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1 Introduction

The main ingredient in the harmonic maps approach of superrigidity for semi-simple Lie
groups is the Mok-Siu-Yeung formula [R3],[BZ for harmonic maps defined on compact
locally symmetric spaces of non-compact type (cf. also [[9]). Actually, by means of this
formula, it can be shown that a harmonic map from a compact locally symmetric space of
non-compact type (with some exceptions) into a Riemannian manifold with nonpositive
curvature is rigid in the sense of it is a totally geodesic isometric imbedding. The con-
tact locally sub-symmetric spaces defined by Bieliavsky, Falbel and Gorodski [g],[[7],[I]
are the contact analogues of the riemannian locally symmetric spaces. These spaces can
be characterized as contact metric manifolds for which the curvature and the torsion of
the Tanaka-Webster connection are parallel in the direction of the contact distribution.
Moreover, these spaces are strictly pseudoconvex C'R manifolds. In an other hand, in
the setting of contact metric manifolds, the analogue of harmonic maps seems to be the
pseudoharmonic maps defined by Barletta, Dragomir and Urakawa [f],[H]. Also the main
purpose of this article is to derive Mok-Siu-Yeung type formulas for horizontal maps (i.e.
maps preserving the contact distributions) from compact contact locally sub-symmetric
spaces into strictly pseudoconvex C'R manifolds in order to obtain some rigidity theorems
for horizontal pseudoharmonic maps under curvature assumptions. The plan of this ar-
ticle is the following. The section 2 begins to recall basic facts concerning the contact
metric manifolds and the strictly pseudoconvex C'R manifolds, next, we focus our atten-
tion on the pseudo-hermitian curvature tensor of a strictly pseudoconvex C'R manifold,
which plays a central part in the following. In section 3, we investigate the contact sub-
symmetric spaces, the main result of this section (Theorem 3.3) which is related to the
work of Cho [[4], is an explicit formula for the pseudo-hermitian curvature tensor of a
contact locally sub-symmetric space with non zero pseudo-hermitian torsion. The section
4 is devoted to derive Mok-Siu-Yeung type formulas for horizontal maps between strictly
pseudoconvex C'R manifolds (Proposition 4.2). In section 5, we extend the notion of
pseudoharmonic maps defined in [B],[] to the setting of horizontal maps between contact
metric manifolds and we define the notion of CR-pluriharmonic maps for horizontal maps
between strictly pseudoconvex C'R manifolds. It is interesting to note that these two
notions are strongly related to the Rumin complex R7]. In section 6, we obtain some
rigidity theorems for the horizontal pseudoharmonic maps when the source manifold is a
compact contact locally sub-symmetric space. The main result of this section (Theorem
6.1) asserts that any horizontal pseudoharmonic map ¢ from a compact contact locally
sub-symmetric space of non-compact type, holonomy irreducible and torsionless, (with
some exceptions) into a Sasakian manifold with nonpositive pseudo-Hermitian complex
sectional curvature satisfies Vd¢p = 0 where Vd¢ is the covariant derivative of d¢ with
respect to Tanaka-Webster connections. As application (Corollary 6.1) we deduce that ¢
preserves some special curves called parabolic geodesics [[J] and therefore ¢ is, in some
sense, totally geodesic. In section 7, we restrict our attention to CR maps from com-



pact contact locally sub-symmetric spaces into strictly pseudoconvex C'R manifolds and
we obtain the following rigidity result (Theorem 7.1): any horizontal pseudoharmonic CR
map from a compact contact locally sub-symmetric space of non-compact type (with some
exceptions) into a pseudo-Hermitian space form with negative pseudo-Hermitian scalar
curvature is constant. This article is a first step in the study of horizontal pseudoharmonic
maps from compact strictly pseudoconvex C'R manifolds into strictly pseudoconvex C'R
manifolds with nonpositive pseudo-Hermitian sectional curvature. In particular, some
existence results are missing for the moment (excepted if the target manifold is Tanaka-

Webster flat).

The author wants to thanks the CNRS for the délégation CNRS that he has benefited
during the preparation of this article.

2 Connection and curvature on contact metric man-

ifolds

. Contact metric manifolds

A contact form on a smooth manifold M of dimension m = 2d + 1 is a 1-form ¢
satisfying 6 A (d0)" # 0 everywhere on M. If 0 is a contact form on M, the hyperplan
subbundle H of T'M given by H = Ker# is called a contact structure. The Reeb field
associated to # is the unique vector field & on M satisfying 0(§) = 1 and df(&,.) = 0. By
a contact manifold (M, #) we mean a manifold M endowed with a fixed contact form 6.
If (M, 6) is a contact manifold then T'M decomposes as TM = H @RE. Consequently any
p-tensor t on M decomposes as t =ty +te with ty = tolly and tg = tollge (Il and g
are the canonical projections on H and R¢). The tensors ¢y and t¢ are respectively called
the horizontal part and the vertical part of t. Note that for an antisymmetric p-tensor
v we have v¢ = 6 Ai(§)y. We denote by A3 (M) and AZ(M) the bundles of horizontal
and vertical antisymmetric tensors and by Q7 (M) and Qg (M) the horizontal and vertical
forms associated to.

Let (M,0) be a contact manifold, then there exists a riemannian metric gy and a
(1,1)-tensor field J on M such that:

9o(6, X)=0(X), JP=-Id+0®¢ g(JX,Y)=di(X,Y), X,Y €TM.

The metric gy (called the Webster metric) is said to be associated to 8. We call (0, &, J, gg)
a contact metric structure and (M, 6,¢, J, gg) a contact metric manifold (cf. Blair[q]). In
the following wy := df.



Let (M, 0,€,J, go) be a contact metric manifold. We define L : QF(M) — Q¥+2(M) by
L = wyA. The restriction of L to Q}, (M) will be denoted by Ly and the adjoint of Ly
for the usual scalar product on Q% (M) by Ay. Recall that, for any vy € Q¥ (M),

1
(/\H’)/H)(Xl, e ,Xp_g) = §tTH’7H( - J ,Xl, e ,Xp_g),

where try is the trace calculated with respect to a gg-orthonormal frame of H.

Let Qg (M) i= {7 € (M), Ay = 0} and F(M) 1= {7¢ € Q4(M), Log = 0}
be the bundle of primitive horizontal forms on M and the bundle of coprimitive vertical
forms on M. We recall the Lefschetz decomposition

Qi (M) = (M) & Ly, (M) & ... & LyQiy (M),

. connection and curvature

For the torsion and the curvature of a connection V we adopt the conventions 7'(X,Y) =
[X, Y] — VXY + VyX and R(X, Y) = [Vy, VX] - V[qu.
In the following, N is the T'M-valued 2-form given by:

N(Y,Z) = J[Y, Z)+ [JY,JZ] = J[Y, JZ]) = J[JY, Z] + we(Y, Z)E.
Proposition 2.1 (Generalized Tanaka- Webster connection cf. [29],[50],/B1]). Let (M, 0,&, J, ga)

be contact metric manifold, then there exists a unique affine connection V on T M with
torsion T (called the generalized Tanaka-Webster connection) such that:

(a) VO =0, VE=0.

(b) Vgg =0.

(¢c) Ty = —wy @& and i(§)T = —3i(§)N.

(d) (Vxwo) (Y. Z) = go((Vx J)(Y), Z) = %mx, Ny (Y, Z)) for any X,Y, 7 € TM.

The endomorphism 7 := i(§)T is called the generalized Tanaka-Webster torsion or
sub-torsion. Note that 7 is gs-symmetric with trace-free and satisfies 70 J = —J o 7.

A contact metric manifold (M, 0,¢, J, gg) for which J is integrable (i.e. Ny = 0 or
equivalently V.J = 0) is called a strictly pseudoconvex C'R manifold. A strictly pseudo-
convex C'R manifold for which the Tanaka-Webster torsion vanishes is called a Sasakian
manifold.

The curvature R of the generalized Tanaka-Webster connection V satisfies the follow-
ing Bianchi identities (cf. [I7],[R9)):
(First Bianchi identity)

Ru(X,Y)Z + Ru(Z, X)Y + Ru(Y, 2)X = we(X,Y)7(Z) +we(Z, X)7(Y)
)

+wy (Y, Z)T(X (1)



R(X,§)Z + R(& 2)X = (Vx7)(2) = (V27)(X) (2)
with (VxT)(Z) = VXT(Z) — T(VXZ)

Remember that any horizontal 2-tensor ¢t on M decomposes into ty = t};+t;;, where
tﬁ = %(tH + J*ty) are respectively the J-invariant part and the J-anti-invariant part of
ty.

If M is a strictly pseudoconvex C'R manifold, then we have the decomposition:

Ry = R}, + Ry,
with

Ri(X,Y) = —%<(T(X))*/\(JY)*—(T(Y))*/\(JX)*—(JT(X))*/\Y*+(JT(Y))*/\X*). (3)

Also we define the pseudo-Hermitian curvature tensor R}Y of a strictly pseudoconvex

C'R manifold by:
RY(X,Y,Z, W) = go(RL(X,Y)Z,W), X,Y,Z,W € H.

In order to give the algebraic properties of RY, we recall some definitions related to
the curvature algebra (cf. [LT]).

Let (V, q) be an euclidean space and Q € ®* V*. We define the Bianchi map b(Q) by:
bO)X,Y,Z, W) = Q(X,Y, Z,W) + Q(Z, X, Y,W) + QY, Z, X, W), X,Y,Z,W € V.
Recall that b(S?*(A2V*)) = A'V* and that we have the decomposition:
S2H(ANV*) = Kerb@® A*V*,
Let h, k € ®*V*. We define the symmetric product h©k € S2(®? V*) and the Kulkarni
product h ® k € Q7 (A2V*) respectively by:
(hOk)(X,Y,ZW)=WMX,Y)K(Z, W)+ h(Z,W)k(X,Y),
and
(hR)(X,Y,ZW)=(hok)(X,Z,Y,W)— (hO©k)(X,W,Y,Z).

Note that if h, k € S?V* then h ® k € S?(A?V*) and b(h ® k) = 0.

If h,k € A*V* then h Dk € S*(A*V*) and b(h D k) = —2b(h © k).

