S t is a jump process such that, almost surely, S t has a nite number of nonnegative jumps in every nite interval, and that X t has a positive drift (X t → +∞ a.s.). Then f dened by

f (u) = E(I T (u)) for u ∈ R is dierentiable on R, and for u ∈ R, f (u) = -Eτ (u). Proof. Only Eτ 0 (u) = T 0 1 {u+ct-St=0} dt = 0
has to be shown. R t = u + ct -S t is a process whose sample paths are almost surely increasing between two consecutive jump instants. The number of jumps is almost surely nite on the time interval [0, T ]. Between two times when the process is in 0, there must be at least one jump instant. This implies that the number of visits of 0 is almost surely nite (it is less than N T + 1 where N T is the number of jumps between 0 and T).

So Eτ 0 = 0 and the result comes from theorem 1.

Proposition 1. More generally, all processes for which the distribution of R t is diuse for all t ∈ R + -N satisfy the condition Eτ 0 = 0, if N is a null subset of R + for the Lebesgue measure. Theorem 1 is also veried for this wide class of processes.

Proof. For T ∈ R, from Fubini's theorem, integrable with respect to t. Let I g be the function from R + into the space of nonnegative random variables, and dened by

Eτ 0 (T ) ≤ E +∞ 0 1 {Rt=0} dt = +∞ 0 P (R t = 0)dt which provides the expected result. Theorem 2. Let g ∈ C 1 (R + , R + ) be a convex function, such that g(0) = 0. Let X t be a stochastic process such that, for u ∈ R, t → g(u + X t )1 {u+Xt<0} is almost surely
I g (u) =   T 0 1 {u+Xt<0} g(-(u + X t ))dt   for u ∈ R and let f (.) = EI g (.). For u ∈ R, if f (u) < +∞, EI g (u) < +∞ and Eτ 0 (u) = 0, then f is dierentiable at point u, and f (u) = -E   T 0 1 {u+Xt<0} g (|u + X t |)dt   Proof. Fix u ∈ R. For ε > 0, {u + ε + X t < 0} ⊂ {u + X t < 0}, whence I g (u + ε) -I g (u) ε = T 0 g(|u + ε + X t |) -g(|u + X t |) ε 1 {u+Xt<0} dt - T 0 g(|u + ε + X t |) ε 1 {-ε<u+Xt<0} dt For t ∈ [0, T ], g(-(u + ε + X t )) -g(-(u + X t )) -ε 1 {u+Xt<0} ↑ g (-(u + X t ))1 {u+Xt<0}
almost surely as ε ↓ 0, from the increase of the rates of increase of convex functions.

From the monotone convergence theorem, for t ∈ [0, T ],

E g(-(u + ε + X t )) -g(-(u + X t )) ε 1 {u+Xt<0} → -g (-(u + X t ))1 {u+Xt<0}
From Fubini's theorem,

E T 0 g(u + ε + X t ) -g(u + X t ) ε 1 {u+Xt<0} dt → -EI g (u)
as ε ↓ 0, where

I g (u) = T 0 g (-(u + X t ))1 {u+Xt<0} dt Hence |f (u + ε) -f (u) + εEI g (u) + εw(u, ε)| ≤ E T 0 g(-(u + ε + X t ))1 {-ε<u+Xt<0} dt
with w(u, ε) → 0 as ε ↓ 0, and

|f (u + ε) -f (u) + εEI g (u) + εw(u, ε)| ≤ εEτ ε (u)E sup t∈[0,ε] g (t) EI g (u + ε) = EI g (u) -εEτ (u) + ε(v(u, ε) -w(u, ε))
where

|v(u, ε)| ≤ KEτ ε (u) → KEτ 0 (u) = 0
as ε ↓ 0, which proves that f is right-dierentiable at point u and that

f r (u) = E T 0 g (-(u + X t ))1 {u+Xt<0} dt .
With similar reasoning, f is left-dierentiable and f l = f r , which ends the proof.

Dierentiation of the average time in the red and other generalizations

Recall that the time in the red is the time spent by the wealth process below 0, between time 0 and some xed time horizon T:

τ (u) = T 0 1 {u+Xt<0} dt.
T is rst supposed to be nite. 

h (u) = - 1 c EN 0 (u),
where

N 0 (u) = Card ({t ∈ [0, T ], u + ct -S t = 0}).
Proof. Almost surely in ω, the number of jumps N (T ), and so N 0 (u), is nite.

