
HAL Id: hal-00157285
https://hal.science/hal-00157285v1

Submitted on 25 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Generic Library for Floating-Point Numbers and Its
Application to Exact Computing

Marc Daumas, Laurence Rideau, Laurent Thery

To cite this version:
Marc Daumas, Laurence Rideau, Laurent Thery. A Generic Library for Floating-Point Numbers and
Its Application to Exact Computing. Theorem Proving in Higher Order Logics, 2001, Edinburgh,
United Kingdom. pp.169-184. �hal-00157285�

https://hal.science/hal-00157285v1
https://hal.archives-ouvertes.fr

A Generic Library for Floating-Point Numbers

and Its Application to Exact Computing

Marc Daumas1, Laurence Rideau2, and Laurent Théry2

1 CNRS, Laboratoire de l’Informatique du Parallélisme
UMR 5668 - ENS de Lyon - INRIA

Marc.Daumas@ens-lyon.fr
2 INRIA, 2004 route des Lucioles, 06902 Sophia Antipolis France

{Laurence.Rideau,Laurent.Thery}@sophia.inria.fr

Abstract. In this paper we present a general library to reason about
floating-point numbers within the Coq system. Most of the results of the
library are proved for an arbitrary floating-point format and an arbitrary
base. A special emphasis has been put on proving properties for exact
computing, i.e. computing without rounding errors.

1 Introduction

Building a reusable library for a prover is not an easy task. The library should be
carefully designed in order to give direct access to all key properties. This work is
usually underestimated. Often libraries are developed for a given application, so
they tend to be incomplete and too specific. This makes their reuse problematic.
Still we believe that the situation of proving is similar to the one of programming.
The fact that the programming language Java was distributed with a quite
complete set of libraries has been an important factor to its success.
This paper presents a library for reasoning about floating-point numbers

within the Coq system [18]. There has already been several attempts to formalize
floating-point numbers in other provers. Barrett [2] proposed a formalization of
floating-point numbers using the specification language Z [33]. Miner [25] was
the first to provide a proving environment for reasoning about floating-point
numbers. It was done for PVS [30]. More recently Harrison [16] and Russinoff [31]
have developed libraries for HOL [14] and ACL2 [21] respectively and applied
them successfully to prove the correctness of some algorithms and hardware
designs. When developing our library we have tried to take a generic approach.
The base of the representation and the actual format of the mantissa and of the
exponent are parameterized. We still use the key property of correct rounding
and the clean ideas of the IEEE 754 and 854 standards [35,7,13].
The paper is organized as follows. We first present some basic notions and

their representation in Coq. Then we spend some time to explain how we have
defined the central notion of rounding. In Section 4, we give examples of the kind
of properties that are in the library and how they have been proved. Section
5 details the proof of correctness of a program that is capable to detect the

R.J. Boulton and P.B. Jackson (Eds.): TPHOLs 2001, LNCS 2152, pp. 169–184, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

170 Marc Daumas, Laurence Rideau, and Laurent Théry

base of an arbitrary arithmetic. Finally we show an application of this library
to floating-point expansions. These expansions were presented in [11] first and
more formally in [28,32]. The technique can be specialized for the predicates of
computational geometry [5,19] or to small-width multiple precision arithmetic
[1,9], among other applications.

2 Floating-Point Format and Basic Notions

2.1 Definitions

Our floating-point numbers are defined as a new type composed by records:
Record. float: Set := Float {Fnum:Z; Fexp:Z}
This command creates a new type float, a constructor function Float of type
Z → Z → float and two destructor functions Fnum and Fexp of type float → Z.
The fact that float is of type Set indicates that float is a datatype. The compo-
nent Fnum represents the mantissa and Fexp the exponent. In the following we
write (Float x y) simply as 〈x, y〉 and (Fnum p) and (Fexp p) as n[p] and e[p]
respectively.
In order to give a semantics to this new type, we have to relate our float

to their value as a real. The reals in Coq are defined axiomatically [24] as the
smallest complete archimedian field. We define the function FtoR of type float →
R as:
Definition. FtoR := λp: float . n[p] ∗ βe[p].

This definition is parameterized over an arbitrary base β. We suppose that the
base is an integer strictly greater than one. Our notation differs from the IEEE
standard notation [35] and even from the pre-standard notation [6]. The mantissa
is an integer and βe[x] is one unit in the last place of the float x or the weight of
its least significant bit.
Having the type float as a separate type instead of a subtype of the real

numbers as in [16] implies that we have to manipulate two notions of equality.
The usual Leibniz equality p = q means that p and q have the same components
as a record. The equality over R (FtoR p) = (FtoR q) means that they represent
the same real. In the following this last equality will be denoted p == q and
the function FtoR is used implicitly as a coercion between our floating-point
numbers and the reals, so 0 < p should be understood as 0 < (FtoR p). The two
notions of equality are related. For example we have the following theorems:
Theorem. FtoREqInv1 :∀p, q: float .¬p == 0⇒ p == q ⇒ n[p] = n[q] ⇒ p = q.

Theorem. FtoREqInv2 :∀p, q: float . p == q ⇒ e[p] = e[q]⇒ p = q.

On the type float, we can define the usual operations that return an element of
type float such as:
Definition. Fplus := λp, q: float .

〈n[p] ∗ (βe[p]−min(e[p],e[q])) + n[q] ∗ (βe[q]−min(e[p],e[q])),min(e[p], e[q])〉

A Generic Library for Floating-Point Numbers 171

Definition. Fop := λp: float . 〈−n[p], e[p]〉.
Definition. Fabs := λp: float . 〈|n[p]|, e[p]〉.
Definition. Fminus := λp, q: float . (Fplus p (Fop q)).

