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Centrale Paris, Grande Voie des Vignes, 92295 Châtenay-Malabry, France -
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Abstract

The scope of the present study is Eulerian modeling and simulation of polydisperse liquid sprays
undergoing droplet coalescence and evaporation. The fundamental mathematical description is the
Williams spray equation governing the joint number densityfunctionf(v,u;x, t) of droplet volume
and velocity. Eulerian multi-fluid models have already beenrigorously derived from this equation in
Laurent et al. [22]. The first key feature of the paper is the application of direct quadrature method of
moments (DQMOM) introduced by Marchisio and Fox [24] to the Williams spray equation. Both the
multi-fluid method and DQMOM yield systems of Eulerian conservation equations with complicated
interaction terms representing coalescence. In order to focus on the difficulties associated with treat-
ing size-dependent coalescence and to avoid numerical uncertainty issues associated with two-way
coupling, only one-way coupling between the droplets and a given gas velocity field is considered.
In order to validate and compare these approaches, the chosen configuration is a self-similar 2D ax-
isymmetrical decelerating nozzle with sprays having various size distributions, ranging from smooth
ones up to Dirac delta functions. The second key feature of the paper is a thorough comparison of the
two approaches for various test-cases to a reference solution obtained through a classical stochastic
Lagrangian solver. Both Eulerian models prove to describe adequately spray coalescence and yield
a very interesting alternative to the Lagrangian solver. The third key point of the study is a detailed
description of the limitations associated with each method, thus giving criteria for their use as well as
for their respective efficiency.
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1 Introduction

In many industrial combustion applications such as Diesel engines, fuel is stocked in con-
densed form and burned as a dispersed liquid phase carried bya gaseous flow. Two phase
effects as well as the polydisperse character of the dropletsize distribution (since the droplets
dynamics depend on their inertia and are conditioned by size) can significantly influence
flame structure. Size distribution effects are also encountered in a crucial way in solid pro-
pellant rocket boosters, where the cloud of alumina particles experiences coalescence and
become polydisperse in size, thus determining their globaldynamical behavior [17,18]. The
coupling of dynamics, conditioned on particle size, with coalescence or aggregation as well
as with evaporation can also be found in the study of fluidizedbeds [36] and planet formation
in solar nebulae [5,6]. Consequently, it is important to have reliable models and numerical
methods in order to be able to describe precisely the physicsof two-phase flows where the
dispersed phase is constituted of a cloud of particles of various sizes that can evaporate, coa-
lesce or aggregate and also have their own inertia and size-conditioned dynamics. Since our
main area of interest is combustion, we will work with spraysthroughout this paper, keeping
in mind the broad application fields related to this study.

Generally speaking, two approaches for treating liquid sprays corresponding to two levels
of description can be distinguished. The first, associated with a full direct numerical simu-
lation of the process, provides a model for the dynamics of the interface between the gas
and liquid, as well as the exchanges of heat and mass between the two phases using vari-
ous techniques such as the Volume Of Fluids (VOF) or Level Setmethods [3,15,19,35]. This
“microscopic” point of view is very rich in information on the detailed properties at a more
local level concerning, for example, the resulting drag exerted on one droplet depending on
its surroundings. The second approach, based on a more global point of view, describes the
droplets as a cloud of point particles for which the exchanges of mass, momentum and heat
are described globally, using eventually correlations, and the details of the interface behavior,
angular momentum of droplets, detailed internal temperature distribution inside the droplet,
etc., are not predicted. Instead, a finite set of global properties such as mass, momentum,
temperature are modeled. Because it is the only one for whichnumerical simulations at the
scale of a combustion chamber or in a free jet can be conducted, this “mesoscopic” point of
view will be adopted in the present paper.

Furthermore, we are interested in sprays where droplet interactions (e.g., coalescence) have to
be taken into account, which corresponds to liquid volume fractions between0.1% and1%.
O’Rourke [30] classified the various regimes from the “very thin spray”, which are trans-
ported by the gaseous carrier phase without influencing the gaseous phase, through the “thin
spray” regime, for which there is two-way coupling through the momentum equation be-
tween the two phases, up to the “thick spray” regime for whichthe volume fraction of liquid
is high enough so that droplet-droplet interactions have tobe taken into account, but is still
low enough so that the liquid volume fraction is negligible as compared to the gaseous one.
Because our primary focus is on the ability of Eulerian methods to capture droplet coales-
cence, our study is limited here to the “thick spray” regime.By restricting our attention to
one-way coupling, we can avoid difficulties (e.g., grid convergence) associated with using
Lagrangian methods with two-way coupling, and it will thus be possible to make detailed
comparisons between Eulerian and Lagrangian simulation results.
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In the mesoscopic framework, there exists considerable interest in the development of numer-
ical methods for simulating sprays [18,17,27,28,22,32]. The principal physical processes that
must be accounted for are (1) transport in real space, (2) droplet evaporation, (3) acceleration
of droplets due to drag, and (4) coalescence of droplets leading to polydispersity. The major
challenge in numerical simulations is to account for the strong coupling between these pro-
cesses. Williams [37] proposed a relatively simple transport equation based on kinetic theory
that has proven to be a useful starting point for testing novel numerical methods for treating
coalescing liquid sprays. In the context of one-way coupling, the Lagrangian Monte-Carlo
approach [9], called Direct Simulation Monte-Carlo method(DSMC) by Bird [4], is gener-
ally considered to be more accurate than Eulerian methods for solving Williams equation.
However, its computational cost is high, especially in unsteady configurations. Moreover, in
applications with two-way coupling, Lagrangian methods are difficult to couple accurately
with Eulerian descriptions of the gas phase. There is thus considerable impetus to develop
Eulerian methods for describing sprays. In this paper, we limit our attention to one-way
coupling with a given (laminar) gas velocity field (i.e., one-way coupling with a given gas
velocity field.) Thus no turbulence models are required to close the spray equation.

In a recent paper Laurent et al. [22] have demonstrated the capability of an Eulerian multi-
fluid model to capture the physics of polydisperse evaporating sprays with one-way coupling.
This approach relies on the derivation of a semi-kinetic model from the Williams equation us-
ing a moment method for velocity, but keeping the continuoussize distribution function. This
distribution function is then discretized using a “finite-volume” approach that yields conser-
vation equations for mass, momentum (and eventually other properties such as temperature)
of droplets in fixed size intervals called “sections” extending the original work of Tambour,
Greenberg and collaborators [12,13]. Even though this approach has recently been extended
to higher order by Laurent [20] and Dufour [7,8], the necessity to discretize the size phase
space can be a stumbling block in some applications. Moment methods, on the other hand,
do not encounter this limitation.

In this work, we apply the recently developed direct quadrature method of moments (DQ-
MOM) [24] to treat Williams equation in a Eulerian framework. As its name implies, DQ-
MOM is a moment method that closes the non-linear terms (e.g., droplet coalescence) using
weighted quadrature points (abscissas) in phase space. Such a closure relates to the construc-
tion of an approximated number density function from a set ofmoments under the form of a
sum of Dirac delta functions, the support of which corresponds to the abscissas. However, it is
important to make a clear difference between such an Eulerian approach and the correspond-
ing Lagrangian approach, for which the number density is approximated by a large number of
numerical “parcels”. The evolution of abscissas and the corresponding weights are governed
by the dynamics of a few moments, whereas the evolution of theparcels are governed by the
Williams equation since they are a stochastic discretization of this equation. Consequently,
the DQMOM usually involves a very restricted number of unknowns on a Eulerian mesh,
whereas the Lagrangian method involves a very large number of unknowns that are followed
along their trajectories in phase space.

The DQMOM method distinguishes itself from other quadrature methods (e.g., QMOM
[26,25]) by solving transport equations for the weights andabscissas directly (instead of
transport equations for the moments). The source terms for the transport equations depend on
the physical processes involved. For Williams equation, weshow in Section 2 that laminar
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transport and drag result in source terms that are independent of the choice of moments and,
in fact, are equivalent to those used in Lagrangian formulations. When evaporation does not
lead to the disappearance of droplets in finite time, this is also true for the evaporation pro-
cess. On the other hand, coalescence leads to a linear systemfor the source terms for which
the coefficient matrix depends on the choice of moments. The applicability of DQMOM to
Williams equation thus depends on whether or not a particular choice(s) of moments can be
found that leads to a non-singular linear system. When the evaporation law allows the dis-
appearance of droplets in finite time the equations for the moments of the number density
function not only involve unclosed integral terms, but alsothe flux of disappearing droplets,
i.e. the pointwise value of the number density function at zero size. This quantity has then to
be closed since it has a strong influence on the dynamics of thewhole set of moments; it leads
to a significant difficulty since it corresponds to the reconstruction of a pointwise value of the
number density function from a set of its moments. In this study, we propose a solution to
this difficult issue. Note that because spatial transport istreated explicitly, it suffices to tackle
the flux problem in the homogeneous case. We will see that a keypoint is to provide a flux
closure that yields stable moment dynamics and a non-singular linear system in the DQMOM
framework.

Let us also underline that the transport terms in the systemsof conservation equations for
both Eulerian models are the same and given by pressureless gas dynamics. The structure
of these transport terms and the associated difficulties have been the subject of several stud-
ies and there are numerical methods designed in order to treat the resulting singularities as
shown in [22]. The question of the computational efficiency of such Eulerian approaches (es-
pecially in coalescing systems) is a key question since these methods are intended to be used
in more realistic unsteady configurations as an alternativeto the too costly Lagrangian meth-
ods for polydisperse sprays. We have already studied this question in [22] where the Eulerian
multi-fluid approach was shown to offer a good precision witha relative low cost [22]. Be-
cause of the similarity of the transport terms for both Eulerian approaches, the conclusions
about the computational efficiency presented in [22] are also valid for the DQMOM method.
Consequently we focus our study and comparisons on stationary configurations for which
we are sure to have a reference solution at our disposal and from which we can obtain firm
conclusions about the capabilities of the various approaches.

In Section 3, we present the chosen test configuration, whichis a self-similar 2D axisym-
metrical decelerating nozzle and sprays with two inlet distributions: a smooth monomodal
function and Dirac delta functions. We also discuss in detail the reasons (e.g., significant co-
alescence rates) for the choice of the test cases, and why they are particularly challenging
for the various numerical methods. Finally the Lagrangian solver, the numerical subtleties
for obtaining the associated reference solution, as well asthe multi-fluid method are then
presented. In Section 4, we consider the results for the various test cases including combina-
tions of coalescence, linear evaporation in terms of volume(since it conserves the number of
droplets and thereby eliminates the need to model the evaporative flux) and the usual non-
linear evaporation law (for which the evaporative flux must be modeled.) We present results
for the most difficult test cases, designed to highlight the challenges one would encounter in
more realistic cases. The results are compared to a reference solution obtained through a La-
grangian stochastic algorithm [17]. The advantages and limitations of the Eulerian methods
are then analyzed in detail in terms of precision and efficiency. It is shown that the DQMOM
method offers very interesting features in a number of situations (e.g., strongly coalescing
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droplets), and is a good candidate for more complex configurations.

