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INVARIANT DEFORMATIONS

OF ORBIT CLOSURES IN sl(n)

Sébastien Jansou and Nicolas Ressayre

Abstract

We study deformations of orbit closures for the action of a con-
nected semisimple group G on its Lie algebra g, especially when G is
the special linear group.

The tools we use are on the one hand the invariant Hilbert scheme
and on the other hand the sheets of g. We show that when G is the
special linear group, the connected components of the invariant Hilbert
schemes we get are the geometric quotients of the sheets of g. These
quotients were constructed by Katsylo for a general semisimple Lie
algebra g; in our case, they happen to be affine spaces.

Introduction

Let G be a complex reductive group, and V be a finite dimensional G-
module. A fundamental problem is to endow some sets of orbits of G in V
with a structure of variety. The geometric invariant theory is the classical
answer in this context: the set of closed orbits of G in V has a natural
structure of affine variety. We denote by V //G this variety, equipped with
a G-invariant quotient map π : V → V //G.

Recently, Alexeev and Brion defined in [AB] a structure of quasiprojec-
tive scheme on some sets of G-stable closed affine subscheme of V . A natural
question is to wonder what happens when one applies Alexeev-Brion’s con-
struction to the orbit closures of G in V . Here, we study this construction
in the case of a well known G-module, namely the adjoint representation of
a semisimple group G, especially when G is the special linear group SL(n).

From now on, we assume that G is semisimple, and denote by g its Lie
algebra endowed with the adjoint action of G. Let us recall that a sheet of
g is an irreducible component of the set of points in g whose G-orbit has a
fixed dimension. Let us fix a sheet S. We show that the G-module structure
on the affine algebra C[G · x] of the orbit closure G · x of x doesn’t depend
on x in S. This allows us to define a set-theoretical application from S to
some Alexeev-Brion’s invariant Hilbert scheme of g:

πS : S −→ HilbG
S (g)

x 7−→ G · x.
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A unique sheet is open in g: we call it the regular one, and denote it by greg.
In Section 2 we are interested in HilbG

greg
(g). The graph of the quotient

map π : g → g//G is a flat family of G-stable closed subschemes of g over
g//G. So, this family is the pullback of the universal one by a morphism.
We prove that this morphism is an isomorphism by showing that HilbG

greg
(g)

is smooth and applying Zariski’s main theorem. So, we obtain that the
application πgreg

identifies with the restriction of the quotient map π : g →
g//G; in particular, it is a morphism.

In Section 3, we study any sheet S for G = SL(n). We explicitly con-
struct a flat family over an affine space whose fibers are the closures in g

of the G-orbits in S. Then, we show following the same method as in the
case of greg that this family is universal. Let us denote by π : S → S/SL(n)
the geometric quotient of S, constructed by Katsylo in [Ka]. We show that
there is a canonical morphism

θ : S/SL(n) −→ Hilb
SL(n)
S (g)

SL(n) · x 7−→ SL(n) · x

which is actually an isomorphism onto a connected component of Hilb
SL(n)
S (g).

Another motivation for this work is to understand examples of invariant
Hilbert schemes. Indeed, the construction of Alexeev and Brion is indirect
and only few examples are known (see [J], [BC]). Here, the connected com-
ponents of invariant Hilbert schemes we obtain happen to be affine spaces,
as in [J] and [BC]. Note that this answers in the case of SL(n) to a question
of Katsylo who asked if the geometric quotient S/G is normal.

1 Hilbert’s sheets

We consider schemes and affine algebraic groups over C. Let G be a con-
nected semisimple group. We choose a Borel subgroup B, and a maximal
torus T contained in B. We denote by U the unipotent radical of B; we
have B = TU .

We denote by Λ the character group of T . We denote by Λ+ the set of
elements of Λ that are dominant weights with respect to B. The set Λ+ is in
bijection with the set of isomorphism classes of simple rational G-modules.
If λ is an element of Λ+, we denote by V (λ) a simple G-module associated,
that is of highest weight λ.

If V is a rational G-module, we denote by V(λ) its isotypical component
of type λ, that is the sum of its submodules isomorphic to V (λ). We have
the decomposition V =

⊕
λ∈Λ+ V(λ).

