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CESSES. APPLICATIONS TO RUIN THEORY AND TO DETER-

MINATION OF OPTIMAL RESERVE ALLOCATION FOR MUL-

TIDIMENSIONAL RISK PROCESSES.

STÉPHANE LOISEL,∗ Université Lyon 1

Abstract

For general risk processes, the expected time-integrated negative part of the

process on a �xed time interval is introduced and studied. Di�erentiation

theorems are stated and proved. They make it possible to derive the expected

value of this risk measure, and to link it with the average total time below zero

studied by Dos Reis [1], and the probability of ruin. Di�erentiation of other

functionals of unidimensional and multidimensional risk processes with respect

to the initial reserve level are carried out. Applications to ruin theory, and to

the determination of the optimal allocation of the global initial reserve which

minimizes one of these risk measures, illustrate the variety of application �elds

and the bene�ts deriving from an e�cient and e�ective use of such tools.

Keywords: Ruin theory; Sample path properties; Optimal reserve allocation;

Multidimensional risk process; Risk measures

AMS 2000 Subject Classi�cation: Primary 60G17

Secondary 60G55; 91B30; 91B32; 62P05

Introduction

For unidimensional risk processes Rt = u + Xt (representing the surplus of an

insurance company at time t, with initial reserve u and with Xt = ct−St, where c > 0
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is the premium by unit time, and St is in the most classical case a compound Poisson

process (here we do not limit to the Poisson case)), many risk measures have been

considered (see for example Gerber [2], Dufresne and Gerber [3] and Picard [5]): the

time to ruin Tu = inf{t > 0, u + Xt < 0}, the severity of ruin u + XTu
, the couple

(Tu, u + XTu), the time in the red (below 0) from the �rst ruin to the �rst time of

recovery T ′u − Tu where T ′u = inf{t > Tu, u + Xt = 0}, the maximal ruin severity

(inft>0 u+Xt), the aggregate severity of ruin until recovery J(u) =
∫ T ′

u

Tu
|u +Xt|dt,...

Dos Reis [1] studied the total time in the red τ(u) =
∫ +∞
0

1{u+Xt<0}dt using Gerber's

work [2].

All these random variables are drawn from the in�nite time ruin theory, or involve the

behavior of the risk process between ruin times and recovery times. It seems interesting

to consider risk measures based on some �xed time interval [0, T ] (T may be in�nite).

One of the simplest penalty functions may be the expected value of the time-aggregated

negative part of the risk process:

E(IT ) = E

 T∫
0

1{Rt<0}|Rt|dt

 .

Note that the probability P (IT = 0) is the probability of non ruin within �nite time

T. IT may be seen as the penalty the company will have to pay due to its insolvency

until the time horizon T. From an economical point of view, it seems more consistent

to consider

Ig,h(u) =

 T∫
0

(
1{u+Xt≥0}g(|u+Xt|)− 1{u+Xt≤0}h(|u+Xt|)

)
dt


with 0 ≤ g ≤ h, where g corresponds to a reward function for positive reserves, and

h is a penalty function in case of insolvency. As for utility functions, g and h should

be both increasing and convex in the classical case. g ≤ h because usually the cost of

ruin is higher than the reward of the opposite wealth level.

These risk measures may be di�erentiated with respect to the initial reserve u, which

makes it possible to compute them quite easily as integrals of other functions of u

such as the probability of ruin or the total time in the red. Moreover, they have the

advantage that the integral over t and the mathematical expectation may be permuted

thanks to Fubini's theorem.
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Statement and proofs of di�erentiation theorems can be found in sections 1 and 2.

Section 3 presents examples of applications to unidimensional risk measures, in partic-

ular a closed-form formula is derived for E(I∞(u)) in the Poisson-exponential case.

One can also use these concepts to construct risk measures for multidimensional risk

processes, modelling di�erent lines of business of an insurance company (car insurance,

health insurance, ...). In this framework, determining the needed global initial reserve

for the global expected penalty to be small enough requires to �nd the optimal alloca-

tion of this reserve. Di�erentiation of unidimensional risk measures are useful to �nd

this optimal reserve allocation. All this is illustrated in section 4.

