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SUMMARY

A method is proposed for accurately describing arbitrdrgped free boundaries in finite-
difference schemes for elastodynamics, in a time-domduritg-stress framework. The ba-
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001 INTRODUCTION

L()Various approaches have been proposed for simulating the pr
agation of elastic waves with free boundaries. The first aggin
is based on variational methods, as done in finite eIem,(D

H), spectral finite elements (Komatitsch & Vilptte, 1p@d&d
discontinuous Galerkin| (Ben Jemaa gt pl., 2007). Theseausth
provide a fine geometrical description of boundaries by tidgp

1 the mesh to the boundaries. Boundary conditions are aceddort

C_G weakly by the underlying variational formulation. Howevagrid-

- generating tool is required, and small time steps may résari
the smallest geometrical elements and from the stabilitydco
tion. The SAT methods based on energy estimdtes (Carpémtir e
) avoid these limitations by introducing Cartesiardgrand
give time-stable high-order schemes with interfaces. Hewand
up to our knowledge, these methods have not been applied &p fa
elastodynamics with free boundaries.

The second approach used in this context is based on the

strong form of elastodynamics, as done in finite differenaed
spectral methodg (Tessmer & Kod|dff, 1994). In seismoldigjte
differences are usually implemented on staggered Cantgsids,
either with completely staggered stencils (CSS) or withréoently

sic idea is as follows: fictitious values of the solution atgéitiin vacuum, and injected into
the numerical integration scheme near boundaries. The animgbal feature of this method
is the way in which these fictitious values are calculatedyTére based on boundary condi-
tions and compatibility conditions satisfied by the sucisesspatial derivatives of the solution,
up to a given order that depends on the spatial accuracy dhtegration scheme adopted.
Since the work is mostly done during the preprocessing stepextra computational cost is
negligible. Stress-free conditions can be designed at grifrary order without any numeri-
cal instability, as numerically checked. Using 10 grid r@der minimal S-wavelength with a
propagation distance of 50 wavelengths yields highly aateuresults. With 5 grid nodes per
minimal S-wavelength, the solution is less accurate blliestteptable. A subcell resolution of
the boundary inside the Cartesian meshing is obtained,rdpurious diffractions induced
by staircase descriptions of boundaries are avoided. @griio what occurs with the vacuum
method, the quality of the numerical solution obtained liis method is almost independent
of the angle between the free boundary and the Cartesianimgesh

Key words: Free surface, Seismic modeling, Velocity-stress formutatNumerical methods,
Finite-difference methods, ADER schemes, Boundary candit Compatibility conditions.

developed partially staggered stencils (PSS). With CSSydioc-

ity and stress components are distributed between differede
positions ,6). With PSS, all the velocity conmeots
are computed at a single node, as are the stress componients, a
though the latter are shifted by half a node in two separatis.gr
Second-order (Saenger e} al. 20[20'E Saenger&BthenI 2004)
fourth-order (Bohlen & Saengdr, 2003; Cruz-Atienza & M
P004) spatially-accurate PSS have been developed; férefudis-
cussion, we denote them PSS-2 and PSS-4, respectivelykeUnli
variational methods, finite differences require speciet ¢aincor-
porate the free boundary conditions strongly. There ewistrhain
strategies for this purpose:

(i) First, the boundaries can be taken into account impficit
by adjusting the physical parameters locafly (Kelly &t jB7§;
Virieux, [1986; [Muir et al. [ 1992). The best-known implicip-a
proach is the so-calledgacuum metho@Zahradiik, [L995;|Graves,
199¢;[Moczo et 41 20p%; Gélis efql., 2P05). For instativevac-
uum method applied to PSS involves setting the elastic petens
in the vacuum to zero, and using a small density value in thevii-
locity node in the vacuum to avoid a division by zero. Howetlgs
easy-to-implement method gives at best second-ordeaspatiu-
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racy. In addition, a systematic numerical study has shoanttre

accuracy of the solution decreases dramatically when thke dre-
tween the boundary and the meshing incregses (Bohlen & 8geng
). Lastly, applying the vacuum method sometimes gige<o

instabilities: see for instance PSS[4 (Bohlen & Sadrlged3dpo

(i) A second idea is to explicitly change the scheme near the
boundariesl6). The best-known explicip@ach
is the so-calledmage methodwhich was developed for dealing
with flat boundaries to fourth-order accurafy (Levahflegd)nd
then extended to variable topograph(es (Jih gt al. |198BeRsson,
[1996; Zhang & Chen, 20P6). However image methods requirea fin
grid to reduce the spurious diffractions up to an acceptbdvel.
To avoid this spatial oversampling, various techniqgueshaeen

proposed, such as grid refinement in the vicinity of the bauyd
(Rodriguefs 5) or adjusted finite-difference approxioms: see
Moczo et al. 7) for a review on these subjects.