In any decomposition of V as a direct sum of simple modules, the mul-
tiplicity of the simple module V (λ) is the dimension of V U

(λ). We say that

V has finite multiplicities if these multiplicities are finite (for any dominant
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weight λ).

Let us recall some definitions from [AB, §1]. A family of affine G-schemes

over some scheme S is a scheme X equipped with an action of G and with a
morphism π : X → S that is affine, of finite type and G-invariant. We have
a G-equivariant morphism of OS -modules

π∗OX ≃
⊕

λ∈Λ+

Fλ ⊗C V (λ),

where each Fλ := (π∗OX)U(λ) is equipped with the trivial action of G. Let

h : Λ+ → N be a function. The family X is said to be of Hilbert function h
if each Fλ is an OS-module locally free of rank h(λ). (Then the morphism
π is flat.)

Let X be an affine G-scheme, and h : Λ+ −→ N a function. A family of

G-stable closed subschemes of X over some scheme S is a G-stable closed
subscheme X ⊆ S × X. The projection S × X → S induces a family of
affine G-schemes X → S. The contravariant functor: (Schemes)◦ −→ (Sets)
that associates to every scheme S the set of families X ⊆ S ×X of Hilbert
function h is represented by a quasiprojective scheme denoted by HilbGh (X)
([AB, §1.2].

The dimension of an affine G-scheme whose affine algebra has finite mul-
tiplicities can be read on its Hilbert function:

Proposition 1.1. Let h : Λ+ −→ N be a function. Let Y and Z be two

affine schemes of Hilbert function h. Then dimY = dimZ.

Proof. Let us denote by A the affine ring of Y .
If Y is horospherical, that is ([AB, Lemma 2.4]) if for any dominant

weights λ, µ, we have A(λ) · A(µ) ⊆ A(λ+µ), it is clear that the dimension
of Y can be read on its Hilbert function. Indeed, let us denote by θ0 the
linear map from Λ⊗Q to Q which associates to any fundamental weight the
value 1. We denote by θ the group homomorphism from Λ to Z that is the
restriction of θ0. We associate to θ a graduation of the algebra A by N: its
homogeneous component of degree d is

Ad :=
⊕

λ∈Λ+, θ(λ)=d

A(λ).

The dimension of Ad is finite, and depends only on h:

dimAd =
∑

λ∈Λ+, θ(λ)=d

h(λ) dim V (λ).

So the Hilbert polynomial of the graded algebra A depends only on h, and
so does the dimension of Y .
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We can deduce the proposition. Indeed, Y admits a flat degeneration
over a connected scheme to a horospherical G-scheme Y ′ that admits the
same Hilbert function (by [AB, Theorem 2.7]). So dimY = dimY ′ depends
only on h.

We will use the method of “asymptotic cones” of Borho and Kraft ([PV,
§5.2]): let V be a finite dimensional rational G-module and F the closure of
an orbit in V (or, more generally, any G-stable closed subvariety contained
in a fiber of the categorical quotient V → V //G). We embed V into the
projective space P(C⊕V ) of vector lines of C⊕V by the inclusion v 7→ [1⊕v].
The closure of F in P(C ⊕ V ) is denoted by F . The affine cone in C ⊕ V
over F is the closed cone X generated by F .

The vector space C ⊕ V , equipped with its natural scheme structure, is
denoted by A1 × V . The cone X ⊆ A1 × V , viewed as a reduced closed sub-
scheme, is a flat family of affine G-schemes. Its fibers over non-zero elements
are homothetic to F . Its fiber over 0 is a reduced cone, denoted by F̂ . It is
contained in the null-cone of V (that is the fiber of the categorical quotient
V → V //G containing 0). Its dimension is the same as F .

We consider the adjoint action of G on its Lie algebra g. If x is an element
of g, the affine algebra of the closure of its orbit, viewed as a reduced scheme,
has finite multiplicities. Let us denote by hx its Hilbert function; we call it
the Hilbert function associated to x. In this paper, we are interested in the
connected component denoted HilbG

x of the scheme HilbG
hx

(g) that contains
G · x. It gives the G-invariant deformations of G · x embedded in g. We
determine it when x is in greg in §2, and for any x when G is the special
linear group in §3.