2 DQMOM for Williams equation

The Williams transport equation [37] for the joint volume, velocity number density function
f(v,u;x, t) is

∂tf + u · ∂xf + ∂v (Rvf) + ∂u · (Ff) = Γ, (1)

whereRv is the evaporation rate,F is the drag force acting on the droplet, andΓ is the
coalescence term. Note that specific forms for the evaporation rate and drag law are not
required for DQMOM. However, in this work we will consider one-way coupling with a
given gas velocity that appears inF. Using standard assumptions [22], we can write the
coalescence term in two parts:Γ = Q−

coll +Q+
coll where

Q−

coll = −
∫ ∫

∞

0
B(|u− u

∗|, v, v∗)f(v,u)f(v∗,u∗) dv∗ du∗, (2)

Q+
coll =

1

2

∫ ∫ v

0
B(|u⋄ − u

∗|, v⋄, v∗)f(v⋄,u⋄)f(v∗,u∗)J dv∗ du∗, (3)

v⋄ = v − v∗, u⋄ = (vu − v∗u∗)/(v − v∗), andJ = (v/v⋄)3 is the Jacobian of the transform
(v,u) → (v⋄,u⋄) with fixed (v∗,u∗). The collision frequency functionB is defined by

B(|u− u
∗|, v, v∗) = Ecoal(|u− u

∗|, v, v∗)β(v, v∗)|u− u
∗|, (4)

whereEcoal is the coalescence efficiency probability, which, based upon the size of droplets
and the relative velocity, discriminates between rebound and coalescence, and

β(v, v∗) = π

[

(

3v

4π

)1/3

+
(

3v∗

4π

)1/3
]2

. (5)

For simplicity, we will takeEcoal = 0 (no coalescence) orEcoal = 1; however, any other
functional form could be used in the derivation that follows. A more general version of the
spray equation would include the droplet temperature and molecular composition. For sim-
plicity, we consider only the volume and velocity in this work. Finally note that adding spatial
diffusion terms in Eq. (1) would generate additional terms in DQMOM [24].

One of the principal mathematical difficulties when developing Eulerian solvers for Eq. (1)
is the accurate treatment of the coalescence term. Indeed, the integral form ofΓ leads to
highly non-local and non-linear interactions in volume-velocity phase space. A “direct” Eu-
lerian solver would require discretization of the high-dimensional phase space (in addition
to real space), and would thus be computationally intractable. In contrast, multi-fluid models
discretize only the volume phase space and use the average velocity conditioned on droplet
size (i.e., the mono-kinetic assumption [21]), while moment methods (such as DQMOM)
provide closures based on a finite set of moments. Before applying DQMOM to Eq. (1), we
should note that the coalescence term is defined such that themoments representing mass and
momentum are conserved:

∫

ρvΓ(v,u) dv du = 0 (6)
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and

∫

ρvuΓ(v,u) dv du = 0, (7)

where the liquid densityρ is assumed to be constant. These conservation properties must be
retained in numerical approximations used to treat Eq. (1) (as we shall see is the case with
DQMOM).

The DQMOM approximates the density function by weighted delta functions in volume-
velocity phase space [11,24]:

f(v,u) =
N
∑

n=1

wnδ(v − vn)δ(u− un) (8)

whereδ(u − un) ≡ δ(u1 − u1,n)δ(u2 − u2,n)δ(u3 − u3,n). Note that in this formulation,
the weightswn and abscissas (vn, un) are Eulerian fields. Application of DQMOM results
in closed transport equations for the number density, mass density, and momentum density,
respectively, of the form:

∂twn + ∂x · (wnun) = an, (9)
∂t (wnρvn) + ∂x · (wnρvnun) = ρbn, (10)

and

∂t (wnρvnun) + ∂x · (wnρvnunun) = ρcn, (11)

wherean, bn, andcn are source terms that are found from the right-hand side of Eq. (1)
as described below. These equations can be solved with appropriate initial and boundary
conditions to find the fieldswn(x, t) and (vn(x, t), un(x, t)) appearing in Eq. (8). Note that
Eqs. (9–11) are equivalent to an Eulerian multi-fluid model [22], but with the source terms
on the right-hand side determined using DQMOM.

The DQMOM approximation for the moments of the number density function are found
directly from Eq. (8):

〈vkul
1u

m
2 u

p
3〉 ≡

∫

vkul
1u

m
2 u

p
3f(v,u) dv du =

N
∑

n=1

wnv
k
nu

l
1,nu

m
2,nu

p
3,n. (12)

The fundamental idea behind DQMOM is that we should choose the weights and abscissas
such that as many moments as possible are determined by the moment transport equations
found from Eq. (1). Note that there are a total ofN weights,N volume abscissas, and3N
velocity abscissas and (equivalently)5N unknown source terms in Eqs. (9–11). We will thus
need to choose5N independent moments to determine the source terms. We will return to the
subject of how to choose the moments in Section 2.4. The procedure for using these moments
to find the source terms is described next.
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2.1 Space and time derivatives

The space and time derivatives in Eq. (1) generate the corresponding terms in Eqs. (9–11).
These are found by formally inserting Eq. (8), and differentiating:

∂tf + u · ∂xf =
N
∑

n=1

δ(v − vn)δ(u− un) [∂twn + ∂x · (unwn)]

−
N
∑

n=1

wnδ
(1)(v − vn)δ(u− un) [∂tvn + un · ∂xvn]

−
N
∑

n=1

wnδ(v − vn)δ(1)(u − un) · [∂tun + un · ∂xun] (13)

whereδ(1)(ψ) = dδ(ψ)/dψ andδ(1)(ψ) is a vector with componentsδ(1)
1 (ψ) = δ(1)(ψ1)δ(ψ2)δ(ψ3),

δ
(1)
2 (ψ) = δ(ψ1)δ

(1)(ψ2)δ(ψ3), andδ(1)
3 (ψ) = δ(ψ1)δ(ψ2)δ

(1)(ψ3). Using the definitions of
the source terms, Eq. (13) can be rewritten as

∂tf + u · ∂xf =
N
∑

n=1

[

δ(v − vn)δ(u− un) + vnδ
(1)(v − vn)δ(u− un)

]

an

−
N
∑

n=1

[

δ(1)(v − vn)δ(u− un) − v−1
n δ(v − vn)δ(1)(u− un) · un

]

bn

−
N
∑

n=1

v−1
n δ(v − vn)δ(1)(u − un) · cn. (14)

Note that this expression is linear in the source terms (an, bn, cn).

The next step is to apply the moment transform to Eq. (14). Formally, this yields

∫

vkul
1u

m
2 u

p
3 (∂tf + u · ∂xf) dv du =

N
∑

n=1

(1 − k)vk
nu

l
1,nu

m
2,nu

p
3,nan

+
N
∑

n=1

(k − l −m− p)vk−1
n ul

1,nu
m
2,nu

p
3,nbn

+
N
∑

n=1

vk−1
n ul

1,nu
m
2,nu

p
3,n

(

lu−1
1,nc1,n +mu−1

2,nc2,n + pu−1
3,nc3,n

)

, (15)

where, unless otherwise noted, the definite integrals coverall of phase space. The next step is
to consider the terms in Eq. (1) that correspond to transportin volume-velocity phase space.

2.2 Phase-space transport

We begin by rewriting Eq. (1) as

∂tf + u · ∂xf = P, (16)

7



where the phase-space transport terms are defined by

P ≡ −∂v (Rvf) − ∂u · (Ff) + Γ. (17)

We can then define the moment transform of the phase-space terms by

P (k, l,m, p) ≡
∫

vkul
1u

m
2 u

p
3P dv du. (18)

Note that if the momentsP (k, l,m, p) are known, Eq. (15) forms a linear system that can be
solved to find the unknown source terms. We can compute the phase-space moments using
Eq. (17):

P (k, l,m, p) = −
∫

vkul
1u

m
2 u

p
3 [∂v (Rvf) + ∂u · (Ff) − Γ] dv du. (19)

As shown next, the integrals on the right-hand side can be expressed in terms of the weights
and abscissas, and a flux term corresponding to disappearance of droplets due to evaporation.

Starting with the evaporation term in Eq. (19), we can use integration by parts to find

∫

∞

0
vk∂v (Rvf) dv = −δk0Rv(0,u)f(0,u) −

∫

∞

0
kvk−1Rv(v,u)f dv, (20)

whereδk0 is the Kronecker delta. Using Eq. (8) in the final integral, wefind

∫

vkul
1u

m
2 u

p
3∂v (Rvf) dv du = −δk0ψ(t)ul

f1u
m
f2u

p
f3

−
N
∑

n=1

kwnv
k−1
n ul

1,nu
m
2,nu

p
3,nRv(vn,un), (21)

whereψ(t) is the evaporative flux of droplets at zero size anduf is the velocity of droplets
with zero volume (which will normally correspond to the fluidvelocity). Note that the first
term on the right-hand side of Eq. (21) will be non-zero only for k = 0, and corresponds to
the loss of droplets due to evaporation. A fundamental question when applying DQMOM to
evaporation problems is how to determineψ(t) from the weights and abscissas. The value of
ψ(t) corresponds to the value of the number density function at zero size, and in the case of
thed2 evaporation law, it is precisely the value of the number density as a function of droplet
surface, which has no reason to be zero in general. Determining the value ofψ(t), a pointwise
information, from the values of moments is clearly a difficult task, for which we will propose
a solution in the next subsection. On the other hand, the second term on the right-hand side
of Eq. (21) is non-zero only fork > 0, and appears in closed form.

Turning next to the drag-force term in Eq. (19), we can use integration by parts to find

∫

ul
j∂uj

(Fjf) du = −
∫

lul−1
j Fjf du for j = 1, 2, 3. (22)
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Thus, the drag-force term becomes

∫

vkul
1u

m
2 u

p
3∂u · (Ff) dv du =

−
N
∑

n=1

wnv
k
nu

l
1,nu

m
2,nu

p
3,n

[

lu−1
1,nF1(vn,un) +mu−1

2,nF2(vn,un) + pu−1
3,nF3(vn,un)

]

. (23)

Note that this term appears in closed form.

Turning now to the coalescence term, we will treat each of thetwo partsQ−

coll andQ+
coll

separately. The first part yields in a straightforward manner

∫

vkul
1u

m
2 u

p
3Q

−

coll dv du = −
N
∑

n=1

N
∑

q=1

wnwqv
k
nu

l
1,nu

m
2,nu

p
3,nB(|un − uq|, vn, vq). (24)

The second part requires a change in the order of integration, and a change of variables:

∫
(
∫ v

0
h(v,u)B(|u⋄ − u

∗|, v⋄, v∗)f(v⋄,u⋄)f(v∗,u∗)J dv∗
)

dv du∗ du

=
∫
(
∫

∞

v∗
h(v,u)B(|u⋄ − u

∗|, v⋄, v∗)f(v⋄,u⋄)f(v∗,u∗)J dv
)

dv∗ du
∗ du

=
∫

h
(

v∗ + v⋄,
v∗u∗ + v⋄u⋄

v∗ + v⋄

)

B(|u⋄ − u
∗|, v⋄, v∗)f(v⋄,u⋄)f(v∗,u∗) dv∗ dv⋄ du

∗ du⋄, (25)

whereh is an arbitrary function ofv andu. It then follows that

∫

vkul
1u

m
2 u

p
3Q

+
coll dv du =

1

2

N
∑

n=1

N
∑

q=1

wnwq(vn + vq)
k

(

vnu1,n + vqu1,q

vn + vq

)l

×

(

vnu2,n + vqu2,q

vn + vq

)m (
vnu3,n + vqu3,q

vn + vq

)p

B(|un − uq|, vn, vq). (26)

Note that the right-hand side of this expression is in closedform.

