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A monitoring system based on a stopwatch automaton is proposed to detect the system faults as early as possible. Each location in the automaton corresponds to a system's situation. Its time space delimits exactly the range of the normal behavior in the corresponding system's situation. The monitoring system detects a fault when the time space corresponding to the actual system's situation is violated. The stopwatch automaton provides a formal foundation to model the system's behavior and to synthesize the exactly time space in each location. This paper aims to provide the grafcet monitor that allows to link the design of the monitoring system of a system with its implementation in a programmable logic controller.

INTRODUCTION

Monitoring complex manufacturing systems plays an important role for economic and security reasons. A wide variety of methods has been considered this problem. These methods consider a fault have occurred in a system if a faulty event occurs [START_REF] Ghazel | A monitoring approach for discrete events systems based on a timed perti net model[END_REF], reaching a faulty state (S. H. [START_REF] Zad | Fault diagnosis in discrete-event systems: Framework and model reduction[END_REF] or more generally violating system specifications. Most systems monitor the timed system specifications by using Watchdogs. They detect a fault if the expected observation is produced early or late with respect to certain time bounds. The increasingly stringent requirements in monitoring and fault detection problems lead to the necessity to detect the fault as early as possible without waiting the expiration of certain bounds. For that, we have proposed in (A.allahham and alla, 2006) a monitoring method which extends the method of residuals, wellknown in continuous system. In (A.allahham and alla, 2006), we have introduced the notion of acceptable behavior of a system detailed in the following section. We model this acceptable behavior by a stopwatch automaton. In that representation, each location corresponds to a state of the system and the arcs are labeled by switching conditions between the different states. In each state, the differential equations express the progression or suspension of the task represented by the stopwatch due to a fault. The time sub-space in each location represented by a set of algebraic inequalities, delimits the range of stopwatches in the corresponding system's situation in the acceptable behavior. The monitoring system detects a fault when the system exceeds this time sub-space.

The stopwatch automaton provides a formal basis to model the system's behavior and to analyze it in order to characterize the exact time sub-space in each location, corresponding to the acceptable behavior. In this paper, our objective is to provide the grafcet model that allows to link the design of monitoring system of a manufacturing system with its implementation in the logic controller. We show that the grafcet fulfils not only the sequential specification of the applications but also the continuous behavior specified in the monitoring stopwatch automaton. The grafcet corresponding to monitoring automaton models a location by a step and a stopwatch by a timer where the following problem is encountered. The behavior of a stopwatch goes beyond the ability of a timer representing the simplest way to include the time in grafcet model. This problem in turn affects the method to represent the time sub-space associating to the steps of grafcet. However, we will show that this problem can be overcome by complet- ing the grafcet by actions associated with steps. Also, the grafcet will monitor permanently the consistency of the stopwatches within its acceptable range. Section 2 describes the acceptable behavior of a system and its model based on stopwatch automaton. Our approach is given and used to delimit the time space characterizing this behavior. In Section 3, the method to translate a monitoring automaton into a Grafcet model is detailed. We apply this method in an illustrative example in Section 4.

THE ACCEPTABLE BEHAVIOR

The possible kinds of faults that affect the resources in a manufacturing system are the permanent faults, which dispossess a resource's ability to perform its task and the intermitting faults. These faults can appear several times during the task execution and disappear without any external action on the system while permanent faults disappear due to a repair of the fault [START_REF] Huang | Modeling discrte event systems with faults using a rules based modeling formalism[END_REF]. Our work considers only the intermitting faults that interrupt the task of a resource. We call it malfunctions and the task subjected to these malfunctions as interruptible task. The system containing these tasks is called as interruptible system. Because of malfunctions, an intermediate state can appear between a normal state and a faulty one. In this state, the system can come back to the normal behavior or it leaves toward a faulty state (Fig. 1). We refer to this behavior by acceptable behavior. These malfunctions occur often in a manufacturing system, so the system's designer accepts to some extent this behavior for productivity motives.

The question to answer is: how the designer takes into account these malfunctions in his system. Let be a task Task i ∈ Task int where Task int represents the set of interruptible tasks in a complex system S. Task i has a known execution duration [α i , β i ] which is given in the technical characteristics of the resources that execute Task i or measured directly. Because of the interruptions resulting from malfunctions, the designer accepts a tolerated duration to execute Task i . It is given by the interval [α i , γ i ) where β i < γ i . We call [α i , β i ] and [α i , γ i ) respectively the normal and acceptable durations of Task i . 

Monitoring of an interruptible task

We refer to the apparition and disappearing of a fault by its effect on the task execution, then we refer it by interruption and resuming of the task.

Hypothsis 1 The execution speed is supposed to be constant or to vary sightly around a mean value.

