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Abstract: A modeling paradigm called Post and Pre-initialized Stopwatch Petri
Nets (SWPN ) is introduced. It extends Time Petri Nets TPN to the concept
of stopwatch with an original mechanism of stopwatches reset. SWPN makes this
reset dependent on the firing of the corresponding transitions. The resulting model
permits natural description of so-called preemption-resume behavior. We give the
formal semantics of SWPN as a timed transition system. We propose also a method
for its analysis consisting in the computation of its equivalent stopwatch automaton
SWA. The advantage of Petri Nets for modeling the complex system in concise
way is combined with the power analysis of SWA.Copyright c©2007 IFAC
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1. INTRODUCTION

Interruptible systems are often found in real-time
systems that are typically composed of several
tasks that interact. The behavior of these systems
is so-called preemption-resume behavior where
the some of its tasks are suspended and resumed
latter. An important problem consists in ensuring
that the tasks can be executed in such a way that
they respect the constraints they are subjected
to, as deadlines for example. So the influence of
interruptions must be considered in modeling and
verifying these systems. This requires to describe
the suspension and resuming of tasks. To fulfill
these needs, several models based on the notion
of Stopwatch (a clock that can be stopped and re-
sumed) have been proposed in the literature. One
can find stopwatch extensions of classical dense
time model: Timed Automata TA and time Petri
Nets TPNs. Among the extensions of the timed
automata, the Stopwatch Automata SWA (Cassez
and Larsen (2000)) are defined as a subclass of
the linear hybrid automata. In this model the
increasing clock rate can be switched between (1)

and (0) in order to express the progression or the
suspension of a task across different logical loca-
tions. Petri Nets are another widely used mode
for real-time system. They permit generally both,
to facilitate the description of conditions, and to
enhance the readability of the specifications which
is not the case for direct modeling in SWA. There-
fore, several efforts have been done to model the
preemptive behavior for scheduling purposes by
using some extensions of Time Petri Nets TPN.
Lime and Roux (2004) proposed an extension
called Scheduling Extended Time Petri Nets that
consists in mapping into a PN model the way the
different schedulers of a system activate or sus-
pend tasks. For a fixed priority scheduling policy,
Scheduling-TPNs introduce two new attributes
associated with each place that respectively rep-
resent allocation and priority. Bucci et al. (2004)
proposed a similar model: Preemptive Time Petri
Nets. The two attributes are associated with tran-
sitions instead of places. Roux and Lime (2004)
defined Time Petri Nets with Inhibitor Hyper-
arcs as an extension of T-TPN. The stopwatch
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associated with a transition can be reset, stopped
and started by using classical arcs and branch
inhibitor hyperarcs. Firing of a transition may be
interrupted if there is a nonempty place connected
to this transition by an inhibitor arc.
The Petri net extensions mentioned above in-
troduce in the model either the priority or the
inhibitor arcs for modeling the suspension and
resuming. These attributes increase the difficulties
of modeling complex systems as manufacturing
systems. The need of a simple modeling tool to
model preemption-resume behavior motivates us
to propose the Post and Pre-initialized Stopwatch
Petri nets. This model is referred in the sequel
as Stopwatch Petri Nets(SWPN,s for short). An
important contribution in our proposed model
SWPN is the notion of pre-initialization and post-
initialization of the clocks. In a TPN, only the
pre-initialization is used. The clocks are initial-
ized when its transitions are newly enabled. In
SWPN, we introduce the post-initialization where
the clocks are initialized when their associated
transitions are fired. This mechanism of initializa-
tion of the variables associated with transitions is
used in (Bobbio et al. (2000)) to widen the field of
applicability of the stochastic petri nets, and thus
this allows to model different preemption policies.
The key difference with respect to our formulation
is that between TPN and stochastic PN (there is
no actual conflict in a stochastic Petri nets. For a
detailed presentation of timed conflicts see (David
and Alla (2005))). In turn, this difference reflects
to the analysis method.
We tackle the reachability problem for the SWPN
which it is, as all the extension of TPN mentioned
above, undecidable. Our method for timing anal-
ysis is based on translation the SWPN into an
equivalent SWA. Then, a forward analysis will
be applied on the resulting SWA using PHAVer
model-checker (Frehse (2005)). Thus, we bring the
techniques used in PHAVer to force the termina-
tion, when the state space is not computable.
In Section 2 the SWPN model, its syntax and se-
mantics are presented. The translation algorithm
into a SWA is described in Section 3. Section
4 illustrates the proposed model and its timing
analysis method by an example.