Let us denote by Gx the stabilizer of x in G, and gx its Lie algebra. The
coadjoint action of Gx is its natural action on the dual vector space g∗x.

Proposition 1.2. Let us assume the orbit closure G · x to be normal. The

tangent space TG·x HilbG
x to HilbG

x at the point G · x is canonically isomor-

phic to the space of invariants of the coadjoint action of Gx.

Proof. The tangent space to G · x at the point x is g.x; it is stable under
the action of Gx. We denote by [g/g.x]Gx the space of invariants under
the action of Gx on the quotient vector space g/g.x. According to [AB,
Proposition 1.15 (iii)], we have a canonical isomorphism

TG·x HilbG
x
∼= [g/g.x]Gx . (1)

Indeed, the orbit closure G · x is assumed to be normal. Moreover, every
orbit in g has even dimension, and has a finite number of orbits in its closure
([PV, Corollary 3 page 198]), so the codimension of the boundary of G · x
in G · x is at least 2, and the proposition of [AB] can be applied.
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To transform (1) into the isomorphism of the proposition, we will use
the Killing form on g, denoted by κ. As g is semisimple, its Killing form
gives an isomorphism

φ : g −→ g∗

y 7−→ κ(y, ·).

The isomorphism φ is G-equivariant, thus Gx-equivariant. It sends g.x onto
the space g⊥x of linear forms on g that vanish on gx. Indeed, the common
zeros of the elements of φ(g.x) are the elements y in g such that

∀z ∈ g, κ([z, x], y) = 0,

that is
∀z ∈ g, κ(z, [x, y]) = 0,

and this last condition means that y belongs to gx since κ is non-degenerate.
Thus the short exact sequence of Gx-modules

0 −→ g.x −→ g −→ g/g.x −→ 0

identifies (thanks to φ) with

0 −→ g⊥x −→ g∗ −→ (gx)∗ −→ 0,

and the proposition follows from (1).

A sheet of g is a maximal irreducible subset of g consisting of G-orbits
of a fixed dimension. Every sheet of g contains a unique nilpotent orbit. A
regular element of g is an element of g whose orbit has maximal dimension.
The open subset of g whose elements are the regular elements is a sheet
denoted by greg.

Let us call Hilbert’s sheet a maximal irreducible subset of g consisting of
elements admitting a fixed associated Hilbert function.

Proposition 1.3. The Hilbert’s sheets of g coincide with its sheets.

Proof. According to Proposition 1.1, any Hilbert’s sheet is contained in some
sheet. It just remains to check that two points of some sheet S have the
same associated Hilbert function.

Let F be the closure of an orbit in S. We recalled that its asymptotic
cone F̂ is a degeneration of F . In particular, it is contained in the closure
of S. Moreover, F̂ is contained in the null-cone of g, and its dimension is
the same as F . So F̂ is the closure of the nilpotent orbit of S.

The affine algebra of g is the symmetric algebra of g∗. Its graduation
induces a G-invariant filtration on the affine algebra A of F . The affine
algebra of the asymptotic cone F̂ is isomorphic, as an algebra equipped
with an action of G, to the graded algebra Â associated to the filtered
algebra A. In particular, A and Â are isomorphic as G-modules, and their
multiplicities are equal: the Hilbert function of F is equal to that of F̂ , and
the proposition is proved.
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Notice that in the case of the regular sheet, Proposition 1.3 is a direct
consequence of [Ko, Theorem 0.9].

2 Regular case

Let us denote by hreg the Hilbert function associated to the regular elements
of g (Proposition 1.3). In this section, we prove that the invariant Hilbert
scheme Hreg := HilbG

hreg
(g) is the categorical quotient g//G, that is an affine

space whose dimension is the rank of G.
By [Ko, Theorem 0.1], all schematic fibers of the quotient morphism

g → g//G are reduced. This allows us to identify in the following the
schematic fibers with the set-theoretical fibers.

2.1 A morphism from g//G to Hreg

Let Xreg be the graph of the canonical projection g → g//G. It is a family
of G-stable closed subschemes of g over g//G.

Proposition 2.1. The closed subscheme Xreg is a family of G-stable closed

subschemes of g with Hilbert function hreg.