If h € S?V* and k € A2V* then h ® k € A*>(A*V*) and b(h D k) = —2b(k @ h).
We define the Ricci contraction ¢(@Q) by:

c(Q)X,Y)=trQ(.,X,.Y),
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with the trace is taken with respect to a g-orthonormal basis of V.

Let (M,0,€,.J,99) be a contact metric manifold and let Qn € Q*(AZ(M)). The
endomorphism Qg of A% (M) associated to Qg is defined by:

@) (X.¥) = 5 3 @uleir &5 X, V(e ),
,J

where vy € A% (M), {¢;} is a local gg-orthonormal frame of H and X,Y € H.
For X,Y,Z,W € H, we have (Qu(X AY),Z AW) = Qu(X,Y, Z,W).

Let A%, (M) be the bundle of primitif horizontal antisymmetric 2-tensors. For Qp €
S2(N3(M)), we define Qp, € S*(A;,(M)) by:

Quo = Qut — +(@rrcn) © i+ (s (@) s © o

Note that, for Qp viewed as horizontal A% (M)-valued 2-form, we have é;wg = AgQp.

Let A% (M) be the bundle of J-invariant (J-anti-invariant) horizontal antisymmetric
2-tensors. For Qi € S2(A%(M)), we define Q% € S2(A%F(M)) by:

1
v Qu(JX,JY,JZ, JW)).

Note that

1
(QGH @geH)o = 96y @geH - Ewe O wy

and

1
(gGH ®g€H>:t = 5(99}1 @.QGH + W ®w€>7

with go, = go,n-
For any Py, Qg € S*(A%(M)), the scalar product (Py, Qp) is defined by:

1 —~ —_—
(Pu,Qu) = étrHPH °oQH-

We have -
<<g9H ®99H)i7 QH> = tTHQ[i-]
and for Qg € S*(A3,(M)) N Kerb,

(wg ® wy, Qu) = truQl — truQy.
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If M is CR then RYY can be written by () as:

1
RK[V:RH+§(W0 D Ay — go,, ® By), (4)

with Ru(X,Y, Z,W) = go(Ru(X,Y)Z,W), Ag(X,Y) = go(r(X),Y) and By(X,Y) =
we(T(X),Y).
It follows from ([l) and (H]) that R} satisfies the following the algebraic properties:

RY € S2(A%(M)) N Kerb and RY € S2(A%T(M)).

The pseudo-Hermitian Ricci tensor Ricyy € S% (M), the pseudo-Hermitian Ricci form
JUANS /\ZJF(M ) and the pseudo-Hermitian scalar curvature s"V are respectively defined by:

W W W W W W
Ricyy = cu(RY)), py = —RWwy, s =trgRicy,

with ¢y (Qp) calculated with respect to a gg-orthonormal frame of H.
Now, let IG € S2(A%T(M)) N Kerb given by:

1

I = g(geH D 9oy, + we O wy +2w9®w9)-

We have the decompositions (cf. [1J]):

T I+
B dd+1) "

1 1 )
112 (5(310220 ® g6, — Ph, Dwe) — Py, © We) + Oyt

w
w s C 1 W w M
RHO = d(d+1)IHO+ 2(d+2) (RZCHO @.QGH _pHo ®w9>O+CH7

where Ric)y, (respectively p)y ) is the traceless part of Ric)] (respectively the primitive
part of pyY) and Cy' € S2(A3H(M)) N Kerbn Ker cp.

Remark 2.1 The tensor Cy', introduced by Chern and Moser in [13], is called the Chern-
Moser tensor. Note that Cy! is a pseudo-conformal invariant.

Now, we define the pseudo-Hermitian sectional curvature (resp. pseudo-Hermitian
complex sectional curvature) of a 2-plane P = R{X,Y} C H (resp. P = C{Z,W} C HF)
by:

(RP(X AY), X AY) K (P) (RYS(Z ANW), ZAT)

KW(P) = , )
(%) (XANY, X NY) (ZAW,ZANW)




—

where (, ) and R)Y" are the natural extensions to A2HC of {, ) and @ :
The holomorphic pseudo-Hermitian sectional curvature of a holomorphic 2-plane P =
R{X,JX} C H is defined by:

(RY(X AJX), X AJX)

HEK(P) =
(P) (XANJX, X ANJTX)

We say that a strictly pseudoconvex C'R manifold (M, 6,&, J, gg) has constant holomor-
phic pseudo-Hermitian sectional curvature if HK"(P) is constant for any holomorphic

w
2-plane P C H and for any point of M. In this case, we have R} = mlg with
s" constant (cf. [P]). Also we call I the holomorphic pseudo-Hermitian curvature tensor.

Let (E,g”, V¥) be a riemannian vector bundle over a contact metric manifold M
and let Q*(M; E) (resp Q3;(M; E)) be the bundle of F-valued forms (resp. horizontal E-
valued forms) on M. We assume that M is endowed with the generalized Tanaka-Webster
connection V. Remember (cf. [BF]) that for any o € QP(M; E),

p
(Vxo)(X1,....X,) = VRe(X1,....X,) = > o(X1,...,VxX;, ..., X,)
i=1
vE AR i+l E %
(@ 0) (X1, .. Xp1) = D (-1)TVEo(X, L X Xp)
i=1
+ Z(—l)i+j0'([Xi,Xj],X1,...,Xi,...,Xj,...,Xp+1)
i<j
p+1 ‘ A
= > (-D)"N(Vx0) (X, Xy Xp)
i=1
+ Z(—l)i+j0'(T(Xi,Xj),X1,...,XZ‘,...,Xj,...,Xp_H).

i<j
Now, for any oy € Q¥ (M; E), we define

(dy, on) (X1, .., Xpe1) = (¥ ow) (X1, .. Xp41)
p+1

= D> (DN Vxon) (X, X Xpp)

i=1

(LY on) (X1, Xp) = ()Y om))(X0, ..., X))

= (VgcrH)(Xl,...,Xp)+Z(—l)iaH(T(Xi),Xl,...,Xi,...



((5EEO'H)(X1, .. -7Xp71) = —tTH<v O'H)( . 7X17' . -7Xp71)

p
(Ru(X,Y)ou)(X1,...,X,) = RE(X,Y)ou(X1,...,X,) = > ou(Xi,...,Ru(X,Y)X;, ...
=1

where R¥ is the curvature of V¥.
Note that for any oy € QF (M; E), we have:

E2 E
dz Oy = —LH(Cgv OH)_REAUHa

where RE Aoy is the wedge product of the horizontal End(E)-valued 2-form RE with the
horizontal E-valued p-form opy. Now the horizontal End(H)-valued 2-form Ry satisfies
the second Bianchi identity:

(VxBu)(Y,Z) + (VzRu)(X,Y) + (Vy Ru)(Z, X) = —wo(X, V) (i) R)(Z) + wo(Z, X)(i(§) R)(Y)
(Y,

o (Y, Z)(i(§) R)(X)
(VeRu)(X,Y) = (Vxi(Q)R)(Y) + (Vyi(§)R)(X) = Ru(7(X),Y)+ Ru(X,7(Y)).

—W

Remark 2.2 The Bianchi identity ({) is equivalent to dy Ry = — Ly (i(§)R) and LY Ry =
dy;(i(€)R) where V is the connection on N3 (M) induced by the Tanaka- Webster connec-
tion on H.

3 Contact sub-symmetric spaces

Definition 3.1 A contact (locally) sub-symmetric space is a contact metric manifold
(M, 0,¢,J,g9) such that for every point xy € M there exists an isometry (resp a local
isometry) 1, called the sub-symmetry at xo, satisfying ¥ (xy) = x¢ and dip(zo)/H,, = —id.

Theorem 3.1 [4] Let (M,0,&,J,gs) be a contact metric manifold endowed with its gen-
eralized Tanaka-Webster connection V and let R (respectively T ) be the curvature (re-
spectively torsion) of V. Then:

(i) M is a contact locally sub-symmetric space if and only if Vg R = VgT = 0.

(i) If M is a contact locally sub-symmetric space, V-complete and simply-connected then
M 1is a contact sub-symmetric space.

(#i) If M is a contact sub-symmetric space then M = G /K where G is the closed subgroup
of 1(M, g9) generated by all the sub-symmetries (zg), xo € M, and K is the isotropy
subgroup at a base point (i.e. M is an homogeneous manifold).

Note that the conditions Vg R = VT = 0 are equivalent to Vg Ry =0, i(§)R = 0,
ng =0 and VHT = 0.

Definition 3.2 [7§/ A contact sub-symmetric space M is said to be irreducible if the Lie
algebra $Hol(M) of the holonomy group Hol(M) acts irreducibly on H.

9
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The simply-connected contact sub-symmetric spaces have been classified by Bieliavsky,

Falbel and Gorodski in [f].

Theorem 3.2 FEvery simply-connected contact sub-symmetric space of dimension > 5 has

the following type:

holonomy trivial | torsionless Hopt1
Compact type Non-compact type
compact Hermitian (CH): | non-compact Hermitian (NCH):
SU(p+q)/SU(p) x SU(q) SU(p,q)/SU(p) x SU(q)
S50(2p)/SU(p) S0*(2p)/SU(p)
holonomy torsionless Sp(p)/SU(p) Sp(p,R)/SU(p)
irreducible SO(p+2)/SO(p) (p=>3) SOu(p,2)/SO(p) (p=>3)
EG(_78)/SpZTL(10) EG(_14)/SpZ’I’L(]_0)
Er(_133)/ Es Er(_25)/Es
with torsion | SO(p+ 1) x RP/SO(p) SOo(p, 1) x RPT1/SO(p)
(p=3) SOo(p+1,1)/50(p)
holonomy torsionless | Hopy1 X CH (G C U(p)) Hopt1 X NCH
not SO(4)/S0(2) 500(2,2)/50(2)
irreducible with torsion SO(3) x R3/S0O(2) S0y(2,1) x R?/SO(2)
S0y(3,1)/50(2)

Remark 3.1 The contact sub-symmetric spaces of compact Hermitian type (respectively
non-compact Hermitian type) arise from S'-fibrations over irreducible Hermitian sym-
metric spaces of compact type (respectively non-compact type). The previous list is not
complete, because S*-fibrations over not irreducible Hermitian symmetric spaces also pro-

duce examples of contact sub-symmetric spaces.

the following.