The aim of this paper is to present a finite-difference apgroa
accounting for free boundaries without introducing therafioen-
tioned drawbacks of the vacuum and image methods. The eequir
ments are as follows: smooth arbitrary-shaped boundariest m
be treated as simply as straight boundaries; the accuratiyeof
method must not depend on the position of the boundary rela-
tive to the meshing; and lastly, the computations must belesta
even with very long integration times. We establish thas¢hee-
quirements can be met by applying an explicit approach gl
fictitious values of the solution in the vacuum. In previotisds
ies, interface problems in the context of elastodynamicsevire
vestigated in a similar waﬂ (Piraux & Lomb]ar , 2P01; Lombard
& Piraux, [2004,[ 2006). The fictitious values are high-orday-T
lor expansions of the boundary values of the solution. Extiimg
these boundary values involves some mathematical baakdyou
in order to compute the high-order boundary conditions; ¢e d
termine a minimal set of independent boundary values;ylat!
perform a least-square numerical estimation of this mihiset
To help the reader, subroutines in FORTRAN are proposedyfree
at the web pagettp://w3lma.cnrs-mrs.fr/ "MI/Software/.
These subroutines enable a straightforward implementatidhe
algorithms detailed in the present paper.

The disadvantage here is that the above requirements can-

not be fully satisfied if staggered-grid schemes are usetjl&i
grid finite-difference schemes are therefore chosen, whiétae

unknowns are computed at the same grid nodes. Our numericalthe solutionl/ 2y Oz, Ozz
experiments are based on the high-order ADER schemes whichorder hyperbolic syste86)

are widely used in aeroacoustigs (Schwartzkopff ¢{ al. 3204l
though these schemes are not yet widely used in the field &f sei
mology dDumbser & Késle 20P6), they have also great quali-
ties because of their accuracy and their stability progertising

10 grid nodes per minimal S-wavelength with a propagatien di
tance of 50 wavelengths gives highly accurate results. bae

on Cartesian grids, these methods do not require much mamne co
putational memory than staggered-grid schemes.

This paper is organized as follows. Section 2 deals with the
continuous problem: the high-order boundary conditiorts @m-
patibility conditions are stated. These conditions aréui$er han-
dling the discrete problem presented in section 3, wherfothss is
on obtaining fictitious values of the solution in the vaculimsec-
tion 4, numerical experiments confirm the efficiency of thisthod
in the case of various topographies. In section 5, conahgsae
drawn and some prospects suggested.

vacuum

Figure 1. BoundaryI" between a solid2 and vacuum

2 THE CONTINUOUS PROBLEM
2.1 Framework

Let us consider a solif separated from the vacuum by a boundary
r (Figurel]). The configuration is in-plane and two-dimenalpn
with a horizontal axis: and a vertical axig pointing respectively
rightward and downward. The bounddryis described by a para-
metric expressior{z(7), z(7)) where the parameter describes
the sampling of the boundary. The tangential vector and tre n
mal vector are = 7 (z' (1), z (7)) andn = T(—z' (1), z' (7)),
respectively, withe (1) = 2Z(r), 2 (1) = 22(7), andT refers

to the transposed vector. We assume the spatial derivativasy
point of the boundary to be available, as specified below.

The solid(2 is assumed to be linearly elastic, isotropic, and to
have the following constant physical parameters: the tiepsand
the Lameé coefficient3, u. The P- and S-wave velocities arg =
v/ A+2p)/pandes = \/u/p. A velocity-stress formulation is
adopted, hence the unknowns are the horizontal and vecticat
ponents of the elastic velocity= 7 (v., v.), and the independent
components of the elastic stress tengor= 7 (0yz, 02z, 022).
Setting
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2.2 High-order boundary conditions

At any pointP(7) on the free surfacE (Figure[ll), the stress tensor
satisfies the homogeneous Dirichlet conditiens: = 0. These
zero-th order boundary conditions are written compactly

LO(r)U°(x(r), 2(1), t) = 0,

whereU" is the limit value ofU at P and L° is the matrix
0 0 —Z/(T) xl(T) 0

00 0 () 2(r) )’