2. STOPWATCH PETRI NETS

We define the Stopwatch Petri Nets SWPNs
which extends the basic model of T-time Petri
Nets (Berthomieu and Diaz (1991)), to the con-
cept of stopwatch with an original mechanism
of stopwatches reset. It makes the reset of
some timed transition dependent on the firing
of the transitions (notion of post-initialization).
In SWPN, there are two types of transitions: in-
terruptible and non-interruptible transitions. The

P1
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(t3)

(t4)

(t2)

P2

0 0[ , ]

α β[ , ] 0 β[ , ]

0 γ[ , ]

2 0x =:

Fig. 1. SWPN of an interruptible task

firing of an interruptible transition resets the asso-
ciated stopwatch, while the firing of another non-
interruptible transition making the interruptible
transition not enabled, suspends the progress of
the time to fire which is then resumed when the
transition is enabled again.
Example: Suppose there is an interruptible task
having duration of execution [α, β] (without the
durations of the interruption). After each inter-
ruption, the task resumes in the same place when
it was interrupted. The interruption can occur
at any instant during the task’s execution. The
maximal duration of each interruption is γ ∈ R+.
The proposed SWPN models this behavior as
shown in Figure 1. Place P1 represents the exe-
cution of the task while place P2 represents the
interrupted state of task. Transitions t3 and t4
represent respectively the occurrence of interrup-
tion and resuming of the task. Transition t2 which
is an interruptible transition represents the task’s
execution. It is associated with stopwatch x2. A
graphical representation to distinguish between
interruptible and non-interruptible transitions is
to draw the former one in bold and to associate
it by the assignment x2 := 0. When an interrupt
occurs, the token emerges from P1 into P2 and
x2 becomes inactive. When the interruption ends,
transition t4 fires, the task resumes in the same
place where it was interrupted and x2 comes back
active and restores its saved value when the inter-
ruption happened. Firing t2 resets the stopwatch
x2. At the initial marking, all the stopwatches of
SWPN model reset to 0.

Definition 1. A Stopwatch Petri Nets is a tuple
〈P, T, •(.), (.)•,M0, Is〉, where:

• P is a non-empty finite set of places;
• T is a non-empty finite set of transitions.

The set T = Tint ∪ Tno−int is composed of
two disjoints sets: the interruptible and non-
interruptible transitions;

• •(.) and (.)• are respectively the backward
and forward incidence function;

• M0 ∈ Ncard|P | is the initial marking of the
net, associating with each place p a natural
number of tokens;

• Is associates with each transition ti a fir-
ing interval delimited by an earliest firing
time EFT (ti) ∈ R+ and a latest firing time
LFT (ti) ∈ R+ ∪ {∞}. 2



2.1 Semantics:

A marking M of the net is an element of Ncard|P |

such that ∀p ∈ P , M(p) is the number of token
in the place p. A transition ti is to said to en-
abled by marking M if M ≥ •t and denoted by
ti ∈ enabled(M). 2

Let be υ(ti) represents the values of the stop-
watch associated to ti. υ(ti) is a mapping υ ∈
(R+)card|T | such that:
• ∀ti ∈ Tint, υ(ti) is the time elapsed since ti
was first enabled and during which ti remained
enabled. ti is first enabled when it is enabled and
its value υ(ti) = 0. Remind that υ(ti)← 0 at each
time ti fires;
• ∀ti ∈ Tno−int, υ(ti) is the time elapsed since ti
was last enabled. 2