Definition. Fmult := λp, q: float . 〈n[p] ∗ n[q], e[p] + e[q]〉.
For each of these functions we have proved a theorem of correctness. For addition
this theorem looks like:
Theorem. Fplus correct :∀p, q: float . (Fplus p q) == p+ q.

where the rightmost addition is the usual addition on real numbers. Note that
since we do not have uniqueness of representation, these functions just pick a
possible representant of the result. In the following we write +,−,| |, −,∗ for
Fplus, Fop, Fabs, Fminus, Fmult respectively.

2.2 Bounded Floating-Point Numbers

As it is defined, the type float contains too many elements. In order to represent
machine floating-point numbers we need to define the notion of bound:
Record. Fbound: Set := Bound {vNum:N; dExp:N}
We use this notion of bound to parameterize our development over an arbitrary
bound b. In the following, we write (vNum b) and (dExp b) as N [b] and E[b].
With this arbitrary bound we can define a predicate Fbounded to characterize
bounded floating-point numbers:
Definition. Fbounded := λp: float . −N [b] ≤ n[p] ≤ N [b] ∧ −E[b] ≤ e[p].

In the following we write (Fbounded p) as B[p]. A real that has a bounded
floating-point number equivalent is said to be representable. Note that we do
not impose any upper bound on the exponent. This allows us to have a more
uniform definition of rounding since any real is always between two bounded
floating-point numbers.
In existing systems, overflows generate combinatorial quantities like infinities,

errors (NaN) and so on. Having the upper bound would force us to treat these
non-numerical quantities at each theorem. The bound should rather be added
only to the final data type. Only the high level theorems will be proved both for
numerical and for combinatorial values.
Removing the lower bound is not admissible as it will hide the difficult ques-

tion of the subnormal numbers. As can be seen for example in [10], the lower
bound is used to prove properties through the full set of floating-point numbers
and not uniquely on small numbers.

2.3 Canonical Numbers

So far the bound on the mantissa is arbitrary. In practice, it is set so that any
number is represented with a fixed width field. The width of the field is called
the precision. We define an arbitrary integer variable precision that is supposed

172 Marc Daumas, Laurence Rideau, and Laurent Théry

not null and we add the following hypothesis:

Hypothesis. pGivesBound:N [b] = βprecision − 1.

This insures that the number of digits of the mantissa is at most precision in
base β. We can also define a notion of canonical representant.

We first define the property of a floating-point number to be normal if it is
bounded and the number of digits of its mantissa is exactly the precision:
Definition. Fnormal := λp: float .B[p] ∧ digit(p) = precision .

where digit is a function that returns the number of radix-β digits in the integer
n[p] (no leading zeros). All bounded numbers do not have a normal equivalent,
take for example 〈0, 0〉. For numbers near zero, we define the property of being
subnormal by relaxing the constraint on the number of digits:
Definition. Fsubnormal := λp: float .B[p] ∧ e[p] = −E[b] ∧ digit(p) < precision.

We can now define what it is for a number to be canonic as:
Definition. Fcanonic := λp: float . (Fnormal p) ∨ (Fsubnormal p).

In the following the properties (Fnormal p), (Fsubnormal p), (Fcanonic p) will
be denoted as N [p], S[p], and C[p] respectively. It is easy to show that normal,
subnormal and canonic representations are unique:
Theorem. FnormalUnique :∀p, q: float .N [p]⇒ N [q]⇒ p == q ⇒ p = q.

Theorem. FsubnormalUnique : ∀p, q: float .S [p]⇒ S [q]⇒ p == q ⇒ p = q.

Theorem. FcanonicUnique :∀p, q: float . C[p]⇒ C[q]⇒ p == q ⇒ p = q.

In order to compute the canonical representant of a bounded number, we build
the following function:
Definition. Fnormalize := λp: float .
if n[p] = 0 then 〈0,−E[b]〉
else let z = min(precision − digit(p), |E[b] + e[p]|) in 〈n[p] ∗ βz, e[p]− z〉.

The following two theorems insure that what we get is the expected function:
Theorem. FnormalizeCorrect :∀p: float . (Fnormalize p) == p.

Theorem. FnormalizeCanonic:∀p: float .B[p]⇒ C[(Fnormalize p)].

With the function Fnormalize, it is possible to capture the usual notion of unit
in the last place with the following definition:

Definition. Fulp := λp: float . βe[(Fnormalize p)].

Working with canonical representations not only do we get that equality is the
syntactic one but also the comparison between two numbers can be interpreted
directly on their components with lexicographic order on positive numbers:
Theorem. FcanonicLtPos : ∀p, q: float . C[p]⇒ C[q]⇒
0 ≤ p < q ⇒ (e[p] < e[q]) ∨ (e[p] = e[q] ∧ n[p] < n[q]).

We have a similar theorem for negative floating-point numbers. These two the-

A Generic Library for Floating-Point Numbers 173

orems give us a direct way to construct the successor of a canonical number:
Definition. FSucc := λp: float .
if n[p] = N [b] then 〈βprecision−1 , e[p] + 1〉
else if n[p] = −βprecision−1 then

if e[p] = −E[b] then 〈n[p] + 1, e[p]〉 else 〈−N [b], e[p]− 1〉
else 〈n[p] + 1, e[p]〉

To be sure that this function is the expected one, we have proved the three fol-
lowing theorems:
Theorem. FSuccCanonic:∀p: float . C[p]⇒ C[(FSucc p)].