From now on, the dependence oris generally omitted. To de-
termine the boundary conditions satisfied by the first-osgeatial

@)

L(7)



derivatives ofU, two tasks are performed. First, the zeroth-order
boundary conditionsl](Z) are differentiated in termg.oThe time
derivative is replaced by spatial derivatives using theseovation
laws ﬂ.), which gives

0

0
0 JES—

oy U +B £ (3)

Secondly, the zeroth-order boundary conditicﬂs (2) arferdinti-

ated in terms of the parametedescribingl’. The chain-rule gives

(i o
dr

Since the matrixd L°/d 7 in @) involvesz " andz", it accounts

for the curvature of" at P. Setting the block matrix

L (A UO) —o0.

L“) U+ L° (:c U°+z'ﬁU°) —o0.

ox 0z “)

L° 0 0
Ll — 0 L°A LB |,
di L° 1% Z'L°
-

equations |]2),|]3) ancﬂ(4) give the boundary conditions uthé
first-order
L'U' =0,
with
U= lim 7 (TU, Oy 9 TU) .

MeQ—P T
Let k¥ > 1 be an integer whose value will be discussed in section
H. To get the boundary conditions up to #hh order, one deduces
from ()

ak
_— 5
arh— ot ®)
The 7-derivatives are replaced by spatial derivatives by applyi
(k — a)-times the chain rule. Thederivatives are replaced by spa-
tial derivatives by injectingy-times the conservation IaV\E (2). The
boundary conditions so-obtained up to #ith order can be written
compactly

L°U®=o, a=0,..k.

LFU* =o, (6)
with

k_ T (T 0 T o r
u 7Mélsr2nHP ( Ui dzP 9P Uy 8 2* v)m

wherea = 0,..., kand = 0, ..., a. The vectortU* hasn, =
5(k + 1) (k 4 2)/2 componentsL* is an; x n, matrix, with

n; = (k+1) (k+2). This matrix involves the successive derivatives
of the curvature of” at P. ComputingL* with k& > 2 is a tedious
task, which can be greatly simplified by using computer algeb
tools.

2.3 Compatibility conditions

The second spatial derivatives of stress components &edlito-

gether by the compatibility condition of Barré-de Saintn¥lat
(Lovd [Loak)
0 0ss 0% s 0%0.. 0% 0 0%0..
dzdz 2 0 x? o 0 z? o 022 o 82"’ ®)
with
S L S
4N+ p)’ 4(A+p)
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This compatibility condition is a necessary and sufficientdition
for the strain tensor to be symmetrical . Af > 2, it can be dif-
ferentiated(k — 2)-times in terms ofc and z. With & > 2, one
obtainsn. = k (k — 1)/2 relations; withk < 2, n. = 0. Unlike
the boundary conditions, these compatibility conditions satis-
fied everywhere if2: in particular, they are satisfied RtonT'. The
vector of boundary valugs™* can therefore be expressed in terms

~k . .
of a shorter vecto/ with n,, — n. independent components

9)

An algorithm for building thex, x (n, — n.) matrix G* is given
inlLombard & Piraux[(2006).

Ut =G u"

3 THE DISCRETE PROBLEM
3.1 Numerical scheme

To integrate the hyperbolic systeﬂ1 (1), we introduce a si@girte-
sian lattice of grid points{x;, zj,t») = (i h,j h, n At), whereh

is the mesh spacing an¢ is the time step. Unlike with staggered
grids, all the unknowns are computed at the same grid nodes. T
approximationU?; of U (xi, zj,t») iS computed using any ex-
plicit, two-step, and spatially-centred finite-differenscheme. A
review of the huge body of literature on finite-differencegiven

in LeVequk [1992) anfi Moczo etld]. (2007).

Here we propose to use ADER schemes, that allow to
reach easily arbitrary high-order of time and space acgurac
(Schwartzkopff et gl.] 2005). On Cartesian grids, theseefini
volume integration schemes originally developed for agwaatic
applications are equivalent to finite-difference Lax-Weffdtype
integration schemeq (Lorcher & Myni, 2P05). In the nunaric
experiments described in sectiljn 4, we use a fourth-orddERD
integration scheme. This scheme is stable under the Ceurant
Friedrichs-Lewy (CFL) conditioma, A ¢/h < 0.9 in 2D; as usually
with single-grid schemes, it is slightly dissipative (Setrtzkopff
et al.,[200p).

