
HAL Id: hal-00157268
https://hal.science/hal-00157268v1

Submitted on 25 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Properties of two’s complement floating point notations
Sylvie Boldo, Marc Daumas

To cite this version:
Sylvie Boldo, Marc Daumas. Properties of two’s complement floating point notations. International
Journal on Software Tools for Technology Transfer, 2003, 5 (2-3), pp.237-246. �10.1007/s10009-003-
0120-y�. �hal-00157268�

https://hal.science/hal-00157268v1
https://hal.archives-ouvertes.fr

Int J Softw Tools Technol Transfer (2003) / Digital Object Identifier (DOI) 10.1007/s10009-003-0120-y

Properties of two’s complement floating point notations

Sylvie Boldo, Marc Daumas

Laboratoire de l’Informatique du Parallélisme UMR 5668 CNRS ENS de Lyon, INRIA France
e-mail: {Sylvie.Boldo, Marc.Daumas}@ENS-Lyon.Fr
Published online: 9 December 2003 – Springer-Verlag 2003

Abstract. Few designs, mostly those of Texas Instru-
ments, continue to use two’s complement floating point
units. Such units are simpler to build and to validate,
but they do not comply to the dominant IEEE standard
for floating point arithmetic. We compare some proper-
ties of the two systems in this text. Some features are
lost, but others remain unchanged. One strong example is
the case of Sterbenz’s theorem and our recent extension.
We show in the paper that the theorem and its extension
hold for the two’s complement architecture. Still, users
should ensure that results are large enough on circuits
that do not implement gradual underflow. Theorems have
been proven and validated using the Coq automatic proof
checker.

Keywords: Digital signal processing – Avionics – For-
mal proof

1 Introduction

Floating point arithmetic is dominated by the ANSI–
IEEE 754 [35] and 854 [6] standards that use signed-
magnitude notations. On the one hand, implementing
common two’s complement notations would save cir-
cuit area. On the other hand, most studies of floating
point arithmetic have been done using the IEEE stan-
dard arithmetic. Moreover, signed-magnitude notations
allow better treatment of exceptions with signed zeros.
No general-purpose processor trades these advantages for
a limited number of transistors.
However, DSP (digital signal processor) designers do

care about area savings as their circuits are intended to be
produced in huge amounts and should be priced as tightly
as possible. This is the case for Texas Instruments’ TMS
320C3x [36], which implements two’s complement float-
ing point arithmetic. Using two’s complement is clearly

advantageous for hardware designers, and we will see
in this work how the decision to use two’s complement
changes properties of floating point numbers from a user’s
point of view compared to signed-magnitude notations.
Because DSPs are simple and inexpensive to produce,

they are a natural choice for mass production of consumer
goods. But DSPs can also be integrated into very expen-
sive jetliners. Military-grade processor SMJ 320C3x cir-
cuits should be preferred for avionics and military appli-
cations. In this case, designers expect that, since DSP ar-
chitecture is simple, they will continue working correctly
in situations where a general-purpose processor may fail.
They may be used as redundant devices of more elab-

orate processors or to disable the devices when suspect.
This situation occurs in the flight control primary and
secondary computers (FCPC/FCSC) [23]. From a user’s
point of view, it is critical that the intended hardware
differences do not make too many changes to the imple-
mented arithmetic.
This paper presents properties and proofs of two dif-

ferent options: (i) the dominant IEEE standard floating
point arithmetic and (ii) the uncommon two’s comple-
ment arithmetic implemented in DSPs. We have shown
in [3] that a few very natural conditions of implemented
floating point arithmetic are sufficient to narrow our focus
down to these two options.
We were especially interested in the well-used Ster-

benz’s theorem [34]: given two floating point numbers x
and y such that

y

2
≤ x≤ 2y,

the implemented subtraction x�y is exact provided the
system carries at least one guard bit. We have shown
that we first have to check that the exact difference x−y
can be represented in the given floating point format. On
IEEE standard floating point systems, Sterbenz’s theo-

S. Boldo and M. Daumas: Properties of two’s complement floating point notations

rem in its usual form is a straightforward consequence of
our result. On other systems such as the Texas Instru-
ments TMS 320C3x, we have to verify that the implemen-
tation actually computes the expected result.
As we compare properties of a very common model

against a rarely studied one, it seems unavoidable to use
automatic proof checking. Even careful proofs may er-
roneously refer to properties of the very common IEEE
model since authors, reviewers, and readers are almost
uniquely trained in writing proofs in this model. Past
studies have shown that automatic proof checking should
also be used to validate safety-critical systems [20, 30].
This also allows us to state very general results, especially
concerning the radix used.
Section 2 explains the actual technology used to rep-

resent signed integers and how the Texas Instruments
TMS 320C3x works. We relate our theorems to real
hardware implementations with the flowchart of Texas
Instruments’ TMS 320C3x addition. Section 3 describes
our formal approach to floating point numbers. Sec-
tion 4 recalls a few key properties shared by both options.
Section 5 extends conditions of Sterbenz’s theorem. Sec-
tion 6 concludes and proposes perspectives for further
developments.

2 Two’s complement implemented floating point
arithmetic

2.1 Representing signed integers

Signed integers can be represented in a variety of ways.
We immediately recall signed-magnitude and two’s com-
plement, as mantissas of floating point numbers are
signed integers (or more exactly signed fixed point
numbers).
For integer arithmetic, hardware designers and users

have long agreed on two’s complement arithmetic.
A p+1 bit signed number is represented by a bit s and a p
bit unsigned binary component n. It is valued to

−s×2p+n,

as opposed to

(−1)s×n

for the signed-magnitude interpretation. Such a choice re-
mains open for floating point arithmetic.
With p+1 bits, two’s complement notation is able to

represent all the integer numbers in the range

{−2p, . . . , 2p−1}.