Theorem. FSuccLt :∀p: float . p < (FSucc p).

Theorem. FSuccProp :∀p, q: float . C[p]⇒ C[q]⇒ p < q ⇒ (FSucc p) ≤ q.

The function FPred that computes the preceeding canonical number can also be
defined in a similar way.

3 Rounding Mode

Rounding plays a central role in any implementation of floating-point numbers.
Following the philosophy of the IEEE standard, all operations on floating-point
numbers should return the rounded value of the result of the exact operation.
The logic of Coq is constructive: every function definition has to be explicit. In
such a context defining a rounding function is problematic. We overcome this
problem by defining rounding as a relation between a real number and a floating-
point number. Rounding is defined abstractly. The first property a rounding must
verify is to be total:
Definition. TotalP := λP: R → float → Prop.∀r: R.∃p: float . (P r p).

In Coq, propositions are of type Prop, so an object P of type R → float → Prop
is a relation between a real and a floating-point number. Another property that
is needed is the compatibility:
Definition. CompatibleP := λP: R → float → Prop.∀r1 , r2: R.∀p, q: float .
(P r1 p)⇒ r1 = r2 ⇒ p == q ⇒ B[q] ⇒ (P r2 q).

Although we defined a canonical representation of floating-point numbers, we
will not specify that the rounded value of a floating-point number should be
canonical. This is definitively not needed at this point and we will see later that
being more general allows us to build easier proofs. We specify that the rounding
must be monotone:
Definition. MonotoneP := λP: R → float → Prop.∀r1 , r2: R.∀p, q: float .

r1 < r2 ⇒ (P r1 p)⇒ (P r2 q)⇒ p ≤ q.

Finally looking for a projection, we set that the rounded value of a real must
be one of the two floats that are around it. When the real to be rounded can be
represented by a bounded floating-point number, the two floating-point numbers
around it are purposely equal. We define the ceil (isMin) and the floor (isMax)

174 Marc Daumas, Laurence Rideau, and Laurent Théry

relations and the property for a rounded value to be either a ceil or a floor:
Definition. isMin := λr: R. λmin: float .

B[min] ∧min ≤ r ∧ ∀p: float .B[p]⇒ p ≤ r ⇒ p ≤ min.

Definition. isMax := λr: R. λmax: float .
B[max] ∧ r ≤ max ∧ ∀p: float .B[p]⇒ r ≤ p ⇒ max ≤ p.

Definition. MinOrMaxP := λP: R → float → Prop.
∀r: R.∀p: float . (P r p)⇒ (isMin r p) ∨ (isMax r p).

Using the previous definitions, we can define what is a rounding mode:
Definition. RoundedModeP := λP: R → float → Prop.
(TotalP P) ∧ (CompatibleP P) ∧ (MinOrMaxP P) ∧ (Monotone P).

Having defined the rounding abstractly gives us for free the possibility of proving
general properties of rounding. An example is the property that the rounding of
a bounded floating-point number is the number itself. It can be stated as:
Definition. ProjectorP := λP: R → float → Prop.

∀p, q: float .B[p]⇒ (P p q)⇒ p == q.

Theorem. RoundedProjector :∀P: R → float → Prop.
(RoundedModeP P)⇒ (ProjectorP P).

As a matter of fact we could have replaced in the definition of RoundModeP the
property MinOrMax by ProjectorP.

We can now define the usual rounding modes. First of all, the two relations
isMin and isMax are rounding:
Theorem. MinRoundedModeP : (RoundedModeP isMin).

Theorem. MaxRoundedModeP : (RoundedModeP isMax).

The rounding to zero is defined as follows:
Definition. ToZeroP := λr: R. λp: float .
(0 ≤ r ∧ (isMin r p)) ∨ (r ≤ 0 ∧ (isMax r p)).

Theorem. ToZeroRoundedModeP : (RoundedModeP ToZeroP).

Similarly we define the rounding to infinity:
Definition. ToInfinityP := λr: R. λp: float .
(r ≤ 0 ∧ (isMin r p)) ∨ (0 ≤ r ∧ (isMax r p)).

Theorem. ToInfinityRoundedModeP : (RoundedModeP ToInfinityP).

While the preceeding roundings are really functions, we take advantage of having
a relation to define rounding to the closest:
Definition. Closest := λr: R. λp: float .B[p] ∧ ∀f : float .B[f] ⇒ |p− r| ≤ |f − r|.
Theorem. ClosestRoundedModeP : (RoundedModeP Closest).

For the real in the middle of two successive bounded floating-point numbers there
are two possible closest. So a tie-break rule is usually invoked. In our presenta-
tion, we simply accept these two points as a rounding value since uniqueness is

A Generic Library for Floating-Point Numbers 175

not required. This gives us the possibility of both proving properties that are
true independently of a particular tie-break rule and investigating properties
relative to a particular tie-break rule like in [29].

4 Basic Results

It is well known in any formalization that before being able to derive any inter-
esting result, it is necessary to prove a number of elementary facts. An example
of such elementary facts is the compatibility of the complement with the prop-
erty of being bounded:
Theorem. oppBounded :∀x: float .B[x]⇒ B[−x].

This fact is a direct consequence of our definition of the mantissa. It would not
be true if we used β’s complement instead of the usual sign-magnitude notation
for the mantissa.
One of the first interesting result is that the difference of relatively close

numbers can be done exactly with no rounding error. This property was first
published by Sterbenz [34]. It has been expressed in our formalization as follows:
Theorem. Sterbenz :∀p, q: float .B[p]⇒ B[q]⇒ 1/2 ∗ q ≤ p ≤ 2 ∗ q ⇒ B[p− q].