1. Di�erentiation theorems

Theorem 1. Let (Xt)t∈[0,T ) be a stochastic process with almost surely time-integrable

sample paths. For u ∈ R, denote by τ(u) the random variable corresponding to the

time spent under zero by the process u+Xt between the �xed times 0 and T:

τ(u) =
∫ T

0

1{u+Xt<0}dt,

Let τ0(u) correspond to the time spent in zero by the process u+Xt:

τ0(u) =
∫ T

0

1{u+Xt=0}dt.

Let IT (u) represent the time-integrated negative part of the process u + Xt between 0

and T:

IT (u) =

 T∫
0

1{u+Xt<0}|u+Xt|dt


and f(u) = E(IT (u)).

For u ∈ R, if Eτ0(u) = 0, then f is di�erentiable at u, and f ′(u) = −Eτ(u).

IT (u) is illustrated by �gure 1.

Proof. Fix u ∈ R. For ε ≥ 0, set

τε(u) =
∫ T

0

1{|u+Xt|<ε}dt.
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τε(u) represents the time spent by the process u+Xt in the interval ]− ε, ε[ between

dates 0 and T.

For each sample path (considered as a function of time t),

t→ 1{|u+Xt|<ε}

pointwise converges, decreasingly to

t→ 1{u+Xt=0}.

Besides, each of the integrals of the indicator functions is bounded by T. From the

monotone convergence theorem, τε is decreasing with respect to ε and surely converges

to τ0.

From the monotone convergence theorem (for mathematical expectation this time),

Eτε ↓ Eτ0 as ε ↓ 0, because for all ε ≥ 0, Eτε ≤ T .

Lemma 1.1. For ε ∈ R,

|IT (u+ ε)− IT (u) + ετ(u)| ≤ |ε|τε(u)

Proof of the lemma. For ε > 0, {u + ε +Xt < 0} ⊂ {u +Xt < 0}, whence IT (u +

ε)− IT (u) =∫ T

0

(|u+ ε+Xt| − |u+Xt|) 1{u+Xt<0}dt−
∫ T

0

|u+ ε+Xt|1{−ε<u+Xt<0}dt

IT (u+ ε)− IT (u) = −ε
∫ T

0

1{u+Xt<0}dt−
∫ T

0

|u+ ε+Xt|1{−ε<u+Xt<0}dt (1)

On the right side of (1), the left term corresponds to −ετ(u). The absolute value under

the integral of the second term is less than ε on the support of the indicator function.

Hence

|IT (u+ ε)− IT (u) + ετ(u)| <
∫ T

0

ε1{−ε<u+ct+St<0}dt,

which proves the lemma for ε > 0. A symmetrical procedure solves the case ε ≤ 0,

which ends the proof of the lemma.

From lemma 1.1,

|EIT (u+ ε)− EIT (u) + εEτ(u)| ≤ |ε|Eτε(u)
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and

EIT (u+ ε) = EIT (u)− εEτ(u) + εv(u, ε)

where

|v(u, ε)| ≤ Eτε(u) → Eτ0(u) = 0

as ε → 0, which proves that f is di�erentiable with respect to u and that for u ∈ R,

f ′(u) = −Eτ(u).

Corollary 1. Using notations of theorem 1, let Xt = ct − St, where St is a jump

process such that, almost surely, St has a �nite number of nonnegative jumps in every

�nite interval, and that Xt has a positive drift (Xt → +∞ a.s.). Then f de�ned by

f(u) = E(IT (u)) for u ∈ R is di�erentiable on R, and for u ∈ R, f ′(u) = −Eτ(u).

Proof. Only

Eτ0(u) =
∫ T

0

1{u+ct−St=0}dt = 0

has to be shown. Rt = u+ ct− St is a process whose sample paths are almost surely

increasing between two consecutive jump instants. The number of jumps is almost

surely �nite on the time interval [0, T ]. Between two times when the process is in 0,

there must be at least one jump instant.

This implies that the number of visits of 0 is almost surely �nite (it is less than NT +1

where NT is the number of jumps between 0 and T).

So Eτ0 = 0 and the result comes from theorem 1.