We divide the integer interpretation by 2p−1 to get the
fixed point interpretation of manuals. Bits of n are num-
bered b0 down to b1−p. The two’s complement notation
means

−2× s+(b0 . b−1b−2 · · · b2−pb1−p)2

and the signed-magnitude notation means

(−1)s× (b0 . b−1b−2 · · · b2−pb1−p)2.

The discrete intervals of represented values are

{−2, . . . , 2−21−p}

and

{−2+21−p, . . . , 2−21−p}

with a step of 21−p.
In the signed-magnitude notation, a normalized man-

tissa is defined by b0 = 1 and a denormal one by b0 = 0.
For the two’s complement notation, a normalized man-
tissa is defined by b0 = ¬s (Boolean negation) and a de-
normal one by b0 = s. The range of possible denormal
mantissas is

{−1, . . . , 1−21−p}

and

{−1+21−p, . . . , 1−21−p}.

We deduce that a mantissam is normalized if and only if
2×m exceeds the admissible range.

2.2 Texas Instruments’ implementation of the subtraction

The formal conclusion of Theorem 6 of Sect. 5 states that
under mild assumptions and provided

y

2
≤ x≤ 2y (1)

there exists a representable number that is the ex-
act result of x− y. We have to look at the way the
addition/subtraction is performed by TMS 320C3x to
be sure that this exact result is really returned by the
unit.
Figure 1 presents a simplified version of the addition

flowchart. This operation is first performed on extended
precision and then rounded.
The mantissa of one input is shifted down, and the

length of the shift is given by the difference of exponents.
Following (1), we know from Theorem 3 of Sect. 4.2 that
this length is at most 1.
The result of the addition of the mantissas may use up

to 32 bits. That means that 8 additional bits are available
for the intermediate result. No bit is discarded during the
shift, and the exact result is computed by the addition of
the mantissa. These steps do not introduce any rounding
error since, following Theorem 6 of Sect. 5 under the con-
dition satisfied by Theorem 1 of Sect. 4.1, the result fits
the 24-bit format.
We deduce immediately from (1) that

x−y ∈ [−y/2; y],

S. Boldo and M. Daumas: Properties of two’s complement floating point notations

Fig. 1. Flowchart for floating point addition followed by
a rounding instruction

and thus no overflow can occur. If the exact result is a de-
normal number, TMS 320C3x returns 0, as this processor
does not handle such numbers. This ends the proof.
The subtraction is also correct when

2y ≤ x≤
y

2
.

The proof may abundantly use Theorem 1 of Sect. 4.1 and
the above-mentioned theorems or we may replace Theo-
rem 6 of Sect. 5 by Theorem 8 of Sect. 5.2, whereNi =N

∗
i ,

Ns =N
∗
s , and Ei =E

∗
i (hypotheses of Theorem 8).

Adding a new case to the result of [17], we see that one
guard bit is sufficient for Sterbenz’s theorem to hold using
a different notation than the IEEE-like signed-magnitude
notation for the mantissa. On the contrary, Sterbenz’s
theorem does not hold if users manipulate extended num-
bers rather than single precision numbers. In this case,

the operation is performed without any guard bit and the
result is not necessarily found by the floating point unit.

3 Formal approach to floating point numbers

3.1 Fallacies and pitfalls

Setting up a formal specification of floating point arith-
metic is difficult, as it should be correct, complete, and
useful. The literature shows that none of these pitfalls
should be regarded as easily avoided.
The first formal specification on floating point arith-

metic can be dated back to 1989 [2]. It focuses on the
IEEE 754 standard for binary floating point arithmetic
and tries to illustrate the advantages to be gained by
using a nonalgorithmic formalism such as Z in the spe-
cification. The author later uses the formalization to
prove the correctness of Ocaml procedures to perform the
nonexceptional arithmetic functions and mimic the IN-
MOS T800 transputer’s floating point hardware.
There was a transcription error in the formal specifi-

cation recalled by Professor William Kahan at the July
2002 meeting of the IEEE 754R group in Cupertino, CA.1

Somewhere in the specification, the most negative binary
integer was not correct, so the routing in add/subtract
operations went the wrong way when signed zeros were
used.
Because this first specification did not fully imple-

ment separate overflow, divide-by-zero, and invalid ex-
ceptions, it is not complete. Academic specifications such
as ours tend to remain incomplete as they are used by
specialists to explore properties. Nevertheless, only fully
complete specifications should be used to validate imple-
mentations. The flag error of the integer conversion first
detected by a user with a Pentium Pro [7] had not been
detected earlier because specifications used at Intel were
not complete [5, 27].
Theorem provers have long been used to mechanic-

ally check the correctness of floating point algorithms
with PVS [19, 26], HOL [16], or ACL2 [31], and one spe-
cification has been motivated by avionic application [4].
Guaranteeing the completeness of a specification with re-
spect to a text in a natural language is probably beyond
the scope of formal proof. A high-level specification using
higher-order logic tools is easier to review than specifica-
tions limited to more elementary logic and objects.
For these reasons, all our results have been developed

and validated using Coq proof assistant [18]. Coq is
a theorem checking system based on the Curry–Howard
isomorphism. Systems like Coq allow users to define new
objects and to derive consequences of these definitions
formally while checking every detail. Coq is based on
higher-order logic; therefore, it is possible to state prop-
erties in their most general form. For example, universal

1 http://grouper.ieee.org/groups/754/.