Proof. Let us denote by π : Xreg → g//G the canonical projection, and by
R := π∗OXreg

the direct image by π of the structural sheaf of Xreg. We have
to prove that for any dominant weight λ, we have that RU

(λ) is a locally free

sheaf on g//G of rank h(λ).
Let us first study the case where λ = 0. The morphism π//G : Xreg//G→

g//G induced by π is clearly an isomorphism. So RG = RU
(0) is a free module

on g//G of rank 1 = hreg(0).
Let λ be a dominant weight. It is known (see [AB, Lemma 1.2]) that

RU
(λ) is a coherent RG-module. Thus it is a coherent module on g//G. To

see that it is locally free, we just have to check that its rank is constant. The
fibers of π are those of the canonical projection g → g//G, so they are the
orbit closures of the regular elements, and all of them admit hreg as Hilbert
function. So the rank of RU

(λ) at any closed point of g//G is h(λ), and the
proposition is proved.

This gives us a canonical morphism

φreg : g//G −→ Hreg.

We will prove in the following of §2 that φreg is an isomorphism.

Lemma 2.2. The morphism φreg realizes a bijection from the set of closed

points of g//G to the set of closed points of Hreg.
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Proof. We remark that φreg is injective. Let us check it is surjective: in
other words, that any G-invariant closed subscheme of g of Hilbert function
hreg is a fiber of g → g//G.

Let Y be such a subscheme. As hreg(0) = 1, it has to be contained
in some fiber F of g → g//G over a reduced closed point. But F already
corresponds to a closed point of Hreg in the image of φreg. Moreover, F
admits no proper closed subscheme admitting the same Hilbert function, so
F = Y , and the lemma is proved.

Let us denote by r the rank of G. The quotient g//G is an affine space
of dimension r. A consequence of Lemma 2.2 is:

Corollary 2.3. The dimension of Hreg is r.

2.2 Tangent space

In this section, we prove:

Proposition 2.4. The scheme Hreg is smooth.

Proof. Let Z be a closed point of Hreg. We have to prove that the dimension
of the tangent space TZHreg is r. We still denote by Z the closed subscheme
of g corresponding to Z. By Lemma 2.2, we know that Z is a fiber of the
morphism g → g//G, thus the closure of some regular element x. It is a
normal variety. By Proposition 1.2, we have to prove that the dimension of

(g∗x)Gx

is r, or simply that it is lower or equal to r (by Corollary 2.3).
Let us prove that the dimension of the bigger space

(g∗x)gx

is r, and the proposition will be proved.
A linear form on gx is gx-invariant iff it vanishes on the derived algebra

[gx, gx], so we have to prove that

(gx/[gx, gx])∗

is r-dimensional. We will prove that gx is an r-dimensional abelian algebra,
and the proposition will be proved. This is true if x is semisimple, because
then gx is a Cartan subalgebra of g. If the regular element x is not assumed
to be semisimple, the dimension of gx is still r, because this doesn’t depend
on the regular element x, by definition. Let us check that gx is abelian.

Let us denote by Grassr(g) the grassmannian of r-dimensional subspaces
of g, endowed with its projective variety structure. The subset of greg ×
Grassr(g):

{(z, h) ∈ greg × Grassr(g) | h · z = 0 and [h, h] = 0}
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is closed, so its image by the natural projection into greg is closed too. As
its image contains the semisimple elements of greg, it is equal to greg. Thus
gx is abelian for any regular x, and the proposition is proved.

2.3 Conclusion

We can now conclude that the family Xreg of Proposition 2.1 is the universal
family:

Theorem 2.5. The morphism φreg from g//G to Hreg is an isomorphism.

Proof. The morphism φreg is bijective (Lemma 2.2) and Hreg is normal.
According to Zariski’s main theorem, φreg is an isomorphism.

Remark 2.6. One knows there is a canonical morphism

ψreg : Hreg −→ g//G

that associates to any closed point F of Hreg (viewed as a closed subscheme
of g) its categorical quotient F//G (viewed as a closed point of g//G). This
morphism is a particular case of morphism

η : HilbG
h (V ) −→ Hilbh(0)(V //G)

defined in [AB, §1.2], because hreg(0) = 1 and thus the punctual Hilbert
scheme that parametrizes closed subschemes of length 1 in g//G identifies
with g//G itself. The morphism ψreg is clearly the inverse morphism of φreg.