Considering the properties of the tasks mentioned above, we distinguish the behavior of an interruptible task shown in Figure 2.1. Either Task i is executed without interruption, then t f ∈ [α i , β i ] or Task i has been executed but with several interruptions. After each interruption, the system resumes from the position at which it has been interrupted. In this case:

t f ∈ [α i , γ i ).
To monitor Task i , we use the timers x i and y i . The timers x i and y i have a values "0" when the task begins. x i will be used to check that Task i has completed before the expiration of its tolerated deadline. y i is used to monitor the effective time of execution.

Then, Task i is correctly executed if y i ∈ [α i , β i ] and x i ∈ [α i , γ i ) when the task end occurs.

The arrows ↓ and ↑ in Figure 2.1 represent respectively the signal of logical sensor which detects the interruption and resuming of Task i . These signals represent an input of our monitoring system (Fig. 2.2).

Modeling of an interruptible system

We use the stopwatch automata SWA to model the interruptible system. It is a class of linear hybrid automaton where the time derivative of a clock in a location can be either 0 or 1 [START_REF] Cassez | The impressive power of stopwatch[END_REF].

Definition 1 A stopwatch automaton is a 7-tuple (L, l 0 , X, Σ, A, I, Ẋ) where:

• L is a finite set of locations, l 0 : the initial location,

• X is a finite set of stopwatches,

• Σ is a finite set of labels,

• A is a finite set of arcs. a = (l, δ, σ, R, l ) ∈ A is the arc between the locations l and l , with the guard δ ∈ C(X), the label name σ and the set of stopwatches to reset R. C(X) is the set of constraints over X. • I ∈ C(X) L maps an invariant to each location,
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• Ẋ ∈ ({0, 1} X ) L maps an activity to each location.

• SWA of an interruptible task We model the acceptable behavior of Task i by the Stopwatch automaton shown in Fig. 3. The location l 1 indicates that the resource is waiting to start the task, l 2 that the resource is executing its task and l 3 that the task is interrupted after having started. In this automaton, the clock y i in l 3 does not progress while x i evolves to express that the task is interrupted but the time remains progressing. The labels s i and r i represent respectively the stop and the resumption of Task i in the physical system, while label σ i corresponds to the end of this task. ε i which is the always true event, represents the necessary condition to start the task. Here it starts immediately. The guard g 2 of the arc l 2 g 2 -→ l 3 expresses that the interruption can occur at any instant during the acceptable duration while the guard g 3 associated to l 3 g 3 -→ l 2 expresses that the resumption must occur before exceeding the acceptable duration. The execution of task i , during its acceptable duration is represented by the guard g 4 of the arc l 2 g 4 -→ l 1 . Figure 3 shows that Task i leaves the acceptable behavior to faulty state l 4 either from the location l 2 or l 3 . The guards of arcs towards l 4 are identical and given by g 5 = ¬g 4 = (x i = γ i ∧ y i < α i ). It expresses the fact that the acceptable duration of execution was expired and Task i is not executed.

Time space state delimiting the acceptable behavior

The acceptable behavior of a system S is represented by a stopwatch automaton A. It is obtained by the composition of the different tasks automata according to the system specifications which represent the relation between these tasks.

Property 1 The trajectories which lead Task i to the state l 1 × (0, 0) from l 2 × (x i , y i ) where x i ∈ [α i , γ i ) and y i ∈ [α i , β i ], represent all the possible evolutions characterizing the execution of Task i .

The trajectories specified in Property 1 represent only a part of the possible ones. Thus, the synthesis problem of monitoring can be set as follows: given a stopwatch automaton A representing a system S, restrict the possible trajectories of this automaton in a way that all remaining ones satisfy Property 1, for all the tasks of S. As a result, we obtain an automaton A * where all its trajectories characterize the acceptable execution of S. The calculation of the time space containing these trajectories E * of A * is the core of our synthesis algorithm. This is realized using of the Forward and backward reachability analysis. [START_REF] Alur | The algoritmic analysis of hybrid systems[END_REF] • Forward analysis of monitoring SWA:

We use the forward analysis operators to calculate all the possible trajectories in the system. In other words: the reachable time space E in the automaton A mentioned above. The forward operators look for all the reachable states of a stopwatch automaton from its initial state remaining in the locations of automaton while the time progresses or by firing its transitions.

The reachable time space by forward analysis in locations l 2 and l 3 of the automaton shown in Figure 3 is given in Figure 4.1. Note that the values of the stopwatches given by g 4 in Figure 3 define a polyhedron. We denote it as D i , and call it as the desired space of Task i (Fig 4 .2). Note also that the trajectories specified in Property 1 lead the task only to D i . These trajectories represent only a part of the ones which are contained in reachable time space (Fig. 4.1). Thus,we must delimit the time space containing only these trajectories to characterize the acceptable execution.