Collecting together all of the terms, the moments appearingon the right-hand sides of Eqs. (21–
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26) become

P (k, l,m, p) = δk0ψ(t)ul
f1u

m
f2u

p
f3 +

N
∑

n=1

kwnv
k−1
n ul

1,nu
m
2,nu

p
3,nRv(vn,un)

+
N
∑

n=1

wnv
k
nu

l
1,nu

m
2,nu

p
3,n

[

lu−1
1,nF1(vn,un) +mu−1

2,nF2(vn,un) + pu−1
3,nF3(vn,un)

]

+
1

2

N
∑

n=1

N
∑

q=1

wnwq



(vn + vq)
k

(

vnu1,n + vqu1,q

vn + vq

)l (
vnu2,n + vqu2,q

vn + vq

)m (
vnu3,n + vqu3,q

vn + vq

)p

− vk
nu

l
1,nu

m
2,nu

p
3,n − vk

qu
l
1,qu

m
2,qu

p
3,q



B(|un − uq|, vn, vq). (27)

Note that due to the form of the coalescence term, the momentsconserve mass (P (1, 0, 0, 0) =
0) and momentum (P (1, 1, 0, 0) = P (1, 0, 1, 0) = P (1, 0, 0, 1) = 0) when evaporation and
drag are null. Thus, the weights and abscissas in the DQMOM representation will keep the
same conservation properties as the original model (i.e., as Eq. (1)).

Comparing the terms in Eqs. (15) and (27), we can note that theevaporation and drag terms
in the DQMOM representation can be solved for explicitly. Thus, the source terms can be
written as

bn = b∗n + wnRv(vn,un), (28)
cn = c

∗

n + wnunRv(vn,un) + wnvnF(vn,un), (29)

where source termsan, b∗n andc
∗

n in the transport equations are found by solving the linear
system

N
∑

n=1

(1 − k)vk
nu

l
1,nu

m
2,nu

p
3,nan +

N
∑

n=1

(k − l −m− p)vk−1
n ul

1,nu
m
2,nu

p
3,nb

∗

n

+
N
∑

n=1

vk−1
n ul

1,nu
m
2,nu

p
3,n

(

lu−1
1,nc

∗

1,n +mu−1
2,nc

∗

2,n + pu−1
3,nc

∗

3,n

)

= P ∗(k, l,m, p), (30)

with the right-hand side given by

P ∗(k, l,m, p) = −δk0ψu
l
f1u

m
f2u

p
f3 +

1

2

N
∑

n=1

N
∑

q=1

wnwq



(vn + vq)
k

(

vnu1,n + vqu1,q

vn + vq

)l (
vnu2,n + vqu2,q

vn + vq

)m (
vnu3,n + vqu3,q

vn + vq

)p

− vk
nu

l
1,nu

m
2,nu

p
3,n − vk

qu
l
1,qu

m
2,qu

p
3,q



B(|un − uq|, vn, vq). (31)

The expression for the source terms (Eq. 30) completes the derivation of the DQMOM trans-
port equations for the Williams spray equation.
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In the absence of coalescence, Eq. (31) is particularly simple. Thus, the pure evaporation
case is an interesting limit case for whichan, b∗n, andc

∗

n will be non-zero only if the evap-
orative fluxψ is non-zero. However, the evaporative flux cannot be determined by moment
constraints alone (see Section 2.3). If the evaporative fluxis assumed to be null, the zero-
order moment will remain unchanged in the absence of coalescence as long as some abscissa
crosses the zero size limit and yields a pointwise singular and infinite flux as in Lagrangian
methods when some parcels reach the zero size limit. However, as mentioned in the Introduc-
tion, since there are only a few abscissas that describe the moment dynamics, such a singular
behavior is not ideal for smooth number density functions (whereas it is the correct one if the
number density function is a sum of Dirac delta function fromthe beginning as in the bimodal
case that will be studied later). Consequently we need an evaluation of this flux function that
guarantees a smooth flux as a function of time for smooth distribution functions. Even when
coalescence is included, the moments may be poorly estimated if the evaporative flux is ne-
glected. An example of such behavior can be found in the work of Mossa [29] where the
droplet size distribution is presumed to be log-normal and where the evaporative flux at zero
size is neglected, leading to numerical difficulties and a poor prediction of the second mo-
ment. Thus, we will use a separate procedure, described next, to approximate the contribution
due to the evaporative flux that yields a continuous in time flux, as well as a guarantee that
the abscissas never cross the zero size limit.

2.3 Evaporative flux

The source terms cannot be computed directly from the momentconstraints in Eq. (31) be-
cause the evaporative flux is unknown. We must therefore apply additional (or different) con-
straints to determine all of the unknowns. Considering onlyevaporation and setting drag and
coalescence to zero in the right-hand side of Eq. (30), we obtain the following linear system:

N
∑

n=1

(1 − k)vk
nu

l
1,nu

m
2,nu

p
3,nan +

N
∑

n=1

(k − l −m− p)vk−1
n ul

1,nu
m
2,nu

p
3,nb

∗

n

+
N
∑

n=1

vk−1
n ul

1,nu
m
2,nu

p
3,n

(

lu−1
1,nc

∗

1,n +mu−1
2,nc

∗

2,n + pu−1
3,nc

∗

3,n

)

+ δk0u
l
f1u

m
f2u

p
f3ψ = 0 (32)

with 5N + 1 unknownsan, b∗n, c∗n andψ. Note that because the right-hand side is null, only
trivial solutions can be found using moment constraints. Wewill therefore introduce ratio
constraints of the form

D

Dt

(

wn

wn+1

)

evap

= 0,
D

Dt

(

vn

vn+1

)

evap

= 0 and
D

Dt

(

ujn

ujn+1

)

evap

= 0,

which are applied only for the changes due to evaporation. These constraints are motivated
by the behavior of the weights and abscissas corresponding to sufficiently smooth and con-
tinuous density functions. For example, if the surface density function is exponential and the
evaporation rate is proportional to the surface area of a droplet, then the abscissas remain con-
stant and the weights decrease monotonely. On the other hand, for singular density functions
(e.g., composed of delta functions), the ratio constraintsare expected to perform poorly. We
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will look more closely at this issue in Section 4.

It can be observed that the choice ofk = l = m = p = 0 in Eq. (32) leads to

ψ = −
N
∑

n=1

an. (33)

Thus, the evaporative flux depends only onan. Note that physicallyψ ≥ 0. Hence, if the value
computed forψ from Eq. (33) is negative (which is possible for very generalevaporation
rates), thenan, b∗n, c∗n andψ are set equal to zero. However, for the evaporation rate considered
in this paper, it can be shown that the flux will be non-negative.

Conservation of mass (k = 1 andl = m = p = 0 in Eq. (32)) leads to
∑

n

b∗n = 0. (34)

Applying the ratio constraint for the abscissas yields

wn+1vn+1b
∗

n − wnvnb
∗

n+1 = En for n = 1, . . . , N − 1; (35)

where the right-hand side is defined by

En = wnwn+1 [vnRv(vn+1) − vn+1Rv(vn)] . (36)

Note that in order for there to be an evaporative flux, we will normally haveEn ≥ 0 for
all n (assuming thatv1 < v2 < . . . < vN ). The case whereEn = 0 occurs whenRv(v) is
proportional to−v (i.e., the evaporation rate is proportional to the droplet volume). The more
common case whereEn > 0 occurs whenRv(v) is proportional to−v1/3 (i.e., the droplet
surface area decreases linearly). In general,Rv(v) ∝ −vγ with γ < 1 will lead to positive
En. The physical interpretation for this difference is that for γ < 1 the droplets will disappear
due to evaporation in a finite time, while forγ ≥ 1 the disappearance time is infinite. The
linear system formed from Eqs. (34) and (35) can be solved separately to findb∗n.

Conservation of momentum (k = 1 andl,m, or p = 1 in Eq. (32)) leads to

N
∑

n=1

c
∗

n = 0. (37)

Likewise, the ratio constraint for each component of the velocity yields

wn+1vn+1ujn+1c
∗

jn − wnvnujnc
∗

jn+1 = ujnujn+1En for n = 1, . . . , N − 1. (38)

Together with Eq. (37), this equation can be solved separately for each component (j =
1, 2, 3) to findc

∗

n.

The ratio constraint for the weights yieldsN − 1 equations foran:

wn+1an − wnan+1 = 0 for n = 1, . . . , N − 1. (39)

Note that this constraint is satisfied byan = αwn whereα is unknown. We must therefore
choose one independent moment in Eq. (32) in order to solve for α. Sinceb∗n andc

∗

n are
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known, we can rearrange Eq. (32) as

α
N
∑

n=1

[

(k − 1)vk
nu

l
1,nu

m
2,nu

p
3,n + δk0u

l
f1u

m
f2u

p
f3

]

wn =

N
∑

n=1

(k − l −m− p)vk−1
n ul

1,nu
m
2,nu

p
3,nb

∗

n

+
N
∑

n=1

vk−1
n ul

1,nu
m
2,nu

p
3,n

(

lu−1
1,nc

∗

1,n +mu−1
2,nc

∗

2,n + pu−1
3,nc

∗

3,n

)

, (40)

which can be solved withk 6= 1 to findα. If we choose, for example,k = 2 andl = m =
p = 0 as the independent moment, then the constraint becomes

α = 2
N
∑

n=1

vnb
∗

n

/

N
∑

n=1

v2
nwn (41)

andα depends only onb∗n. However, if we choosek = 2 and l = m = p = 1, then the
constraint becomes

α =
N
∑

n=1

vn (u2nu3nc
∗

1n + u1nu3nc
∗

2n + u1nu2nc
∗

3n − u1nu2nu3nb
∗

n)

/

N
∑

n=1

v2
nu1nu2nu3nwn . (42)

For this choice,α is independent ofuf . A choice that leads to a fully coupled system isk = 2,
l = 2,m = p = 0, which yields

α = 2
N
∑

n=1

vnu1nc
∗

1n

/

N
∑

n=1

v2
nu

2
1,nwn (43)

or k = m = p = 0 andl = 1, which yields

α =
N
∑

n=1

v−1
n

(

u1,nb
∗

n − c∗1,n

)

/

N
∑

n=1

(u1,n − uf1)wn . (44)

Note that whenvn → 0, we haveu1,n → uf1 andc∗1,n → uf1b
∗

n; hence, this last constraint
is consistent with this limiting behavior. These choices are asymmetric in the velocity com-
ponents, and thus do not treat all components the same. A “symmetric” choice with similar
properties isk = 2 and l = m = p = 2 or k = 0 and l = m = p = 1, which lead to a
more complicated constraint. The “best” choice will most likely be problem dependent. In
our test cases, the choices withk = 2 give similar results, better than the ones withk = 0.
The calculations are thus done with the value ofα given in Eq. (41): this value is the simplest
and can be shown to be non-positive as soon asEn ≥ 0, at least for the caseN = 2.