A transition ti ∈ Tint is said to be suspended by
the marking M and denoted by susp(M) if :
ti ∈ Tint : ti ∈ susp(M) if •(ti) > M∧υ(ti) > 0.2
A transition ti is said to be firable by marking
M and denoted by ti ∈ firable(M) if:
ti ∈ enabled(M) ∧ EFT (ti) ≤ υ(ti) ≤ LFT (ti).2
A transition ti ∈ Tno−int is said to be newly
enabled by firing the transition tk from the mark-
ing M and denoted by ↑ enabled(ti,M, tk) if:
(ti /∈ enabled(M) ∨ (ti = tk)) ∧ (•(ti) ≤ M −
•(tk) + (tk)•).
Notion of pre-initialization : The transition
ti is called Pre-initialized, if we initialize it be-
fore its using. The concept of Pre-initialization
is possible when ti is newly enabled, i.e, ti ∈
↑ enabled(ti,M, tk). 2

Notion of Post-initialization : The transition
ti is called Post-initialized, if we initialize it after
its using. The concept of Post-initialisation is pos-
sible only if ti ∈ Tint. 2

The semantics of SWPN as Timed Transition
Systems (TTS) are defined as follows.

Definition 2. (Semantics of a SWPN ) The seman-
tics of a Stopwatch Petri Net N is defined as a
TTS SN = (Q, q0,→) such that:
• Q = Np × (R+)card|T |.
• q0 = (M0, 0). In this state, the value of all the
stopwatches is reset.
• → ∈ Q× (T ∪ R)×Q is the transition relation
including a continuous transition relation and a
discrete transition relation.
• the continuous transition relation is defined
∀d ∈ R+ by:

(M ,υ) d−→ (M,υ′) iff ∀ti ∈ T υ′(ti) =
{

υ(ti) + d if ti ∈ enabled(M)
υ(ti) Otherwise

M ≥ •(ti)⇒ υ′ ≤ LFT (ti)

• the discrete transition relation is defined ∀ti ∈ T
by:

- a -

- b - - c -

Pi

Pi
ti

ti ti

Pitj

tj tj : 0ix =: 0ix =: 0jx =: 0ix =
: 0jx =

Fig. 2. Stopwatch reset in different conflict cases

(M ,υ) ti−→ (M ′, υ′) iff ∀ti ∈ T

ti ∈ firable(M),
M ′ = M − •(ti) + (ti)•,
υ′(ti) := 0 if ti ∈ Tint, (Post− initialization)

∀tk ∈ T, υ′(tk) =


• 0 if tk ∈↑ enabled(tk,M, ti)
(pre− initialization)
• υ(ti) if tk ∈ enabled(M)
• θ(tk) if tk ∈ susp(M)
∧tk ∈ susp(M ′) 2

In discrete transition relation, the value υ′ of
any transition in marking M ′ is different for
persistent-progressing transitions and persistent-
suspended transition. For the first one, it repre-
sents the time elapsed in the previous state while
for the second one υ′ represents the value of the
stopwatch when it was suspended in a previous
state (at the value θ(tk)), remains frozen in the
previous state characterized by the marking M
and stays frozen in the current state M ′.
• Stopwatches reset in conflict case
Figure 2 represents parts of SWPN . There is an
effective conflict, namely 〈Pi, {ti, tj}〉.
With regards to the reset of stopwatches associ-
ated with the transitions affected by a conflict,
we distinguish the following cases according to
the transitions types in conflict. The stopwatches
which are initialized by a transition firing are
represented by a set of assignments xi := 0 shown
close to this fired transition:
• ti, tj ∈ Tno−int. This is the general behavior of
T-Time Petri Nets (Fig.2.a).
• ti, tj ∈ Tint. The two stopwatches associated
with ti and tj will be reset by firing one of the
two transitions (Fig.2.b).
• ti ∈ Tint and tj ∈ Tno−int. Only the stopwatch
associated with ti will be reset by its firing and
the other will be reset when the corresponding
transition is newly enabled (Fig. 2.c).