Many other single-grid schemes can be used in this context.
In particular, the method described in the next subsectiasdheen
successfully combined with flux-limiter schemés (LeVddLe92)
and with the standard second-order Lax-Wendroff schemi#i- Di
culties have been encountered with dissipative-free sebdrased
on centred staggered-grid finite-difference schemes, asillveee
in section[3J6.

3.2 Use of fictitious values

Time-marching at grid-points where the stencil crodsesquires
fictitious values of the solution in the vacuum, which haveb#o
determined. The question arises as to how to compute, ftarios,
the fictitious valueU'7_; at the grid point(z;, zs) in the vacuum,
as sketched in Figung 2. Lét(7) be the orthogonal projection of
(z1, z7) onT', with coordinate§zp = z(7), zp = 2(7)). Atany
grid point(z;, z;), we denote

o a=fB(,. _ B o k
Hﬁj = (1574.4, (xl ZE(];)_ ﬁ)('zjﬁ' ZP) 157 ) (Z] k;ZP) 15)

the5 x n, matrix containing the coefficients éfth order Taylor
expansions in space &, wherels is the5 x 5 identity matrix,
a=0,.., k,andg =0, ..., a. Thefictitious valudJ 7 ; is defined
as the Taylor-like extrapolation
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Figure 2. Determination of the fictitious valu&/; ; required for time-
marching at neighboring grid nodes. P is the orthogonal pabion of
(z1, z5) onT. Then, grid nodes inQ2 and inside the circleC centred
at P with a radiusd are denoted by-.

Ui, =15 ,U", (10)

whereU* defined by) still remains to be estimated.

3.3 Reduced vector of boundary values

Before determinind/* in (E), we first reduce the number of inde-
pendent components it contains. The expressions obtanselck
tion@ are used for this purpose. The linear homogeneousrayst
following from (B) and ﬂ)) is

L*6¢*tu" =o. (11)

This system has fewer equationg)than unknowns, — n.). It
therefore has an infinite number of possible solutions thiastitute

a space with the dimension, — n. — n;. Let K ;r o« be a(n, —
ne) X (ny — ne — my) Matrix containing the basis vectors of the
kernel of L* G*. The general solution of ([L1) is therefore

U =K, iU, (12)

sk
where then, — n. — n; components o/~ are real numbers. In-

jecting ) into ﬂ?) gives

U*=G"'K 1 cxU". (13)

The computation ofK ; « .« is a key point. For this purpose, we
use a classical linear algebra tool: singular value decaitipo

of L* G*. Technical details can be found in the Appendix A of
Lombard & Pirauk (2004).

3.4 Computation of fictitious values

Let us now consider the; grid points ofS2 in the circleC centred
at P with a radiusd; for instancen, = 8in FigureﬂZ. At these
points, we write thek-th order Taylor expansion in space of the
solution atP, and then we use the expressim (13). This gives

Ulzi, 2z, ta) = M5 ,U" 4+ 0",
(14)

= HﬁijKLkaUk +O(hk+1)

The set ofr,, equations@4) is written compactly vida, x (n, —
ne — ny ) matrix M

U, tn))e = MT" + O(h*+Y), (15)

where(U (., t.)). is the vector containing the exact values of the
solution at the grid nodes 6t insideC. These exact values are re-
placed by the known numerical valudg™) ., and Taylor rests are
removed. From now on, numerical values and exact valueseof th
fields are used indiscriminately. The discrete system tibtaimed

is overdetermined (see the remark (i) abdatnd typical values of
np in subsecti05). We now compute its least-squares saluti

k

U =M"U"),., (16)

where the(n, — n. —n;) x 5n, matrix M ~" denotes the pseudo-
inverse of M. From (Lp), [1B) and[(16), the fictitious value in the
vacuum af(xy, z7) is

Ui, = H?,.IGkKLkaM_l(U")c
(17)

= A (U"),.

The5 x 5n, matrix Az s is called theextrapolatorat (x, zs).
The fictitious values have no clear physical meaning. Thdy on
allow, by interpolation with numerical values insi€lg to recover
the high-order Dirichlet conditionﬂ(?).

3.5 Comments and practical details

The extrapolation method described in se 3.4 has tpbiecal
at each grid poin{I, J) in the vacuum where a fictitious value
is required for the time-marching procedure. Useful comisiane
proposed about this method:

() The radiusd of C must ensure that the number of equations
in @) is greater than the number of unknowns:

51y

ek, d) = > 1.