In summary, the contribution due to evaporation is estimated by first solving separate linear
systems forb∗n andc

∗

n. The estimate foran = αwn is found using an independent moment
constraint from Eq. (40) to findα. Finally, the evaporative fluxψ is computed from Eq. (33),
and should be non-negative. Ifψ is negative (or equivalently ifα is positive), then the con-
tribution due to evaporation is null. The contribution due to coalescence is found by solving
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a linear system of the form of Eq. (30) where the right-hand side is given by Eq. (31) with
ψ = 0. As described below, the final source terms (an, b∗n, c

∗

n) are found simply by adding
together the contributions from the evaporative flux and coalescence.

2.4 DQMOM linear system

The DQMOM representation of Williams spray equation is given by the transport equations
for the weights and abscissas (Eqs. (9–11)). The source terms for these equations are found by
solving the linear system as described above. The exact formof the linear system depends on
the choice of moments. This choice, in turn, will determine if the system is well defined in the
sense that the coefficient matrix is non-singular. A choice of moments that is consistent with
the mono-kinetic assumption used in the multi-fluid model isto consider only moments of
orders zero and one in the velocity components (i.e.,l,m, p ∈ {0, 1}). In this work, in order to
make direct comparisons with the multi-fluid model, we will limit our consideration to such
moments. In general, this choice of moments should allow forthe best possible description
of droplet coalescence, while at the same time ensuring thatdroplet mass and momentum are
conserved.

A choice of5N moments that has been found to be non-singular is

k = (i− 1)/3 i ∈ {1, . . . , 2N} with l = m = p = 0

k = i i ∈ {1, . . . , N} with l = 1, m = p = 0

k = i i ∈ {1, . . . , N} with m = 1, l = p = 0

k = i i ∈ {1, . . . , N} with p = 1, l = m = 0. (45)

ForN ≥ 2, this choice of moments includes the surface area and the volume of the droplets,
which are important variables for evaporating spray, as well as their momentum. The linear
system can then be written in matrix form (showing only non-zero components) as





























A1 A2 E1 E2 E3

A3 A4

B1 C1 D1

B2 C2 D2

B3 C3 D3

























































a

b
∗

c
∗

1

c
∗

2

c
∗

3





























=





























Pa

Pb

P1

P2

P3





























, (46)

where the matricesAj , Bj, Cj , Dj andEj are allN×N , anda, b∗ andc
∗

j are column vectors
formed from the componentsan, b∗n andc∗jn, respectively. In general, the exact definitions of
the other matrices will depend on which constraints are usedto define the system, i.e., Eq. (30)
or those described in Section 2.3. Nevertheless, the form ofthe linear system is the same in
all cases. As noted earlier, the linear system is solved twice at each time step. First with the
matrices for the evaporative flux without coalescence (i.e., A3 = Bj = Cj = 0), and second
with the matrices for coalescence without evaporation (i.e., Ej = 0). The unknownsa, . . .,
c
∗

3 are found by adding the two solutions.

As discussed earlier, for the evaporative step the linear system can be decomposed into five
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N×N systems that can be solved sequentially. Likewise, for the coalescence stepa andb
∗

can be found separately by solving a2N×2N system:







A1 A2

A3 A4













a

b
∗





 =







Pa

Pb





 , (47)

and then each of the vectorscj can be found separately:

Djc
∗

j = Pj −Bja− Cjb
∗, (48)

where (for coalescence)Dj = V is a Vandermonde matrix [31] formed from the volume
abscissasvn. Other choices of moments have also been found to be numerically stable. For
example, another valid choice is

k = (i− 1)/3 i ∈ {1, . . . , 2N} with l = m = p = 0

k = (2i− 1)/3 i ∈ {1, . . . , N} with l = 1, m = p = 0

k = (2i− 1)/3 i ∈ {1, . . . , N} with m = 1, l = p = 0

k = (2i− 1)/3 i ∈ {1, . . . , N} with p = 1, l = m = 0. (49)

This choice can be found to give more accurate results for ourtest cases and still includes the
surface area and the volume of the droplets, as well as their momentum. Thus, it will be used
for the computations in Section 4. We should note that for a given value ofN , the simulation
results found with the moment sets in Eqs. (45) and (49) were nearly identical. The choice
between these two systems was thus made based on ease of solution of the linear system.

In general, when moments involving the velocity are limitedto first order, the matrices that
must be inverted will be non-singular as long as the volume abscissas are distinct. The nu-
merical treatment of the singularities associated with Eq.(47) has been discussed elsewhere
[24]. The coalescence operator will normally force thevn to remain distinct if they have dis-
tinct velocities. However, if due to initial conditions twoor more of the volume abscissas are
equal, it suffices to perturbate the values ofvn enough to allow for the coefficient matrix in
Eq. (47) to be invertible. We should also note that for cases dominated by coalescence (e.g.,
without evaporation) the volume abscissas grow rapidly, leading to matrices that are more
and more ill-conditioned as the abscissas increase. Thus, even though they are strictly non-
singular, such matrices lead to severe numerical difficulties. However ill-conditioning can be
almost completely alleviated by using iterative improvements of the linear solver as described
in Section 2.5 of Press et al. [31] after rescaling Eq. (30). The latter is done by defining pos-
itive scaling factorsvs andus, and dividing both sides of Eq. (30) byvk

s u
l+m+p
s . Note that

the abscissas and unknown source terms are rescaled in a consistent manner:vn → vn/vs,
un → un/us, a → a, b

∗ → b
∗/vs, andc

∗

j → c
∗

j/(vsus). The evaporative flux constraints
(Eqs. (35), (38) and (40)) can be rescaled in a similar mannerby introducing a positive scaling
factorws for the weights:wn → wn/ws. In this work, we use the following scaling factors:
vs = maxn vn, us = maxn |un| andws =

∑

nwn. We find that using the scaled variables and
at most three iterative improvements of the linear solver are enough to completely eliminate
round-off error in the solution to the DQMOM linear system. Moreover, because round-off
error leads to poor performance of the differential equation solver, the overall computational
cost using the iterative improvements can be significantly reduced.
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3 Nozzle Test Problem

In order to validate the proposed DQMOM approach for strongly coalescing sprays, and to
compare this method to both a reference Lagrangian solver solution as well as the solution ob-
tained with the multi-fluid model, we need a well-suited testproblem that is difficult enough
to highlight the limitations of the methods under consideration. For that purpose, we have
chosen for the gas phase a 2D axisymmetrical conical decelerating nozzle, designed in such
a way that it admits, for one-way coupling spray dynamics a self-similar solution. After pre-
senting the details of this configuration, we will provide the set of DQMOM equations to be
solved in this framework. We have selected six representative test cases, combining coales-
cence/no coalescence with evaporation/no evaporation, which are then presented. Next we
give an overview of the Lagrangian solver that provides the reference solution for the various
test cases. Because the problems under consideration can bedifficult to solve numerically, we
must be very careful as far as this reference solution in concerned and thus we provide the
details of the Lagrangian numerical integration in the limit of one-way coupling with the gas
phase. Finally, before discussing the results in Section 4,we review the fundamentals of the
Eulerian multi-fluid model for the sake of self-consistencyof the paper.

3.1 Definition of configuration

The chosen configuration is stationary 2D axisymmetrical inspace and 1D in droplet size.
It is described in detail, along with the Lagrangian solver,in [22]. Hence, only its essential
characteristics are given here.

A spray of pure heptane fuel is carried by a gaseous mixture ofheptane and nitrogen into a
conical diverging nozzle of axis (0 < z). At the entrance,z = z0, 99% of the mass of the
fuel is in the liquid phase, whereas 1% is in the gaseous mixture. The temperature (400 K) as
well as the composition of the gas mixture (mass fraction is 2.9% for heptane and 97.1% for
nitrogen) is fixed during the entire calculation. The gas density is then0.871733 mg.cm−3.
The influence of the evaporation process on the gas characteristics is not taken into account in
our one-way coupled calculation. It is clear that the evaporation process is going to change the
composition of the gas phase and then of the evaporation itself. However, we do not attempt to
achieve a fully coupled calculation, but only to compare twoways of evaluating the coupling
of the dynamics, evaporation and coalescence of the droplets. It has to be emphasized that it
is not restrictive in the framework of this study, which is focused on the numerical validation
of Eulerian solvers for the liquid phase under conditions ofstrong coalescence.

For the problem to be one-dimensional in space, conditions for straight trajectories are used
and are compatible with the assumption of an incompressiblegas flow. This leads to the
following expression for the gaseous axial velocityvz and the reduced radial velocityvr/r:

vz = V (z) =
z2
0V (z0)

z2
,

vr

r
= U(z) =

V (z)

z
=
z2
0V (z0)

z3
for z ≥ z0 (50)

wherez0 > 0 is the coordinate of the nozzle entrance and the axial velocity V (z0) at the
entrance is fixed. The trajectories of the droplets are also assumed straight since their injection
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Figure 1. Initial number density functions for droplet radius. Left: Monomodal distribution. Right:
Bimodal distribution.

velocity is co-linear to the one of the gas. This assumption is only valid when no coalescence
occurs. However, even in the presence of coalescence, it is valid in the neighborhood of the
centerline.

Let us finally consider two droplet distribution functions.The first one, called monomodal,
is composed of droplets with radii between 0 and 35µm, with a mean radius of 12µm,
a variance of 5µm and a Sauter mean radius of 15.6µm. It is represented in Fig. 1 and
is typical of the experimental conditions reported in [23].The droplets are constituted of
liquid heptane, their initial velocity is the one of the gas,their initial temperature, fixed at the
equilibrium temperature 325.4 K (corresponding to an infinite conductivity model), does not
change along the trajectories. The second distribution is called bimodal since it involves only
two groups of radii, respectively,10 and30 microns with equal mass density. This bimodal
distribution function is typical of alumina particles in solid propergol rocket boosters [17],
and is represented in Fig. 1.