Remark 2.7. As pointed to us by M. Brion, Theorem 2.5 admits the fol-
lowing generalization:

Let X be an irreducible affine G-variety such that π : X → X//G is

flat. Let h be the Hilbert function of its fibers. Then the graph Γ of π is the

universal family; in particular, HilbG
h (X) identifies with X//G.

The idea of his proof is to check that Γ represents the functor. Let
X ⊆ X × S be a flat family of Hilbert function h, over some affine scheme
S. Since h(0) = 1, the scheme S identifies with X//G and maps on X//G
(by the morphism induced by the first projection X × S → X). We obtain
the following commutative diagram:

X
p2

- Γ

X//G ≃ S
?

- X//G.
?
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It remains to prove that X is isomorphic (canonically) to the fiber prod-
uct Γ×X//G S. This has only to be verified over the closed points of S. The
assertion follows.

The Hilbert schemes we obtain applying the above Brion’s result to G-
modules are always affine spaces. The representations V of a simple group
G such that V → V //G is flat have been classified by G. Schwarz in [Sch].

Unfortunately, the sheets of sl(n) are not affine in general and Katsylo’s
quotient cannot be extended to their closure. So, Brion’s theorem cannot
be applied, whereas the method we used to prove Theorem 2.5 can be used.

3 Case of sl(n)

We denote by t an indeterminate over C, and In the identity matrix of size
n×n. If x is an element of sl(n) and i = 1 · · · n, we denote by Qx

i (t) the monic
greatest common divisor (in the ring C[t]) of the (n+1−i)×(n+1−i)-sized
minors of x− tIn, and Qx

n+1(t) := 1.
Then we put

qx
i (t) := Qx

i (t)/Qx
i+1(t).

The polynomials qx
1 (t), · · · , qx

n(t) are the invariant factors of the matrix
x − tIn with coefficients in the euclidean ring C[t], ordered in such a way
that qx

i+1(t) divides qx
i (t).

If x, y are elements of sl(n), then y is in the closure of the orbit SL(n) ·x
of x if and only if for any i = 1 . . . n, the polynomial Qx

i (t) divides Qy
i (t).

In other words, iff for any i, the polynomial Qx
i (t) divides the (n+ 1 − i) ×

(n+ 1 − i)-sized minors of y − tIn.
According to [W], when x is nilpotent, these conditions defines the clo-

sure of SL(n) ·x as a reduced scheme: to be more precise, when one divides a
(n+1−i)×(n+1−i)-sized minor of y−tIn by Qx

i (t) using Euclid algorithm,
the remainder he gets is a regular function of y. All such functions generate
the ideal of the closure of SL(n) ·x. We will deduce easily from this difficult
result that the same remains true if x is no longer assumed to be nilpotent.

The set of sheets of sl(n) is in bijection with the set of partitions n, that
is of sequences σ = (b1 ≥ b2 ≥ b3 ≥ . . . ) of nonnegative integers such that
b1 + b2 + b3 + · · · = n (see [Bo, §2.3]). Namely, if σ is a partition of n, the
elements of the correspondent sheet Sσ are those elements x such that for any
i, the polynomial qx

i (t) is of degree bi. We denote by σ̂ = (c1 ≥ c2 ≥ c3 ≥ . . . )
the conjugate partition, where cj is the number of i such that bi ≥ j. We
denote by hσ the Hilbert function associated to the points of Sσ (Proposition
1.3). We denote by Zσ the closure of the nilpotent orbit of Sσ. The connected
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component of Hilb
SL(n)
hσ

(sl(n)) that contains Zσ as a closed point is denoted
Hσ. We will prove in this section that Hσ is an affine space of dimension
b1 − 1. The proof is similar to §2.

We recall that the sheets of sl(n) are smooth ([Kr]).

3.1 A construction of the geometric quotient of Sσ

Katsylo showed in [Ka] that any sheet of a semisimple Lie algebra admits a
geometric quotient. Although his proof contains an explicit construction, it
doesn’t make clear the geometric properties of the quotient. Here we present
a simple description of the quotient in the case of the Lie algebra sl(n). It
takes on the invariant factors theory. We get that the quotient is an affine
space.