S. Boldo and M. Daumas: Properties of two’s complement floating point notations

quantification has been used to state properties that are
true for any rounding mode. Higher logic is needed as
rounding modes are defined to be arbitrary properties
between real values and floating point numbers.
Proofs are built interactively using high-level tactics

that may solve some “easy” subgoals. We used pcoq [1],
a working environment for Coq with a nice graphical in-
terface and a “pretty” printer.
At the end of each proof, Coq records a proof object

that contains all the details of derivation and ensures that
the theorem is valid. These objects can be double-checked
for life-critical applications by tools such as BindLib,
a program designed independently of Coq developers.
All our proofs can be downloaded on the Internet at

http://perso.ens-lyon.fr/sylvie.boldo/coq.

They are based on early developments of the floating
point library [12] available at

http://www-sop.inria.fr/lemme/AOC/.

We describe next our abstract data type for floating
point arithmetic. As stated earlier, a specification should
be as concise as possible to remain trusted. The rep-
resentations are abstracted to generic integers to work
with simple definitions. Parameters are later tuned ex-
actly to fit the different number representations presented
above.

3.2 Abstract definition of floating point numbers

A generic floating point number is a pair of integers (n, e).
It is mapped from Z2 onto R by

(n, e) ↪→ n×βe,

where β, the radix of the floating point system, is a con-
stant integer strictly greater than one.2 Later n will be
called the mantissa and e the exponent.
Float is defined below in Coq:

Record float : Set := Float {

Fnum: Z;

Fexp: Z }.

The value of one element is obtained by using the con-
stant parameter β and the FtoR function corresponding
to ↪→:

Definition FtoR := [x : float]

(Rmult (Fnum x)

(powerRZ (IZR radix) (Fexp x))).

Two pairs are equivalent if they are mapped to the
same real value. This equality will be denoted by =R.
Coq files are barely understandable to nonusers. Theo-
rems and definitions will be presented using a “pretty”
printer. Below is an example obtained from the previous
definition:

2 The floating point radix is not necessarily related to the integer
radix of Sect. 2.1.

Definition 1.
FtoR := x : float �−→ Fnum(x)×βFexp(x).

Quantities treated by computers must fit into finite
fields; we focus our interest on pairs (n, e) such that n and
e are bounded. For practical reasons, we do not use an up-
per bound on the exponent and overflow is not yet defined
in our formalism. A representable floating point pair is
such that

n ∈ {−Ni, · · · , Ns} and e≥−Ei,

where Ni and Ns are set according to the description
of Sect. 2.1. So Ni = Ns = γ

p− 1 corresponds to IEEE
754-like behavior, i.e., signed-magnitude p-digit man-
tissa. The case where Ni = Ns+1 = 2

p corresponds to
two’s complement implementation. The IEEE standards
set

Ei = 2
l−1+p−3

for an l bit exponent field, that is, Ei = 149 for single
precision and Ei = 1074 for double precision. Texas In-
struments’ TMS 320C3x usesEi = 148 for single precision
and Ei = 156 for extended precision.
The definition of representable pairs in Coq is given

next.

Definition 2. FboundedI := b : FboundI, d : float �−→

(−vNumInf(b)≤ Fnum(d))∧
(Fnum(d)≤ vNumSup(b))∧
(−dIExp(b)≤ Fexp(d)) .

Unless explicitly specified, the following properties
hold for any radix and any bounds on the mantissa and
the exponent.

3.3 Multiple representations

Like the IEEE standard on extended formats, our pro-
posed library possibly defines many representable pairs
with the same value. For example, the three radix two
pairs

(11002, 4)2 , (1102, 5)2 , and (112, 6)2

share the same real value 3×26 = 192. This fact can be
disturbing as one real value can be associated with many
different representable pairs that do not share the same
properties.
To retain common floating point behavior, we define

a canonical pair for each representable pair. This pair is
meant to represent the actual fields stored in a computer
that are associated with the number. A pair is normal if
it is representable and its exponent cannot be reduced by
multiplying the mantissa by the radix, that is to say

n×β �∈ {−Ni, · · · , Ns}.

S. Boldo and M. Daumas: Properties of two’s complement floating point notations

A pair is denormal if it is representable and the ex-
ponent reduction is impossible because the minimal ac-
cepted exponent is already used, despite the mantissa
being small enough to be multiplied by the radix. That is,

n×β ∈ {−Ni, · · · , Ns} and e=−Ei.

Any representable pair is equivalent to one unique
pair, either normal or denormal. The unique pair is called
the machine pair. Few theorems are needed to arrive at
this conclusion.
The first one, FcanonicIUnique, states that if p and q

are two machine pairs such that p=R q, then p and q are
syntactically equal (Leibniz’s equality). Other theorems
prove the correctness of FnormalizeI, the function de-
fined below, in constructing the machine representation
from any representable pair:

Fixpoint FNIAux [v, N, q : nat] : nat :=

Cases q of

O => O

|(S q’) =>

Cases

(Zcompare (Zmult (Zpower_nat radix q’) v)

(Zmult radix N)) of

INFERIEUR => q’

| EGAL => q’

| _ => (FNIAux v N q’)

end

end.

Definition FNI :=

[q, N : nat] (pred (FNIAux q N (S (S N)))).

Definition FnormalizeI :=

[b : FboundI] [p : float]

Cases (Zcompare ZERO (Fnum p)) of

EGAL => (Float ZERO (Zopp (dIExp b)))

| INFERIEUR => (Fshift radix (min

(FNI (absolu (Fnum p)) (vNumSup b))

(absolu (Zplus (Fexp p) (dIExp b)))) p)

| SUPERIEUR => (Fshift radix (min

(FNI (absolu (Fnum p)) (vNumInf b))

(absolu (Zplus (Fexp p) (dIExp b)))) p)

end.