2.2 Timing Analysis of SWPN

In TPN , if the limits of the timed intervals as-
sociated to the transitions are rational numbers,
and if the associated PN is bounded then the
TPN is bounded. Outside of precedent sufficient
boundedness conditions, only the computation of
the state space allows to determine if a SWPN
is bounded or not. Techniques for reducing the
infinite state space to a finite one are necessary.



Thus, we are interested in bounded SWPN for
which we propose a technique for timing analysis.
The values of stopwatches in a state of a SWPN
can be described by a complex non-convex poly-
hedron. So, computing its state space leads to
polyhedra of increasing complexity and the num-
ber of polyhedra may grows without bounds and
the reachability algorithm does not terminate. For
that, we propose firstly to translate the SWPN
to an equivalent stopwatch automaton. Then,
thanks to the hybrid systems analysis tools such
as model-checker PHAVer (Frehse (2005)), the
manipulation of these polyhedron is possible. In
PHAVer, if the invariants of the automaton is
bounded, then the analysis termination can be
forced by using the simplification techniques of a
complex polyhedra. The simplification is done in
a strictly conservative approach of the reachable
set of states.

3. FROM STOPWATCH PETRI NET TO
STOPWATCH AUTOMATA

We aim to translate a SWPN into a SWA in order
to perform a timing analysis of this SWPN, using
efficient analysis SWA techniques and tools.

3.1 Stopwatch Automata

The stopwatch automata is basically defined as a
class of linear hybrid automaton where the time
derivative of a variable in a location can be either
0 or 1 (Cassez and Larsen (2000)).

Definition 3. A Stopwatch automaton is a 7-tuple
(L, l0, X,Σ, A, I,Dif) where

• L is a finite set of locations,
• l0 is the initial location,
• X is a finite set of positive real-valued stop-

watches,
• Σ is a finite set of labels,
• A ⊂ L×C(X)× σ× 2X ×L is a finite set of

arcs. a = (l, δ, t, R, l′) ∈ A is the arc between
the locations l and l′, with the guard δ, the
label t and the set of stopwatches to reset R.
C(X) is the set of constraints over X.
• I ∈ C(X)L maps an invariant to each loca-

tion,
• Dif ∈ ({0, 1}X)L maps an activity to each

location, Ẋ being the set of derivatives of the
stopwatches w.r.t time.Ẋ = Dif(l)(x)x∈X .
Given a location l and a clock x, we will
denote Dif(l)(x)x∈X = {0, 1}. 2

3.2 Reachability techniques analysis for SWA

A state of the SWA is a pair (L,E) where L is a lo-
cation of SWA and E is a polyhedron representing

its timed state space. There are two types of evo-
lutions from a state (L, E), namely the continuous
evolution by letting the time progress and the dis-
crete evolution by firing an arc. Accordingly, there
are two types of successors: continuous-successors
denoted by succt and discrete-successors denoted
by succd. The interested readers can refer to (Alur
et al. (1995)) for more details.

3.3 A Forward Algorithm to Compute the State
Space of a bounded SWPN

The proposed method in this paper is an adapta-
tion of the region based method for Timed Au-
tomaton. The algorithm starts from the initial
state and explores all possible evolutions of the
SWPN by firing transitions or by elapsing a cer-
tain amount of time.

3.3.1. Labeling of marking graph: Let G be the
marking graph of the SWPN. It can be easily be
labeled to generate a Stopwatch automaton SWA
bisimilar to the SWPN.
The pair G = (M,A) is composed of:
•M is the set of possible markings of the SWPN :
M0,....,Mp,
• A is the set of arcs between the nodes of the
marking graph : a0,....,aq.