We do not consider these examples in

A contact locally sub-symmetric space (M, 6,&, J, gg) is always a strictly pseudoconvex
C'R manifold (since Vwy = 0). Now we recall the notion of homogeneous strictly pseudo-
convex C'R manifold and symmetric strictly pseudoconvex C'R manifold (cf. [20],[24)).

Let (M, H,J,0,g¢) and (N, H',.J 0, g) be strictly pseudoconvex C' R manifolds then
amap ¢ : M — N such that d¢(H) C H and J o dpy = dpy o J is called a CR map
from M to N (the definition is also valid in the general context of C'R manifolds []). A
CR automorphism ¢ : M — M is a diffeomorphism and a CR map from M to M. The
group of C'R automorphisms Autcr(M) is a Lie group. A C'R automorphism ¢ : M — M
is called a pseudo-Hermitian transformation if ¢*0 = 6. The group of pseudo-Hermitian
transformations PsH (M, 0) is a Lie subgroup of Autcgr(M) and also a Lie subgroup of

I(Mage)'

10




Definition 3.3 [2]] A strictly pseudoconver CR manifold (M, H, J,0, gs) is called ho-
mogeneous if there exists a closed subgroup G of PsH(M,0) which acts transitively on
M.

Definition 3.4 A (locally) symmetric strictly pseudoconvex C'R manifold is a strictly
pseudoconver C' R manifold (M, H, J,0,gs) such that for every point xo € M there ezists
a pseudo-Hermitian transformation (resp a local pseudo-Hermitian transformation) 1,
called the pseudo-Hermitian symmetry at xo, satisfying ¥ (xo) = x¢ and di(zo)/Hy, =
—id.

If (M, H,J,0,qg) is a symmetric strictly pseudoconvex C'R manifold then M = G/K
where G is the closed subgroup of PsH(M,#) generated by all the pseudo-Hermitian
symmetries 1(xo), g € M, and K is the isotropy subgroup at a base point. Also M is an
homogeneous strictly pseudoconvex C'R manifold. Note that the contact sub-symmetric
spaces torsionless are symmetric Sasakian manifolds.

Let (M,60,&,J,g9) be a simply-connected contact sub-symmetric space and I' be a
cocompact discrete subgroup of PsH (M, 0) acting freely on M then M/T" is a compact
contact locally sub-symmetric space.

Now we investigate the properties of the pseudo-Hermitian curvature tensor on a
contact locally sub-symmetric space.

Proposition 3.1 Let (M,0,,J,99) be a contact locally sub-symmetric space endowed
with its Tanaka- Webster connection V. Then we have VRY = 0 and consequently s"” is
constant.

Proof. Since VyRy = 0 and VJ = 0, we have VR, = 0. Now, we must prove that
V¢R}; = 0. Equation (B) together with the assumption i(§) R = 0 gives, for any X,Y € H,

(VeRp)(X,Y) = Ru(T(X),Y) + Ru (X, 7(Y)).
Since J o7 = —7 0 J, we deduce that
(VeR)(X,Y) = Rp(7(X),Y) + Ry (X, 7(Y)). (6)
If 7 = 0, we have automatically V¢R}; = 0. Now, if 7 # 0, the assumption Vy7 = 0
2
implies that |7|? is a strictly positive constant and that 7% = ‘;——didH (cf. lemma 1 of [{]).

This assumption together with (f) implies that R, (7(X),Y) = —R4(X,7(Y)) and then
(@) becomes V¢R}; = 0. Hence VR};, =0 and VRY = 0. O

11



In [A], Boeckx and Cho prove that a contact metric manifold M endowed with its
generalized Tanaka-Webster connection V satisfying the conditions VgJ o7 = 0 and
7 # 0 is a strictly pseudoconvex C'R manifold (i.e. J is integrable) and a (k, u)-space
(cf. [B]). Moreover, Cho gives, in [[4], a formula for the riemannian curvature tensor
of M if M has constant holomorphic pseudo-Hermitian sectional curvature. Now we
obtain a formula for the pseudo-Hermitian curvature tensor of a strictly pseudoconvex
C' R manifold satisfying Vg7 = 0.

Theorem 3.3 Let (M,0,¢,J,gg) be a strictly pseudoconvex C'R manifold endowed with
its Tanaka-Webster connection V. Assume that Vg = 0 and 7 # 0, then the pseudo-
Hermitian curvature tensor and the Chern-Moser tensor of M are given by:

w
w Vo 2 M S 1 ¢ 2d
RH d2 (I | |QTH) CH d2 <d+ ]_IHO | |QTH0>7 (7)

1
with Ty = 3 <A9 D Ag+ By Y Bg). Moreover, if d > 2, then M 1is a contact locally sub-

symmetric space.
The proof of the theorem needs the following Lemma.

Lemma 3.1 Let (M,0,¢, J, gg) be a strictly pseudoconver C'R manifold such that Vgt =

w
0 and T #0. Then py] = ———wy (i.e. M is pseudo-Einstein), and VT = % _Jor.

sV
- 2d d?

Proof. First recall that the assumptions Vg7 = 0 and 7 # 0 imply that |7|? is a strictly
2
positive constant and that 72 %de Now, we have for any X,Y € H,
Ruy(X,Y)T = Bp(X,Y)T —wy(X,Y)Ver,
with By(X,Y) = VyVx — Vy,x — (VxVy — Vy,y). Since Vg = 0, we have
Rpy(X,Y)T = —wp(X,Y)Ver and also R (X,Y)7 = —wy(X,Y)Ver. We obtain

9o( R (X, Y)7(Z), JT(W) =99 (7(R (X, Y) Z), JT(W)) = —wp(X,Y)go((VeT)(Z), JT(W)).

Hence,
RY(X,Y,7(Z),Jr(W)) + %RW(X Y, Z, JW) = —we(X,Y)go((Ver)(Z2), JT(W)).

Let {¢;} be alocal gg-orthonormal frame of H, then

> REV(XayaT(Gz‘)aJT(Ei))JF%REV(X,Y,Gi,JQ)Z—WG(X,Y) > 96((Ver)(e), Jr(er)).
(8)

1<i<2d 1<i<2d
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2 |7'|2

Since 7° = ﬁidH, then () becomes
2
-
TS R(eden X.¥) = —w(X.Y) Y a(Ver)(e). Jr(e)
1<i<2d 1<i<2d
which is

d
p}/{v =—Ag R}ZIV = WGW<V£A9’ Bg)

w w
Since Agpy = —87, we deduce that p)y = —Z—dwg and then M is pseudo-Einstein. Now
we have
(AnRp)(m(X)) = 7((AnRp) (X)) = =d(Ver)(X).
W
The assumption py = —Q—dw@ gives
W
(AuByp)(r(X)) = 7((Au Byp) (X)) = —-J o 7(X)
W
and then V¢r = _ﬁ‘] or. O

Proof of Theorem 3.3 Using (B), we obtain that for any XY, 7 € H

96(R(X, )Y, Z) = go((V27)(X), Y) = go((Vy7)(X), Z).
By the assumption Vy7 = 0, we have i({)R = 0. Now, equation (f) together with
i)

i()R=0,Jo7=—70Jand 7 = ;—indH yields

Ry (r(X),7(Y)) + %RE(X, V) = (Vely) (X, 7(Y)). (9)
By (B)), we have
(VeRR(X.Y) = —2 ((Ven) (X)) A Y)Y ~ (Ver)(V)) A (JX)

— (J(Ver) (X)) AY™ + ((J(Ver)(Y))" A X*).

We have V.1 = —Z—V:J o7 (Lemma 3.1), it follows that
(VeRg)(X,7(Y)) = 1|2 (XA +(IX)AY) )45 ((r(0) AT +(I7(X)) AT (V))).

13



Then (f) becomes

| 2

RY(r(X),7(0),2,W) + TERE Y. 20) = S0 (g, @ oo, + 00 @) (X,,2,W)

2d it
+ 4d2 (Ag ®A€+B€ @B«9><X7Y727W)(10>
Now, we have
9o(Ry (X, Y)7(Z),7(W)) = go(7(R} (X, Y) Z), 7(W)) = —WG(X Y)go((Ver)(Z), 7(W))
= (X, YV (2. W),
Hence
RY(1(X),7(Y),Z,W) — |25RH (X,Y, Z, W) = 42;|7'| (wop ©we)(X,Y, Z,W). (11)

We deduce from ([[0) and ([[1]) the following expression for the pseudo-Hermitian curvature

SW
R}/{V(Xu}/uZ7 W) = @(QGH @g@H + wy @we + 2W«9 QWG) (X7KZ7 W)

W

+ 1] (Ae @ Ap + By @Be>(X7Y7 Z,W).

The expression for C4* directly follows from the decomposition of R}Y. Now we assume
d > 1. Since Vg7 = 0, we have the formula 5HRiC}/{V = —%stW. Also M pseudo-Einstein
and d > 1 yields to s”Y constant. Since Vygs = Vaws = VgAy = VgBy = 0 and s
is constant, then we have by the previous formula for R} and ({]) that VyRy = 0.
Consequently M is a contact locally sub-symmetric space. O

Corollary 3.1 The pseudo-Hermitian curvature tensor RYY of a contact locally sub-symmetric
space M has the following form. If M is holonomy irreducible and torsionless, in this case

M is the total space of a S'-fibration ® over an irreducible Hermitian locally symmetric
space B and RY is given by RY = 7*RP where RP is the curvature of B. If M has
torsion, in this case R)Y is given by formula ([J). Note that, in each case, M is pseudo-
Einstein with s constant.