Expressing that the function is correct means that
(i) if p is representable, then the result FnormalizeI(p)
is representable (FnormalizeIBounded). It also means
that (ii) the result is a machine pair (FnormalizeIFcano-
nicI) such that (iii) the input pair p and the result pair
are mapped to the same real value, which is to say p=R
FnormalizeI(p) (FnormalizeICorrect). We omit these
proofs as they are quite cumbersome, though not difficult.
The number system that we have just defined handles

denormal numbers (gradual underflow) as this helps write
more robust codes [13]. Sterbenz’s theorem, which will be
presented in Sect. 5, cannot be true if denormal numbers
are not allowed. Let λ be the lowest positive normal num-

ber. Its value is

λ=

(⌊
Ns

β

⌋
+1

)
×β−Ei

and the following floating point number is

λ+ =

(⌊
Ns

β

⌋
+2

)
×β−Ei .

The quantities λ and λ+ satisfy λ+/2≤ λ≤ 2λ+ and

λ+−λ= β−Ei ,

which is a denormal number. This example shows that,
without allowing denormal numbers, the subtraction of x
and y under the conditions of Sterbenz’s theoremmay not
be represented.

4 Key properties

In this section, we address “basic” questions on number
systems with radix-independent theorems.

4.1 Negating a number

A representable pair p can be negated if there exists an-
other representable pair q such that q =R −p. On IEEE-
compliant computers, the mantissa is stored with sepa-
rate sign and magnitude. It corresponds to Ni =Ns, and
so it follows that any number can be easily negated by
flipping the sign bit.
This fact is not necessarily true on all floating point

systems. The following theorem, checkedwith Coq (Fopp-
BoundedI, FoppBoundedI2, and FoppBoundedIInv), an-
swers the question for two’s complement notation.

Theorem 1. On a floating point system bounded by Ni,
Ns, and Ei with Ni �= Ns, any representable pair can be
negated to a representable pair if and only if

|Ni−Ns|= 1 and β | max(Ni, Ns).

Proof. Without loss of generality, we assume that Ns >
Ni. As a consequence, any pair (n, e) with

n ∈ {−Ni, · · · , Ni}

can be easily negated into a representable pair by negat-
ing its mantissa. The pairs (n, e) with

n ∈ {Ni+1, · · · , Ns}

can only be negated by manipulating the exponent.
Therefore, β should divide all the n ∈ {Ni+1, · · · , Ns}.
That is possible only for Ni+1=Ns if β divides Ns.
On the contrary, if Ns is a multiple of β and

Ni = Ns− 1, any representable pair can be negated to
another representable pair. �

S. Boldo and M. Daumas: Properties of two’s complement floating point notations

The case studies for a system that does not handle de-
normal numbers and for the upper bound on the exponent
are treated separately with theorem FoppBoundedIExp,
omitted here. Only two numbers cannot be negated with
TMS 320C3x two’s complement notation. Negating these
two numbers causes either

overflow: the opposite of the formal machine pair just
above the positive overflow threshold can be repre-
sented, but its negation causes an overflow; or

underflow: the positive underflow threshold is repre-
sentable but it cannot be negated as denormals are not
implemented on TMS 320C3x.

The next theorem is used to prove that the nega-
tion is the only opposite on a system that handles de-
normal numbers, i.e., if the rounding of x+y is 0, then
y is the negation of x. Rephrasing [22], we prove in
OppositeIUnique that the distance between two differ-
ent floating point numbers is at least β−Ei .

Theorem 2. On a floating point system bounded by Ni,
Ns, and Ei with an arbitrary rounding mode, let x and y
be two representable pairs. If x+y �=R 0 and z is a rounded
result of x+y, then |z| ≥ β−Ei .

Proof. We first restrict the proof to the case where
−x < y, that is, x+y > 0. As x and y are representable,
there exist two integersmx andmy such that

x=mx×β
−Ei and y =my×β

−Ei .

It follows that x+y= (mx+my)×β−Ei . As x+y > 0,
we deduce thatmx+my > 0. Sincemx+my is an integer,
mx+my ≥ 1 and x+y ≥ β−Ei .
The active rounding mode is monotonic. Since x+

y ≥ β−Ei , the rounded value of x+y is greater than the
rounded value of β−Ei . The first quantity is z, and the
second one is β−Ei , as a representable pair is not changed
by rounding. We conclude that |z|= z ≥ β−Ei .
The symmetric case where y < −x is handled in the

same way. �

We conclude, as in [3], that we prefer to use signed-
magnitude or two’s complement as opposed to an arbi-
trary notation.

4.2 Lexicographic order

Many authors, including [8], have recognized that it is
a nice feature to have lexicographic order of positive ma-
chine representations coincide with the order of repre-
sented real values. As this fact is not necessarily trivial in
a generic floating point system, we establish the two fol-
lowing theorems based on LexicoPosCanI, LexicoNeg-
CanI, and LexicoCanI. The first one will be used in the
proof of our first generalization of Sterbenz’s theorem.

Theorem 3. On a floating point system bounded by Ni,
Ns, and Ei, for anymachine pair (nx, ex) representing x

and any representable pair (ny, ey) representing y,

|x| ≤ |y| and xy ≥ 0 implies ex ≤ ey.

Proof. We assume that x≥ 0. The other case is handled
similarly. As (nx, ex) is a machine pair, it is either normal
or subnormal. If it is subnormal, then ex =−Ei and, as
(ny, ey) is representable, ex =−Ei ≤ ey.
We can now consider that (nx, ex) is normal. This means
that nx×β �∈ {−Ni, · · · , Ns}. As x≥ 0, nx ≥ 0, and thus
nx×β >Ns.
Let us assume that ex > ey, thus ex−1≥ ey. We will de-
duce that y < x, which is absurd:
y =R ny×βey ≤Ns×βex−1 < nx×β×βex−1 =R x. �

Theorem 4. On a floating point system bounded by Ni,
Ns, and Ei with |Ni−Ns| ≤ 1, for any machine pair
(nx, ex) representing x and any representable pair (ny, ey)
representing y,

|x|< |y| implies ex ≤ ey.