Proposition 1. More generally, all processes for which the distribution of Rt is di�use

for all t ∈ R+ − N satisfy the condition Eτ0 = 0, if N is a null subset of R+ for the

Lebesgue measure.

Theorem 1 is also veri�ed for this wide class of processes.

Proof. For T ∈ R̄, from Fubini's theorem,

Eτ0(T ) ≤ E

(∫ +∞

0

1{Rt=0}dt

)
=
∫ +∞

0

P (Rt = 0)dt

which provides the expected result.

Theorem 2. Let g ∈ C1(R+,R+) be a convex function, such that g(0) = 0. Let Xt

be a stochastic process such that, for u ∈ R, t → g(u+Xt)1{u+Xt<0} is almost surely



6 Stéphane Loisel

Figure 1: The area in red represents IT (u) =
T∫
0

1{u+Xt<0}|u + Xt|dt

integrable with respect to t. Let Ig be the function from R+ into the space of nonnegative

random variables, and de�ned by

Ig(u) =

 T∫
0

1{u+Xt<0}g(−(u+Xt))dt


for u ∈ R and let f(.) = EIg(.).

For u ∈ R, if f(u) < +∞, EIg′(u) < +∞ and Eτ0(u) = 0, then f is di�erentiable at

point u, and

f ′(u) = −E

 T∫
0

1{u+Xt<0}g
′(|u+Xt|)dt


Proof. Fix u ∈ R. For ε > 0, {u+ ε+Xt < 0} ⊂ {u+Xt < 0}, whence

Ig(u+ ε)− Ig(u)
ε

=
∫ T

0

g(|u+ ε+Xt|)− g(|u+Xt|)
ε

1{u+Xt<0}dt

−
∫ T

0

g(|u+ ε+Xt|)
ε

1{−ε<u+Xt<0}dt

For t ∈ [0, T ],

g(−(u+ ε+Xt))− g(−(u+Xt))
−ε

1{u+Xt<0} ↑ g′(−(u+Xt))1{u+Xt<0}
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almost surely as ε ↓ 0, from the increase of the rates of increase of convex functions.

From the monotone convergence theorem, for t ∈ [0, T ],

E

(
g(−(u+ ε+Xt))− g(−(u+Xt))

ε
1{u+Xt<0}

)
→ −g′(−(u+Xt))1{u+Xt<0}

From Fubini's theorem,

E

(∫ T

0

g(u+ ε+Xt)− g(u+Xt)
ε

1{u+Xt<0}dt

)
→ −EIg′(u)

as ε ↓ 0, where

Ig′(u) =
∫ T

0

g′(−(u+Xt))1{u+Xt<0}dt

Hence

|f(u+ ε)− f(u) + εEIg′(u) + εw(u, ε)| ≤ E

(∫ T

0

g(−(u+ ε+Xt))1{−ε<u+Xt<0}dt

)

with w(u, ε) → 0 as ε ↓ 0, and

|f(u+ ε)− f(u) + εEIg′(u) + εw(u, ε)| ≤ εEτε(u)E

(
sup

t∈[0,ε]

g′(t)

)

EIg(u+ ε) = EIg(u)− εEτ(u) + ε(v(u, ε)− w(u, ε))

where

|v(u, ε)| ≤ KEτε(u) → KEτ0(u) = 0

as ε ↓ 0, which proves that f is right-di�erentiable at point u and that

f ′r(u) = E

(∫ T

0

g′(−(u+Xt))1{u+Xt<0}dt

)
.

With similar reasoning, f is left-di�erentiable and f ′l = f ′r, which ends the proof.

2. Di�erentiation of the average time in the red and other generalizations

Recall that the time in the red is the time spent by the wealth process below 0,

between time 0 and some �xed time horizon T:

τ(u) =
∫ T

0

1{u+Xt<0}dt.

T is �rst supposed to be �nite.
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Theorem 3. Let Xt = ct− St, where St is a jump process satisfying hypothesis

(H1): almost surely, St has a �nite number of nonnegative jumps in every �nite

interval, and for each t, the distribution of St is absolutely continuous.