Remark 3.2 Note that the contact sub-symmetric spaces of non-compact Hermitian type

have nonpositive pseudo-Hermitian sectional curvature whereas the contact sub-symmetric
spaces of compact Hermitian type have nonnegative pseudo-Hermitian sectional curvature.
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4 Mok-Siu-Yeung type formulas for horizontal maps
between strictly pseudoconvex C'R manifolds

Let (M, 6,¢&, J, gg, V) be a contact metric manifold endowed with the (generalized) Tanaka-
Webster connection and let (E, g%, V¥) be a Riemannian vector bundle over M. For any
Qu € N3, (M) ® End(E) and oy € AL (M) @ E, we define Qy(og) € AL (M) @ E by:

ZQH e, X)on(€),

where {¢;} is a local gg-orthonormal frame of H. For any Qg € S*(A%4(M)) and sy €
S%(M)® E (respectively o € AL (M)QE), we define Qg sy € S%(M)® E (respectively
Quoy € N4 (M) ® E) by:

(QOH sp)(X,)Y) = ZQH(Q,X,Y,EJ‘)SH(Q,EJ‘),
(@;O’H)(X,Y) = %ZQH<EZ',€J',X,Y)O'H(EZ',€]').

i7j

Proposition 4.1 Let (M,0,¢,J,99,V) be a compact contact metric manifold and let
Qu € T(S?(A%4(M))) satisfying as horizontal A% (M)-valued 2-form the assumptions
0yQu =0 and AgQp = 0. Then, for any oy € QL (M; E), we have:

—

/ (Qu Vou, Viou) + ((Qn) — Qu)dy on, dY ohvg, = 2 / (QuRE)(on), on)
M M

—((cu(Rir 0 Qn))*, 059" )vg,,
(12)

where, for any horizontal 2-tensor g, ps (X, Y) = pup(X,Y) + pu (Y, X).

Proof. Let Qp € T'(S%*(A%(M))) satisfying 63;Qp = 0 and AgQpg = 0, then formula (8)
of [2§] gives for any oy € Q}(M; E)

0uQu(V))on = RYon,

where Qy(V) and RS are given in a local orthonormal frame {e;} of H by:

Qu(vV ZQH (6 A X). Ve, = ZQH (€1, X, en, @1)er-€1.Ve,,

zkl
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and

= -3 ZQH 61 A ej) RH(Ezaej = Z QH EZ,EJ,Ek,El)Ek €. RH(ezaej)

z]kl

By integrating, we obtain

/<QH(V)0H,VUH>%6:/ <R20H,0H>Ugg-
M M
We have

(Qu(V)oy,Voy) = —% Z Qulei €5, e, @){e.Ve,om, €.V, 0m).
gkl
Now, for any X,Y € TM and any o,y € Q'(M; E), we have (cf. [25]):
(X.0,Yy) = go(X, Y)(0,7) + (i(X)o, i(Y)y) = (i(Y)o,i(X)7). (13)

We deduce from ([[3) that

(Qu(V)ow, Vou) ==Y Quleiej e, @) (Veon) (@), (Ve,om) () (14)

i,5,k,l
Now we have for any o € Q};(M; E) and any X, Y € H

(Vxom)(V) = & ((Voou)(X.Y) + (@F ou) (X)),

with (VSou)(X,Y) = (Vxop)(Y) + (Vyop)(X) and (4, ox)(X,Y) = (Vxou)(Y) —
(Vxog)(Y). Then ([4) becomes

(@u(V)ow. Vou) = (3 Qulees, ) (T3l @), (Vo) (e, )

,7,k,l
+% > (Quless e, ex,@) + Qulen, ei ¢5))(dyy o)esr @), (dyy on)(ej, )
i,5,k,l
23 Qule 65,6, ) (Vo) (er,0), (A5 o) e, 1))

i7j7k7l

B _i(z Qu(es, &5 en, ) (Vion) (e, @), (Voou) (e, )

i,5,k,l

+3 Z (Qu)(esr 1, €5, e6) — Quier, 65, e)) (A on) (e, e0), (dyy om)(€j, )

zykl
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" Z‘/;IQH(G“ &5 s @) (Voou) (e, @), (dy o) (e, 6k)>>
- _i(z«dH VSUH)(Ej,Gk), (VSUH)(Ej, €r))

Z ) — Q)Y on)(ej,ex), (45 on) (6, e0)
Z (Qu Viou) (e, ), (0 o) (e5: 1) )

- —§(<@Hv 71,V 0) + (0@ — Q) o A5 o).

For the second term, we have

1
(REou,on) = ZZQH(€i7€j7€ka5l)<€l-RH<5iaEj)o'Haek-O'H>

i,k
1

= —5 > Qulene e a){(Rule, ¢)om)(e). onla)).

ikl
Since (Ry(X,Y)oy)(Z) = RE(X,Y)ou(Z) — oy (Rg(X,Y)Z), we have
1
<RgUH,UH> - 75 Z Qu (e, €j7€k7€l)<Rg<€ia ¢j)om(er), om(er))
ikl

1
+§ Z Qru€is €5, €x, &) Ri (€5, €5, €y €m)(or(€), or(€m))

i7j7k7l7m

= S @QuBRE) exa)on(er).onle))

k.l

% %;(cH(RE o Qn)(etsem) + et (B 0 Q) ems ) ) (0797 €1, )

= —((QuRE)(on),om) + ((car(Rr 0 Q) g™

Hence the formula. O

Assume that (M, 0,¢,J, 99, V) and (N,0,¢',J gy, V') are contact metric manifolds
endowed with their Tanaka-Webster connections and let ¢ : M — N be a differential map.
Let ¢*T'N be the pull-back bundle of TN endowed with the metric and the connection
induced by those of TN. The covariant derivative of the ¢*T' N-valued 1-form d¢y is
given by:

(Vxdon)(Y) =V dou(Y) — dou(VxY),
where VWTN denotes the connection induced by V' on ¢*TN.

17



Definition 4.1 Let H = Ker and H = Ker. A map ¢ : M — N such that dp(H) C
H' is called a horizontal map from M to N. We denote by H(M,N) the subspace of
horizontal maps from M to N.

Note that a horizontal map ¢ satisfies ¢*0' = f0 with f € C>(M,R).

Lemma 4.1 For any horizontal map ¢ : M — N, we have:

dY; dy = —wp @ (db(€)) (15)
and , . /
LS dou =V (do(€))y — [ odon. (16)

Proof. For any map ¢ : M — N, we have dv/d¢ = —¢*T" where T' is the torsion of V'.
Hence

1¢p* TN

A% dpy = d (dp— 0 dp(€)) = —¢"T —wy @ dp(€) + O AV dg (&)
= (T )y —wa @dd() +ON (V" dp(€) —i(€)¢*T).
We deduce that ) ) /
dY doy = (d¥ don)y = —(&°T' ) — we ® d(€)
and ) / . /
L doy = i(§)(dY dpn) =V — d(€) —i(§)¢™T .

Now, let ¢ : M — N be a horizontal map, then we have ¢*6" = f6 and P'wy = fwg—ON
dfgr. Since T = —wy ®E +0 AT, we deduce that ¢* T = — fwyRE +ON(df @€ +f 7 odg)
and consequently

A5 dp = wy @ (€ — dp(€)) = —wp @ (AS())

Now,

1¢*TN

LY dgy = Vi dg(e) —dfu @& — f7 odon
= Vi (&) — fE) — fr oddy =V (d(€))y — f7 o dy. O

In the following, for any horizontal symmetric 2-tensor py, we denote by pp, its traceless
part.

18



Proposition 4.2 (Mok-Siu-Yeung type formulas for horizontal maps between strictly pseu-
doconvex C' R manifolds) Let (M, 0,¢,J,g9,V) and (N,0',€',J gy, V') be strictly pseudo-
convex CR mamfoldj with the assumption M compact. For any QF, € T(S2(/\§{:(M)))
(resp. Q € T(S*(Ny (M)))) satisfying 0y Qp, = 0 and (c(Qp,)), =0 (resp. 65Qp =
0 and (cu(Qy)), = 0) and any horizontal map ¢ from M to N, we have:

HQHO

| (@i (7o) (Vo)) = 2 (155 donl + 1 (do(€) )

—4 [ 2Qh R, - §<<cH<RzV © Qi) (&0 ) — (@ (6 Br) i (660 ) ),
(17)
f}’T’HQH

| (@i (Vo) (Vo)) — T (185 o = I (d(€)) )

tTHQ;]

N 4/M Qi (5"RY),) — (@ (6 By)yy — Bo) + By, (¢"99) 1) Vs (18)

Proof. Let ¢ : M — N be a horizontal map. For any Qg € T'(S*(A%(M))), we obtain,
1 ’
using the relation Vodgy = (Vodgy), — 7 90u ® 0y dég, that

(Qu VEdon, Vidon) = (Qn <v3d¢H>o,<de¢H>o>+§<cH<QH>®5E'd¢H,<de¢H>o>
Q55

The assumption (cy(Qn)), = 0 implies that (cy(Qu) ® 5Zld¢H, (VSdop),) = 0. Hence
we have

t'f’HQH

(Qu Vdon, Vidor) = (Qu (V3dowu)y, (Vidon),) — 6% doul>. (19)

Since ¢ : M — N is horizontal then ([[J) yields dzl dog = —wy @ (dp(€)) 5. Now we have

(0(Qn) — Qu)dY; dor, dY, dom) = ((b(Qnr) — Qur)ewn, wo) | (AD(E)) |
= (0(@n) - QH,We®w9>\(d¢(€))H'\2

= (tTHQH - tTHQH)Kd(b(f))H' .
For Qf, € D(S?(A5H(M))) and Qy € T(S?(A% (M))), we have

—

((b(Q,) — QHO)dv dopr, Yy déw) = —traQf, (20)
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and — , , —
(0(Qy — Qr)dy, dop, dy; doy) = trpQy. (21)

Now for Qyn € T(S*(A%4(M))), we have <(@R§TN)(d¢H)7d¢H> = 2<QH7(¢*RH'>}S{>'
Since Ry = RY) — %(w(y DAy — gy O By ), we have

(6" Bap )iy = (6" R+ 56 00) s @6 By )iy — (6% )y B (6" Ag)
Since (6"wy)y ® (6" Ay )y € D(V(W(M))), we have

(QuRy ™) (dor),dén) = HQu, ("R ) +2(Qu, (6" 95 )y ® (6" By) )
= 4Qu, ("R, — 2Qu (" By )y (6700 ) ) (22)

The relations gg,, @ B o wp O wes = 2wy O Ag and ga,, @ By © go,; @ o, = 296, O B
yield to

—~ - 1 — - __
Ry = RY + 290u D By o (96, D go,,) -

—

Since for any 755, Q% € S2(A%E (M), Ty 0 Qf = 0 and (9o, ® o)~ © Qpy = 2Q;; then

{(eu(Ru o Q)% (6% 90) ) = (en(RY 0 Q)% (679 ), (23)

and - o
((ca(Rar 0 Qi) (6" 99) i) = (e (9o ® Ba o Qp))*. (6”99 ) )-

Now, we have

(crr(gon ® Bo 0 Q) (6 05) ) = (e (@) © Bo)® —2 Qs Bo, (6°5) ),

where uOH is the symmetric endomorphism associated by gy, to the symmetric 2-tensor
pr. Using the assumption (cx(Qy)), = 0, we deduce that

traQy

d
We obtain the formulas by replacing ([9),(R0),([21),[2),[3) and (P4) in ([J). O

(er (B o Q) (6700 ) i) = 2820 By QO By (6700 ). (24)

As applications of formulas ([7) and ([§), we recover, in a different way, the Siu
formula given in [R5 and we derive a Tanaka-Weitzenbock formula. First we have the
following lemma whose proof is left to the reader.