Lemma 3.1. Given some i, the application Sσ −→ Abi that associates to

any x the coefficients of qx
i (t) = tbi + λx

bi−1t
bi−1 + · · · + λx

0t
0 is regular.

Proof. Up to scalar multiplication, the polynomial qx
i (t) is the unique nonzero

polynomial of degree less or equal to bi such that

dim ker qx
i (x) ≥ N :=

bi∑

j=1

cj . (2)

Thus the closed subset of Sσ × Pbi consisting of elements (x, [µ0 : · · · : µbi
])

such that

dimker(

bi∑

j=0

µjx
j) ≥ N

is the graph of the application

ψ : Sσ −→ Pbi

x 7−→ [λx
0 : · · · : λx

bi−1 : 1]

According to [Hr, Exercise 7.8 p 76], this graph is also the graph of a
rational map φ from Sσ to Pbi . On the open subset Ω of Sσ where φ is regular,
φ coincides with ψ, so the functions x 7→ λx

j are regular functions from Ω

to A1. As Sσ is smooth, the complementary of Ω in Sσ has codimension at
least 2 ([Sha, Thm 3 chap II.3.1]). We conclude that the functions extend
to regular functions from Sσ to A1. By continuity, these extensions satisfy
(2), so they coincide with the functions x 7→ λx

j on Sσ.

Let us define, for any x in Sσ, the monic polynomial of degree bi − bi+1:

px
i (t) := qx

i (t)/qx
i+1(t)

(where qx
n+1 := 1). It follows from the previous lemma that its coefficients,

viewed as functions of x, are regular functions from Sσ to A1.
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Given an x, the family (px
1(t), . . . , px

n(t)) can be any family of monic
polynomials of degrees bi − bi+1, provided the following relation is satisfied,
where S(px

i ) denotes the sum of the roots of px
i , counted with multiplicities

(given by its first nondominant coefficient):

n∑

i=1

iS(px
i ) = 0

(this relation simply means that the trace of x is zero).
Thus, associating to any x the coefficients of the family (px

1(t), . . . , px
n(t)),

we get a regular map π from Sσ to a linear hyperplane of Cb1 , which we will
denote by Ab1−1.

Proposition 3.2. The map π : Sσ −→ Ab1−1 is the geometric quotient of

Sσ.

Proof. This map is surjective, and its fibers are exactly the orbits of Sσ under
the action of SL(n). Let us denote by Sσ/SL(n) the geometric quotient of
Sσ (whose existence is proved in [Ka]). The map π is the composite of the
canonical projection from Sσ to Sσ/SL(n) with a regular bijection

Sσ/SL(n) −→ Ab1−1.

This last map is bijective (thus birational), and the space Ab1−1 is normal.
According to Zariski’s main theorem, it is an isomorphism.

3.2 A morphism from Sσ/ SL(n) to Hσ

If z = (p1(t), . . . , pn(t)) is a closed point of Ab1−1 corresponding to the orbit
SL(n) · x in Sσ, the polynomial

Qx
i (t) = pi(t) · (pi+1(t))

2 · ... · (pn(t))n−i+1

only depends on z. Let us denote it by Qz
i (t). Its coefficients are regular

functions from Ab1−1 to A1.
Let us consider the closed subscheme Xσ of {(z, y) ∈ Ab1−1 × sl(n)}

defined by the vanishing, for i = 1 . . . n, of the remainders we get when we
divide the (n + 1 − i) × (n + 1 − i)-minors of y − tIn by Qz

i (t). We denote
by Iσ the ideal generated by these remainders. The underlying set of Xσ

consists of all the couples (z, y) such that y is in the closure of the orbit
corresponding to z.

Proposition 3.3. The closed subscheme Xσ is a family of SL(n)-stable
closed subschemes of sl(n) with Hilbert function hσ.

11



Proof. The proof is similar to that of Proposition 2.1. The subscheme Xσ

is a family of SL(n)-stable closed subschemes of sl(n) over Ab1−1. Let us
denote by π the morphism Xσ −→ Ab1−1.