This theorem is interesting for several reasons. First of all, it contains the magic
number 2. As this result is often presented and proved in binary arithmetic [13],
it is not obvious if in the generic case, one has to replace 2 with β or not. For
example, another property that is often used in binary arithmetic is:
Theorem. plusUpperBound :∀P: R → float → Prop.∀p, q , r: float .
(RoundedModeP P)⇒ (P (p+ q) r)⇒ B[p]⇒ B[q]⇒ |r| ≤ 2 ∗max(|p|, |q|).

In binary arithmetic this is a direct consequence of the monotony of rounding
since |p + q| ≤ 2 ∗ max(|p|, |q|) and 2 ∗ max(|p|, |q|) is always representable in
binary arithmetic. This is not the case for an arbitrary base. Take for example
β = 10 with two digits of precision, rounding to the closest and p = q = 9.9. We
have 2 ∗ max(|p|, |q|) = 19.8 but (Closest (p+ q) 20).
The Sterbenz property is also interesting by the way its proof relies on the

previous definitions. The proof proceeds as follows. First of all, we restrict our-
selves to the case q ≤ p ≤ 2 ∗ q because of the symmetry of the problem. By
definition of Fminus, an exponent of p− q is min(e[p], e[q]), so it is greater than
or equal to −N [b] since both p and q are bounded. For the mantissa, we do a
case analysis on the value of min(e[p], e[q]). If it is e[q], the initial equation can
be rewritten as 0 ≤ p − q ≤ q and since p − q and q have identical exponent we
obtain 0 ≤ n[p−q] ≤ n[q]. As q is bounded, n[q] ≤ N [b] allows us conclude. Sim-
ilarly if min(e[p], e[q])=e[p], we rewrite the initial equation as 0 ≤ p− q ≤ q ≤ p
and since p − q and p have same exponent we have 0 ≤ n[p − q] ≤ n[p].
Another property that we have proved is the one concerning intervals pro-

posed by Priest [28]. If we take two bounded positive floating-point numbers p
and q and if q−p can be represented exactly, then for all the floating-point num-
bers r inside the interval [p, q], the value r − p can also be represented exactly.

176 Marc Daumas, Laurence Rideau, and Laurent Théry

This is stated in our library as follows:
Theorem. ExactMinusInterval :∀P: R → float → Prop.∀p, q , r: float .
(RoundedModeP P)⇒ B[p]⇒ B[q]⇒ B[r]⇒ 0 ≤ p ≤ r ≤ q ⇒
(∃r ′: float .B[r′] ∧ r′ == q − p)⇒ (∃r ′: float .B[r′] ∧ r′ == r − p).

This is a nice property but more interestingly this is the only theorem in our
library that requires an inductive proof. Our proof follows the steps given by
Priest. The cases where p ≤ 2 ∗ q or r ≤ 2 ∗ p can be proved easily using the
Sterbenz property. For the other cases, we take an arbitrary r in]2 ∗ p, q] and
show that if the property holds for r it holds for (FPred r).

5 An Example

In order to show how the library can be used effectively, we sketch the proof that
we have done to derive the correctness of a simple test program. This program
is supposed to detect the radix of the arithmetic on which it is running. It was
first proposed by Malcolm [23]. Here is its formulation in a Pascal-like syntax:
x := 1.0;

y := 1.0;

while ((x + 1.0) - x) = 1.0 do x := 2.0 * x;

while ((x + y) - x) != y do y := y + 1.0;

The claim is that the final value of y is the base of the arithmetic. Of course this
program would make no sense if the computations were done exactly. It would
never leave the first loop since its test is always true, and it would never enter
the second loop. The proof of correctness of this program relies on two main
properties. The first one insures that by increasing the mantissa of any bounded
floating-point number we still get a bounded floating-point number:
Theorem. FboundNext :∀p: float .B[p]⇒ ∃q: float .B[q] ∧ q == 〈n[p] + 1, e[p]〉.
In the case of the program, we use this property with e[p] = 0 to justify the fact
that till x ≤ N [b], x+1.0 is computing with no rounding error, so the test is true.
The second property is more elaborate. It uses the fact that in a binade

[〈βprecision−1, e〉, 〈N [b], e〉] two successive floating-point numbers are separated
by exactly βe. So if we add something less than βe to a floating-point number,
we are still between this number and its successor. So the rounding is necessarily
one of the two. This is expressed by the following theorem:
Theorem. InBinade:∀P: R → float → Prop. ∀p, q , r: float .∀e: Z. − E[b] ≤ e ⇒
(RoundedModeP P)⇒ B[p]⇒ B[q]⇒ 〈βprecision−1, e〉 ≤ p ≤ 〈N [b], e〉 ⇒

0 < q < βe ⇒ (P (p+ q) r)⇒ r == p ∨ r == p+ βe

In the case of the program we use the previous theorem only for e = 1. It can
be rewritten as:
Theorem. InBinade1 :∀P: R → float → Prop.∀p, q , r: float .
(RoundedModeP P)⇒ B[p]⇒ B[q]⇒ N [b] + 1 ≤ p ≤ β ∗N [b]⇒ 0 < q < β ⇒
(P (p+ q) r)⇒ r == p ∨ r == p+ β.