The initial injected mass density is taken asm0 = 3.609 mg.cm−3 so that the volume fraction
occupied by the liquid phase is 0.57%. Because of the deceleration of the gas flow in the
conical nozzle, droplets are going to decelerate, however at a rate depending on their size and
inertia. This will induce coalescence. The deceleration atthe entrance of the nozzle is taken as
a(z0) = −2V (z0)/z0; it is chosen large enough so that the velocity difference developed by
the various sizes of droplets is important. We have chosen rather large values, as well as strong
deceleration, leading to extreme cases:V (z0) = 5 m.s−1, z0 = 10 cm for the monomodal case
andV (z0) = 5 m.s−1, z0 = 5 cm for the bimodal case. These values generate a very strong
coupling between coalescence, evaporation and droplet dynamics. These severe conditions
as well as the two types of size distributions make the test cases under consideration very
efficient tools for the numerical evaluation of the two Eulerian models.
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3.2 DQMOM model equations in nozzle configuration

For the nozzle test case, Eqs. (9–11) reduce to a set of ordinary differential equations (ODEs)
defined on the intervalz ∈ [z0,∞) for the variableswn, vn, ηn(z) = ur/r andξn(z) = uz:

2wnηn + ∂z (wnξn) = an, (51)
2wnvnηn + ∂z (wnvnξn) = bn, (52)

3wnvnη
2
n + ∂z (wnvnηnξn) = crn/r, (53)

2wnvnηnξn + ∂z

(

wnvnξ
2
n

)

= czn, (54)

whereuz = ξ(z) andur = rη(z) are the axial and radial components of the spray velocity,
respectively. The corresponding fluid velocities are givenin Eq. (50). The terms on the right-
hand side of Eqs. (52–54) are given by

bn = b∗n + wnRv(vn), (55)
crn/r = c∗rn + wnηnRv(vn) + wnvnFr(vn, ηn)/r, (56)
czn = c∗zn + wnξnRv(vn) + wnvnFz(vn, ξn), (57)

where the drag model is

Fr(v, η)/r = α
(

4π

3v

)2/3

(U − η), (58)

Fz(v, ξ) = α
(

4π

3v

)2/3

(V − ξ) (59)

with α = 1.566 × 10−7 m2.s−1.

From the form of the governing equations, it is straightforward to show that ifηn = ξn/z
at z = z0, then this relation will hold for allz and the droplet trajectories are straight lines.
The system of DQMOM model equations can thus be reduced to three nonlinear ODEs for
w∗

n = wn(z/z0)
2, vn, andξn by eliminating Eq. (53):

∂z (w∗

nξn) = an, (60)
∂z (w∗

nvnξn) = b∗n + w∗

nRv(vn) (61)

and

∂z

(

w∗

nvnξ
2
n

)

= c∗zn + w∗

nξnRv(vn) + αw∗

nvn

(

4π

3vn

)2/3

(V − ξn). (62)

The terms on the left-hand side represent changes in the weights and abscissas due to trans-
port. The terms on the right-hand side represent, respectively, the changes due to coalescence,
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evaporation, and drag. The coalescence terms are found by solving

(1 − k)
N
∑

n=1

vk
nξ

m
n an + (k −m)

N
∑

n=1

vk−1
n ξm

n b
∗

n +m
N
∑

n=1

vk−1
n ξm−1

n c∗zn

=
1

2

(

z0
z

)2 N
∑

n=1

N
∑

q=1

w∗

nw
∗

qB(|ξn − ξq|, vn, vq)

[

(vn + vq)
k

(

vnξn + vqξq
vn + vq

)m

− vk
nξ

m
n − vk

q ξ
m
q

]

. (63)

Note the presence of the scaling factor(z0/z)
2 in the coalescence rate. As discussed in Sec-

tion 2.4, we will use moments given in Eq. (49) that decouple Eq. (63) into two smaller
systems.

3.3 Test cases

For evaporation, we will consider three cases described below: (i) no evaporation (Rv = 0),
(ii ) linear evaporation (Rv ∝ v), and (iii ) non-linear evaporation (Rv ∝ v1/3). For each
case, we will consider two sub-cases: without coalescence (Ecoal = 0) and with coalescence
(Ecoal = 1). The two evaporation laws correspond to the two cases described in Section 2.3,
for which droplets disappear either in infinite time (ii ), thus leading to a evaporative flux at
zero size, or in finite time (iii ) for which the evaporative flux depends on the structure of the
number density function in size phase space.

No evaporation

For the special case of no evaporation and no drag, the right-hand sides of Eqs. (52–54) are
null. This special case has an analytical solution withvn,w∗

n, andξn constant. In the opposite
limit of no evaporation and infinite drag,ξn = V andw∗

n ∝ (z/z0)
2.

For non-evaporating droplets,Rv = 0. In the absence of coalescence,an = b∗n = c∗zn = 0.
The DQMOM model reduces tovn andw∗

n constant, and

ξn∂zξn = α
(

4π

3vn

)2/3

(V − ξn). (64)

This result is consistent with our earlier remark concerning the cases of zero and infinite drag.
Finally, we should note that even with coalescence the momentum is conserved (k = m = 1)
so that

∑

c∗zn = 0. Thus, we can expectw∗

nξn to be approximately constant for all values
of drag. For this case we expect excellent agreement betweenDQMOM and the Lagrangian
solver in the absence of coalescence since the corresponding transport equations are identical
(i.e., each DQMOM abscissa behaves like a Lagrangian particle). On the other hand, with co-
alescence the droplets grow very large and we expect differences due to how the coalescence
term is treated in each method. This test case will, however,be very difficult for the multi-
fluid model, since it was especially designed to tackle the problem of evaporation. In the
presence of strong growth of droplet size, the number of sections that must be used in order
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to reproduce the physics with the multi-fluid model will alsodramatically increase. Conse-
quently, this test case will allow us to both test the capability of the DQMOM to capture the
coupling of dynamics and coalescence at low cost in comparison to the Lagrangian solution,
and to see if the multi-fluid model can provide good results, even if it is not competitive in
terms of computational efficiency.

Linear evaporation

For evaporating droplets with linear evaporation, we take

Rv(vn) = −Evvn, (65)

with Ev = 7.1262 s−1 for the monomodal case andEv = 14.2524 s−1 for the bimodal case.
For this case, the evaporative fluxψ is zero. The coalescence terms are again found by solving
Eq. (63). In the absence of coalescence, we havean = b∗n = c∗zn = 0 and the DQMOM model
reduces tow∗

nξn constant, Eq. (64), and

ξn∂zvn = Rv(vn). (66)

Thus the volumevn and velocityξn are coupled through evaporation and drag, but are inde-
pendent ofw∗

n in the absence of coalescence. For this case we again expect excellent agree-
ment between DQMOM and the Lagrangian solver in the absence of coalescence since the
corresponding transport equations are identical. On the other hand, with coalescence there is
a competition between growth and evaporation leading to smaller droplets than in the non-
evaporating case. This is a very interesting test case, since it will allow us to compare both
methods in an evaporative configuration, but without getting into the difficulty of modeling
the droplet disappearance with the DQMOM approach.

Non-linear evaporation

With non-linear evaporation we will use

Rv(vn) = −
Es

2

(

3vn

4π

)1/3

(67)

with Es = 1.99 × 10−7 m2/s. For this case the evaporative fluxψ will generally be non-zero,
and is found using the method described in Section 2.3 withw∗

n in place ofwn. However,
we will also compare predictions for the bimodal initial distribution found by settingψ = 0.
As for the previous cases, we will investigate the effect of the flux model with and without
coalescence. From a practical standpoint, the behavior of DQMOM with non-linear evapora-
tion is of great interest and it is a configuration with which the comparison of both Eulerian
models will be of practical relevance.

3.4 Reference Lagrangian solution

Euler-Lagrange numerical methods are commonly used for thecalculation of polydisperse
sprays in various application fields (see for example [30,18,27,28,33,10] and the references
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therein). In this kind of approach, the gas phase is generally computed using a deterministic
Eulerian solver, while the dispersed phase is treated in a Lagrangian way. The influence of the
droplets on the gas flow is taken into account by the presence of source terms in the system
of gas conservation equations. Two Lagrangian methods can be used as far as the dispersed
phase is concerned depending on the level at which the physical processes are modeled. The
first one is a Discrete Particle Simulation, which describesthe evolution of numerical parti-
cles, each one representing one or several droplets. The physical processes such as transport,
evaporation, collisions are then described by Liouville equations and the Eulerian fields usu-
ally recovered through ensemble averages. However, in the present study, we have preferred
the Williams governing equation and thus a statistical description of the coalescence process.
We then coherently use a Direct Simulation Monte-Carlo method (DSMC), the second kind
of approach. It can be seen as the uncoupling, over a small time step, of the droplet transport
in phase space (dynamics and evaporation), described by a particle method, and the collisions
described by a Monte-Carlo method.

A complete exposition on the derivation and implementationof this method is outside the
scope of this paper. We refer the reader, for example, to [2,18,17] for more details. Here, for
the sake of completeness, we present only the main features of the numerical method that we
used in order to provide a “reference numerical solution” for the test cases.

Lagrangian solver

The Lagrangian solver can be roughly interpreted as a stochastic representation of the kinetic
equation (1). In other words, in the limit of a sufficiently large number of stochastic parti-
cles and a sufficiently fine computational grid (at least in the case of one-way coupling), the
statistical estimates for the moments found from the particles should converge to those com-
puted from the Eq. (1). In the Lagrangian solver, at each timestepk, the droplet distribution
functionf(tk) is approximated by a finite weighted sum of Dirac masses,f̃(tk), which reads

f̃(tk) =
Nk
∑

i=1

nk
i δzk

i
,uk

i
,vk

i
. (68)

Each weighted Dirac mass is generally called a “parcel” and can be physically interpreted as
an aggregated number of droplets (the weightnk

i ), located around the same point,zk
i , with

about the same velocity,uk
i and about the same volume,vk

i . Nk denotes the total number of
parcels in the computational domain at timetk. In all our calculations, the weightsnk

i were
chosen in such a way that each parcel represents the same volume of liquid (nk

i v
k
i = Const).

Each time step of the particle method is divided in two stages. The first is devoted to dis-
cretization of the left-hand side of the kinetic equation (1), modeling the motion and evapo-
ration of the droplets. In our code, the new position, velocity and volume of each parcel are
calculated according to the following numerical scheme:

uk+1
i = uk

i exp(−∆t/τk
i ) + V (zk

i )
(

1 − exp(−∆t/τk
i )
)

(69)
∫ vk+1

i

vk
i

dv/Rv(v) = ∆t (70)

zk+1
i = zk

i + ∆t uk+1
i = zk

i + ∆t V (zk
i ) + ∆t (uk

i − V (zk
i )) exp(−∆t/τk

i ) (71)
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whereV denotes the axial gas velocity,zk
i (uk

i ) corresponds to the axial coordinate of the
position (velocity) of the parceli at timetk, Rv is the evaporation rate (independent oft and
x since the gas composition and temperature are assumed constant in the domain). Eq. (70) is
resolved analytically and depends on the chosen evaporation model. For linear evaporation,
it can be written as

vk+1
i = vk

i exp(−Ev∆t) (72)

and for non-linear evaporation, it is written as

sk+1
i = sk

i − Es∆t (73)

wheresk
i is the parcel surface area. The parcel relaxation timeτk

i is defined as

τk
i =

2ρ(rk
i )

2

9µg
, (74)

with rk
i being the parcel radius,ρ the liquid density andµg the gas viscosity.

In Eqs. (69–71), the parcel radial coordinate is not calculated because the trajectories of the
parcels are straight lines. Besides, as mentioned above, the influence of the droplets on the
gas flow is not taken into account. Hence, Eq. (50) is used to calculate the gas velocity,V (zk

i ),
at the parcel location.