The Stopwatch Automaton will be obtained by as-
sociating with each marking the differential equa-
tions that express the dynamics of stopwatches in
this state (marking), and an invariant. Each arc
between two reachable markings are associated
with a guard and some clocks assignments. Each
of these arcs corresponds to firing an enabled
transition of the SWPN.
•Dynamic of stopwatches: A set of differential
equations in the form x. = c where c = {0, 1} is
associated with each marking Mk.
∀ti ∈ enabled(Mk) : x.

i = 1 and ∀tj ∈
suspended(Mk) : x.

j = 0. The inactive transitions
are not considered (tm is inactive if if (tm ∈ Tint∧
tm /∈ enabled(Mk) ∧ υ(tm) = xm = 0) or (tm ∈
Tno−int ∧ tm /∈ enabled(Mk).
• Invariant: An invariant is associated with each
marking Mk. By construction, in each marking,
only the possible evolution of time is computed.
In other words, only the active or suspended
stopwatches will be represented in each location.
Let Xk be the set of stopwatches associated with
the enabled and suspended transitions for the
marking Mk of the SWPN . Then, the invariant
associated with Mk is defined by:
I(Mk) = {xi ≤ LFT (ti) | ti ∈ enabled(Mk) or
susp(Mk)}.
•Guard: Each arc ak of the graph G corresponds
to the firing of a transition ti in SWPN. Then, we
label ak by:



� the action name ti,
� the guard: EFT (ti) ≤ xi ≤ LFT (ti),
� the clocks assignments: xk ← 0 for all clocks
xk associated with a newly enabled transition tk
where tk ∈ Tnon−int (Pre-initialization). If the
fired transition ti ∈ Tint, we associated also the
clock assignment xi ← 0 (Post-initialization). If
ti ∈ Tint is in an effective conflict with tj ∈ Tint

then we add xj ← 0.

SWAG denotes the stopwatch automaton ob-
tained from labeling the marking graph. In this
automaton, we denote each location according
to its corresponding marking, i.e. L0....Lk corre-
spond M0,....Mk.

• The Algorithm for one iteration:
The algorithm proposed is based on the forward
analysis to find the reachable location of SWAG.
These reachable locations are accumulated in the
pile Reach. At the initial state, Reach = {L0}.
The computation of the reachable states from L0

and the polyhedral Ee
0 containing the values of

stopwatches at the entry of L0 is done as follows:

• Compute the possible evolution of time ac-
cording to the active stopwatches in L0 or
the values of stopwatches for which L0 could
exist, i.e. values of stopwatches must not be
greater than the latest firing time of enabled
transitions: E0 = Succt(Ee

0).
• Determine the firable arcs which leaves L0.

a0,k is the arc which leaves L0 to Lk. a0,k

which is associated with the label ti is firable
if E0 ∩ {EFT (ti) ≤ xi ≤ EFT (ti)} is a
non empty-polyhedron. Then, Update the set
Reach by adding Lk: Reach = {L0, Lk}.
• For each firable arc a0,k leading to a marking

Lk, compute the values at the entering of Lk:
S0,k = Succd(E0)

Ee
k = S0,k ∧ [Xe := 0]

where Xe is the set of stopwatches anno-
tated with the affectation of a0,k. Ee

k is a
polyhedron for which the new marking Lk

is reachable.
• Compute the possible evolution of time for

which Lk could exist: Ek = Succt(Ee
k).

3.4 Reachable stopwatch automaton SWAReach

The obtained stopwatch automaton by applying
the forward analysis to SWAG is defined as fol-
lows:

Definition 4. • L = Reach = {L0, .........., Lk} is
the set locations, i.e. the set of reachable marking
of SWPN. L0 = M0 is the initial marking,
• X = {x1, x2, ......., xq} is the set of stopwatches,
i.e. the set of all stopwatches associated with the
transitions,
• Σ = {t1, ....., tq} is the set of labels, i.e. the

transitions of SWPN,
• A ⊂ L× C(X)× Σ× 2C × L is the finite set of
firable arcs between the reachable locations,
• I : L → C(X). 2