20



Lemma 4.2 We have for any sy € S4(M) ® E the relations:

9o D goy s = 2(55 — go @ trusu), wy Qwe Sy =we O wy sy = —2(sf; — s7),
cu(9oy D goy) = 2(2d —1)go,, calws Owp) = ca(we © wa) = 29g,,,
f}’f’HggH@ggH = 2d(2d—1), f}’f’ng @wgthng/G)\LUQIQd.

Proposition 4.3 For any horizontal map ¢ from a compact Sasakian manifold M to a
Sasakian manifold N, we have:

/M (V3 dom)y P (1= 5155 doul? + d(d — DI(do(€)) ey, = 4 /M (6 R g (25)
1 1 - 1 /

[ 30+ (1= ) (9%dom) = (1= ) 165 donl® (@ = D](d6(€) P
=i [ SR + (1= )it (o Ry - 5 (1 5) (dowo Rich, donbuy, (26)

where, in an adapted frame {eq,...€q, Je1, ... Jeq} of H,

ij<d
and — -
trif (0 R)yy) = D (@) (N T). 2N Z),
ij<d

with ZZ = %(El -V —]_JEZ)

Proof. Let Q;; € T(S*(A%(M))) and Qi € 1—‘(52(/\2:(]\4))) defined by:

Q;{ = (gGH @g@H)_ = %(QGH @gGH — Wo @wg)

and

1 2
Q}}O = (9on @geH)(T = 5(90}1 D goy +wo Owy — Ewe O we).

Then we have VyQj, = VyQp = 0 (since Vgy,, = Vwy = 0). Moreover, using Lemma

4.2, we have cy(Qp) = 2(d — 1)gs,, and cu(Q}f;,) = 2d(1 - %)ggH. Also (cu(Qp)), =

— 1
(cn(Qy,)), = 0. Moreover, we have (cx(R}) OQEO))S = 4(1 — E)Riczv. Let ¢ be a
horizontal map from M to N, by Lemma 4.2, we have

Qi (VSdor)y. (Vodom)y) = 2/(VSdon)!|?
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(@, (V361 (Vdom)) = 2(5(V5dom)y P+ (1= 3)I(VSdow) P)

truQy = 2d(d—1), trH@):2<d2—1)
(en(RE o Qi) (6" 0)) = 2(1— ) {déwo Ric, dow)
Qi (G RE),) = (00, Bn) ™ (5 BY) ) = tru( R,

(Qf OBy = (900 D gou)” — L@, (0" Ryyr) )

d
1 SRR 1 —
= (1= 2)tru( R, + Stra(o R,
In an adapted frame {eq,..., €4, Jeq, ..., Jeq} of H, we have
’,A\\‘i % + « +
tri(¢* R =Y (6"Ry) (eiejo e 65) + (0" Ry, (€6, T€j, €6, Tej))

i,j<d

Now we have, for any Ty € S*(A(M)) N Ker b, the relations

—~C _ .
(T (ZAW),ZAW) =T7(X,Y,X,Y) + Tz (X, JY,X,JY)

and

/\(c - pr—
(Ty (ZAW),ZAW)=TH(X,Y,X,Y)+TH(X,JY, X, JY),
with Z = Z5(X — V=1JX), W = (Y — V=1JY). Since (¢*R}y), € S*(AH(M)) N
Kerb, we deduce that

(Qus ("R ) = > ("R (Zi A Z;). Z: N Z)
1,5 <d
and

o —

(@ B2 = S (GRS (21 2), TR 7))

i,j<d

+ (1 - é)((gb;%g\/)i(zi NZ;), 2 AZ)),

with Z; = %(el — v/ —1J¢;). By replacing in ([[7) and ([§) together with the assumptions
M, N Sasakian yields the formulas. O

5 Horizontal pseudoharmonic maps, CR-pluriharmonic
maps and Rumin complex

. Pseudoharmonic maps
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In [B] and [f] Barletta, Dragomir and Urakawa have introduced the notion of pseu-
doharmonic maps from a compact contact metric manifold into a Riemannian manifold.
Now we extend this notion to horizontal maps between contact metric manifolds.

Assume that (M, 0,&,J, g5, V) and (N,60',¢',J', gy, V') are contact metric manifolds
endowed with their Tanaka-Webster connections and that M is compact. For any dif-
ferential map ¢ : M — N, we define déy ;(X) = (dpu(X))y with X € H and the
horizontal energy Ey g (¢) by:

1
EH,H’ (@) = 2 /M |d¢H,H/|QUge-

Proposition 5.1 For any variation ¢; of ¢, we have:

d ! .
%EH,H’(@)“:O = /Mge’ (0% Aoy + i(o 4 )7' 0doy y — ¢ t"’H@ Ay ) g 0)Vgy
. o¢
with v = Euzo'

Proof. Let {¢;}y<c be a variation of ¢. We consider the map ® :| — ¢, e[xM — N given
by ®(t,z) = ¢(x) and the pull-back bundle ®*TN —| — €, e[xM of TN by ®. Let {¢;}

be a local gg-orthonormal frame of H, then we have

2dt| Aty i ?= 2875 de (dP(€:)) gy, (dD(e;)) de v (dP(€)) g, (dP(€:)) ).
We have
' 0 JP*TN JP*TN 0 0 0
dv d® d®(e;) — do d® ~T'(d® do
(¥ d2) (5 ) = ¥y " d(er) - VI da () <[at ) = =T (dB( 1), d2(c),
where T" is the torsion of V'. Since [Z 5 €] =0 and v preserves H', we obtain
Vo ()~ @B(2)) = (1 (B2, db(e)
& PIH T Ve ot w ot W

Using 7' = —wy @ & +6 AT, we obtain

il = 0o (VI @), 0w o)

H

1d

2 dt
/ / 0

£ 0(d2(e)T ([d0(5)), (dD(cr)) )

0

= 3 (o (@) (d8(e)) — g (@B()

H

(A2(Veie) 1))

i
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8 1 O*TN

- de/«d@(@))Hﬂvgi (40(c) 5 = (A2(V.se) )

- ZA ((d®(e)) (A (&) 1)
bY@ ) A (@0(5) | (dB(e)r)

i

- —6Ha(d¢(%>),, ar (@05 5 (V" aw)(e),,
— ZA ((d®(e:)) 57, (dD(€3)) )

b @Ay (@), @)

with Qga(2)) (X)= gy((d@(%))hﬂ, (d®(X)) ). We deduce that

1 d 1¢*TN
5 dtld¢tHH|2|t o = —5HaUH,—gg/(Z((vq dqﬁ)(ei))H,,vH/)

v) Z Ay (ddy g (€:), ddy r (€1) + Z(W@')(@)Ae' (Ao g (i), vp)

= —Onau, + 9y (O doy  +i(6"0)T 0 dy = E'tru(6"Ay) g, v).
The result follows by integrating. O

Definition 5.1 A map ¢ : M — N is called a pseudoharmonic map if it is a critical
point of By .

A map ¢ : M — N is pseudoharmonic if and only if
0y Ay +i(¢°0)T 0ddy =0 and  try(¢*Ay), = 0.

A horizontal map ¢ : M — N is pseudoharmonic if and only if 51?1, doy = 0 and

. CR-pluriharmonic maps

Let (M,0,¢,J,gs) be a strictly pseudoconvex C'R manifold of dimension 2d + 1. A
real function h on M is called a CR-pluriharmonic function if h is the real part of a CR
function on M.

We have the following equivalent characterizations for the CR-pluriharmonic functions.
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Theorem 5.1 (LeefZ1))

The following assertions are equivalent:

(i) h is CR-pluriharmonic.

(ii) There ezists a real function A such that d(J*dhg + \0) = 0.

1 1
where (dpJ*dhy), is the primitive part of dyJ*dhy and dg ;= [Am, du).
1
Note that, if d > 1, then the assumption (dyJ*dhy), = 0 implies that L¢ J*dhy + EdHcSHth =0

and, if d = 1, then the assumption (dyJ*dhy), = 0 is always satisfied for any h.

Definition 5.2 Let (M,0,€,.J,99,V) and (N,0,€,J ,g,,V') be strictly pseudoconvex
CR manifolds endowed with their Tanaka- Webster connections together with dim M > 3.

A horizontal map ¢ : M — N such that (le J*dou), = 0 is called a CR-pluriharmonic
map from M to N.

Proposition 5.2 (i) A map ¢ : M — N is CR-pluriharmonic if and only if
S + S +, 1 v’

(ii) Any CR-pluriharmonic map ¢ : M — N salisfies:

’ 1 o o 2 * - /
Ly Jden + Edg oy doy = ——trn (RY,™) (, Ddoy(.) — f7 o J*doy.
(iii) Any CR map ¢ : M — N is CR-pluriharmonic and we have
Oy Jodpn = J 837 dpy = d(dp(€)) - (27)
Proof. Recall that for v € QF (M), its primitive part vz, € QF (M) is given by
1
YHy = YH — ELH Ag ve. We have

/ ’ 1 ’ ’ 1 ’
(dy; J*ddm), = dy; J*dem — ELH Ag dyy J*dog = dyy J*doy — ELHcSEvJJ*dng.
Now since 5E:JJ*d¢H = 5Z:J(d¢H oJ)= 5Z/d¢>H, we deduce that
’ ’ 1 ’
(dy; J*dén), = dyy J*dpw — —wy ® 5y dog. (28)
Now, using ([[7]), we have

(A5 T d6m)(TX,Y) = (Voxdom)(TY) + (Vydon)(X) = 5 ((V3dom)(X,Y) + (Vodo)(JX, IY))
— (VSdon) (X,Y).
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Hence by (2§) we obtain
! 1 !
(dY J*don)y(JX,Y) = (VSdor) (X,Y) + 00 (X, Y)8Y dby.
The assumption (i) directly follows. Now we have

1 ’ ’
— Ag dy; Loy dég.