The difference between the preceding theorems and the
usual IEEE-like situation arises from the fact that the
magnitude of a floating point number may not be rep-
resented or may use another exponent. We establish the
following corollary.

Corollary 1. On a floating point system bounded by Ni,
Ns, and Ei with |Ni−Ns| ≤ 1, for any machine pair
(nx, ex) representing x and any representable pair (ny, ey)
representing y,

ex < ey implies |x| ≤ |y|.

When |Ni−Ns| > 1, we have a very different behavior.
Here is an example that also shows that the bound on
the difference Ni−Ns is tight. We define a binary no-
tation with mantissas between −10012 and 1112. The
pairs (1002, 1)2 and (−10012, 0)2 are machine pairs, yet
their magnitudes and their exponents are not in the same
order. This cannot happen in IEEE-compliant systems or
on the TMS 320C3x.

5 Sterbenz’s theorem

In 1974, Sterbenz [34] presented a theorem about the ex-
act subtraction of two floating point numbers x and y
when they are sufficiently close to one another, that is,

y

2
≤ x≤ 2y.

The theorem stating that x�y is exact under the pre-
ceding condition was presented for any radix provided
the hardware was accurate enough. Later authors [14, 17]
presented similar results with an emphasis on didactic as-
pects. We have seen in Sect. 2.2 that Sterbenz’s theorem

S. Boldo and M. Daumas: Properties of two’s complement floating point notations

can also be used with systems that provide an extended
precision for intermediate results such as the Texas In-
struments TMS 320C3x.
More recently [15, 24], some authors have proposed to

extend Sterbenz’s theorem to machines with a fused mul-
tiply and accumulate operation such as Intel IA 64 that
can be used to implement accurate approximations to el-
ementary functions [25]. Following the proof of Sect. 2.2
this extension can also be used with the Texas Instru-
ments TMS 320C3x as long as one guard bit is still avail-
able in the extended precision.
It was recognized in [12, 29] that Sterbenz’s theorem is

not a property of hardware but rather a property of the
floating point representation. Given x and y, the question
is to know whether or not x−y can be represented. This
is clearly a key condition, necessary for the implemented
floating point subtraction x�y to return the exact result
x−y.
With IEEE-like behavior, any floating point opera-

tion is reduced to two steps. An intermediate result is first
computed to sufficient accuracy and then rounded. De-
signers must guarantee that the system always returns
the result as if the infinitely precise mathematical op-
erations were rounded. For example, the subtraction is
implemented as the composition of two mathematical
functions, namely, the subtraction (−) and the user-
specified rounding function (◦):

x�y = ◦(x−y).

The details of the implementation are not relevant to
users since knowing the rounding function is sufficient to
deduce the value returned by any operation. Users usually
expect the rounding function to be a monotonic (nonde-
creasing) projection of the real numbers over the set of the
machine floating point pairs. The latest property implies
that for any floating point number v

◦(v) = v.

Therefore, establishing Sterbenz’s equality does not re-
quire any knowledge about the rounding function pro-
vided it is a projection.
We present in this section the behavior of generic

floating point systems in regard to Sterbenz’s theorems.
Unfortunately, the theorem is not true for all floating
point notations. For example, let the radix be 2 and
the format such that mantissas are between −11002 and
11112. Let x be (11112, 0) and y be (11102, 1). Both x and
y are representable such that y2 ≤ x≤ 2×y but x−y is
−11012, and this value cannot be represented exactly. We
will later give a list of additional conditions for the asser-
tion to be true.

5.1 Extending Sterbenz’s theorem to other notations

It is amazing to realize that the following theorem is true
whatever the radix and the bounds Ni and Ns. More-
over, the proof has been upgraded automatically by the

Coq proof checker from the previous SterbenzAux proof
presented in [12] that was supposed to work only when
Ni =Ns.

Theorem 5. On a floating point system bounded by Ni,
Ns, and Ei with no assumption of a relation between Ni
and Ns, for any representable pairs (nx, ex) and (ny, ey)
representing x and y such that

y ≤ x≤ 2y,

the difference x−y is representable. Furthermore, x−y
can be represented by (n, e) defined as

n=nxβ
ex−min(ex,ey)−nyβey−min(ex,ey)

e=min(ex, ey).

The proof is omitted here. It is very close to the first
case of the proof of Theorem 8 presented later.
On a floating point system where any representable

pair can be negated without rounding such as presented
in Sect. 4.1, Sterbenz’s theorem stated below (Sterbenz-
OppI) is proved by applying Theorem 5 twice.

Theorem 6. On a floating point system bounded by Ni,
Ns, and Ei where any representable pair can be negated
into another representable pair, for any representable
pairs x and y such that

y

2
≤ x≤ 2y,

the difference x−y can be represented.

Proof. We prove the theorem correct when y/2≤ x≤ y
by applying Theorem 5 to X = y and Y = x so that X−
Y =−(y−x) is a representable pair. �

Although we demonstrated in Sect. 4 that it is most
desirable to use a number system with a few natural prop-
erties including the fact that every representable pair can
be negated without rounding, we present now a generic
theorem (SterbenzI) valid for any representation. The
details of the proof are available on the Internet.

Theorem 7. On a floating point system bounded by Ni,
Ns, and Ei where |Ni−Ns| ≤ δ, for any machine pair
(nx, ex) representing x and any representable pair (ny, ey)
representing y such that

y+ δβmin(ex,ey)

2
≤ x≤ 2y,

the difference x−y can be represented.