• Backward analysis of monitoring SWA: It is not hard to see that the time space E * of A * can be obtained by removing from the time space of A the states from which system's evolutions do not lead to D i of each interruptible task. In other words, one needs first to apply the backward operators (called as predecessors and annotated as Pre operators) to the guards of arcs representing the desired space of all the tasks over the automaton A. Then,

E * =E ∩ ( S Pre(D i )).
The intuition behind the using the predecessors operators for a guard representing D i of Task i is that we look for all the states that lead to this space D i from the initial state of A.

Applying the backward analysis for the automaton given in Figure 3 gives the time space shown in Figure 4.3. The intersection of this space and that of forward analysis is given in Figure 4.4. It is the space characterizing the execution acceptable of Task i . One of the trajectories contained in synthesized space (Fig. 4.4) shows that the task reaches a faulty state, only from the location l 3 with the dynamics ẋ = 1 and ẏ = 0. Grafcet and its international standard SFC (CEI/ IEC 60848 revised in 2002) are used for the implementation of discrete events models for manufacturing systems and many programmable logic controllers use it as a programming language. The basic concepts of the grafcet are: the step, action, transition and its associated receptivity [START_REF] David | Grafcet: A powerful tool for specification of logic controllers[END_REF]. A Boolean variable X i is associated with each step. Its value is 1 when step is active. The general idea to translate the monitoring automaton A * into a grafcet is to represent each location of the automaton by a step. The faulty state is also modeled by a step. Let L = {l 1 , ..., l n } be the set of locations of A * . The set of steps corresponding to these locations is denoted by {1, ..., n}. An arc linking two locations is modeled by a transition linking the two corresponding steps. The transition receptivity is the label of the arc. The simplest way to include time in the grafcet model is to use timer objects, for that, each stopwatch will be modeled by a timer. Figure 5 shows a timer (T i ) which is typically initialized with a value representing a duration (I T i input) and a control input (C T i ) for starting the timer. This timer produces a boolean output (O T i ). Associating an impulse action ↑ C T i with a step j will activate the timer T i as soon as ↑ X j = 1. Here, we are not interested in the logic output of timer, but in the instantaneous value of the timer T i denoted by x T i , which is supposed to be readable and testable in real time. In
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(3) In these translation rules, the behavior of a stopwatch goes beyond the ability of a timer. To show that, we consider the part of monitoring automaton shown in Figure 5.2. In this automaton the stopwatch x i is newly activate in l 1 and remains active in l 2 and l 3 . Translating this model into a grafcet by using the method described above, gives the model shown in Figure 5.3 where T i is the timer corresponding to stopwatch x i . In this grafcet, we activate the timer T i as soon as the ↑ X 1 = 1. T i remains active in steps 2 and 3. However this is not sufficient to represent the behavior of the monitoring automaton since an important issue is the behavior at the firing the arc of automaton between l 3 and l 1 . The stopwatch x i persists active after the commutation and has a certain value at the instant of reaching l 1 , while there will be an initialization of the value of corresponding timer T i when ↑ X 1 = 1 in the grafcet. However, we show that this problem can be overcome by completing the grafcet by actions and by using intermediate variables.

• Modeling of stopwatches by timers:

Let us consider that the automaton given in Figure 6.1 follows the behavior given in Figure 7. T i and T j are the timers corresponding to stopwatches x i and y i . We express the dynamics ẋi = 1 and ẏi = 1 in the location l 2 by associating to step 2 the impulse actions ↑ C T i and ↑ C T j . These actions will activate T i and T j as soon as ↑ X 2 = 1. In a similar way, we express the dynamic ẋi = 1 in l 3 . We will now give the method to represent the behavior of x i and y i whose values are 0 at the entry of l 2 . Note that the value of x i in a given location l 2 or l 3 is the sum of: the value of x i when the system reaches this location and the passed time from the reaching instant to actual one. The latter item corresponds to the value of timer T i which is activated when the system reaches the step corresponding to the given location. For the for- mer item, an intermediate variable denoted by δ x i and called as shifting variable is used. δ x i is initialized when the automaton resets to 0 the stopwatch x i . The value of δ s i corresponding to x i (t 1 ) in Figure 7 can be obtained by associating to the step 2 (Fig. 6.2) the impulse action ↓ δ x i := δ x i + x T i (Shifting action). It adds to δ s i whose initially has the value 0, the value of x T i representing the duration that the grafcet stays in step 2. The value of δ x i corresponding to x i (t 2 ) in Figure 7 can be obtained by associating to step 3 the same action. It adds to previous value of δ x i the duration that the system rests in step 3. The resulting values of δ x i are shown in Figure 7. They correspond to that of x i at the instants of reaching l 2 and l 3 after each commutation between these two locations. As a result, δ x i + x T i is equivalent to that of x i at any instant during the system dynamics either in l 2 or l 3 .