For example, St might be a compound Poisson process with a continuous jump size

distribution. Consider T < +∞ and de�ne h by h(u) = E(τ(u)) for u ∈ R. h is

di�erentiable on R+
∗ , and for u > 0,

h′(u) = −1
c
EN0(u),

where N0(u) = Card ({t ∈ [0, T ], u+ ct− St = 0}).

Proof. Almost surely in ω, the number of jumps N(T ), and so N0(u), is �nite.

Consider a sample path (Xt(ω))0≤t≤T . Let Rt = u+Xt and denote by Ti the i
th jump

instant. De�ne

ε0(ω) = inf
n≤N(T ),RTn >0

RTn

If N0(u) = 0, then de�ne

ε+ = inf
(
{u+Xt, 0 ≤ t ≤ T} ∩ R+

)
and

ε− = − sup
(
{u+Xt, 0 ≤ t ≤ T} ∩ R−) .

ε− and ε+ are almost surely positive. If |ε| < inf(ε+, ε−), then τ(u− ε)− τ(u) = 0,

and the following reasoning remains valid.

Otherwise, for 1 ≤ i ≤ N0(u), denote by ti the instant of the ith visit of Rt in 0,

and by t′i the instant of the �rst jump of Rt after ti. The sample paths of the process

Rt are almost surely right-continuous, and the probability that RT = 0 is zero. So one

may consider

ε1(ω) = min
(

min
1≤i≤N0(u)

c(t′i − ti), c(T − tN0(u))
)
.

Then, for 0 < ε < min (ε0(ω), ε1(ω)),

{0 < u+ ct− St < ε} =
N0(u)⋃
i=1

{]ti, ti + ε/c[}

and so

τ(u− ε)− τ(u) =
∫ T

0

(
1{u−ε+ct−St<0} − 1{u−ε+ct−St<0}

)
dt
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=
∫ T

0

1{0≤u+ct−St<ε}dt =
N0(u)∑
k=1

ε

c

Hence
τ(u− ε)− τ(u)

ε
→ 1

c
N0(u)

almost surely as ε→ 0. Moreover, between two consecutive jumps of Rt, the di�erence

between the two integrals is less than ε
c in absolute value, whence∫ Ti+1

Ti

1{0≤u+ct−St<ε}dt ≤
ε

c
.

So for ε > 0 small enough, with notations TN(T )+1 = T and T0 = 0,

(
τ(u− ε)− τ(u)

ε

)
=

N(T )∑
i=0

1
ε

Ti+1∫
Ti

1{0≤u+ct−St<ε}dt


(
τ(u− ε)− τ(u)

ε

)
≤

N(T )∑
i=0

1
ε

ε

c

 ≤ 1
c
(EN(T ) + 1)

Hence, from the dominated convergence theorem,

E

(
τ(u− ε)− τ(u)

ε

)
→ 1

c
EN0(u)

as ε→ 0. This proves that h is left-di�erentiable on R+
∗ , and that for u > 0,

h′l(u) = −1
c
EN0(u).

With similar reasoning, h is right-di�erentiable on R+
∗ , and h′l = h′r. Hence h is

di�erentiable on R+
∗ , and for u > 0, h′(u) = − 1

cEN
0(u).

Remark 1. This provides the second-order di�erentiate of EIT (.), which appears to

be positive. EIT (.) is thus well strictly convex, which will be very important for the

minimization in section 4.

Remark 2. This second-order di�erentiate corresponds in the general case to the

expectation of the local time LT (0) in 0 of the process u+Xt up to time T:

LT (0) = lim
ε↓0

(
1
2ε

∫ T

0

P (|u+Xt| < ε)dt

)
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Theorem 4. Let g, h be two convex functions in C1(R+,R+), such that for x ≥ 0,

g(x) ≥ g(0) and h(x) ≥ h(0). Let Xt be a stochastic process such that t → g(u +Xt)

and t→ h(u+Xt) are almost surely integrable on [0, T ]. Let I+
g be the function from

R into the space of nonnegative random variables, and de�ned by

I+
g (u) =

T∫
0

1{u+Xt≥0}g(u+Xt)dt

for u ≥ 0 and let f(.) = EI+
g (.)− EIh(.).