’ ’ ’ ’ ’2
oy, ((dyy J*dom)y) = Audy ((dyy J*ddu)y) = Audyy T ddu — y

12 « /
Since dy; J*doy = —LH(EngJ*ng)H) — RN A J*doy and [dY) , Ly = 0, we obtain
’ ’ . 1 ’ ’
oy (A T dom),) = — Am (RN AT doy) — /\HLH(,CngJ*dqu) — 5 An Lydy, 0y, déy
* 1 ’ ’
= — A (Ry ™ AT dow) — (d—1)(LY" T*doy + Sdyy 8 dow). (29)

Let {¢;} be a local gyg-orthonormal frame of H, then we have

Aur(RETY AT d) = % 3 (RH/ (A (€), dobp(Je))ddn (JX) 2R (dbs(e), dqﬁH(X))dqu(ei))

i

Using ([l]), we obtain that
> Bur(@on(ei, )Aon (Jei))don(TX) =23 Ry (dou(IX), don(Je)don () +2f (d=1)7 (ddso])(X)).
Hlence we have |
Au (R A J*dou) = — Z( (don(X), o (e))don(e:) = Ry (dou(TX), dos(Je:))don ()
+ f(d =17 ((dor 0 J)(X))
= =2 (By"™Y) (X,@)don(e) + f(d=1)(7 o J'don)(X). (30)

The assumption ¢ CR-pluriharmonic together with (9) and (BQ) gives the formula. Hence
(ii). Let ¢ : M — N be a CR map then J odéy = dpy o J. Consequently, we have

J o (dY} dos), = () (do o J)),

and ) )
J 6% doy = 0y, (deg o J).

By ([3)) we have (dgl dom), = 0 and we obtain that (dgl(dng oJ),=0. Now we have

6% (s o J) = =03 ,(dow) = — A (dY dow) = d(dd())y. O

The following theorem holds for pseudoharmonic maps between Sasakian manifolds.
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Theorem 5.2 Let M and N be Sasakian manifolds. Assume that M is compact and N
has nonpositive pseudo-Hermitian complex sectional curvature. Then:

(i) Any horizontal pseudoharmonic map ¢ from M to N is CR-pluriharmonic.

(ii) If the pseudo-Hermitian Ricci tensor of M is nonnegative, then any horizontal pseu-
doharmonic map ¢ from M to N satisfies Vde = 0 and |d¢| = const.

(#i) If the pseudo-Hermitian Ricci tensor of M is positive, then any horizontal pseudo-
harmonic map ¢ from M to N satisfies dpy = 0 and consequently rg.(¢) < 1, where
r9.(p) is the rank of ¢ at a point x of M.

Proof. Let ¢ be a horizontal pseudoharmonic map from M to N. If N has nonposi-
tive pseudo-Hermitian complex sectional curvature then (B3) yields to (dé(€)), = 0 and
(V‘Sd(bH)g = 0. In particular, ¢ is CR-pluriharmonic. Moreover, if Ricly is nonnegative,
it follows from (B6) that (VSd¢g)~ = 0. Consequently VSdoy = 0 and dgld@q = 0.
We deduce that Vydoy = 0. The assumptions M and N torsionless together with
(dgp(€)) = 0, yield by ([) that Vedoy = 0. Taking into account that dé(¢) = f€', we
obtain that i(§)¢*wy = —dfy = 0 and so f is constant. We immediately deduce that
Vdo = Vdoy + 0 @ Vdgp(€) = 0 and so |dg| = const. If Ric}y is positive, it directly

follows from (d¢go Ricl,dpy) = 0 that déy = 0. Since do(¢) = f€', we deduce that the
rank of ¢ is less than equal 1 at each point of M. O

. Horizontal maps and twisted Rumin pseudo-complex

Let M be a strictly pseudoconvex C'R manifold of dimension 2d 4+ 1. We recall that
the Rumin complex [B7] is the complex:

0-R—C®M)BRM) B .. BRYM) B R M) B B R2UH(M) — 0,
where
RP(M) = Qf (M) forp<d
= F{(M) forp>d+1,
and

drvn = (duvm)y = (du — ﬁLH&q,J)’yH for vy e RP(M) (p<d—1)
D’RfYH =0 A (ﬁg + dH(sH,J)’)/H for YH € Rd<M)
drye =0 N i(€)(de) for ye € RP(M) (p>d+1).

The formal adjoints of dr and Dz for the usual scalar product are denoted by dr and
D% . The laplacians associated to this complex are defined by:

Ag = Dk Dr + (drig)’ on R4 (M)
Ar = DrDi + (0rdr)? on RH(M)
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The fondamental fact is that, if M is compact, then (cf. [B7)):
Hin(M,R) = H5(M,R) = Ker Ag,

where H};,(M,R) and Hj,(M,R) are respectively the cohomologies of the De Rham com-
plex and the Rumin complex.

Let (E,V¥) be a vector bundle over M then the previous definitions of RP(M), dr
and Dg can be extended to E-twisted bundles. Also we define the sequence:

vl dvE dvE VE

VE
0R—c=0n % R e % R mianp) R me ) R R mE (L E) 0

Note that d%EzaH = —(RE Nop), for o € RP(M; E) (p < d—2). Also the previous
sequence is not a complex excepted if F is flat. Also we call this sequence the twisted
Rumin pseudo-complex.

Let N be a strictly pseudoconvex C'R manifold, ¢ : M — N a horizontal map and
E = ¢*TN the pull-back bundle endowed with the connection V' induced by the Tanaka-

Wester connection of TN. Then dog € Qb (M; ¢*T N) satisfies d%/ doy = (dg dom)y =0
Moreover, if ¢ is a pseudoharmonic map then 5v' dng = 5v/d¢H = 0. Consequently,
if d > 1, we have Av/d@q = ((d — 1)(1lv 5v —i—dév dv )d(bH =0. Ifd =1and N is
torsionless, then we have Dvld@q =0A (EV dog + dv oy Jdd)H) = 0. The assumption ¢

r 2
pseudoharmonic yields to AR dog = DYQ *DYQ dog + (d7vz 6% ) doy = 0.

Remark 5.1 The condition ¢ : M — N CR-pluriharmonic is equivalent to de’ Jrdoy =
0. Moreover, if dim M = 3, it seems natural in view of the Theorem 5.1 to define the

CR-pluriharmonicity of a horizontal map ¢ : M — N by the condition Dy J*d¢g = 0.

6 Rigidity results for horizontal pseudoharmonic maps
defined on contact locally sub-symmetric spaces

Now we derive Mok-Siu-Yeung type formulas for horizontal maps from compact contact
locally sub-symmetric spaces into strictly pseudoconvex C'R manifolds. In this section we
assume that M is a contact locally sub-symmetric space of dimension 2d + 1 > 5. First
we consider the case M torsionless.

Lemma 6.1 Let (M,0,¢,J,gg) be a contact locally sub-symmetric space torsionless with
s" non-zero. Yll;zle tensor Q7 € F(SQ(AESL(M))) given by QF = colfy, + C3' with
8d |CH?

co = —HSLW is parallel and satisfies (Qy;,, Ryy,) = 0 and (cu(Qf,)), = 0.
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1
Proof. First recall that Ij; = Z(ggH ® 9oy )y - Now we determine ¢y in a such way that

Co 3
(@i Bii) = JtruRY, + (CR' Ry ).

Now, we have

w
W s C 1 W W M
Ry, = mIHO + 20+ 2) (RZCHO ® 9o, — P, @w0>0 +Ch-
—_— /_\ o 2 o
Since try <Ric¥}’0 ® Yo, — PR, @wg) = tryCy' = 0and try I = 5 e deduce that
0
— d-1
truRYy = WSW. Using (Cy', RY}) = |CH'|?, we obtain that
+ RV — d—1 w M2
<QH07 H()>_CO 8d S _'_‘ H|
, 8d |CH|? , v o N d 1
By taking ¢y = v e obtain that (Q, , Ryy,) = 0. Now we have cy(Qy;,) = oy (1 - ﬁ)ggH
and then (cu(Qj,)), = 0. Since M is a contact locally sub-symmetric space, then

VRY =0 and s" constant yield to VO3 = 0. Hence we have |C#!|> and ¢y constant.
The parallelism of QEO = 0 directly follows. O

Proposition 6.1 For any horizontal map ¢ from a compact contact locally sub-symmetric
space M, holonomy irreducible and torsionless, to a Sasakian manifold N, we have:

[} 1 -
/M o1V o)y P+ (C (VEdom)y , (VSdon)y) + 5 (1= < ) I(VEdom) 1

Co

HON (Vo) (Vdom) ) — 2 (1= )65 doml? — D ~ DI(AH(E);r v,

1 SRy 1 W) .
=2 /M co( SR (o B + (1= 2 )i (0 B))) +4(CH (6" Ry ) vay (31)

8d |CM|?
where cg = 1 1| I;V| .
— s

Proof. Let Qf, = COI}CIO + C4" with ¢o defined in Lemma 6.1. The horizontal J-invariant

—

symmetric 2-tensor (cH(EE" o Q}}O))S is parallel. We deduce from the irreducibility of M
that (cy(RY o QEO))S = A\gy,, with A € C*°(M,R). Now,

1 — 2 — 4
A= —tTH(CH<RKIV e} QJI_FIO))S = —t'f’H(RE} o QJ[;O) = _<R}/{V7QJI-FIO> =

W + _
2d d d (Rrig» Qi) = 0.