Ny —Ne — N~

(18)

No theoretical results are available about the optimal evalfie.
However, numerical studies have shown that a definite otreras
tion ensures long-term stability: typically,~ 4. Various strategies
can be used to ensurg [(18), such as an adaptative choiteesf
pending on the local geometry Bfat P. Here we adopt a simpler
strategy consisting in using a constant radiusVith £ = 3, nu-
merical experiments have shown thlat 3.2 h is a good candidate
for this purpose. In this case, one typically obtainps~ 15.

(ii) Since the boundary conditions do not vary with time, the
extrapolatorsA;, s in @) can be computed and stored during a
pre-processing step. At each time step, only small matbter
products are required.

(iiiy The extrapolatorsA,; account for the local geometry of
I" at the projection point® on T via L* (secti02). Moreover,
they incorporate the position @ relative to the Cartesian mesh-
ing, viaIlL; ; (L4) andI1;,; (7). The set of extrapolators therefore
provides a subcell resolution bfin the meshing, avoiding the spu-
rious diffractions induced by a naive description of the rbaries.

(iv) The stability of the method has not been proved. However
numerical experiments clearly indicate that the CFL coodibf
stability is not modified compared with the case of a homogese
medium. The solution does not grow with time, even in the cdise
long-time simulations (see sectipn|4.5).

V) In a previous one-dimensional stuard,
P001), the local truncation error of the method has beenaigsly
analysed, leading to the following result: using the fiotit values

) ensures a local-th order spatial accuracy ¥ > r, where
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Figure 3. Staggered-grid schemes with a plane boundanyarallel to the
meshing: two cases can be distinguished, depending on siggooof I"
relative to the meshing. Case (a), where the fictitious streestimated,
works well, while case (b), where the fictitious velocitysreated, leads
to long-term instabilities.

r is the order of spatial accuracy of the scheme. In 2D configra-
tions with material interface§ (Lombard & Pirqux, 2pp4, §nano
proof has been conducted, but numerical experiments hawensh
that ther-th order overall accuracy is also maintained by taking
k = r. Note that a slightly smaller order of extrapolation can be
used:k = r — 1 suffices to provide-th order overall accuracy
n5). The valde = 3 is therefore used for the
fourth-order ADER scheme.

(vi) The extrapolators do not depend on the numerical
scheme adopted. They depend only énand on physical
and geometrical features. Standard subroutines for cemput
ing the extrapolatorsA; ; can therefore be developed and

Similar behavior is observed with PSS-4, but after a longeet
the numerical solution generally works well during a femtsand
time steps, before growing in a unstable manner.

The extrapolation method presented here is therefore net re
ommended for use with staggered-grid schemes, espec8yR
except in the trivial case sketched in Figﬂe 3-(a).

3.7 Case of non-smooth geometries

Up to know, we have assumed that the boundavyas sufficiently
smooth at the projection points, being at le@st™ at eachP,
wherek > 0 is the order of differentiation defined in section
@. Let us assume now thatis only C¥ at a pointP, with

K < k + 1. Then, the components d&* in (E) involving the
derivatives-2 (7) and -2 (1) (@ = K + 1,...,k + 1) of the
parametric representation are discontinuous, invatidatocally
the method proposed. In our software, we have implemented th
following rough treatment:

z
a

(i) If K = 0, the boundary owns a corner and the solution has

adapted to a wide range of schemes. Subroutines of this an integrable singularity. The corner is replaced by an foirde

kind are freely available in FORTRAN at the web page
http://w3lma.cnrs-mrs.fr/ "MI/Software/.

3.6 Case of staggered-grid schemes

Instead of using a single-grid scheme as proposed in s@)n
readers may be interested in adapting our approach to seayge
grid schemes such as CSS or PSS (see sel_},tion 1 for the definitio
of these terms). However, in the case of some of the boundary p
sitions relative to the meshing, computational instab#itoccur,
especially when long-time integration is considered.

To understand why this is so, let us consider PSS-2. Taking

centred at) with radiuso (figureB), leading to & curve.
(i) If 0 < K < k+1, asin the previous case Bf and P, with
K = 1, the values of~2 (1) and =2 (7) (@ = K + 1,...,k +

1) are taken indiscriminately on one side or the other of thatpo
considered.