If, for u ∈ R,

EI+
g (u), EIh(u), EI+

g′(u), EIh′(u) < +∞,

and if Eτ0(u) = 0, then f is di�erentiable on R+
∗ , and for u > 0,

f ′(u) = EI+
g′(u)− EIh′(u)− (g(0) + h(0))ELT (0)

Corollary 2. With the hypotheses of theorem 4, if besides Xt = ct − St, where St

satis�es hypothesis (H1) of theorem 3, then the di�erentiate may be rewritten for u > 0

as:

f ′(u) = EI+
g′(u)− EIh′(u) +

(g(0) + h(0))EN0(u)
c

where N0(u) = Card ({t ∈ [0, T ], u+ ct− St = 0}).

Proof of corollary 2. Immediate from theorem 4, after replacing the last term in (2)

following the proof of theorem 3.

Proof of theorem 4. Decompose

I+
g (u)− Ih(u) = −Ĩ(g−g(0))(−u)− I(h−h(0))(u)− h(0)τ(u) + g(0)(T − τ(u)),

where Ĩg is obtained from Ig by changing Xt into −Xt. From linearity of expectation

and of di�erentiation, applying theorem 2 to g − g(0) with −Xt and to h− h(0) with

Xt, and using theorem 3 end the proof of theorem 4.

Theorem 5. If besides the process Xt converges almost surely to +∞ as t → +∞,

and if for u ≥ 0, EI∞ < +∞ and Eτ(u,∞) < +∞, then theorem 1 remains valid with

T = +∞.
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Proof. Same kind of reasoning as previously.

Remark 3. These conditions of integrability are ful�lled if the time spent below 0 for

a single ruin is integrable.

Denote by ψ(u) the probability of ruin in in�nite time with initial reserve u.

Theorem 6. Theorem 3 remains valid with T = +∞ if besides Xt has a positive drift

and if τ(u) is integrable for all u > 0. Besides, in the compound Poisson case, for

u > 0,

h′(u) = −1
c

ψ(0)
1− ψ(0)

ψ(u)

Proof. For T ∈ R̄, denote

τ(u, T ) =
∫ T

0

1{0<u+Xt<ε}dt.

(N0(u, n))n≥0 is a nondecreasing sequence of random variables which surely converges

to N0(u,+∞), possibly in�nite.

Let us show that EN0(u,+∞) < +∞.

Almost surely, u + Xt → +∞ as t → +∞. Hence, almost surely, N0(u,+∞) < +∞

and is equal to the number of ruins:

N0(u,∞) = Card
(
{t > 0, u+ ct− St < 0 and u+ ct− − St− > 0}

)
Indeed, after each ruin, there is a recovery because Xt converges almost surely to +∞

as t goes to +∞, and the number of jumps which lead exactly to the value 0 is �nite

almost surely. Besides, in the compound Poisson case, the number of ruins has the

following distribution:

P (N0(u,∞) = n) = ψ(u)ψ(0)n−1(1− ψ(0))

for n ≥ 1 and P (N0(u,∞) = 0) = 1 − ψ(u). So N0(u,∞) follows a zero-modi�ed

geometric distribution : P (N0(u,∞) = 0) = 1− ψ(u) and for n > 0,

P (N0(u,∞) = n|N0(u,∞) > 0) = ψ(0)n−1(1− ψ(0))

Hence N0(u,∞) is integrable and

EN0(u,∞) = ψ(u)
ψ(0)

1− ψ(0)
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For all ω and for ε > 0, the function

(T, ω) → τ(u+ ε, T )− τ(u, T )
ε

(ω)

is increasing with respect to T, and its limit expectation is equal to − 1
cEN

0(u, T ) as

ε ↓ 0. From the monotone convergence theorem,

E lim
ε↓0

(
τ(u+ ε,∞)− τ(u,∞)

ε

)
= −1

c
EN0(u,∞)

Remark 4. In in�nite time, the probability of ruin may be regarded as the expectation

of the local time in 0 of the process (up to multiplication by a constant number).