As previously, let us first remark that the morphism

π// SL(n) : Xσ// SL(n) −→ Ab1−1

induced by π is an isomorphism. To do this, let us verify that the comor-
phism

(π// SL(n))∗ : C[Ab1−1] −→ C[Ab1−1] ⊗ C[sl(n)]SL(n)/ISL(n)
σ

is an isomorphism. It is injective, as π is surjective. Its surjectivity comes
from the relations that define Xσ: they give, for i = 1, that Qz

1(t) divides the
determinant of tIn − y, that is the characteristic polynomial of y. As their
degrees are equal, Qz

1(t) and the characteristic polynomial of y are equal.
This gives the surjectivity.

We go on as previously: let λ be a dominant weight. The RSL(n)-module
RU

(λ) is of finite type ([AB, Lemma 1.2]). Thus (π∗OXσ
)U(λ) is a coherent

O
Ab1−1-module. To see that it is locally free, we just have to check that its

rank is constant. Let us assume that the origin 0 ∈ Ab1−1 corresponds to
the nilpotent orbit in Sσ. The fiber of π over 0 is the closure of this orbit,
fitted with its structure of reduced scheme. Thus, the rank of (π∗OXσ

)U(λ)

at 0 is hσ(λ). If z is any point of Ab1−1, the fiber of π over z is as a set
the closure in sl(n) of the corresponding orbit. So, by Proposition 1.3 the
rank of (π∗OXσ

)U(λ) at z is at least hσ(λ). To conclude, we use the action of

the multiplicative group on sl(n) (by homotheties) and the induced action
on Ab1−1, that makes π equivariant. The orbit of z goes arbitrary close to
0, and the rank of a coherent sheaf is upper semicontinuous, so the rank of
(π∗OXσ

)U(λ) is hσ(λ) at z.

3.3 Tangent space

In this section, we compute the dimension of the tangent space to Hσ at the
point Zσ:

Proposition 3.4. The dimension of TZσHσ is b1 − 1.

Proof. Let x be an element in the open orbit in Zσ. It is known that Zσ

is normal ([KP]). So by Proposition 1.2, we just have to prove that the
dimension of

(sl(n)∗x)SL(n)x

is b1 − 1. Let us consider SL(n) as a closed subgroup of the general linear
group GL(n), and sl(n) as a subalgebra of gl(n). The stabilizer GL(n)x of

12



x in GL(n) is generated by SL(n)x and the center of GL(n). It is clearly
equivalent to prove that the dimension of

(gl(n)∗x)GL(n)x

is b1. The group GL(n)x is connected, so the last space is isomorphic to

(gl(n)∗x)
gl(n)x .

A linear form on gl(n)x is gl(n)x-invariant iff it vanishes on the derived
algebra [gl(n)x, gl(n)x], so we have to prove that

(gl(n)x/[gl(n)x, gl(n)x])∗

is b1-dimensional. This fact is the following elementary lemma.

Lemma 3.5. Let E =
⊕c1

i=1Ei be a graded vector space over C, where

each Ei is bi-dimensional. We denote by h := gl(E) the Lie algebra of

endomorphisms of E. Let x be a nilpotent element of h such that each

subspace Ei is stabilized by x, and the restriction of x to each Ei is cyclic.

Let us denote by hx the stabilizer of x in h. Then the codimension of the

derived algebra [hx, hx] in hx is b1.

Proof. The graduation of E induces a graduation on the vector space h:

h =
⊕

i,j

Hom(Ei, Ej).

Let us denote by pi : E −→ Ei the natural projections. As they commute
with x, the subspace hx of h is homogeneous:

hx =
⊕

i,j

Homx(Ei, Ej),

where Homx(Ei, Ej) denotes the space of homomorphisms that commute
with x. Let us choose, for any i, an element ei of Ei such that xbi−1ei 6= 0.
We put nij := bj − bi if j < i and 0 otherwise. We denote by fij : Ei →
Ej the unique homomorphism that commutes with x and that sends ei to
xnijej. Then any homomorphism from Ei to Ej that commutes with x is
the composite of fij with a polynomial in x:

Homx(Ei, Ej) = C[x] · fij.

We notice that if i 6= j, then Homx(Ei, Ej) is contained in [hx, hx].
Indeed, for any u : Ei → Ej , we have [u, pi] = u.