5.2 Sterbenz’s theorem on catastrophic cancellations

All processors and many DSPs provide different float-
ing point precisions. For example, the IEEE 754 stan-
dard provides 32-bit single and 64-bit double preci-
sions. Intel IA32 architectures also provide 80-bit double

S. Boldo and M. Daumas: Properties of two’s complement floating point notations

extended precision, and some workstations implement
128-bit quad precision. The Texas Instruments TMS
320C3x provides 16-bit short, 32-bit single, and 40-bit
extended precisions.
Extended precision can be used to compute two quan-

tities x and y close to each other that will be subtracted.
The accumulated relative errors of x and y are magni-
fied by each digit cancelled in x�y [11]. If the subtraction
cancels l bits, we need an accuracy of p+ l bits on x and y
to produce a p bit accurate result.
Theorem 8 (SterbenzApproxI) states that if x and

y are sufficiently close, x−y can be stored to a reduced
p bit precision format without introducing a new round-
ing error. This theorem continues work from published
theorems [15, 24].

Theorem 8. Let the working precision be bounded byNi,
Ns, and Ei and the alternate precision be bounded by N

∗
i ,

N∗s , and E
∗
i . We assume that −Ei ≤ −E

∗
i and that for

each precision any representable pair can be negated with-
out rounding with the respective bounds. Let

γ =
max (Ni, Ns)+1

min (N∗i , N
∗
s)+1

.

For all representable alternate precision pairs x and y such
that

1

1+γ
|y| ≤ |x| ≤ (1+γ) |y| and xy ≥ 0,

the difference x−y can be represented with the working
precision.

Proof. Parameter γ can be expanded to

γ =max

(
Ni+1

N∗i +1
,
Ns+1

N∗s +1
,
Ns+1

N∗i +1
,
Ni+1

N∗s +1

)
.

Each value considered for γ corresponds to one case of the
theorem.We will present here the proof for the case where

γ =
Ns+1

N∗s +1

with the additional condition that x and y are two alter-
nate precision representable pairs such that

0≤ y ≤ x≤ (1+γ)y.

Let y′ be the machine representation of y. We define
the pair (nu, eu) representing u =R x−y′ =R x−y from
its components:

eu=min(ex, ey′)

nu=nxβ
ex−min(ex,ey′)−ny′β

e′y−min(ex,ey′).

As 0≤ y′ ≤ x and y′ is a machine representation, we
are sure that ey′ ≤ ex from Theorem 3 and eu = ey′ . As
y′ is representable with alternate precision, we know from

hypotheses that eu ≥ −E∗i ≥ −Ei. As y
′ ≤ x, we have

u≥ 0 and nu ≥ 0, thus we easily check that−Ni ≤ 0≤ nu.
The last assertion to prove is that nu ≤ Ns. As

they are both integers, it is equivalent to proving that
nu <Ns+1:

nu=u×β
−eu

=(x−y′)×β−ey′

≤ ((1+γ)y−y′)×β−ey′

= y′×β−ey′ ×γ

=ny′ ×γ

< (N∗s +1)×γ =Ns+1.

To conclude the proof, the four subcases must be com-
pleted separately, and then sign symmetries are used be-
tween the cases to finish the theorem. �

The preceding theorem can be used in two ways. It
gives a condition for switching from alternate precision
to working precision without introducing any rounding
error. It also can be used to bound the numbers of digits
of x−y given the ratio between numbers x and y.
Nowhere in the theorem or in the proof is it mentioned

that alternate precision should be extended compared to
working precision. We can use γ larger than one to bound
the precision of x−y without error where target precision
is extended from the precision of x and y. Using our theo-
rem would reduce the number of additional digits by one
compared to the usual technique.

5.3 Concluding on representable pairs

Texas Instruments uses in its TMS 320C3x the two’s com-
plement notation for mantissas. This notation was also
in use in the Honeywell 6080N computer [32]. A different
notation with the samemantissa range is studied in an ex-
ercise of [21]. This number system is well suited as all the
natural properties (stability through negation, existence
and uniqueness of an opposite, and lexicographic order of
the pairs) are still true and Sterbenz’s theorem holds. We
are unaware of any working floating point unit that does
not use either signed-magnitude or the two’s complement
notation for the mantissa encoding.
The following theorem (ReductRange and Reduct-

RangeInv) can be used to deduce that the set of the
represented numbers is almost identical to an IEEE-
compatible unit and to TMS 320C3x. Should Texas In-
struments decide to implement denormal pairs and pre-
cise rounding, the unit could be almost functionally IEEE
compliant.

Theorem 9. The set of real numbers represented on
a floating point system bounded byNi > 1 ,Ns > 1, andEi
is identical to the set of numbers represented on a system
bounded by Ni, Ns−1, and Ei (resp. Ni−1, Ns, and Ei)
if and only if

β | Ns (resp. β | Ni).

S. Boldo and M. Daumas: Properties of two’s complement floating point notations

A side effect of this work is the latest extension of Ster-
benz’s theorem on signed-magnitude implementations.
It uses the preceding theorem and is validated in Coq
(SterbenzApprox).

Theorem 10. Let the working precision use p digits for
the mantissa and the exponent be bounded by Ei, and
let the alternate precision use p+ l digits for the man-
tissa and the exponent be bounded by E∗i . We assume that
−Ei ≤−E∗i and that both precisions use signed-magnitude
notation. For all representable alternate precision pairs x
and y such that

1

1+β−l+β−p−l
|y| ≤ |x| ≤

(
1+β−l+β−p−l

)
|y|

and xy ≥ 0, the difference x−y can be represented with the
working precision.

NB: l does not have to be positive. It is a signed integer.