3. Applications to the unidimensional case

Theorem 7. In the Poisson-Exponential(1/µ) case, ψ(u) = (1 + µR)e−Ru, with R =
1
µ

(
1− λµ

c

)
. Hence, for T = +∞,

Eτ(u) =
1 + µR

cR
µRe−Ru

and

EI∞(u) =
1 + µR

cR2
µRe−Ru

Proof. This comes from a mere integration of the well-known formula for ψ(u), as

the considered functions tend to 0 as u → +∞. Besides, as µ is the average claim

amount, R = µ− λ
c and ρ = c−λµ

c .

This method provides a way to get back the average total time in the red from the

integration of the probability of ruin. Dos Reis [1] derived this result for Eτ(u,∞)

by considering the number of ruins, and using the distributions of the length of the

�rst period in the red (until recovery), and of those of the following periods in the red,

which had been derived by Gerber [2].

Remark 5. Of course, it is possible to derive EI∞(u) for Gamma-distributed or phase-

type-distributed claim amounts, as we know the probability of ruin in these cases. It

is not developed here to keep it concise.
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The parallel with the Brownian case is also interesting. The local time of a standard

Brownian motion Wt in x is de�ned by

Lt(x) = lim
ε↓0

1
4ε

∫ t

0

1{|Ws−x|<ε}ds

This provides a density for the occupation time Γt(B) of a Borelian set B between 0

and t:

Γt(B) =
∫

B

2Lt(x)dx

Paul Lévy's Brownian local time representation Theorem with downcrossings states

that

Theorem 8. (Paul Lévy)

2Lt(0) = lim
ε↓0

εDt(ε)

where Dt(ε) is the number of downcrossings of the interval [0, ε] by the process Ws

between 0 and t .

This well-known theorem might be viewed as a limit case of theorem 3.

4. Multidimensional risk measures and optimal allocation

For a unidimensional risk process, one classical goal is to determine the minimal

initial reserve uε needed for the probability of ruin to be less than ε.

In a multidimensional framework, modelling the evolution of the di�erent lines of

business of an insurance company by a multirisk process (u1+X1
t , . . . , un+Xn

t ) (ui+Xi
t

corresponds to the wealth of the ith line of business at time t), one could look for the

global initial reserve u which ensures that the probability of ruin ψ satis�es

ψ(u1, . . . , un) ≤ ε

for the optimal allocation (u1, . . . , un) such that

ψ(u1, . . . , un) = inf
v1+···+vn=u

ψ(v1, . . . , vn)

with

ψ(u1, . . . , un) = P (∃i ∈ [1, n],∃t > 0, u+Xi
t < 0).
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Instead of the probability of crossing some barriers, it may be more interesting to

minimize the sum of the expected cost of the ruin for each line of business until time

T, which may be represented by the expectation of the sum of integrals over time of the

negative part of the process. In both cases, �nding the global reserve needed requires

to determine the optimal allocation. It has just been shown in the previous sections

how to compute E(IT ) for one line of business, and the linearity of the expectation

makes it possible to compute the sum for n dependent lines of business just as in the

independent case. The structure of dependence between lines of business has no impact

on this risk measure. This may be considered as a problem of optimal allocation of

resource under budget constraints as in economics, the goal being to maximize the

utility function given by the opposite of the sum of the E(Ii
T ).

4.1. Minimizing the penalty function

Recall that what has to be minimized is

A(u1, . . . , un) =
n∑

i=1

EIi
T

where

EIi
T = E

[∫ T

0

|Ri
t|1{Ri

t<0}dt

]
with Ri

t = ui + Xi
t under the constraint u1 + · · · + un = u. This does not depend

on the dependence structure between the lines of business because of the linearity of

the expectation. Denote vi(ui) the di�erentiate of EIi
T with respect to ui. Using the

Lagrange multipliers implies that if (u1, . . . , un) minimizes A, then vk(uk) = v1(u1) for

all 1 ≤ k ≤ n. Compute vi(ui):

vi(ui) =

(
E

[∫ T

0

|Ri
t|1{Ri

t<0}dt

])′

= −Eτ i = −
∫ T

0

P
[
{Ri

t < 0}
]
dt

where τ i represents the time spent in the red between 0 and T for line of business i.

The di�erentiation theorem of the previous section justi�es the previous derivation.