No numerical instabilities were observeddif(in case (i)) or the
radius of curvature (in case (ii)) is much greater thait is agreed
that the accuracy of computations is no more controlledérctises
(i) and (i), especially the convergence towards the exalcttion.
More sophisticated treatments of geometrical singuemiti
such as space-time mesh refinement (Berger & LeVdque} 1298),
quire further investigation, which is out of the scope of pinesent

a simple flat boundary to exist between the medium and the vac- paper. New studies are also needed in the case of mergingiboun

uum leads to two typical geometrical configurations. At ole p
sition of the free surface, the boundary discretization weitjuire
only the stress field to be extrapolated (Figﬂre 3-(a)). Gocedure
works satisfactorily with this type of discretization atyaorder k.

It also yields stable and accurate solutions when dealitiy RS-

4, contrary to the vacuum method. Using 10 grid nodes per-mini
mal S-wavelength gives similar performance in this casdtce

of our numerical experiments based on the ADER scheme, which

are shown in sectiof] 4.

At another position of the free surface where only extrapo-
lated velocities are required within a wide zone (Figﬂlré))a;(our
procedure results in instabilities. The reason for thidbfam is as
follows: fictitious velocities involve first-order boundeconditions
(E) and higher-order conditions (see sec 2.2), but tleeryot in-
volve the fundamental zeroth-order Dirichlet conditioE}s Since
the latter conditions are never enforced, an increasindglatiy
drift occurs near the boundary, which invalidates the caijnns.

aries, occuring for instance when an internal materialriate

reaches the free surfat@004).

4 NUMERICAL EXPERIMENTS
4.1 Configurations

The time evolution of the source is a Ricker wavelet
2
gt) = {2(r fo (t —to))? =1} e~ (et =t (19)

where f. is the central frequency, and = 1/f.. The maximal
frequencyfmax defined by|g(fmax)/g(fc)| = 0.5 (the tilde des-
ignates the Fourier transform) j§,.x =~ 1.6 f.. We will adopt this
frequency fmax for our rule of thumb about the number of grid
nodes per S-wavelength. The following values of the phygiaa
rameters will be used in all the following tesgs:= 2400 kg/m®,
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Figure 5. Test 1: snapshots af, at the initial instant (a), at mid-term (b)

and at the final instant (c). Figure 6. Test 1: time history of,, (a). Zooms on successive time windows,

with various discretizations (b,c,d): the number after #akes the number
of grid nodes per minimal S-wavelength.
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Figure 7. Test 2: snapshot af, at the final instant (a). Numerical and exact
time histories ob, (b).

¢p = 4500 m/s, andes = 2200 m/s. Lastly, the mesh size and the
time step satisfy, At/h = 0.85.

The simulations are performed on a PC Pentium at 3 GHz
with 2 GB of RAM. The results of tests 1 and 2, with constant
and null curvature of', compare quantitatively with analytical so-
lutions denoted by a solid line. Test 3, with a variable cture, is
purely qualitative. Test 4 shows the slow decrease in théharée
cal energy which occurs during very long integration timesich
confirms the stability of the method.

4.2 Test 1: circular boundary

Computational efficiency.et us consider a circular cavity contain-
ing vacuum, with radius 1 km, at the center of a 18 kL8 km

Free and smooth boundaries for elastic wave¥
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Figure 8. Test 2: parametric study of the relative error in terms of the
boundary’s angled, with various discretizations. The number after # de-
notes the number of grid nodes per minimal S-wavelength.

domain. In a first part, the mesh spacingiis= 25 m. The source
is a rightward-moving plane wave, wiffn.x = 8 Hz, ensuring 22
grid nodes per minimal P-wavelength and 10 grid nodes permin
mal S-wavelength at that frequency.

During the pre-processing step, the program finds the 636 gri
nodes where fictitious values are required; it also compates
stores the 616 extrapolators defined by the expres@)n Tivig
integration is performed in 550 time steps, which corresisdo a
propagation time of 2.75 s and a propagation distance of 22 mi
mal wavelengths. The preprocessing step takes 21 s of CRY tim
The time integration takes 1100 s of CPU time, including 2816
duced by the computation and by the use of fictitious valuéihw
amounts to an extra time cost of only 2.6 %. Fi@re 5 shows-snap
shots ofv,, at the initial instant (a), after 275 time steps (b) and after
550 time steps (c).