The behavior of stopwatch y i is different from that of x i . y i is suspended when the automaton fires from l 2 to l 3 . y i resumes in location l 2 from the same value when it was suspended, then we associate the action ↓ δ y i := δ y i + x T j to step 2 to memorize this value. δ y i is initialized when the automaton resets to 0 the stopwatch y i . The describing exactly the given part of automaton is given in Figure 6.2. In Figure 6.1, x i and y i are initialized by firing the arc l 2 → l 4 . Our grafcet does this resetting by allocating to zero the variables δ x i and δ y i after the firing from step 2 to 4. The action resetting the shifting variables will be associated to the step 4. The initial step of is associated by an impulse action resetting all the shifting variables used in the grafcet. The grafcet monitor checks permanently the time space associated to the actual step. The faulty step is reached when the system violates this time range. This fact can be represented in the grafcet model by using the concept of hierarchy. It is easy to imagine that a grafcet G 1 has an influence on anther grafcet G 2 . G 1 is the Grafcet resulting from structural translation described above (Fig. 6.2). G 2 has two steps: initial and faulty steps (Fig. 6.3). The activation of initial step of G 2 expresses that the system's behavior is acceptable. G 2 evolves to faulty step when the time space is violated. Let E 1 ,..E i ,..,E n be the time subspace in the locations l 1 ,..,l i ,..,l n permitting to evolve to the faulty state. The corresponding steps in grafcet G 1 are 1,..,i,..,n. The receptivity of t 21 in Figure 6.3 is: [X 1 .E 1 + .. + X i .E i + .. + X n .E n ]. In Figure 6.3, the event ↑ m represents the reparation operation. Figure 8 shows a manufacturing system and its working specification. In this system, when the control system gives the order d, the actuator puts down a pallet on the conveyor. When the sensor B detects the transferred pallet (event b), and if the robot is not busy (event e), it transfers the pallet to the assembly station. The actuator comes back to its initial state and waits again d. When the robot finishes its task (event R), it returns to its initial state. The information concerning the interruptible tasks is given in the following table. t.u is the abbreviation for "time units".

Task name

Conveyor task Robot task

[α i ,β i ] (t.u) [3,4] [2,3] [α i ,γ i ) (t.u) [3,5) [2,4) Used stopwatches
x 2 and y 2 x 4 and y 4 Monitoring signals s 2 and r 2 s 4 and r 4

In Figure 9.1, we give the monitoring automaton of the considered system composed of 12 locations and focalize to a part of it in Figure 9.2. The time spaces in the locations have been calculated by using the model-checker PHAVer [START_REF] Frehse | Phaver: Algorithmic verification of hybrid systems past hytech[END_REF]. Figure 8.3 shows a scenario of working where the robot and conveyor start their tasks simultaneously. This situation is represented by location L 7 as the stopwatches dynamic's show. In this scenario, the conveyor is interrupted 2 t.u. Then, the system fires to L 8 . The inequality in bold in L 8 detects a fault in the considered behavior at the instant x 2 (θ) = 3. The corresponding value of y 2 is y 2 (θ) = 1. This result can be explained as follows: to finish the conveyor grafcet G 1 of the system. The timers T 1 , T 2 , T 3 , T 5 and T 6 correspond respectively to stopwatches x 1 , x 2 , y 2 , x 4 and y 4 . The used shifting variables are : δ x 1 , δ x 2 , δ y 2 , δ x 4 , and δ y 4 . Figure 10.3 shows the evolution of G 1 according to the proposed scenario. The receptivity of transition t 21 in G 2 (Fig. 6.3) is: (X 3 .E 3 + X 6 .E 6 + X 8 .E 8 + X 9 .E 9 + X 11 .E 11 + X 12 .E 12 ). Its predicate becomes true at the instant t = 3 because X 8 = 1 and the inequality (δ x 2 + x T 2 ) -δ y 2 ≥ 2 in E 8 becomes true at this instant as shown in Figure 10.4.

Conclusion

Active approach has been carried out to provide solution to specific problem related to the fault detection which is the ability to detect the faults as early as possible. It is based on a stopwatch automaton which provides a formal support to this approach. The link between the design of monitoring system and its implementation in programmable logic controller is provided using grafcet tool. We have shown how the grafcet can be used to describe the monitoring stopwatch automaton's behavior.
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