The sum of the average times spent under 0 is a decreasing function of the ui. So A is

strictly convex. On the compact space

S = {(u1, . . . , un) ∈ (R+)n, u1 + · · ·+ un = u},
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A admits a unique minimum. The optimal allocation is thus the following: there is

a subset J ⊂ [1, n] such that for i /∈ J , ui = 0, and for i, j ∈ J , Eτi = Eτj . The

interpretation is quite intuitive: the safest lines of business do not require any reserve,

and the other ones share the global reserve in order to get equal average times in the

red for those lines of business.

Relaxing nonnegativity, on {u1 + · · · + un = u}, if (u1, . . . , un) is an extremum

point for A, then for the n lines of business, the average times spent under 0 are equal

to one another. If it is a minimum for the sum of the times spent below 0 for each

line of business, then the average number of visits are proportional to the ci, and in

in�nite time the ruin probabilities are in �xed proportions. However the existence of

a minimum is not guaranteed, because (u1, . . . , un) is no longer compact. It would

be more tractable with the average time in the red or with minimization on the ci,

because some factors penalize very negative ui in these problems.

4.2. Example

In the Poisson-Exponential( 1
µ ) case, recall that

EIu =
1 + µR

cR2
µRe−Ru.

Consider a two-line-of-business model, with the following parameters:

µ2 = 1, c1 = c2 = 1, R1 = 0.2, R2 = 0.4 and u := 10.

A mere modi�cation of the parameter µ1 makes the optimal allocation strongly vary.

When µ1 = 1 (Figure 2), the optimal allocation is about (u1 = 6.409748867, u2 =

3.590251133). When µ1 = 10 (Figure 3), the optimal allocation is (u1 = 0, u2 = 10).

In the second case, line of business 2 is much more risky than line of business 1, which

justi�es the transfer of the whole global initial reserve to line of business 2. Here, the

Lundberg exponents are the same in both cases, and heavier claims (with a smaller

frequency) are more risky, and the line of business requires a higher initial reserve. For

more properties or examples about optimal reserve allocation, the interested reader

may consult [4].



16 Stéphane Loisel

Figure 2: µ1 = 1: The two lines of business

receive part of the global reserve

Figure 3: µ1 = 10: Line of business 2 receives

the whole global initial reserve

4.3. Further applications

A is a multidimensional risk measure which does not depend on the structure of

dependence between lines of business. It is just an example of what can be considered.

Another possibility would be to minimize the sum

B =
n∑

i=1

Eτ ′i(u)

where

Eτ ′i(u) = E

(∫ T

0

1{Ri
t<0}1{∑n

j=1 Rj
t>0}dt

)
.

B takes dependence into account, and the following proposition prescribes to do the

same kind of reasoning:

Proposition 2. Let Xt = ct − St, where St satis�es hypothesis (H1) of theorem 3.

De�ne B by B(u1, . . . , un) =
∑n

j=1E(τ ′j(u)) for u ∈ Rn. B is di�erentiable on (R∗
+)n,

and for u1, . . . , un > 0,
∂B

∂ui
= − 1

ci
EN0

i (u),

where N0
i (u) = Card

(
{t ∈ [0, T ],

(
Ri

t = 0
)
∩
(∑n

j=1R
j
t > 0

)
}
)
.

It is also possible to di�erentiate with respect to c instead of u.

Theorem 9. With notations of theorem 1, consider the case Xt = ct − St, where St

satis�es hypothesis (H1) of theorem 3, and de�ne f̃(c) = E(I(c)).
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If for all c, Eτ0(c) = 0, then f̃ is di�erentiable on R and for c ∈ R,

f̃ ′(u) = −
∫ T

0

tP (Rt < 0)dt.

It is interesting to look for the optimal allocation of the global premium c = c1+· · ·+cn
because if ci is small enough to make the safety loading negative, the process Ri

t tends

to −∞. Quite often, optimizing with the ci will be easier than with the ui for this

reason. These examples illustrate how these di�erentiation results may be used.

The di�erentiation developed here is quite general and may be useful to solve many

problems involving multirisk models. For a discussion about multidimensional risk

measures, optimal allocation procedures, and impact of dependence between lines of

business, the interested reader may consult Loisel [4].
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