6 Conclusion and perspectives

Most general-purpose widely-available processors use
a signed-magnitude representation. Some books [17, 28]
even present the signed-magnitude notation as the nat-
ural floating point notation. This notation is in use in
well-studied IEEE-754 compliant hardware. Some de-
signs use radix 10 [9], and several of them retain a radix
16 compatibility mode [33]. Yet most systems use radix
2. The “basic” properties and Sterbenz’s theorem were
scattered in the literature, as most of them had been
published over time. These properties hold for all these
notations, and proofs have been checked in a radix generic
formalism.
We have shown that the floating point number system

used for TMS 320C3x is very close to the one defined by
an IEEE-compliant processor with a very different inter-
pretation for the mantissa field. We have also shown that
gradual underflow and correct rounding would be very
sensible in such a system, although neither was imple-
mented. Finally, we have adapted some very useful results
such as Sterbenz’s theorem, provided no underflow oc-
curs, to two’s complement and to the TMS 320C3x.
The main motivation of this work was to compare

in a generic formalism (i) the most common behavior,
namely, binary IEEE-754, with other implementations
such as (ii) radix-independent IEEE 854-compatible cir-
cuits, (iii) two’s complement almost-IEEE 854 behavior,
and (iv) non-IEEE behavior. We succeeded and even con-
tributed new results for IEEE 754 architectures in Theo-
rem 10.
Without a strong incentive for formal analysis of the

TMS 320C3x, such work would probably not have been
carried out. It has been made possible by the very formal
and generic development of the proofs used in Coq. Our
conclusions would likely not be trusted had they not been

checked by an automatic proof checker since the proofs
are very technical and prone to many small mistakes that
would not have been ruled out by experimental know-
ledge.
We will continue to investigate natural properties of

floating point number systems as they lead us to neces-
sary conditions on number systems. For example, Ster-
benz’s theorem and the possibility of negating a number
are also key in the analysis of numerical software behavior
such as [10, 24].
As mentioned Sect. 3, our formal development handles

neither exceptions nor nonnumeric quantities such as in-
finity (possibly signed), Not-A-Number (possibly quiet or
signalling), and negative zero. An abstract definition fo-
cusing on represented values should not include signed
zeros as they represent the same value but have differ-
ent implemented arithmetic properties. In our view of
the IEEE standard, negative zero is clearly a nonnumeric
value with specific rules for production and treatment.
Nonnumeric quantities will certainly be part of a fu-

ture superset of float, but setting up a system that does
not need them helped us reduce the number of peculiar
cases in our proofs. These questions will be treated in our
formal connection with low- and high-level programming
languages.

Acknowledgements. We wish to thank Laurence Rideau and Lau-
rent Théry for their work on the initial development of the Coq
library. The authors are also indebted to the anonymous reviewers
for their numerous comments and suggestions on both the details
and the overall organization of the submitted work.

References

1. Amerkad A, Bertot Y, Rideau L, Pottier L (2001) Math-
ematics and proof presentation in Pcoq. In: Proceedings
of the conference on proof transformation and presenta-
tion and proof complexities, Siena, Italy. Available at:
http://www-sop.inria.fr/lemme/Laurence.Rideau/proof-
pcoq.ps.gz

2. Barrett G (1989) Practical algorithm for selection on coarse
grained parallel computers. IEEE Trans Softw Eng 15:611–621.
http://dlib.computer.org/ts/books/ts1989/pdf/e0611.pdf

3. Boldo S, Daumas M (2002) Properties of the subtraction valid
for any floating point system. In: Proceedings of the 7th in-
ternational workshop on formal methods for industrial critical
systems, Málaga, Spain, pp 137–149

4. Carreño VA, Miner PS (1995) Specification of the IEEE-854
floating-point standard in HOL and PVS. In: Proceedings of
the 1995 international workshop on higher order logic theorem
proving and its applications, Aspen Grove, UT, supplemental
proceedings. Available at: http://shemesh.larc.nasa.gov/
fm/ftp/larc/vac/hug95.ps

5. Chen YA, Clarke E, Ho PH, Hoskote Y, Kam T, Khaira M,
O’Leary J, Zhao X (1996) Verification of all circuits in a float-
ing point unit using word level model checking. In: Srivas M,
Camilleri A (eds) Proceedings of the 1st international confer-
ence on formal methods in computer-aided design, Palo Alto,
CA, pp 19–33

6. Cody WJ, Karpinski R et al (1984) A proposed radix and
word-length independent standard for floating point arith-
metic. IEEE Micro 4:86–100

7. Collins RR (1997) Inside the Pentium II math bug. Dr. Dobb’s
Journal 22(8):52, 55–57. Available at: http://www.ddj.com/
articles/1997/9708/9708f/9708f.htm

S. Boldo and M. Daumas: Properties of two’s complement floating point notations

8. Coonen JT (1978) Specification for a proposed standard for
floating point arithmetic. Memorandum ERL M78/72, Uni-
versity of California, Berkeley

9. Cowlishaw MF (2003) Decimal floating point: algorithm
for computers. In: Bajard JC, Schulte M (eds) Proceed-
ings of the 16th symposium on computer arithmetic, Santi-
ago de Compostela, Spain, 2003, pp 104–111. Available at:
http://csdl.computer.org/comp/proceedings/arith/2003/
1894/00/1894toc.htm

10. Daumas M, Langlois P (2003) Additive symmetries: the non-
negative case. Theor Comput Sci 291:143–157. Available at:
http://dx.doi.org/10.1016/S0304-3975(02)00223-2

11. Daumas M, Matula DW (1997) Validated roundings of
dot products by sticky accumulation. IEEE Trans Comput
46:623–629.

12. Daumas M, Rideau L, Théry L (2001) A generic library
of floating-point numbers and its application to exact com-
puting. In: Proceedings of the 14th international conference
on theorem proving in higher order logics. Edinburgh, UK,
pp 169–184.