ISWIIEN
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Hence (cH(E\}{V o QEO))S = 0. If ¢ is a horizontal map from M to N, we have by Lemma
4.2

(@, (V3dm)y, (Vdom)g) = 2 (LI(Vodom)g P+ (1 - 5)I(Vodsn) 1)

(O (VS dba)y, (VSdén),)
@y = O 1)

2
1 PR 1 PRV
Qs @R ) = (G BE) + (1= 2 )i (0 RE)D)) + (CHL (6B ).

By replacing in ([[7), we obtain the formula. O

Now we consider the case of contact locally sub-symmetric spaces with torsion. Let M
2,

= —idy.
2d

|72

We always may assume that ol = 1 also 7 becomes a paracomplex structure on H. Now

be a contact locally sub-symmetric spaces with torsion, we recall that we have 72

(1,J o7,J) defines a so called bi-paracomplex stucture (cf. [If]) on M. Any horizontal

2-tensor ty on M decomposes into ty = ty, +ty_, where ty, = %(tH + 7%ty) are respec-

tively the 7-invariant part and the T-anti-invariant part of t5. Let A7, (M) be the bundle
of 7-(anti)invariant horizontal antisymmetric 2-tensors. For Qg € S*(A%(M)), we define

Qu. € S* (A, (M)) by

QHi(Xv Y7 Z? W) = i(@H(Xv Y7 27 W) + QH(T<X>7T<Y)7 Z7 W) + QH(Xv Y7T<Z)7T(W))
+ Qu(t(X),7(Y),7(Z), 7(W))).

The tensors (QH)i c Sz((/\fq(M))i) are defined by (QH)i = (Qn)s = (Qu.)™.

Lemma 6.2 Let M be a contact locally sub-symmetric space with torsion and sy €
S% (M) ® E. We have the relations:

AyDAg sy = 2(77syg — Ay @ truca(Ay @ sm)),
By@® Bgsg = 2((JoT)sy— By ®trgcy(By @ sg)),

I*

cu(Ag D Ap) = cu(By D By) = L try AG/C-/D\AG =try Be/@\Be = —|7%.
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Proposition 6.2 For any horizontal map ¢ from a compact contact locally sub-symmetric
space with torsion M to a Sasakian manifold N, we have:

[ 1T a0 2P+ (V5 don) 2 + (950’ + A0 55 (dom o 1)
M

_ 1 ’
—[(VSdow)_ + EBQ ® 0y (dpg o JoT)[?

+(1=2) (165 om0 T o) = 185 (dom o ) + I(A(E)),p I~ 105 dbul? v,

_3 /M tra((6"R),) oy

2 2 - 1 1
/M<1 + 3) |(V8d¢H)t|2 + (1 — g) |(v8d¢H)+ + EAG & 51?1 (dog o 7')|2
2

2 _ /
(1= 2) (9% d0m)” + 2B 0 85 (o 0 T 0 — (1= 2) (V5o ) 11

1 2 / / ’
(1= 2) (14 2) (15 @ 0 7o P + 155 (d6m 0 T = IS0 165 o)

—_—

1 — 1 B
= 8/]\/[(1 — E)t'f’H((b*RE)/)E + EtrH((b*RE}')H _ tTH(((b*RE)/)H)iUge, <32)

Proof. Let the tensors Qp € ['(S*(A%(M)) and Qi € T(Sz(/\fq:(M))) defined by:
_ 1
Q= (9oy O Goy ), = Z(geH D go,; —wo Dwy + Ag D Ag — By @ By)

and
1 1

QEO = Z«QGH Q\DQG}I)o)iL = ([go)_ = 5(1}(1:’0 - THO)’

1 2
with 7y, = 3 (Ag D Ag+ By D By + Ewg ® wg). Since M is a contact locally sub-symmetric

space, we have Vg Ay = Vg By = 0 and then VyQ, = VHQEO = 0. From Lemmas 4.2
and 6.2, we have

- d—1)(d+2
Qi) = (A= Vg en(Qyy) = LT,
nd (d—1)(d+2)
- —  ([d-1(d+
trugQp =d(d—1), treQy, = —
. _ + trHQ[_{ O,
It directly follows that (cy(Qp))y = (cu(Qp,)), = 0, and that, By— Qy By = 0.
2 w
Now since R)] = %([EO)Jr then
T oOr P orF =2 Ty o (TE7 — 0
H OQHO_ HQOQHO_?( H0)+O( H()),_ .

31



Also (CH(EIVZ o ég\o))s = 0. Now, let ¢ be a horizontal map from M to N, by Lemmas
4.2 and 6.2, we have

(@i (Vo). (Vdor)y) = |(Vodom) [+ [(Vodom) 2 + [(VSdon), 2 — |(Vodom) |2
—trc(ds @ Vdbn) P + 1 ltrics(By ® Vodgn)P
© 1 2 2 _
(@, (Vodon)y (Vidom)y) = 7((1+5)1(Vdom) P + (1= 2) (Y don)
(1= 2)1(95do) P~ (1= )1V o) P

1 1
+Z|tTHCH(A6 ® Vidon)|” + Z|tTHCH(BG ® VSd¢H)|2)-
Now we have
trien(Ag @ VSdor) = —20% (démor) and trucu(Bs®VSdey) = —26% (dpmoJor).

Moreover

_ _ ]_ / 1 ’
(VS dom) | = |(VSdon), + 5 A0 @ 65 (dom o 7)|* + =165 (der o 1)

d
and
(V3d63) I = [(V3d63)" + 5By @ 0§ (dém 0. o 1) + 2|85 (doyg o T o)
Then
(@ (VS dom)y, (V3dom)y) = |(Vdou) [ +1(V5dou) P +1(V5don)’, + Ao @ 55 (dus o )

d

_ 1 ’
—[(VSdow)_ + EBQ ® 8y (deg o Jor)[?

~ ) (5% om0 7o) ~ 165 (déw o I

(14 21750 — (1= 2) (VS 1

= )T don); +

_ 1 /
(VEdow)_ + EBG ® 0y (dpg o JoT)[?

(14 2) (165 (@ 0 T o) + 155 (dw 0 7)) ).

(@b (VSdér)y, (Vodor)y) =

Ap @65 (A o 7)|?
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We have also

—

(900 D 90u) - (" Ryp) ) = tru((0°RY)) )

(90 ® o) = g0 © 00, ("B,

— — —

<<1——)trH ((¢*R%) ., )" —étrﬂ((gb*RW/) )++§t7ﬂH(¢*R}3},)I_{>
((1- —)trH (RO + ClitrH(qsﬁgW) ) )

Q. (P Ry y) =
(Qf (9" Ryp) ) =

—~

e s s S Y

By replacing in ([7) and ([§), we obtain the formulas. O

Now we deduce some rigidity results for the contact sub-symmetric space of non-
compact type.

In the following we denote respectively by g, ¥, [ the Lie algebras of the Lie groups
G,K,L. Let M = G /K be a simply-connected contact sub-symmetric space of non-
compact Hermitian type. Then M is the total space of a S'-fibration 7 over an irreducible
Hermitian symmetric space of non-compact type B = G /L. To the Hermitian symmetric
space G/L, it is naturally associated an irreducible Hermitian orthogonal involutive Lie
algebra (g, s, 3/p), where s is an involutive automorphism of g such that [=4-1-eigenspace
of s, p=—1-eigenspace of s and 3/, is the ad;-invariant inner product on p given by the
restriction of the Killing form of g to p (we refer to Falbel-Gorodski[l]] for the precise
definition). Also it follows a so-called irreducible subtorsionless Hermitian sub-orthogonal
involutive Lie algebra (g, s, €, 3/,) associated to the sub-symmetric space G/K. Concern-
ing (g, s, 0),), the following facts hold [[7]:

E=[L1], [p,p] =land [ =< & > @ with £* in the center of [.
The ideal € of [ is either a simple ideal or € = ¢, ® £, with €, and £, are simple ideals of [.
The Killing form 3 is negative definite on [ and we have the orthogonal decomposition of
g relatively to (3,

g=<& > ptDdp.

The endomorphism J* = ade- In of p defines a ad-invariant complex structure on p.

The ad-invariant skew-symmetric bilinear form F(J*.,.) on p is non-degenerate and co-
incides with IT*(df) where I1 : G — G/K is the natural projection.

Now the curvature R} of M is given by RY = 7*R” where R” is the curvature of B. Also
M has nonpositive pseudo-Hermitian sectional curvature and negative pseudo-Hermitian
scalar curvature. The Lie algebra expression of R} is given (cf. M), for any X} € p, by:
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/ [RYI? |R7? - . .
Let ¢, = —4§—W = _43—B(> 0) and (M) be the lowest eigenvalue of the quadratic
form sg, — (RY sp,, Sm,) = (T*RP sp,, sm,) associated to RY for horizontal traceless
symmetric 2-tensors. The following tabular, coming from those obtained in [I0],[[J] and
[B7 for the irreducible Hermitian symmetric spaces of non-compact type, gives the values
of ¢y and (M) for the simply-connected contact sub-symmetric spaces of non-compact

Hermitian type.

Type d Co k(M)
SU(p,q)/SU(p) x SU(q) (pql) 2 o
* — 1 3— 1
SO*(2p)/SU(p) e R
1
SppR)/SU(p) | ML [ 1+ 225 | -4
SOy (p.2)/SO(p) P | a2 | 2
Eg(_14)/Spin(10) 16 i —3
E7(725)/E6 27 % _%

Theorem 6.1 Let M be a simply-connected contact sub-symmetric space of non-compact
Hermitian type other than SU(d,1)/SU(d) and let T be a cocompact discrete subgroup of
PsH(M). Any horizontal pseudoharmonic map ¢ from M = M /T to a Sasakian manifold
N with nonpositive pseudo-Hermitian complex sectional curvature satisfies Vdgp = 0.