Quantitative studyln a second part, three discretizations are
consideredh = 25 m, 50 m, 60 m, corresponding respectively to
10, 5 and 4 grid nodes per minimal S-wavelength. A receiveeis
just above the cavity, at the position (9 km, 10.2 km), that ba
seen on Figurﬂ 5; it mainly records the waves propagatinggalo
the boundary. Numerically, these waves are highly seesitiihe
quality of the fictitious values defined in sectﬂn 3.

FigureEi-(a) shows the time historyof at the receiver. In this
time window, three main wave packets are generated; withdhke
of Figureﬂs-(a), the third packet cannot be seen. The andglits
divided by a factor of approximately 30 from one packet toftile
lowing one. For the sake of clarity, zooms around each wagkgta
are shown in Figurﬂ 6-(b,c,d). These solutions are compaitd
an exact solution computed thanks to inverse Fourier toamsf on
4096 frequencies, with.25 1072 Hz as the sampling frequency;
each harmonic component is expanded into 60 Bessel modes. Th
agreement between the numerical and the analytical vaduesry
good when 10 grid nodes per wavelength are used, even at very
small amplitudes (d). For 5 and 4 grid nodes per wavelength, t
solution is slightly less accurate, but it is still accef¢ab
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Figure 10. Test 4: snapshot af, (a) and time history of the mechanical
energy (b)
Figure 9. Test 3: snapshots af,, for various sinusoidal topographies

the occurence of spurious oscillations, the source is dpyaanu-
merically over a radius oR = \,/7.5 = 40 m. The source is
weighted by a gaussian law with a standard deviafiti2 = 20
The Garvin’s problemAs a second test, we take a plane boundary m. The spatial discretization ensures the sampling of riyug&
inclined against the Cartesian mesh. The domain undertigaes grid nodes per minimal P-wavelength, and 9 grid nodes pei-min
tion is 18 km wide and 12 km high, with the origin of the coor- mal S-wavelength at the frequengyax.
dinates on the top and left. The mesh spacing is 10 m. Four Figure [I?-(a) shows a snapshot ©f after 1200 time steps,
receivers at (10 km, 1.8 km), (11 km, 1.6 km), (12 km, 1.4 kn§ an  corresponding to a propagation time of 2.25 s and a propagati
(13 km, 1.2 km) belong to the free boundary which is inclinedra distance of 55 minimal wavelengths. Direct cylindrical wa\are
angle ofd = 11.3° relative toOx. observed, together with converted PP waves, converted R8swa
An explosive source S is buried at (9 km, 2.1 km), with (with an almost linear wavefront), and Rayleigh waves. Ig-Fi
fmax = 24 Hz. The distance between the source and the free sur- ure ﬁ-(b), the time history of. recorded at the receivers can be
face is roughly 100 m< A\, /3, where), is the wavelength of the  favourably compared with an exact solution. The latter isivied
compressional waves at frequengy, and hence large Rayleigh by convolving the Green’s function obtained by the well-kmo
waves are generated, with a velocity = 2054 m/s. To prevent Cagniard-de Hoop meth055; Sanchez-Sesmar& It

4.3 Test 2: inclined straight boundary
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rarén-Viverose) with the source WaveEl (19) and withdis-
crete source spreading.

Influence of the slop&o quantify the effects of the angle be-
tween the boundary and the Cartesian meshing on the nurherica
solution, we perform a parametric study of the error in teaig.
Ten angles are considered, fréha= 0° to § = 45° in steps ob°.

In each configuration, the waves are measured at the freelhoun
after propagating for 65 minimal wavelengths. The errov af is
measured in norni.2, and then it is normalized by the norf of
the exact time history o.n.

The results of this study are shown in Figlﬂe 8, with vari-
ous discretizations: 5, 10, 20 grid nodes per minimal S-Vesgth.
With a givenh, the error is almost constant and independertt. of
This constitutes a crucial advantage of our method overdhawm
method, where the error d6° is much greater than that at: it
means that an extremely fine discretization is required taiob
accurate results with the vacuum method when arbitrarpesha

boundaries are encountergd (Bohlen & Sa¢ 20086).

4.4 Test 3: sinusoidal boundary

Since boundaries not related to the finite-difference gaidl loe in-
cluded, the third test is performed on a sinusoidal free daon
with a peak-to-peak amplitude of 800 m and various wavelengt
0.5 km, 1 km and 2 km. The sinusoidal curve is centred around
z = 1 km. The source S is located at (9 km, 1 km). The other pa-
rameters are the same as in test 2. Fihﬂe 9 shows snapshgts of
at the final instant 2.25 s. One can clearly see how the waytiden
of the sinusoidal boundary influences the diffracted fields.