So we have to prove that the codimension in
⊕

i Homx(Ei, Ei) of

[hx, hx] ∩
⊕

i

Hom(Ei, Ei)

13



is b1. The last vector space is generated by its elements of the form

P (x)[fji, fij ] = P (x)x|bi−bj |(idEi
− idEj

),

where P (x) is a polynomial in x.
One checks easily that a basis of a supplementary in

⊕
i Homx(Ei, Ei)

of this space is given by the family of elements

xk idEi

where 0 ≤ k < bi − bi+1, and the lemma is proved.

3.4 Conclusion

In this section, we prove that the family Xσ of Proposition 3.3 is the universal
family:

Theorem 3.6. The morphism φσ from Sσ/SL(n) to Hσ obtained in §3.2 is

an isomorphism.

We denote by Sσ the closure of Sσ in sl(n), equipped with its reduced

scheme structure. The invariant Hilbert scheme H′
σ := Hilb

SL(n)
hσ

(Sσ) which

parametrizes the closed subschemes of Sσ of Hilbert function hσ is canoni-

cally identified with a closed subscheme of Hilb
SL(n)
hσ

(sl(n)). The morphism
φσ factorizes by a morphism ψσ : Sσ/SL(n) → H′

σ.
To prove the theorem, we will get that the morphism ψσ is an isomor-

phism from Sσ/SL(n) to H′
σ and that H′

σ is a connected component of Hσ

(Corollary 3.10).

Lemma 3.7. The morphism ψσ induces a bijection from the set of closed

points of Sσ/SL(n) to the set of closed points of H′
σ.

Proof. We know that ψσ is injective. Let us check it is surjective: in other
words, that any SL(n)-invariant closed subscheme of Sσ with Hilbert func-
tion hσ is the closure of some orbit in Sσ.

Let X be such a subscheme. As hσ(0) = 1, it has to be contained in some
fiber F of the categorical quotient Sσ → Sσ// SL(n) over a reduced closed
point. But F already corresponds to a closed point of H′

σ in the image of
ψσ. Moreover, F admits no proper closed subscheme admitting the same
Hilbert function, so F = X, and the lemma is proved.

Corollary 3.8. The dimension of H′
σ is b1 − 1.

The action of the multiplicative group Gm on sl(n) by homotheties in-
duces canonically an action of Gm on Hσ, and on H′

σ (because it stabilizes
Sσ). The cone Zσ is a Gm-fixed point of H′

σ. In fact, it is in the closure of
the Gm-orbit of any point of H′

σ:

14



Proposition 3.9. Let F be a closed point of H′
σ. The morphism η : Gm −→

H′
σ, t 7−→ t.X extends to a morphism A1 −→ H′

σ, 0 7−→ Zσ.

Proof. The point F corresponds to a SL(n)-invariant closed subscheme of
Sσ admitting Hilbert function hσ . We still denote it by F . As hσ(0) = 1,
it is contained in the fiber of the categorical quotient sl(n) → sl(n)//SL(n)
over some closed point. Thus we can apply to it the method of asymptotic
cones: we obtain a flat family over A1 whose fiber over 0 must be Zσ (as
in the proof of Proposition 1.3). It gives a morphism from A1 to H′

σ whose
restriction outside 0 is η.

From the proposition, we deduce that the dimension of the tangent space
to Hσ at any point of H′

σ is lower or equal to that at Zσ, that is b1 − 1. As
the dimension of H′

σ is b1 − 1, we get:

Corollary 3.10.

• The scheme H′
σ is reduced and smooth.

• It is a connected component of Hσ.

The morphism ψσ is bijective (Lemma 3.7) and H′
σ is normal. According

to Zariski’s main theorem, ψσ is an isomorphism. So Theorem 3.6 is proved,
thanks to the second point of Corollary 3.10.
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no. 1,p 53-64, 1989.

[BC] P. Bravi and S. Cupit-Foutou
Equivariant deformations of the affine multicone over a flag variety,

preprint available on math.AG/0603690.

[Hr] J. Harris
Algebraic geometry: a first course, GTM 133, Springer Verlag, 1992.

[J] S. Jansou
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