Proof. Let ¢ be a horizontal pseudoharmonic map from M to N. Since M and N
are torsionless, then () together with the assumption on the curvature of N yields to

(do(&)) g = 0, (V‘Salng);r = 0 and tr?}o(w*RE},)i) = 0. Now, using the irreducibility of
M, we have by equation (BI):

/M 5 (1 - 1) (VEdow) |* + <ij}4 (Vodow) , (VEdou) )vg,

2 d
1 —_—
=2 /M co(1= 2 )i (0 BY)) + A(CH, (6 R ), (33)
2
Now, since M is pseudo-Einstein, then O = RY — —° IS and |CY)? = |RVY|* — L

We deduce by Lemma 4.2 that

D (12 ) (VS dow) PHOK (Vodow) . (Vdon) ) = l(V3d6n) +(RY (VSdow) . (Vdow) )
(34)
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and

o (1= )i (G RDS) + UCH, (6 RY) 1) = 2etr (6 RYS) + 4R (6°RY) )

(35)
By the comparison between ¢, and x(M), we deduce that (B3) is positive excepted if
(VSdéy)~ = 0. Moreover, using the Lie algebra expression of I%KIV, we can prove as Jost-
Yau do in [[9] p 257-273, that (BY) is always nonpositive. Also it follows from (B3) that

Vdor) = 0. Consequently VSdoy = 0 and dcldng = 0. The end of the proof follows
Y H
from the proof of Theorem 5.2. O

Let I be an open interval of R containing 0, recall that a regular curve ¢ : I — M
on a strictly pseudoconvex C'R manifold M is called a parabolic geodesic (cf. [[H]) if
¢(0) € Hgpy and if there exists o € R such that Vepé(t) = a&qy for t € 1. As a
consequence of the previous theorem, we have:

Corollary 6.1 Let M = M/F as above. Any horizontal pseudoharmonic map ¢ from M
to a Sasakian manifold N with nonpositive pseudo-Hermitian complex sectional curvature
maps parabolic geodesics of M to parabolic geodesics of N.

Proof. For any curve ¢: I C R — M and any map ¢ from M to N, we have
Vo6 0 €)(8) = (Ve dd) (E(0)) + db( V(1))

If ¢ is a horizontal pseudoharmonic map from M to N, we have Vd¢ = 0. Consequently,
for a parabolic geodesic ¢ : I C R — M, we obtain that V'(@C)(t)((b oc)(t) = adp(Eer) =

O‘ffémc)(t)- Hence ¢ o ¢ is a parabolic geodesic of N. O

Corollary 6.2 Let M = M/F as above. Any horizontal pseudoharmonic map ¢ from M
to a Tanaka-Webster flat Sasakian manifold N satisfies dpyg = 0.

Proof. Let ¢ be a horizontal pseudoharmonic map from M to N. Since N is Tanaka-

Webster flat then Theorem 6.1 together with equation (B§), yields to (déxo Ricy,ddy) =
0. Now, since M is pseudo-Einstein with sV < 0, then d¢y = 0. O

If M is a compact strictly pseudoconvex C'R manifold, then by (M) = dim Ker Ax.
Also, we have using formulas similar to (3),(26) and (BI)):

Corollary 6.3 Let M be a simply-connected contact sub-symmetric space of non-compact

Hermitian type other than SU(d,1)/SU(d) then by (M /T') = 0.

Remark 6.1 We can observe that the previous corollary directly follows from the two
following facts. First M is the total space of a S-fibration over a compact irreducible
Hermitian locally symmetric space of non-compact type B and then by (M) = by(B). Sec-
ond by the Matsushima Theorem [23] we have by(B) = 0.
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7 Rigidity results for CR maps defined on contact
locally sub-symmetric spaces

In this section we suppose that NV is a strictly pseudoconvex C'R manifold and ¢ is a CR
map from M to N.

Proposition 7.1 (i) For any CR map ¢ from a compact contact locally sub-symmetric
space torsionless M to N, we have:

| 3 (1= )17 o)+ (3t (T d0m) (V5 dom) ) — ale = DI(d(€))
i /M co(l—é)(HBK;W)H+4(CI/}",(¢*RZV,)H)U%. (36)

(i) For any CR map ¢ from a compact contact locally sub-symmetric space with torsion
M to N, we have:

1 ' -1 R
/M (1 . 8)(|<vsd¢H> + A9 ® 03 (dér o ) + (Vodom)_ + By ® J 6, <d¢Hor>l2)

#2(1=3) (14 3) (15 o 0 PP = o€ Py =8 [ (1= ) UHBE), = (K)o
(37)
with
(K") =Y Ryp(don(e), ddule;), dou(e), dbule;)),
i,j<d
and

(HBEYY), = > Rj(dou(e), J dpu(e), dou(e;), J dou(e;)).

i,j<d
Proof. Let ¢ be a CR map from M to N then J o déy = déy o J. Also we have
6y dog = —dJ (dp(€)), by (B7) and 6y (dég o J o) = J &y (dég o 7). Moreover,
(0799 ) (X, Y) = (0'wy ) (X, JY) = fwp(X, JY) = fgo, (X, Y)

and

(6" By ) p(JX, JY) = By (J doy(X), J dpy (V) = =By (dou(X),dpu (V) = —(¢"By) (X, Y).

Hence we have (¢*gy )y = fgo, and (¢*By);; = 0. Tt follows that for each @, defined
in Propositions 6.1 and 6.2, we have

—_

((en(RY o Q). (&0 V) = 5 Ftrueu(RY o Qi) = 4(RA, Qi) =
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and
° * * 1 ° * -
<Q}r10 (‘b BG’)H7 (‘b ge’)H> = éft'f’H(QJﬁo <¢ Ba’)H) =0.
Now, we have (¢*R)))) =0 and ((b*RzV,); = (¢*R}))) - Consequently try(¢*R);), =0
and

tru(@*RY%) ;= > Ry (don(e), J dou(e), doule;), J ddule;)).
ij<d
We can choose an adapted frame {ey,...€q, Jeq,... Jeg} of H such that 7(¢;) = ¢ and
7(Je;) = —Je;, also we obtain

—

tru(("Ry) ). = D ("R, (6 geies) + (0 R ), (e e, 0, T€;))
1,5 <d
= > Rp(déu(e), don(e;), dpu(e:), doule;)).

i,j<d

Now the formulas directly follow from equations (1) and ([§) combinated to (B1) and

B2). B

A strictly pseudoconvex C'R manifold with constant holomorphic pseudo-Hermitian
sectional curvature is called a pseudo-Hermitian space form. The sphere S?¢+! = SU(d +
1)/SU(d) viewed as the total space of the Hopf fibration over CP¢ and its non-compact
dual SU(d,1)/SU(d), are examples of Sasakian pseudo-Hermitian space forms with re-
spectively sV > 0 and sV < 0. The Heisenberg group Hasqy1 with its standard pseudo-
Hermitian structure is an example of flat Sasakian pseudo-Hermitian space form whereas
the unit tangent bundle of the hyperbolic space H*!, T} H™! with its standard pseudo-
Hermitian structure is an example of flat non-Sasakian pseudo-Hermitian space form (cf.
[[4]). Note that all these examples are examples of contact sub-symmetric spaces.

Theorem 7.1 (i) Let M be a simply-connected contact sub-symmetric space of non-
compact Hermitian type other than SU(d,1)/SU(d) and let I be a cocompact discrete
subgroup of PsH(M). Then any horizontal pseudoharmonic CR map ¢ from M = M /T
to a strictly pseudoconver C'R manifold N with nonpositive pseudo-Hermitian complex
sectional curvature satisfies Vygdo = 0.

(i) Let M be a simply-connected contact sub-symmetric space of non-compact type other
than Hopy1 X NCH, then any horizontal pseudoharmonic CR map ¢ from M = M/F

to a pseudo-Hermitian space form N with sW' < 0 is constant.

Proof. A horizontal pseudoharmonic CR map ¢ from M to N satisfies, by Proposition
5.2, 0y dog = (dp(€)) = 0 and (VSdey)™ = 0. Since M is torsionless, then it directly
follows from (Bf) that (VSdgy)” = 0. We deduce from the previous assumptions that
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Vude = 0. Hence (i) is proved. Now we assume that N is a pseudo-Hermitian space

/

w
form, then we have RZV, = mlg,. Since ¢ is a CR map, we obtain
(¢ Rpy)y = ("R, = L(WIC i = fQL[C
H'/H HUH = q/(d + 1) HH d(d+1)""
Hence we have (Cy!, (QS*RI’;V/)H> =0 and
: — w = f2dd+1)
HBE™) — tru(d )" — 25 o e _ L dld+1) o
( o )y = tra "Ry ), = J dd+1) THT 9 dd+ 1)
, —— W P2 dd—1)
KW — * VV/ + — 287 ]—(C _ f_i w
( é )H tTH<(¢ RH)H)+ f d,(d,+1)tTH< H)+ 4d/(d/+1)5 )

and

1 / / 2(d—=1)(d+2)
(1= Dz - 2, = F

Since sV < 0, the right hand sides of (Bf) and (B7]) are nonpositive, whereas the left
hand sides are nonnegative. We deduce from (B@) that (H BK;W) ;= 0 and from (B7)

1 / /
that (1 — 3)(HBK¢W)H — <K¢W)H =0. In each case, we obtain that f = 0. Since
(0*9¢) yy = f90, and dp(€) = fE, then ¢ is constant. O

A regular curve ¢ : I — M on a strictly pseudoconvex C'R manifold M is called a
Carnot-Caratheodory geodesic (cf. [],27,BY)]) if ¢(t) € Heq) and if there exists a function
a: I — R with a(t) = Ag(c(t), é(t)) such that View) , (¢(t) gy = —a(t)J(é(t))y for t € 1.
Also, we have

Corollary 7.1 Let M be a simply-connected contact sub-symmetric space of non-compact
Hermitian type other than SU(d,1)/SU(d) and M = M /T. Then any horizontal pseudo-
harmonic CR map ¢ from M to a Sasakian manifold N with nonpositive pseudo-Hermaitian
complex sectional curvature maps Carnot-Caratheodory geodesics of M to Carnot-Caratheodory
geodesics of N.

Proof. Let ¢ : I C R — M be a Carnot-Caratheodory geodesic, then V() (¢(t)),; =
—aJ(¢é(t)) with a constant (since M is torsionless). Let ¢ be a horizontal pseudohar-

monic CR map from M to N, we obtain using Vydp = 0 that V) (@0 0)(t))y =
H

—adop(J(¢(t)y) = —aJ déu((é(t),) = —aJ/((gbéc)(t))H/. Also ¢ o ¢ is a Carnot-
Caratheodory geodesic of N. O
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