Convergence studies (not shown here) were performed in
these three cases, by comparing solutions computed on fider g
We again concluded that accurate solutions can be obtaihed w
the simulations involve approximately 10 grid nodes perimat
S-wavelength at the frequengihax of the source wavelet, even in
the case of complex topographies with variable curvatures.

4.5 Test 4: long-term stability

The fourth test focuses on long-term stabilﬁy (Sthmg’%s-
tholm,l@ls). For this purpose, we consider a circular elaki-
main with a radius of 150 m, surrounded by vacuum. The source S
is located inside the circle, at (320 m, 200 m). This confijara
is obviously not realistic, but it enlights the influence loé thbound-
ary on the numerical solution after many reflections, anéesfly
on the possible excitation of numerical spurious modesiteggith
long-term instability. The mesh size is= 1 m. Time integration
is performed during.0° time steps, Withfmax = 160 Hz.
Figur-(a) shows a snapshotofat the final instant: no in-
stability is observed, and the antisymmetryuofis satisfied. Once
the source is extincted ¢ 2 t.), the mechanical energy is theo-
retically maintained. It can be written in termsofndo
Ap(A+p)

_1 2
E_2//Q{pv +
A

2+ p)

At each time step, the integral iE[ZO) is estimated by a haaje-
zoidal rule at the grid nodes inside Figur-(b) shows the time
history of this mechanical energy so-obtained. It slighgreases,
due to the numerical diffusion of the scheme, which confirnas t
the method is stable.

A4+2u

(020 +02%) + 202,
(20)

Ozx Ozz

} drdz.

5 CONCLUSION

Here we have presented a method of incorporating free boiesda
into time-domain single-grid finite-difference schemes dtastic
wave simulations. This method is based on fictitious valddhe
solution in the vacuum, which are used by the numerical nateg
tion scheme near boundaries. These high-order fictitiowssac-
curately describe both the boundary conditions and the gearal
features of the boundaries. The method is robust, involwiegji-
gible extra computational costs.

Unlike the vacuum method, the quality of the numerical solu-
tion thus obtained is almost independent of the angle betules
free boundaries and the Cartesian meshing. Since the frgelbo
aries do not introduce any additional artefacts, one cathessame
discretization as in homogeneous media. Typically, wheouatffi-
order ADER scheme is used on a propagation distance of 50 min-
imal wavelengths, 10 grid nodes per minimal S-wavelengéhdyi
to a very good level of accuracy. With 5 grid nodes per minimal
S-wavelength, the solution is less accurate but still aedBe.

For the sake of simplicity, we have dealt here with academic
cases, considering two-dimensional geometries, conptaydical
parameters, and simple elastic media. Let us examine biledly
generalization of our approach to more realistic configonast

(i) Extending the method to 3-D topographies a priori does no
require new tools. The main challenge will concern the cdiapu
tional efficiency of parallelization. A key point is that tHetermi-
nation of each fictitious value is local, using numericalres only
at neighboring grid nodes. Particular care will howeverdmgiired
for fictitious values near frontiers between computaticnabdo-
mains, in order to minimize the exchanges of data.

(i) Near free boundaries, the domains of propagation ate us
ally smoothly heterogeneous. To generalize our methodritiras
ously variable media, the main novelty expected concembitsh-
order boundary conditions detailed in sect@ 2.2. Withalde
matricesA and B indeed andk > 2, the procedure[kS) will in-
volve the following quantities, to be estimated numericall

6k—1 ak—l
axk—l—a 9 z% axk—l—a o 2%

(iii) Realistic modeling of wave propagation requires taan
porate attenuation. The only rheological viscoelastic emdble to
approximate constant quality factor over a frequency rargehe
generalized Maxwell body (Emmerich & Korp, 1984) and the-gen
eralized Zener bod e, 2D01). These two equivalet-
els (Moczo & Kristek,| 2005) yield to additional unknowns ledl
memory variablesin the time domain, the whole set of unknowns
satisfies a linear hyperbolic system with source term

0 0 0
athAach+BazU SU,
where S is a definite positive matrix. Compared with the elastic
case ) examined in the present paper, the main differexice e
pected concerns the time differentiation of the boundandimn

@). Indeed, equatior{](3) has to be modified accordinghy{ . (2
Similar modifications are also foreseen in the case of pastieity

in the low-frequency ran995), where the @@

equations can be put in the forfn [21).

B,

bl

(21)
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