The second stage of a time step is devoted to the discretization of the collision operator.
Several Monte-Carlo algorithms have been proposed in the literature for the treatment of
droplet collisions [30,18,33,17,34]. They are all inspired by the methods used in molecular
gas dynamics [4] and, in particular, they suppose that the computational domain is divided
into cells, or control volumes, which are small enough to consider that, within them, the
droplet distribution function is almost uniform.

The algorithm used in our reference Lagrangian solver is close to the one proposed by
O’Rourke. It consists of the following 3 steps (see also [18]for more details):

1. For each computational cellCJ , containingNJ parcels, we choose randomly, with a uni-
form distribution law,NJ/2 pairs of parcels,(NJ − 1)/2 if NJ is odd.

2. For each pairp, let p1 andp2 denote the two corresponding parcels with the convention
n1 ≥ n2, wheren1 andn2 denote the parcel numerical weights. Then for each pairp of the
cellCJ , we choose randomly an integerνp, according to the Poisson distribution law:

P (ν) =
λ12

ν!
exp (−λ12),

with

λ12 = π
n1(NJ − 1)∆t

vol(CJ)
(R1 +R2)

2|u1 − u2|

with vol(CJ) being the volume of cellCJ , which is proportional to(zJ/z0)
2 for the nozzle

test case, andR1,R2 being the radii of the parcelsp1, p2. The coefficientλ12 represents the
mean number of collision, during(Nj −1) time steps, between a given droplet of parcelp2

and any droplet of parcelp1. Note that a given pair of parcels is chosen, on average, every
(Nj − 1) time steps.
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3. If νp = 0, no collisions occur during this time step between the parcels p1 andp2. Oth-
erwise, if νp > 0, parcelp1 undergoesνp coalescence with parcelp2 and the outcome
of a collision is treated as follows. First the weightn1 of the parcelp1 is replaced by
n′

1 = n1 − νpn2 and its other characteristics are left unchanged. Ifn′

1 ≤ 0, parcelp1 is
removed from the calculation. Secondly, the velocityu2 and the volumev2 of parcelp2 are
replaced by

v′2 = v2 + νpv1, u′2 =
v2u2 + νpv1u1

v2 + νpv1
,

and its weight,n2, is left unchanged.

Let us mention that, for each time step and each control volumeCJ , the computational cost
of this algorithm scales likeO(NJ). This is a great advantage compares to the O’Rourke
method, which scales likeO(N2

J ). Another algorithm, with the same scaling features, has
been introduced by Schmidt and Rutland in [34].

To obtain good accuracy, the time step,∆t, must be chosen small enough to ensure that the
number of collisions between two given parcels,p1 andp2, is such that for almost every time:
νpn2 ≤ n1. The average value ofνp beingλ12, this constraint is equivalent to the condition

n2NJ∆t

vol(CJ)
π(R1 +R2)

2|u1 − u2| ≪ 1. (75)

For the nozzle test case described above, this constraint reveals to be less restrictive than the
“CFL” condition

∀i = 1, ....N,
|ui|∆t

∆z
≪ 1, (76)

with ∆z being the mesh size. This condition is necessary to compute accurately the droplet
movement and in particular to avoid that a parcel goes through several control volumes during
the same time step. This is essential in order to have a good representation of the droplet
distribution function in each mesh cell.

Reference solution

The Lagrangian solver just described is used to provide reference solutions in stationary cases
with and without coalescence. In order to obtain a convergedsolution, particular attention
must be devoted to the choice of the number of parcels, the size of the cells, and the time
step.

For cases without coalescence, the computational cells areonly used to have spatially av-
eraged quantities to compare with Eulerian results. Moreover, the stationary aspect of the
problem allows averaging in time in order to obtain smooth solutions. For these reasons,
the conditions on the number of parcels and on the size of the computational cells are not
very restrictive in the absence of coalescence. The time step is only limited by the CFL-like
condition (76) needed for the convergence, with a low value.This last condition is the most
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restrictive since the scheme used for the transport of the particles is first order. For our test
cases, the time step must be10−6 s or smaller.

distribution evaporation No. of parcels No. of parcels inj./s

monomodal linear 41,560 100,000

monomodal nonlinear 20,440 1,000,000

bimodal nonlinear 6,320 200,000

Table 1
Number of parcels for the Lagrangian simulations for the cases without coalescence.

distribution evaporation No. of parcels No. of parcels inj./s min. No. of

parcels /cell

monomodal linear 160,000 200,000 40

bimodal linear 126,000 560,000 50

monomodal nonlinear 35,000 1,300,000 260

monomodal no 44,200 300,000 65

Table 2
Number of parcels for the Lagrangian simulations for the cases with coalescence.

For cases with coalescence, there are additional restrictions. First, the algorithm used for co-
alescence assumes that the droplet distribution function of the spray is nearly uniform over
each computational cell. However, in the region with high gradients of the gas velocity, that
is to say at the entrance of the nozzle, this distribution canchange quickly and the size of
the cells must be small enough to avoid numerical errors. Moreover, in order to properly de-
scribe the coalescence phenomenon in each cell with the stochastic algorithm, a sufficient
number of parcels must be present in each cell, typically on the order of 50, with a mini-
mum of 20 [1]. The smaller are the cells, the larger must be thenumber of parcels in the
computational domain. The required size of the cells is evaluated for the case where the size
distribution changes the most rapidly (the case without evaporation). We then employ a non-
uniform space discretization with 130 cells, with smaller cells near the entrance of the nozzle
defined using a uniform discretization for the variablez3/10. The number of parcels injected
per second is given in Tables 1 and 2.

3.5 Eulerian multi-fluid solver

Eulerian multi-fluid methods were developed as an alternative to Lagrangian methods for
the simulation of polydisperse evaporating sprays. A complete derivation of such methods
from the kinetic model is performed in [21] for dilute spraysand in [22] for sprays with
coalescence. The principle of the method is quite differentthan the one used in DQMOM.
Indeed, it can be considered as a finite-volume discretization in the droplet size phase space
for moments of order0 and1 of the velocity distribution conditioned on size.
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In laminar flows, it can be proven rigorously that it is sufficient to work with only these two
moments as long as the velocity distribution conditioned ondroplet size is mono-kinetic [7,8]
(i.e. all droplets with the same volume have identical velocities so that the size-conditioned
velocity variance is null.) By construction, the nozzle test problem will be mono-kinetic for
non-coalescing droplets. However, with coalescence the size-conditioned velocity variance
can be nonzero. Comparisons between the Lagrangian and Eulerian results in the presence of
coalescence will therefore allow us to quantify the magnitude of the error caused by invoking
the mono-kinetic assumption in the Eulerian models. (Recall that the choice of moments used
in the DQMOM linear system is equivalent to the mono-kineticassumption in the multi-fluid
model.) In this section, we provide only the main points of the derivation of the multi-fluid
model, as well as the underlying assumptions that are implied, and the resulting system of
equations that will be solved.

The first step consists of writing equations for the two moments in velocity. This leads to the
closed semi-kinetic model if the following assumption is made concerning the structure off :
f(v,u;x, t) = n(v;x, t)δ(u − ū(v;x, t)). In other words, the droplet velocity conditioned
on the size is assumed to be Dirac delta function. In the case of a coalescing spray, the
compatibility of such a condition with droplet coalescenceis far from obvious; however, the
semi-kinetic system of conservation equations can be obtained by using an asymptotic limit
as presented in [22].

The second step consists of discretizingn(v) in sections[v(j−1), v(j)) and in integrating the
semi-kinetic model over each section. This leads to a multi-fluid model (by using a presumed
distributionκ(j)(v) in each section), thereby yielding a conservation equationon the moment
associated with the mass density

n(v;x, t) = m(j)(x, t)κ(j)(v) where
∫ v(j)

v(j−1)
ρvκ(j)(v)dv = 1.

In addition, only the averaged velocity is considered in each section, i.e.̄u(v;x, t) = ū
(j)(x, t)

if v(j−1) ≤ v < v(j). The resulting system can be found in [22]. It can be rewritten and sim-
plified in the stationary, self-similar, 2D axisymmetricalconfiguration we are considering.

The resulting set of equations is

2m(j)uz
(j)

z
+ ∂z(m

(j)uz
(j)) = −(E

(j)
1 + E

(j)
2 )m(j) + E

(j+1)
1 m(j+1) + C(j)

m (77)

2m(j)

(

uz
(j)

z

)2

+ ∂z(m
(j)(uz

(j))2) =

− (E
(j)
1 + E

(j)
2 )m(j)uz

(j) + E
(j+1)
1 m(j+1)uz

(j+1) +m(j)F (j)
z + C(j)

muz (78)

whereuz
(j) is the axial velocity, which only depends onz, andruz

(j)/z is the radial ve-
locity, since the trajectories are straight lines. Moreover, E(j)

1 andE(j)
2 are the “classical”

pre-calculated vaporization coefficients [13,21]:

E
(j)
1 = −ρ v(j−1)Rv(v

(j−1)) κ(j)(v(j−1)) and E
(j)
2 = −

∫ v(j)

v(j−1)
ρRv(v) κ

(j)(v) dv,
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andF (j)
z (v(j)

u , uz
(j)) is the axial component of the “classical” pre-calculated drag force [13,21]:

F (j)
z =

∫ v(j)

v(j−1)
ρ v Fz(v, uz

(j)) κ(j)(v) dv where v(j)
u =





∫ v(j)

v(j−1) v κ(j)(v) dv
∫ v(j)

v(j−1) v1/3 κ(j)(v) dv





3/2

.

The source terms associated with coalescence phenomenon inthe mass and momentum equa-
tion, respectively, of thejth section read

C(j)
m = −m(j)

N
∑

k=1

m(k)VjkQjk +
I(j)
∑

i=1

m(o⋄ji)m(o∗ji)Vo⋄
ji

o∗
ji
(Q⋄

ji +Q∗

ji), (79)

C(j)
muz = −m(j)uz

(j)
N
∑

k=1

m(k)VjkQjk

+
I(j)
∑

i=1

m(o⋄
ji

)m(o∗
ji

)Vo⋄
ji

o∗
ji

(

uz
(o⋄

ji
)Q⋄

ji + uz
(o∗

ji
)Q∗

ji

)

, (80)

whereVjk = |uz
(j) − uz

(k)| and the collision integralsQjk, Q⋄

ji andQ∗

ji do not depend onz.
The disappearance integralsQjk are evaluated on rectangular domainsLjk = [v(j−1), v(j)] ×
[v(k−1), v(k)], whereas the appearance integrals,Q⋄

ji andQ∗

ji, are evaluated on the diagonal
stripsD⋄∗

j = {(v⋄, v∗), v(j−1) ≤ v⋄ + v∗ ≤ v(j)}/ ∪N
k=1 Lkk, which are symmetric strips with

respect to the axisv⋄ = v∗. These stripsD⋄∗

j are divided into domains, denoted byXji and
the symmetric one,Xsym

ji , where the velocity of the partners is constant. The domainsXji

andXsym
ji are the intersection ofD⋄∗

j with Lkl, k > l, andLkl, k < l, respectively; their
index is denotedi ∈ [1, I(j)] and we define two pointers that indicate the collision partners
for coalescence, at fixedi: o⋄ji = k ando∗ji = l.