Consider a sample path (X t (ω)) 0≤t≤T . Let R t = u + X t and denote by T i the i th jump instant. Dene

ε 0 (ω) = inf n≤N (T ),R Tn >0 R Tn
If N 0 (u) = 0, then dene

ε + = inf {u + X t , 0 ≤ t ≤ T } ∩ R + and ε -= -sup {u + X t , 0 ≤ t ≤ T } ∩ R -. ε -and ε + are almost surely positive. If |ε| < inf(ε + , ε -), then τ (u -ε) -τ (u) = 0,
and the following reasoning remains valid.

Otherwise, for 1 ≤ i ≤ N 0 (u), denote by t i the instant of the i th visit of R t in 0, and by t i the instant of the rst jump of R t after t i . The sample paths of the process R t are almost surely right-continuous, and the probability that R T = 0 is zero. So one may consider

ε 1 (ω) = min min 1≤i≤N 0 (u) c(t i -t i ), c(T -t N 0 (u) ) .
Then, for 0 < ε < min (ε 0 (ω), ε 1 (ω)),

{0 < u + ct -S t < ε} = N 0 (u) i=1 {]t i , t i + ε/c[} and so τ (u -ε) -τ (u) = T 0 1 {u-ε+ct-St<0} -1 {u-ε+ct-St<0} dt
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9 = T 0 1 {0≤u+ct-St<ε} dt = N 0 (u) k=1 ε c
Hence

τ (u -ε) -τ (u) ε → 1 c N 0 (u)
almost surely as ε → 0. Moreover, between two consecutive jumps of R t , the dierence between the two integrals is less than ε c in absolute value, whence

Ti+1 Ti 1 {0≤u+ct-St<ε} dt ≤ ε c .
So for ε > 0 small enough, with notations T N (T )+1 = T and T 0 = 0,

τ (u -ε) -τ (u) ε =   N (T ) i=0 1 ε Ti+1 Ti 1 {0≤u+ct-St<ε} dt   τ (u -ε) -τ (u) ε ≤   N (T ) i=0 1 ε ε c   ≤ 1 c (EN (T ) + 1)
Hence, from the dominated convergence theorem,

E τ (u -ε) -τ (u) ε → 1 c EN 0 (u)
as ε → 0. This proves that h is left-dierentiable on R + * , and that for u > 0,

h l (u) = - 1 c EN 0 (u).
With similar reasoning, h is right-dierentiable on R + * , and h l = h r . Hence h is dierentiable on R + * , and for u > 0, h (u) = -1 c EN 0 (u).

Remark 1. This provides the second-order dierentiate of EI T (.), which appears to be positive. EI T (.) is thus well strictly convex, which will be very important for the minimization in section 4.

Remark 2. This second-order dierentiate corresponds in the general case to the expectation of the local time L T (0) in 0 of the process u + X t up to time T:

L T (0) = lim ε↓0 1 2ε T 0 P (|u + X t | < ε)dt
For all ω and for ε > 0, the function

ω) → τ (u + ε, T ) -τ (u, T ) ε (ω)
is increasing with respect to T, and its limit expectation is equal to -1 c EN 0 (u, T ) as ε ↓ 0. From the monotone convergence theorem,

E lim ε↓0 τ (u + ε, ∞) -τ (u, ∞) ε = - 1 c EN 0 (u, ∞)
Remark 4. In innite time, the probability of ruin may be regarded as the expectation of the local time in 0 of the process (up to multiplication by a constant number).

Applications to the unidimensional case

Theorem 7. In the Poisson-Exponential(1/µ) case,

ψ(u) = (1 + µR)e -Ru , with R = 1 µ 1 -λµ c . Hence, for T = +∞, Eτ (u) = 1 + µR cR µRe -Ru and EI ∞ (u) = 1 + µR cR 2 µRe -Ru
Proof. This comes from a mere integration of the well-known formula for ψ(u), as the considered functions tend to 0 as u → +∞. Besides, as µ is the average claim

amount, R = µ -λ c and ρ = c-λµ c .
This method provides a way to get back the average total time in the red from the integration of the probability of ruin. Dos Reis [START_REF] Reis | How long is the surplus below zero? Insurance Math[END_REF] derived this result for Eτ (u, ∞)

by considering the number of ruins, and using the distributions of the length of the rst period in the red (until recovery), and of those of the following periods in the red, which had been derived by Gerber [START_REF] Gerber | Mathematical fun with ruin theory[END_REF].

Remark 5. Of course, it is possible to derive EI ∞ (u) for Gamma-distributed or phasetype-distributed claim amounts, as we know the probability of ruin in these cases. It is not developed here to keep it concise.

The with the Brownian case is also interesting. The local time of a standard Brownian motion W t in x is dened by

L t (x) = lim ε↓0 1 4ε t 0 1 {|Ws-x|<ε} ds
This provides a density for the occupation time Γ t (B) of a Borelian set B between 0 and t: 

Γ t (B) = B 2L t (x)
2L t (0) = lim ε↓0 εD t (ε)
where D t (ε) is the number of downcrossings of the interval [0, ε] by the process W s between 0 and t .