This explains why we exit the first loop as soon as N [b] < x. In that case the

A Generic Library for Floating-Point Numbers 177

test reduces to 0 = 1.0 or β = 1.0. In a similar way, it explains why we remain
in the second loop when y < β, the test reducing to 0 != y or β != y.
In order to prove the program correct, we use the possibility of annotating

the program with assertions as proposed in [12]. The complete program has the
following form:
x := 1.0;

y := 1.0;

while (x+1.0)-x = 1.0 do

{invariant : ∃m: N. 1 ≤ m ≤ β ∗N [b] ∧m = x ∧ B[x]
variant : β ∗N [b]− (Int part x) for < }
x:= 2.0 * x;

{∃m: N. N [b] + 1 ≤ m ≤ β ∗N [b] ∧m = x ∧ B[x] }
while (x+y)-x != y do

{invariant : ∃m: N. 1 ≤ m ≤ β ∧m = y ∧ B[y]
variant : β − (Int part y) for < }
y:= y + 1.0;

{y == β}
In the assertions we can refer to the variables of the program freely. For the first
loop, we simply state the invariant that x represents an integer in the interval
[1, β∗N [b]]. The variant insures that at each iteration x becomes closer to β∗N [b].
The function Int part takes a real and returns its integer part. It is used to have
the variant in N. At the end of the first loop, x represents an integer in the
interval [N [b] + 1, β ∗ N [b]]. We have a similar invariant for the second loop but
this time for the interval [1, β]. At the end of the program we have the expected
conclusion. We can go one step further, adding an extra loop to get the precision:
n := 0;

x := 1.0;

while (x+1.0)-x = 1.0 do

{invariant : ∃m: N. 1 ≤ m ≤ β ∗N [b] ∧m = x ∧ B[x]
variant : β ∗N [b]− (Int part x) for < }
begin

x:= y * x;

n:= n + 1;

end

{n = precision}
This game can be played even further. Programs like Paranoia [20], that includes
Malcolm’s algorithm, have been developed to check properties of floating-point
arithmetics automatically.

6 Floating-Point Expansion

While computing with floating point numbers, we are usually going to accumu-
late rounding errors. So at the end of the computation, the result will be more
or less accurate. Countless techniques exist to estimate the actual errors on the
result [17]. One of the most popular methods is to use the so-called 1+ε property.

178 Marc Daumas, Laurence Rideau, and Laurent Théry

This property just expresses that all operations are performed with a relative
error of ε, i.e if we have an operation · and its equivalent with rounding we
have the following relation:

∀a, b: float . a b = (a · b) ∗ (1 + ε)

Given a computation, it is then possible to propagate errors and take the main
term in ε to get an estimation of the accuracy. What is presented in this section is
an orthogonal approach where one tries to give an exact account of computations
while using floating-point arithmetic.

6.1 Two Sum

An interesting property of the four radix-2 IEEE implemented operations with
rounding to the closest is that the error is always representable [4]. This property,
independent of the radix, was already clear for the addition in [22] inspired
by [27,26]. We take the usual convention that + and − are the exact functions,
and ⊕ and � are the same operations but with rounding. This property holds:
Theorem. errorBoundedPlus : ∀p, q , r: float .B[p]⇒ B[q]⇒
(Closest (p+ q) r)⇒ ∃error: float . error == (p+ q)− r ∧ B[error].

In order to prove it, we rely on a basic property of rounding:
Theorem. RoundedModeRep : ∀P: R → float → Prop.∀p, q: float .
(RoundedModeP P)⇒ (P p q)⇒ ∃m: Z. q == 〈m, e[p]〉.

This simply says that the rounding of an unbounded floating-point number can
always be expressible with the same exponent, i.e by rounding we only lose bits.
This means in particular that we can find a floating-point number error equal to
(p+ q)− r whose exponent is either the one of p or the one of q. To prove that
this number is bounded we just need to verify that its mantissa is bounded. To
do this, we use the property of the rounding to the closest

∀f : float .B[f]⇒ |(p+ q)− r| ≤ |(p+ q)− f |
with f = p and f = q to get |error| ≤ |q| and |error| ≤ |p| respectively. As the
exponent of error is the one of either p or q, we get that the error is bounded.
To compute effectively the error of a sum, one possibility is to use the program

proposed by Knuth [22] copied here with Shewchuk’s presentation [32]. It is
composed of 6 operations:
TwoSumk(a, b) =

1 x := a⊕ b
2 bv := x� a
3 av := x� bv

4 br := b� bv

5 ar := a� av

6 error := ar ⊕ br

There exist several proofs that this program is correct. Shewchuk gives a proof

A Generic Library for Floating-Point Numbers 179

for binary arithmetic with the extra condition that precision is greater than or
equal to 3. Priest sets his proof in a general framework similar to ours but with
the extra condition

∀a: float . |a ⊕ a| ≤ 2|a|.
His proof is rather elegant as it makes use of general properties of arithmetic. It is
the one we have formalized in our library. Knuth gives a more general proof in [22]
since it does not have the extra condition given by Priest. Unfortunately his proof
is very intricate and due to time constraint it has not yet been formalized in our
library.
It is possible to compute the error of a sum with less than 6 operations, if

we have some information on the operands. In particular, if we have |a| ≤ |b|
Dekker [11] proposes the following 3 operations:
TwoSumd(a, b) =