The coefficients used in the model, either for the vaporization process or the drag forceE(j)
1 ,

E
(j)
2 andF (j)

z , j = [1, N ] in Eqs. (77–78), or for the coalescence:Qjk, j = [1, N ], k =

[1, N ], k 6= j, Q⋄

ji, Q
∗

ji, j = [2, N ], i = [1, I(j)] in Eqs. (79–80) can be pre-evaluated from
the choice ofκ(j) in each section. The algorithms for the evaluation of this coefficients are
provided in [22]. The distribution function is chosen constant as a function of the radius in the
sections 1 toN and exponentially decreasing as a function of the surface inthe last section,
as done in [22].

Because only the one-way coupled equations are solved and since the structure of the gas
velocity field is prescribed and stationary, we only have to solve the 1D ordinary differential
Eqs. (77,78) for each section. The problem is then reduced tothe integration of a stiff initial
value problem from the inlet where the droplets are injecteduntil the point where 99.9% of the
mass has evaporated. The integration is performed using LSODE for stiff ordinary differential
equations from the ODEPACK library [16]. It is based on BDF methods [14] (Backward
Differentiation Formulae) where the space step is evaluated at each iteration, given relative
and absolute error tolerances [16]. The relative tolerance, for the solutions presented in the
following, are taken to be10−4, and the absolute tolerance are related to the initial amount
of mass in the various sections, since it can vary of several orders of magnitude. Repeated
calculations with smaller tolerances have proved to provide essentially the same solutions.
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4 Results and Discussion

Simulations for the cases presented in the previous sectionwere carried out with the La-
grangian method, the multi-fluid model, and DQMOM. Except for the cases without evap-
oration for which the multi-fluid method is not well suited (it requires a large number of
sections and is only presented for comparison purposes), the Eulerian methods were solved
using a initial-value solver for ODEs and required very short computational times (i.e., CPU
secs) on a desktop computer. It is interesting to note that inthe case without evaporation, the
small computational cost still holds for the DQMOM approach.

In contrast, the time- andz-dependent Lagrangian simulations required several CPU hrs for
each case. Because the DQMOM and multi-fluid results do not depend on time, it is not ap-
propriate to compare the computing times directly. Nevertheless, it will generally be the case
that using Eulerian methods will result in a substantial reduction in the computing time for
solving the spray equation. Such a statement was studied in details in [22] for unsteady calcu-
lations and the conclusions drawn from that paper are applicable to the two Eulerian methods
presented here. Thus, the principal open question is whether or not the DQMOM results are
of comparable accuracy to the multi-fluid model and to the more costly Lagrangian simu-
lations. We will compare predictions for selected statistics from the three solution methods
in order to answer this question. For the monomodal distribution and DQMOM resolution,
several initial conditions will be used in the following an are presented in Table 3.

Monomodal distribution

Vol. moments,N=4 Rad. moments,N=4 Rad. moments,N=6 Rad. moments,N=8

n wn/N0 rn wn/N0 rn wn/N0 rn wn/N0 rn

1 0.7323 9.9955 0.1845 4.4079 8.5573E-2 3.3423 4.6445E-2 2.8465

2 0.2545 18.5282 0.5397 11.0409 0.2779 7.5262 0.1488 5.5373

3 1.288E-2 27.5630 0.2635 18.2840 5.5339E-2 12.9743 0.3089 9.6916

4 2.279E-4 36.0142 1.212E-2 28.3910 4.9778E-3 18.8823 0.3438 14.2697

5 3.1137E-4 26.3693 0.12931 19.2986

6 1.6671E-5 34.7171 2.0905E-2 25.2866

7 1.6982E-3 31.5808

8 6.5627E-5 37.5149

Table 3
Initial conditions for weights and abscissas found using QMOM.

The representative moments used to compare the three solution methods are the number den-
sitym0, the mass densitym1, the average axial velocity difference between droplets and the
gas phaseud, and the Sauter mean radiusr32. They are defined by

m0 =
∫

f(v,u) dv du, m1 =
∫

ρvf(v,u) dv du,
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ud =

∫

ρvuzf(v,u) dv du

m1
− V, r32 = (4π/3)1/3

∫

vf(v,u) dv du
∫

v2/3f(v,u) dv du
.

With the DQMOM approach, these quantities are written

m0 =
N
∑

n=1

wn, m1 =
N
∑

n=1

wnρvn,

ud =
N
∑

n=1

wnvn(ξn − V )/m1, r32 = (4π/3)1/3

∑N
n=1wnvn

∑N
n=1wnv

2/3
n

.

And with the multi-fluid method, they are

m0 =
N
∑

j=1

m(j)
∫ v(j)

v(j−1)
κ(j)(v)dv, m1 =

N
∑

j=1

m(j),

ud =
N
∑

j=1

m(j)(uz
(j) − V )/m1, r32 = (4π/3)1/3

∑N
j=1m

(j)
∫ v(j)

v(j−1) vκ(j)(v)dv
∑N

j=1m
(j)
∫ v(j)

v(j−1) v2/3κ(j)(v)dv
.

Note that in practical applications, the mass density is a key quantity because it represents the
total mass of liquid contained in the droplets. In the nozzletest case, the rate of coalescence is
strongly dependent on the velocity difference between droplets, which we find to be strongly
correlated with the average axial velocity difference. Indeed, ifud is not accurately captured,
then we find that the predictions for all moments will degradeaccordingly. In addition to the
moments, we will also compare the mean droplet velocity conditioned on the radius〈uz|r〉 at
selected downstream locations, as well as the mass distribution function (ρvf ). For the DQ-
MOM, the scaled weights will be used to represent the mass distribution function. Obviously,
since the sum of the weights equals the area under the mass distribution function, the absolute
value of the heights of the scaled weights is arbitrary. Nevertheless, the relative heights and
the locations provide insight into how well the quadrature points represent the distribution
function.

We should note that for the monomodal cases without coalescence, the results with no evap-
oration were essentially identical for all three solution methods. The results presented below
for the monomodal case with linear evaporation are representative of the quality of the pre-
dictions for all cases without coalescence and no evaporation. Likewise, for the bimodal case
without coalescence and with linear or no evaporation, DQMOM and the Lagrangian method
were essentially identical. The multi-fluid method also yielded very good results for these
cases if the number of sections was chosen large enough to mitigate the numerical diffusion
in the size phase space associated to the description of evaporation that leads to broadening of
the peaks. Nonetheless, because none of these cases revealed any unanticipated problems for
any of the simulation methods, we will not discuss them further. Instead, we will primarily
focus on cases that present particular challenges to one or more of the solution methods.

4.1 Monomodal case: linear evaporation without coalescence

We begin with a representative case where all three solutionmethods yield essentially iden-
tical results for all statistics. As noted in the discussionof the methods, for linear evap-
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Figure 2. Monomodal case with linear evaporation (Rv ≈ 7.126v). Top left: mass density. Top right:
velocity difference. Bottom left: mass distribution function (z = 16 cm). Bottom right: conditional
velocity (z = 16 cm).

oration without coalescence the DQMOM equation for each node is the same as the La-
grangian model. Thus, the only difference between the two solution methods is that the La-
grangian method uses many more particles to represent the spray than the DQMOM method
(N = 4). For the monomodal distribution, the multi-fluid model does not require many sec-
tions (N = 10) to accurately capture cases with linear evaporation without coalescence. The
simulation results for the three methods are shown in Fig. 2.It can be observed that the mass
density and velocity difference predicted by the three methods are nearly identical. From the
plot of the mass distribution function atz = 16 cm, we can see that the multi-fluid model
with ten sections does a good job of capturing the Lagrangianmass distribution function.
Likewise, the DQMOM weights and abscissas follow the general shape of the Lagrangian
mass distribution function. Finally, for the conditional velocity 〈uz|r〉 we see that all three
methods produce the same curve. We should note that for caseswithout coalescence the La-
grangian simulations predict essentially no velocity dispersion about the conditional value.
In other words, conditional velocity fluctuations defined byu′(r) ≡ 〈(uz − 〈uz|r〉)

2|r〉1/2 are
null. This is exactly one of the necessary conditions evokedwhen deriving the multi-fluid
model, which would explain why its predictions for this caseare in excellent agreement with
the Lagrangian method.

4.2 Monomodal case: nonlinear evaporation without coalescence

Cases with nonlinear evaporation result in a loss of droplets in finite time, which translates
into a nonzero fluxψ(t) in DQMOM. For the monomodal case without coalescence, we
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Figure 3. Monomodal distribution function with optimal sections.

expect the flux term to be a smooth function oft, and thus it cannot be neglected. In the
multi-fluid model, the flux is computed directly from the shape of the first section (i.e., the
section near the origin) and does not yield any difficulty.

In our multi-fluid simulations, we use the “optimal” choice of sections withN = 12 shown
in Fig. 3 [23]. Obviously, a finer discretization (largerN) could be used in the multi-fluid
model to attain closer agreement with the Lagrangian method, but this would increase the
computational cost. Note that the first section is represented by a constant slope, which cor-
responds to a constant flux level at each time step. For the DQMOM, we useN = 4 and
the evaporative flux is computed using the ratio constraintsintroduced in Section 2.3. It can
be noticed that the increase ofN do not imply an increase of the number of conserved mo-
ments during the evaporation step since the number of ratio constraints is also increasing in
the same way. The value ofN is then conditioned by the capacity of the method to follow the
dynamics of droplets of different sizes. Representative results for the three solution methods
are shown in Fig. 4. In general, all three methods produce very similar predictions. From the
number density, we can observe that DQMOM with the ratio constraints does a good job of
predicting the loss of droplets due to evaporation. Likewise, the mass densities found from all
methods are very close. We should note that forz > 20 cm the number of remaining droplets
is very small and the statistics computed from the Lagrangian method are subject to statistical
errors. Comparing the Sauter mean radii predicted by the three methods, we can observe that
the agreement is generally satisfactory up toz = 20 cm. The DQMOM shows the largest
deviation from the Lagrangian method atz = 20 cm due to errors in the flux model, but
the agreement is still acceptable. The differences in the Sauter mean radius are reflected in
the predictions of the velocity difference. In general, droplets with a larger radius will have
a higher velocity difference. Thus, we see that initially the Sauter mean radius predicted by
DQMOM is larger than that from the Lagrangian method, resulting in a slightly higher ve-
locity difference atz = 12 cm. Later on (z > 15 cm) this trend is reversed. Finally, we can
note that neglecting the flux in DQMOM yields poor predictions of number density since we
can observe the artificial jumps in the number density related to the singular fluxes associated
to one abscissa crossing the zero size limit, as well as the oscillating dynamics of the Sauter
mean radius for this case.
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Figure 4. Monomodal case with nonlinear evaporation. Top left: number density. Top right: mass
density. Bottom left: Sauter mean radius. Bottom right: velocity difference.