This well-known theorem might be viewed as a limit case of theorem 3.

Multidimensional risk measures and optimal allocation

For a unidimensional risk process, one classical goal is to determine the minimal initial reserve u ε needed for the probability of ruin to be less than ε.

In a multidimensional framework, modelling the evolution of the dierent lines of business of an insurance company by a multirisk process

(u 1 +X 1 t , . . . , u n +X n t ) (u i +X i t
corresponds to the wealth of the i th line of business at time t), one could look for the global initial reserve u which ensures that the probability of ruin ψ satises

ψ(u 1 , . . . , u n ) ≤ ε
for the optimal allocation (u 1 , . . . , u n ) such that

ψ(u 1 , . . . , u n ) = inf v1+•••+vn=u ψ(v 1 , . . . , v n ) with ψ(u 1 , . . . , u n ) = P (∃i ∈ [1, n], ∃t > 0, u + X i t < 0).
Instead of the probability of crossing some barriers, it may more interesting to minimize the sum of the expected cost of the ruin for each line of business until time T, which may be represented by the expectation of the sum of integrals over time of the negative part of the process. In both cases, nding the global reserve needed requires to determine the optimal allocation. It has just been shown in the previous sections how to compute E(I T ) for one line of business, and the linearity of the expectation makes it possible to compute the sum for n dependent lines of business just as in the independent case. The structure of dependence between lines of business has no impact on this risk measure. This may be considered as a problem of optimal allocation of resource under budget constraints as in economics, the goal being to maximize the utility function given by the opposite of the sum of the E(I i T ).

Minimizing the penalty function

Recall that what has to be minimized is

A(u 1 , . . . , u n ) = n i=1 EI i T
where

EI i T = E T 0 |R i t |1 {R i t <0} dt with R i t = u i + X i t under the constraint u 1 + • • • + u n = u.
This does not depend on the dependence structure between the lines of business because of the linearity of the expectation. Denote v i (u i ) the dierentiate of EI i T with respect to u i . Using the Lagrange multipliers implies that if

(u 1 , . . . , u n ) minimizes A, then v k (u k ) = v 1 (u 1 ) for all 1 ≤ k ≤ n. Compute v i (u i ): v i (u i ) = E T 0 |R i t |1 {R i t <0} dt = -Eτ i = - T 0 P {R i t < 0} dt
where τ i represents the time spent in the red between 0 and T for line of business i.

The dierentiation theorem of the previous section justies the previous derivation.

The sum of the average times spent under 0 is a decreasing function of the u i . So A is strictly convex. On the compact space

S = {(u 1 , . . . , u n ) ∈ (R + ) n , u 1 + • • • + u n = u},
A a unique minimum. The optimal allocation is thus the following: there is a subset J ⊂ [1, n] such that for i / ∈ J, u i = 0, and for i, j ∈ J, Eτ i = Eτ j . The interpretation is quite intuitive: the safest lines of business do not require any reserve, and the other ones share the global reserve in order to get equal average times in the red for those lines of business.

Relaxing nonnegativity, on {u 1 + • • • + u n = u}, if (u 1 , . . . , u n ) is an extremum point for A, then for the n lines of business, the average times spent under 0 are equal to one another. If it is a minimum for the sum of the times spent below 0 for each line of business, then the average number of visits are proportional to the c i , and in innite time the ruin probabilities are in xed proportions. However the existence of a minimum is not guaranteed, because (u 1 , . . . , u n ) is no longer compact. It would be more tractable with the average time in the red or with minimization on the c i , because some factors penalize very negative u i in these problems.

Example

In the Poisson-Exponential( 1 µ ) case, recall that

EI u = 1 + µR cR 2 µRe -Ru .
Consider a two-line-of-business model, with the following parameters: A mere modication of the parameter µ 1 makes the optimal allocation strongly vary.

µ 2 = 1, c 1 = c 2 = 1, R 1 = 0.2, R 2 = 0.
When µ 1 = 1 (Figure 2), the optimal allocation is about (u 1 = 6.409748867, u 2 = 3.590251133). When µ 1 = 10 (Figure 3), the optimal allocation is (u 1 = 0, u 2 = 10).

In the second case, line of business 2 is much more risky than line of business 1, which justies the transfer of the whole global initial reserve to line of business 2. Here, the Lundberg exponents are the same in both cases, and heavier claims (with a smaller frequency) are more risky, and the line of business requires a higher initial reserve. For more properties or examples about optimal reserve allocation, the interested reader may consult [START_REF] Loisel | Finite-time ruin probabilities in the Markov-Modulated Multivariate Compound Poisson model with common shocks, and impact of dependence[END_REF]. where

Eτ i (u) = E T 0 1 {R i t <0} 1 { n j=1 R j t >0} dt .
B takes dependence into account, and the following proposition prescribes to do the same kind of reasoning:

Proposition 2. Let X t = ct -S t , where S t satises hypothesis (H1) of theorem 3.