1 x := a⊕ b
2 av := x� b
3 error := a� av

As a matter of fact, we can loosen a bit more the condition in binary arithmetic
and only require that the inputs have a bounded representation such that e[a] ≤
e[b]. This proof is not usually found in the literature, so we detail how it has
been obtained in our development. First of all, the only problematic situation is
when |b| < |a| and e[a] ≤ e[b]. But in this case, we can just reduce the problem
to |b| < |a| and e[a] = e[b] and by symmetry we can suppose a positive. If b is
negative, a and b being of opposite sign with same exponent, their sum is exact.
When the first sum is exact, the correctness is insured because we have av = a
and error = 0. So we can suppose 0 ≤ b ≤ a. If n[a] + n[b] ≤ N [b], the sum of a
and b is computed exactly. So we are left with N [b]+1 ≤ n[a]+n[b] < 2∗N [b]. In
that case it is easy to show that the second operation is performed without any
rounding error, i.e. av = (a⊕b)−b. This means that a−av = (a+b)−(a⊕b) which
is rounding exactly as we know that the quantity on the right is representable.
The condition e[a] ≤ e[b] was raised in [8] by an algorithm that was work-

ing on tests but that cannot be proved with the usual condition of |a| ≤ |b|.
Giving the condition would have been more difficult had we decided to hide all
the equivalent floating-point numbers behind the unique canonical representant.
For this reason, Knuth only proved his theorem under the condition that the
canonical representations of the inputs verify e[a] ≤ e[b] [22].

6.2 Expansion

In the previous section we have seen that in floating-point arithmetic with round-
ing to the closest it is possible to represent exactly a sum by a pair composed of
the rounded sum and the error. Expansions are a generalisation of this idea, try-
ing to represent a multiple precision floating-point number as a list of bounded
floating-point numbers.
This technique is very efficient when multiple precision is needed for just a

few operations, the inputs are floating-point numbers and the output is either

180 Marc Daumas, Laurence Rideau, and Laurent Théry

a floating-point number or a boolean value. Using a conventional high radix
multiple precision package such as GMP [15] would require a lot of work for
converting the input from floating-point number to the internal format. On the
contrary, the best asymptotic algorithms are only available with a conventional
notation. As the intermediate results need more words to be stored precisely and
the number of operations grows, conventional multiple precision arithmetic will
turn out to be better than expansions.
To give an exact account on the definition of expansion, we first need to define

the notion of most significant bit and least significant bit. The most significant
bit is represented by the function:
Definition. MSB :float → Z := λp: float . digit(p) + e[p].

The characteristic property of this function is the following:

Theorem. ltMSB :∀p: float .¬(p == 0)⇒ β(MSB p) ≤ |p| < β(MSB p)+1.

For the least significant bit, we need an intermediate function maxDiv that, given
a floating-point number p, returns the greatest natural number n smaller than
precision such that βn divides n[p]. With this function, we can define the least
significant bit as:
Definition. LSB : float → Z := λp: float .maxDiv(p) + e[p].

One of the main properties of the least significant bit is the following:
Theorem. LSBrep:∀p, q: float .

¬(q == 0)⇒ (LSB p) ≤ (LSB q)⇒ ∃z: Z. q == 〈z, e[p]〉.
Expansions are defined as lists of bounded floating-point numbers that do not
overlap. As arithmetic algorithms manipulating expansions usually need the
components to be sorted, our lists are arbitrarily sorted from the smallest number
to the largest one. Also, zero elements are allowed at any place in the expansion.
This is done in order not to have to necessarily insert a test to zero after every
elementary operation. It also simplifies the presentation of the algorithms. Using
the Prolog convention to denote list, we have the following definition:
Inductive. IsExpansion: (list float)→ Prop :=

Nil : (IsExpansion [])
| Single :∀p: float .B[p]⇒ (IsExpansion [p])
| Top1 :∀p: float .∀L: (list float).

B[p]⇒ p == 0⇒ (IsExpansion L)⇒ (IsExpansion [p|L])
| Top2 :∀p, q: float .∀L: (list float).

B[p]⇒ B[q]⇒ q == 0⇒ (IsExpansion [p|L])⇒ (IsExpansion [p, q|L])
| Top :∀p, q: float .∀L: (list float).B[p]⇒ B[q] ⇒ (IsExpansion [q|L]) ⇒

¬p == 0⇒ ¬q == 0⇒ (MSB p) < (LSB q)⇒ (IsExpansion [p, q|L])
It is direct to associate an expansion with the value it represents by the following
function:

A Generic Library for Floating-Point Numbers 181

Fixpoint. expValue [L : (list float)] : float :=
Cases. L of

[] =⇒ 〈0,−E[b]〉
| [p|L1] =⇒ p + (expValue L1)

end.

Finally, every unbounded floating-point number that has a representation with
an exponent larger than −E[b] has an expansion representation. It is sufficient
to break its large mantissa into smaller ones. For example, if we take the num-
ber 〈11223344, 0〉 with an arithmetic in base 10 and 2 digits of precision, a
possible expansion is [〈44, 0〉, 〈33, 2〉, 〈22, 4〉, 〈11, 6〉]. We can see this construc-
tion as a recursive process. 〈11, 6〉 is the initial number rounded to zero and
[〈44, 0〉, 〈33, 2〉, 〈22, 4〉] is the expansion representing the error done by rounding
to zero. Using this process we get the following theorem:
Theorem. existExp :∀p: float .

−E[b] ≤ (LSB p)⇒ ∃L: (list float). (IsExpansion L) ∧ p == (expValue L).

A similar result could be obtained using rounding to the closest.