3.5 Bisimulation between SWPN and SWAReach

Definition 5. Let QN be the set of states of
SWPN N and QA the set of states of the reach-
able stopwatch automaton A. Let R ⊂ QN × QA

be the relation between a state of the Stopwatch
automaton and a state of the Stopwatch Petri Net
defined by:{
∀(M,υ) ∈ QN

∀(l, ῡ) ∈ QA
, (M,υ)R(l, ῡ)⇔

{
M = M(l)

υ = ῡ

where M is the function giving the associated
marking of a SWA state l. 2

Theorem 1. R is a bisimulation: For all (M,υ),
(l, ῡ) such that (M,υ) R (l, ῡ):

•(M,υ) ti−→ (M ′, υ′)⇔

{
(l, ῡ) ti−→ (l′, ῡ′)
(M ′, υ′)R(l′, ῡ′)

•(M,υ) d−→ (M,υ′)⇔

{
(l, ῡ) d−→ (l, ῡ′)

(M,υ′)R(l, ῡ′)2

The proof is detailed in (Allahham and Alla
(2006)).

4. AN ILLUSTRATIVE EXAMPLE

The priority problem in case of a sharing resource
is considered in an example. Figure 3 represents
the manufacturing process of two type of produc-
tion S1 and S2 using two machines Ma, Mb and
a sharing robot between S1 and S2. The token
in P1 means that machine Ma is operational and
executes the task 1−1 on S1: transition t1 can be
fired and the interval [2, 2] represents the duration
of task 1−1. Similarly, interval [5, 7] represents the
necessary duration for the robot to execute task
1 − 2 on S1. Machine Mb executes task 2 − 1 on
S2. [3, 3] represents the duration to execute this
task on S2. Robot executes also the task 2− 2 on
S2 and the duration for that is given by [3, 4].
We suppose here that the task robot on S2 has
priority over the the task robot on S1. This is
modeled in the following way. If Mb finishes task
2 − 1 on S2 while the robot is executing task
1 − 2 on S1, the robot stops task 1 − 2 on S1

and executes immediately task 2−2 on S2. When
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Fig. 3. SWPN of two tasks with different priority
on one resource

it finishes task 2−2, task 1−2 on S1 is resumed by
robot exactly at the point where it was stopped.
This behavior is modeled in Figure 3, where only
transition t2 associated with the assignment x2 :=
0 is interruptible. Figure 4 shows the stopwatch
automaton corresponding to the SWPN in Figure
3. This is obtained applying the algorithm pre-
sented in Section 4 where the unstable state cor-
responding to transition t4 has been suppressed.
The Forward analysis has been executed using the
model-checker (PHAVer Frehse (2005)). It is then
possible to verify many properties of the system.
For example, we can evaluate the system perfor-
mances, especially those concerning machine Ma.
It appears interesting to calculate the maximal
duration where Ma remains inactive. For that,
we take advantage of stopwatch automaton and
introduce a variable y. It is intended to calculate
the duration which separates the firing of transi-
tions t1 and t2. Figure 5 shows the reachable state
space for the variable y over all the locations of the
automaton. We note that the maximum duration
for which machine Ma is remaining inactive, is
y = 19. Seeking properties depend on the system
under study, our global approach gives all the
needed formal results to achieve this goal.

5. CONCLUSION

Post and Pre-initialized Petri Nets SWPN extend
T-time Petri nets to allowing the formal modeling
of preemption-resume behavior. We have given a
method for timing analysis of this SWPN. This
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Fig. 4. Stopwatch Automaton of SWPN given in
Figure 3

includes a labeling algorithm of the marking graph
to build a Stopwatch Automaton SWAG. Then, a
forward computation of the state space is executed
by PHAVer model-checker. The resulting stop-
watch automaton and SWPN are timed bisimilar.
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Fig. 5. Reachable space state of the variable y