4.3 Bimodal case: nonlinear evaporation without coalescence

By changing from the monomodal to the bimodal distribution,we change the nature of the
initial distribution function and thus the nature of the numerical difficulties. For the multi-fluid
model, the bimodal case is difficult because a relatively large number of sections (N = 30)
is needed to capture the two peaks with acceptable numericaldiffusion. The use of a second-
order method developed in [20] would reduce this number to around 10; however, it would
still be difficult to describe Dirac delta function by a finite-volume approximation. On the
other hand, this case is “optimal” for DQMOM because only two(N = 2) abscissas are
required (one for each peak) and the flux is null, expect when apeak passes the origin. In
Fig. 5 results from the three simulation methods are shown and it is clear that DQMOM
performs extremely well for this case by settingψ = 0. For example, the number density
function shows step changes atz = 7.2 cm and13.8 cm (i.e., when a peak passes the origin),
and DQMOM exactly reproduces this behavior. WithN = 30, the multi-fluid model does
a good job of predicting the mass density. However, from the plots of number density and
Sauter mean radius, we can observe the negative effects of numerical diffusion, which tends
to smooth out the peaks in the distribution (the method has been shown to be first order
in the droplet size discretization step in [20], where some higher-order methods have been
proposed). Nevertheless, all three methods yield reasonable predictions for all of the cases
without coalescence. We should note, however, that for morecomplicated initial distributions
(e.g., delta functions combined with smooth functions) specifying the evaporative flux in
DQMOM may be problematic.
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Figure 5. Bimodal case with nonlinear evaporation. Top left: number density. Top right: mass density.
Bottom left: Sauter mean radius. Bottom right: velocity difference.

4.4 Monomodal case: linear evaporation with coalescence

We now turn to the more difficult cases that include coalescence. As mentioned earlier, the
coalescence of droplets with different volumes (and velocities) will lead to velocity disper-
sion (u′(r) > 0). Physically, this implies that two droplets with the same volume will have a
nonzero probability of colliding (due to the difference in velocity). Thus, the rate of coales-
cence whenu′(r) > 0 will be larger than whenu′(r) = 0. Numerical approximations (such
as the multi-fluid model) that assumeu′(r) = 0 should therefore predict smaller droplets than
the Lagrangian method. In Fig. 6 we present results for the three methods for linear evapora-
tion (ψ = 0) with coalescence. ¿From the velocity difference we can observe that coalescence
leads to a slower relaxation to the gas velocity due to formation of larger droplets than without
coalescence. Note that in general all three methods predictsimilar results for the velocity dif-
ference. However, due the differences in the predictions ofthe shape of the mass distribution
function, the multi-fluid model predicts slightly slower relaxation and the DQMOM slightly
faster than is found with the Lagrangian method. Comparing with Fig. 1, we can observe that
coalescence leads to much larger droplets than are present in the initial distribution function.
In general, the multi-fluid model predicts a slightly largernumber of droplets above80 µm
than the Lagrangian method. Nevertheless, the predictionsare in reasonably good agreement.
The predictions for the conditional velocity〈uz|r〉 are also good. Finally, note that we used
N = 6 with DQMOM, the reason for which will be discussed for a more difficult case in
Section 4.7.
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Figure 6. Monomodal case with linear evaporation (Rv ≈ 7.126v) and coalescence. Top left: mass
density. Top right: velocity difference. Bottom left: massdistribution function (z = 22 cm). Bottom
right: conditional velocity (z = 22 cm).

4.5 Bimodal case: linear evaporation with coalescence

We now consider a more difficult case where the initial distribution is bimodal. As discussed
previously, the peaks in the distribution are difficult to resolve accurately in the multi-fluid
model with a limited number of sections . When combined with coalescence, this has impor-
tant consequences because numerical diffusion can lead to spurious coalescence of droplets
with slightly different volumes (and hence velocities) as observed in [22]. For example, with
the bimodal distribution with droplets of radii10 and30 µm, coalescence cannot produce
droplets below30 µm. However, spurious coalescence between droplets of radiinear10 µm
leads to droplets in the range below30 µm. We overcome this difficultly by using a large
number of sections (N = 500) in the multi-fluid model. This number could also be reduced
by using a second-order method for the evaporation such as the one of [20] but this is not
the point we want to make with this configuration. Note that the same problem arises in the
Lagrangian method when the spatial cell size∆z is too large. While DQMOM does not suffer
from spurious coalescence, the bimodal case is still difficult because the initially two-peak
distribution will quickly form multiple peaks due to pair-wise collisions. WithN = 6 in DQ-
MOM, it is at best possible to represent six peaks. Results for the three methods are shown in
Fig. 7 where it can be seen that the mass density and the velocity difference are reasonably
well predicted by the multi-fluid model and DQMOM. From the mass distribution function
at z = 11 cm, the multi-peak structure due to coalescence is quite evident, as is the slight
numerical diffusion in the multi-fluid model (even withN = 500, but this is expected since
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Figure 7. Bimodal case with linear evaporation (Rv ≈ 14.252v) and coalescence. Top left: mass
density. Top right: velocity difference. Bottom left: massdistribution function (z = 11 cm). Bottom
right: conditional velocity (z = 11 cm).

this is a first-order method). Note that DQMOM withN = 6 has two abscissas at points cor-
responding to the major peaks (10 and33 µm), and the remaining abscissas at points without
major peaks. Comparisons of the conditional velocity predicted by the three methods are also
quite favorable for this difficult case.

4.6 Monomodal case: nonlinear evaporation with coalescence

We will now consider the more physically relevant case of nonlinear evaporation. As dis-
cussed earlier, the evaporative flux for this case is nonzero, so we will need to model it in
DQMOM. Here, we consider two models forψ: (a) ratio constraints and (b)ψ = 0. Because
the initial distribution is monomodal, we might expect thatusing ratio constraints is always
a better choice. On the other hand, if coalescence is much faster than evaporation, it might
happen that droplets grow faster than they disappear so thatthe evaporative flux is closer to
zero. For the multi-fluid model, we useN = 15 sections. Results for the three methods are
shown in Fig. 8. The number density illustrates the effect ofthe choice ofψ in DQMOM.
With ψ = 0, the number density changes discontinuously whenever an abscissa passes the
origin. However, DQMOM with ratio constraints yields predictions very similar to the other
two methods. Likewise, the mass density is predicted to be very similar for all three meth-
ods; however, using zero flux with DQMOM is slightly worse. The predictions for the Sauter
mean radius show opposing trends. In general, the multi-fluid model overpredicts the mean
radius (i.e. predicts too much coalescence), while DQMOM underpredicts it. As before, for
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Figure 8. Monomodal case with nonlinear evaporation and coalescence. Top left: number density. Top
right: mass density. Bottom left: Sauter mean radius. Bottom right: velocity difference.

the DQMOM predictions, the results with the ratio constraints are best. The predictions for
the velocity difference follows the same trend. As discussed in the next example, the differ-
ences observed between the Lagrangian method and the two Eulerian methods is likely due
to the latter’s inability to capture velocity dispersion. Moreover, we have usedN = 6 with
DQMOM since, as shown in Section 4.7, it is adequate to describe coalescence phenomenon
for this particular set of moments.

4.7 Monomodal case: coalescence with no evaporation

In order to highlight the role of coalescence on determiningthe evolution of the number den-
sity function, we now consider a case with no evaporation. For this case, droplets will grow
continuously due to coalescence, and velocity dispersion will enhance the collision rate and
lead to even larger droplets. Because the multi-fluid model uses fixed sections, it is necessary
to fix the maximum radius at200 µm withN = 500 in order to capture the largest droplets
at z = 30 cm. In contrast, the abscissas in DQMOM move in phase space toaccommodate
growth. Nevertheless, we can anticipate that the number of abscissas will affect the accuracy
of the DQMOM predictions. In Fig. 10 it can be observed that when the number of moments
increases, the accuracy of the DQMOM solution increases, from something almost ignoring
the coalescence phenomenon withN = 2 to a saturation of the accuracy forN ≥ 8. Indeed,
the accuracy of the DQMOM for the description of the coalescence is related to the accuracy
of the approximation of the coalescence operator by the quadrature formula (24) and (26),
which increases withN . Since the results are quite good and at a low cost (and the linear
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Figure 9. Monomodal case with coalescence but no evaporation. Top left: mass density. Top right:
velocity difference. Bottom left: mass distribution (z = 22 cm). Bottom right: conditional velocity
(z = 22 cm).

system is reasonably well conditioned), we will useN = 6 for comparisons with the other
two methods.

As mentioned earlier, without coalescence or evaporation all three methods predict essen-
tially identical results. In Fig. 9 the results for the pure coalescence case are shown. Notice
that the mass density does not decrease to zero because thereis no evaporation; however, it
does change due to transport. From the velocity difference,we can see that the multi-fluid
model and DQMOM overpredict the relaxation rate. As discussed previously, this is due to
both methods underpredicting the mean droplet size. From the mass distribution functions at
z = 22 cm, we can observe that the Lagrangian method has more droplets with radii above
80 µm than the multi-fluid model, which is consistent with the observed trend in the velocity
difference. In order to explore the link between velocity dispersion and coalescence, we have
computed 50% probability intervals for the conditional velocity. These are defined to be the
values ofv for which the conditional velocity PDFf(v|r) is fifty percent of its peak value.
Note that in the absence of velocity dispersionf(v|r) is a delta function centered at〈uz|r〉,
so the width of the intervals is a measure of dispersion. Fromthe plot of conditional velocity,
we can note that for large droplets the velocity dispersion is significant. We can also note that
using DQMOM essentially results in points along the curve〈uz|r〉, i.e., increasingN with
the same choice of moments does not capture the velocity dispersion.
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Figure 10. Monomodal case with coalescence but no evaporation. Top left: mass density. Top right:
error on the mass density. Bottom left: velocity difference. Bottom right: error on the velocity differ-
ence.

5 Conclusions

In this work, we have implemented DQMOM to treat the Williamsspray equation that de-
scribes evaporation, acceleration and coalescence of liquid droplets in a laminar gas flow. The
derivation of the DQMOM equations was shown to be a straightforward task, and resulted in
a linear system for the source terms. The right-hand side of this linear system is non-zero only
in the presence of coalescence or non-linear evaporation. The coefficient matrix depends on
the choice of moments used in DQMOM.

We have compared this method, as well as the solution obtained with another Eulerian method:
the multi-fluid model, to the reference solution produced bya classical Lagrangian solver. As
far as coalescence phenomena are concerned, the efficiency of DQMOM has been shown to
be better than the multi-fluid model due to its limited numerical diffusion in the size phase
space, especially for the bimodal distribution function. However, as far as the evaporation
process is concerned, it is comparable to the multi-fluid model, but still needs a further study
in order to fully understand how to treat optimally the issueof the evaporative flux due to
droplet disappearance. Although this issue has been so far neglected in the literature on mo-
ment methods, our study illustrates that it has an importanteffect on the moment dynamics.

The principal conclusion from this study is that DQMOM is numerically robust and straight-
forward to implement for the Williams spray equation and that it will be a very good candidate
for more complex two-phase combustion applications once the issue of the evaporative flux
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is further improved.
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