6.3 Adding Two Expansions

Once we have expansions, we can start writing algorithms to manipulate them.
Here we present a relatively simple but not too naive way of adding expansions
given in [32] and formalized using our library. This algorithm does not use any
comparison. In a deeply pipelined processor, a branch prediction miss costs many
clock cycles. When the number of components of the inputs is relatively small,
we get better results with this algorithm compared to asymptotically faster al-
gorithms.
To build this adder, we suppose the existence of a function TwoSum that takes

two floating-point numbers p and q and returns a pair of floating-point numbers
(h, c) such that h == p⊕ q and c == (p+ q)− (p⊕ q). Using this basic function,
we first define a function that adds a single number to an expansion:
Fixpoint. growExp [p : float ; L : (list float)] : (list float) :=

Cases. L of
[] =⇒ [p]

| [q|L1] =⇒ let (h, c) = (TwoSum p q) in [c|(growExp h L1)]
end.

It is quite direct to see that this function returns an expansion and is correct:
Theorem. growExpIsExp :∀L: (list float).∀p: float .B[p]⇒
(IsExpansion L)⇒ (IsExpansion (growExp p L)).

Theorem. growExpIsVal : ∀L: (list float).∀p: float .B[p]⇒
(IsExpansion L)⇒ (expValue (growExp p L)) == p+ (expValue L).

The naive algorithm for adding two expansions is to repeatedly add all the
elements of the first expansion to the second using growExp. In fact, because

182 Marc Daumas, Laurence Rideau, and Laurent Théry

expansions are sorted, we can do slightly better:
Fixpoint. addExp [L1, L2 : (list float)] : (list float) :=

Cases. L1 of
[] =⇒ L2

| [p|L′
1] =⇒ Cases. (growExp p L2) of

[] =⇒ L′
1

[q|L′
2] =⇒ [q|(addExp L′

1 L′
2)]

end
end.

The recursive call can be seen as an optimised form of the naive recursive call
(addExp L′

1 [q|L′
2]). Because q is at most comparable with p, q is ‘smaller’ than

any element of L′
1 and ‘smaller’ than any element of L′

2, so it appears first and
unchanged by the addition. This is the key result to prove that addition returns
an expansion, while the correctness is direct:
Theorem. addExpIsExp :∀L1 ,L2: (list float).
(IsExpansion L1)⇒ (IsExpansion L2)⇒ (IsExpansion (addExp L1 L2)).

Theorem. addExpIsVal :∀L1 ,L2 : (list float). (IsExpansion L1)⇒ (IsExpansion L2)⇒
(expValue (addExp L1 L2)) == (expValue L1) + (expValue L2).

7 Conclusion

We hope that what we have presented in this paper shows how effectively our
floating-point library can already be used to do some verification tasks. Com-
pared to previous works on the subject, the main originality is its genericity. No
base and no format are pre-supposed and rounding is defined abstractly. Other
libraries such as [16,31] follow the IEEE 754 standard and are restricted to base
2. An exception is [25] where the IEEE 784 standard is formalized, so it accom-
modates bases 2 and 10. We believe that most of the proofs in these libraries do
not rely on the actual value of the base. This is the case, for example, in [25]
where one could remove the assumption on the base and rerun the proofs without
any problem. The situation is somewhat different for rounding. Other libraries
define rounding as one of the four usual rounding modes. We are more liberal as
we only ask for some specific properties to be met by the rounding. For example,
the program in Section 5 is proved correct for an arbitrary rounding mode. Also
some properties have been proved for rounding to the closest independently of
a particular tie-break rule.
The core library represents 10000 lines of code for 60 definitions and 400 the-

orems. It is freely available from http://www-sop.inria.fr/lemma/AOC/coq. It
is difficult to compare our library with others. Libraries such as [16,31] have been
intensively used for large verification works. Most probably they are more com-
plete than ours. Still some basic results needed for reasoning about expansions
can only be found in our library.
Working on this library makes us realize that proofs really depend on the

domain of application. Most proofs have been done without using any induc-
tion principle and consist mainly of nested case analysis. This clearly indicates

http://www-sop.inria.fr/lemma/AOC/coq

A Generic Library for Floating-Point Numbers 183

a limit to the generic approach of provers like Coq and the need for the devel-
opment of specific tools. This is especially true for the presentation of proofs.
Tactic-based theorem proving is not adequate to represent proof scripts. A more
declarative approach à la Isar [36] would be more than needed in order to be
able to communicate our proofs to non-specialists of Coq.
Finally, we are aware that building a library is a never-ending process. New

applications could give rise to new elementary results and a need for some global
reorganization of the library. In order to get a more stable and complete core
library, we plan to work further on expansions. Recent works such as [32,9] have
proposed elaborated algorithms to manipulate expansions. Getting a computer-
checked version of these algorithms is a challenging task.

References

1. David H. Bailey, Robert Krasny, and Richard Pelz. Multiple precision, multiple
processor vortex sheet roll-up computation. In Proceedings of the Sixth SIAM Con-
ference on Parallel Processing for Scientific Computing, pages 52–56, Philadelphia,
Pennsylvania, 1993.

2. Geoff Barrett. Formal Methods Applied to a Floating-Point Number System. IEEE
Transactions on Software Engineering, 15(5):611–621, 1989.

3. Yves Bertot, Gilles Dowek, André Hirschowitz, Christine Paulin, and Laurent
Théry, editors. Theorem Proving in Higher Order Logics: 12th International
Conference, TPHOLs’99, number 1690 in LNCS, Nice, France, September 1999.
Springer-Verlag.