Dene B by B(u 1 , . . . , u n ) = n j=1 E(τ j (u)) for u ∈ R n . B is dierentiable on (R * + ) n , and for u 1 , . . . , u n > 0,

∂B ∂u i = - 1 c i EN 0 i (u),
where

N 0 i (u) = Card {t ∈ [0, T ], R i t = 0 ∩ n j=1 R j t > 0 } .
It is also possible to dierentiate with respect to c instead of u.

Theorem 9. With notations of theorem 1, consider the case X t = ct -S t , where S t satises hypothesis (H1) of theorem 3, and dene f (c) = E(I(c)).

If all c, Eτ 0 (c) = 0, then f is dierentiable on R and for c ∈ R,

f (u) = - T 0 tP (R t < 0)dt.
It is interesting to look for the optimal allocation of the global premium c = c 1 +• • •+c n because if c i is small enough to make the safety loading negative, the process R i t tends to -∞. Quite often, optimizing with the c i will be easier than with the u i for this reason. These examples illustrate how these dierentiation results may be used.

The dierentiation developed here is quite general and may be useful to solve many problems involving multirisk models. For a discussion about multidimensional risk measures, optimal allocation procedures, and impact of dependence between lines of business, the interested reader may consult Loisel [START_REF] Loisel | Finite-time ruin probabilities in the Markov-Modulated Multivariate Compound Poisson model with common shocks, and impact of dependence[END_REF].
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	8	Stéphane Loisel
	Theorem 3.	

Stéphane Loisel

Theorem 4. Let g, h be two convex functions in 1 (R + , R + ), such that for x ≥ 0, g(x) ≥ g(0) and h(x) ≥ h(0). Let X t be a stochastic process such that t → g(u + X t ) and t → h(u + X t ) are almost surely integrable on [0, T ]. Let I + g be the function from R into the space of nonnegative random variables, and dened by

for u ≥ 0 and let f (.) = EI + g (.) -EI h (.).

If, for u ∈ R,

and if Eτ 0 (u) = 0, then f is dierentiable on R + * , and for u > 0,

Corollary 2. With the hypotheses of theorem 4, if besides X t = ct -S t , where S t satises hypothesis (H1) of theorem 3, then the dierentiate may be rewritten for u > 0 as:

Proof of corollary 2. Immediate from theorem 4, after replacing the last term in [START_REF] Gerber | Mathematical fun with ruin theory[END_REF] following the proof of theorem 3.

Proof of theorem 4. Decompose

where Ĩg is obtained from I g by changing X t into -X t . From linearity of expectation and of dierentiation, applying theorem 2 to g -g(0) with -X t and to h -h(0) with X t , and using theorem 3 end the proof of theorem 4.

Theorem 5. If besides the process X t converges almost surely to +∞ as t → +∞, and if for u ≥ 0, EI ∞ < +∞ and Eτ (u, ∞) < +∞, then theorem 1 remains valid with

Dierentiation of some functionals of risk processes 11 Proof. kind of reasoning as previously.

Remark 3. These conditions of integrability are fullled if the time spent below 0 for a single ruin is integrable.

Denote by ψ(u) the probability of ruin in innite time with initial reserve u.

Theorem 6. Theorem 3 remains valid with T = +∞ if besides X t has a positive drift and if τ (u) is integrable for all u > 0. Besides, in the compound Poisson case, for

(N 0 (u, n)) n≥0 is a nondecreasing sequence of random variables which surely converges to N 0 (u, +∞), possibly innite.

Let us show that EN 0 (u, +∞) < +∞.

Almost surely, u + X t → +∞ as t → +∞. Hence, almost surely, N 0 (u, +∞) < +∞ and is equal to the number of ruins:

Indeed, after each ruin, there is a recovery because X t converges almost surely to +∞ as t goes to +∞, and the number of jumps which lead exactly to the value 0 is nite almost surely. Besides, in the compound Poisson case, the number of ruins has the following distribution:

for n ≥ 1 and P (N 0 (u, ∞) = 0) = 1 -ψ(u). So N 0 (u, ∞) follows a zero-modied geometric distribution : P (N 0 (u, ∞) = 0) = 1 -ψ(u) and for n > 0, P (N 0 (u, ∞) = n|N 0 (u, ∞) > 0) = ψ(0) n-1 (1 -ψ(0))

Hence N 0 (u, ∞) is integrable and