13. Demmel J (1984) Underflow and the reliability of numerical
software. SIAM J Sci Stat Comput 5:887–919

14. Goldberg D (1991) What every computer scientist should
know about floating point arithmetic. ACM Comput Surv
23:5–47. Available at: http://www.acm.org/pubs/articles/
journals/surveys/1991-23-1/p5-goldberg/p5-goldberg.pdf

15. Harrison J (1999) A machine-checked theory of floating point
arithmetic. In: Bertot Y, Dowek G, Hirschowitz A, Paulin C,
Théry L (eds) Proceedings of the 12th international confer-
ence on theorem proving in higher order logics, Nice, France,
pp 113–130. Available at: http://www.cl.cam.ac.uk/users/
jrh/papers/fparith.ps.gz

16. Harrison J (2000) Formal verification of floating point trigono-
metric functions. In: Hunt WA, Johnson SD (eds) Proceedings
of the 3rd international conference on formal methods in
computer-aided design, Austin, TX, pp 217–233. Available at:
http://www.link.springer.de/link/service/series/0558/
papers/1954/19540217.pdf

17. Higham NJ (1996) Accuracy and stability of numerical algo-
rithms. SIAM, Philadelphia. Available at: http://www.ma.man.
ac.uk/ ∼higham/asna.html. Also at: http://www.maths.man.
ac.uk/ ∼higham/asna/

18. Huet G, Kahn G, Paulin-Mohring C (1997) The Coq proof as-
sistant: a tutorial: version 6.1. Technical Report 204, Institut
National de Recherche en Informatique et en Automatique, Le
Chesnay, France. Available at: ftp://ftp.inria.fr/INRIA/
publication/publi-pdf/RT/RT-0204.pdf

19. Jacobi C (2001) Formal verification of a theory of IEEE
rounding. In: Proceedings of the 14th international confer-
ence on theorem proving in higher order logics, Edinburgh,
UK, pp 239–254, supplemental proceedings. Available at:
http://www.informatics.ed.ac.uk/publications/online/
0046/b239.pdf

20. Kern C, Greenstreet MR (1999) Formal verification in hard-
ware design: a survey. ACM Trans Des Automat Elec-
tron Sys 4:123–193. Available at: http://delivery.acm.
org/10.1145/310000/307989/p123-kern.pdf

21. Knuth DE (1997) The art of computer programming: seminu-
merical algorithms, 3rd edn. Addison-Wesley, Reading, MA

22. Kulisch U (2000) Rounding near zero. In: Proceedings of the
4th real numbers and computers conference, Dagstuhl, Ger-
many, pp 23–29

23. Laurent O, Michel P, Wiels V (2001) Using formal ver-
ification techniques to reduce simulation and test effort.
In: Proceedings of the international symposium of formal
methods Europe, Berlin, Germany, pp 465–477. Available
at: http://link.springer.de/link/service/series/0558/
papers/2021/20210465.pdf

24. Li RC, Boldo S, Daumas M (2003) Theorems on effi-
cient argument reductions. In: Bajard JC, Schulte M (eds)
Proceedings of the 16th symposium on computer arith-
metic, Santiago de Compostela, Spain, pp 129–136.

25. Markstein P (2000) IA-64 and elementary functions: speed
and precision. Prentice Hall, Upper Saddle River, NJ. Avail-
able at: http://www.markstein.org/

26. Miner PS, Leathrum JF (1996) Verification of IEEE compliant
subtractive division algorithms. In: Proceedings of the 1st in-
ternational conference on formal methods in computer-aided
design, pp 64–78. Available at: http://www.ece.odu.edu/ ∼
leathrum/Formal_Methods/computer_arithmetic/fmcad.ps

27. O’Leary J, Zhao X, Gerth R, Seger CJH (1999) Formally
verifying IEEE compliance of floating point hardware. Intel
Technol J, vol 3. Available at: http://developer.intel.com/
technology/itj/q11999/pdf/floating_point.pdf

28. Overton MJ (2001) Numerical computing with IEEE float-
ing point arithmetic. SIAM, Philadelphia. Available at:
http://www.siam.org/catalog/mcc07/ot76.htm

29. Priest DM (1992) On properties of floating point arithmetics:
numerical stability and the cost of accurate computations.
PhD thesis, University of California at Berkeley, Berkeley, CA.
Available at: ftp://ftp.icsi.berkeley.edu/pub/theory/
priest-thesis.ps.Z

30. Rushby J, von Henke F (1991) Formal verification of algo-
rithms for critical systems. In: Proceedings of the conference
on software for critical systems, New Orleans, pp 1–15. Avail-
able at: http://www.acm.org/pubs/articles/proceedings/
soft/125083/p1-rushby/p1-rushby.pdf

31. Russinoff DM (1998) A mechanically checked proof of IEEE
compliance of the floating point multiplication, division and
square root algorithms of the AMD-K7 processor. LMS J
Comput Math 1:148–200. http://www.onr.com/user/russ/
david/k7-div-sqrt.ps

32. Schryer NL (1981) A test of computer’s floating-point arith-
metic unit. Technical report 89, AT&T Bell Laboratories.
Available at: http://cm.bell-labs.com/cm/cs/cstr/89.ps.gz

33. Schwarz EM, Smith RM, Krygowski CA (1999) The S/390
G5 floating point unit supporting hex and binary archi-
tectures. In: Koren I, Kornerup P (eds) Proceedings of the
14th symposium on computer arithmetic, Adelaide, Australia,
pp 258–265. Available at: http://computer.org/proceedings/
arith/0116/0116toc.htm

34. Sterbenz PH (1974) Floating point computation. Prentice-
Hall, Upper Saddle River, NJ

35. Stevenson D et al (1987) An American national standard:
IEEE standard for binary floating point arithmetic. ACM
SIGPLAN Notices 22:9–25

36. Texas Instruments (1997) TMS320C3x User’s guide. Available
at: http://www-s.ti.com/sc/psheets/spru031e/spru031e.pdf