4. Gerd Bohlender, Wolfgang Walter, Peter Kornerup, and David W. Matula. Seman-
tics for exact floating point operations. In Peter Kornerup and David W. Matula,
editors, Proceedings of the 10th Symposium on Computer Arithmetic, pages 22–26,
Grenoble, France, 1991. IEEE Computer Society Press.

5. C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. Efficient exact geometric
computation made easy. In Proceedings of the 15th Annual ACM Symposium on
Computational Geometry, pages 341–350, Miami, Florida, 1999.

6. William J. Cody. Static and dynamic numerical characteristics of floating point
arithmetic. IEEE Transactions on Computers, 22(6):598–601, 1973.

7. William J. Cody, Richard Karpinski, et al. A proposed radix and word-length
independent standard for floating point arithmetic. IEEE Micro, 4(4):86–100,
1984.

8. Marc Daumas. Multiplications of floating point expansions. In Israel Koren and
Peter Kornerup, editors, Proceedings of the 14th Symposium on Computer Arith-
metic, pages 250–257, Adelaide, Australia, 1999.

9. Marc Daumas and Claire Finot. Division of Floating-Point Expansions with an
application to the computation of a determinant. Journal of Universal Computer
Science, 5(6):323–338, 1999.

10. Marc Daumas and Philippe Langlois. Additive symmetric: the non-negative case.
Theoretical Computer Science, 2002.

11. T. J. Dekker. A Floating-Point Technique for Extending the Available Precision.
Numerische Mathematik, 18(03):224–242, 1971.

12. Jean-Christophe Filliâtre. Proof of Imperative Programs in Type Theory. In
International Workshop, TYPES ’98, Kloster Irsee, Germany, number 1657 in
LNCS. Springer-Verlag, March 1998.

184 Marc Daumas, Laurence Rideau, and Laurent Théry

13. David Goldberg. What every computer scientist should know about floating point
arithmetic. ACM Computing Surveys, 23(1):5–47, 1991.

14. Michael J. C. Gordon and Thomas F. Melham. Introduction to HOL : a theorem
proving environment for higher-order logic. Cambridge University Press, 1993.

15. Tobjörn Granlund. The GNU multiple precision arithmetic library, 2000. Version
3.1.

16. John Harrison. A Machine-Checked Theory of Floating Point Arithmetic. In Bertot
et al. [3], pages 113–130.

17. Nicholas J. Higham. Accuracy and stability of numerical algorithms. SIAM, 1996.
18. Gérard Huet, Gilles Kahn, and Christine Paulin-Mohring. The Coq Proof Assis-

tant: A Tutorial: Version 6.1. Technical Report 204, INRIA, 1997.
19. V. Karamcheti, C. Li, I. Pechtchanski, and Chee Yap. A core library for robust

numeric and geometric computation. In Proceedings of the 15th Annual ACM
Symposium on Computational Geometry, pages 351–359, Miami, Florida, 1999.

20. Richard Karpinski. PARANOIA: a floating-point benchmark. Byte, 10(2):223–235,
1985.

21. Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-Aided
Reasoning: An Approach. advances in formal methods. Kluwer Academic Publish-
ers, 2000.

22. Donald E. Knuth. The art of computer programming: Seminumerical Algorithms.
Addison Wesley, 1973. Second edition.

23. Michael A. Malcolm. Algorithms to reveal properties of floating-Point Arithmetic.
Communications of the ACM, 15(11):949–951, 1972.

24. Micaela Mayero. The Three Gap Theorem: Specification and Proof in Coq. Tech-
nical Report 3848, INRIA, 1999.

25. Paul S. Miner. Defining the IEEE-854 floating-point standard in pvs. Technical
Memorandum 110167, NASA, Langley Research Center, 1995.

26. Ole Møller. Note on quasi double-precision. BIT, 5(4):251–255, 1965.
27. Ole Møller. Quasi double-precision in floating point addition. BIT, 5(1):37–50,

1965.
28. Douglas M. Priest. On Properties of Floating Point Arithmetics: Numerical Sta-

bility and the Cost of Accurate. Phd, U.C. Berkeley, 1993.
29. John F. Reiser and Donald E. Knuth. Evading the drift in floating point addition.

Information Processing Letter, 3(3):84–87, 1975.
30. John M. Rushby, Natajaran Shankar, and Mandayam Srivas. PVS: Combining

specification, proof checking, and model checking. In CAV ’96, volume 1102 of
LNCS. Springer-Verlag, July 1996.

31. David M. Russinoff. A Mechanically Checked Proof of IEEE Compliance of the
AMD K5 Floating-Point Square Root Microcode. Formal Methods in System De-
sign, 14(1):75–125, January 1999.

32. Jonathan Richard Shewchuk. Adaptive Precision Floating-Point Arithmetic
and Fast Robust Geometric Predicates. Discrete & Computational Geometry,
18(03):305–363, 1997.

33. Mike J. Spivey. Understanding Z: A Specification Language and its Formal Seman-
tics. Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 1988.

34. Pat H. Sterbenz. Floating point computation. Prentice Hall, 1974.
35. David Stevenson et al. An american national standard: IEEE standard for binary

floating point arithmetic. ACM SIGPLAN Notices, 22(2):9–25, 1987.
36. Markus Wenzel. A Generic Interpretative Approach to Readable Formal Proof

Documents. In Bertot et al. [3], pages 167–184.

	Introduction
	Floating-Point Format and Basic Notions
	Definitions
	Bounded Floating-Point Numbers
	Canonical Numbers

	Rounding Mode
	Basic Results
	An Example
	Floating-Point Expansion
	Two Sum
	Expansion
	Adding Two Expansions

	Conclusion

