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Precise and absolute measurements of the complex 
third-order optical susceptibility
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We present precise and absolute measurements of full complex third-order optical susceptibility on different 
fused-silica and original glasses composed of tellurium, titanium, and niobium erbium. These materials are 
designed to be the key point for applications ranging from high-power laser systems to optoelectronics; their 
nonlinear index of refraction is a major property and thus must be accurately known. A large dispersion 
(more than 30%) of the nonlinear index of fused-silica glasses was found. Measurements on tellurium glasses 
have shown strong nonlinearities, to be linked to the configurations of their cations and anions. 

OCIS codes: 120.0120, 120.3180, 190.0190, 190.4400.
1. INTRODUCTION
Many materials have been characterized for real-world
applications such as optoelectronic applications, informa-
tion technology, or solid-state lasers. As one of the most
important properties of these materials is their nonlinear
index of refraction, it must be accurately known.

In high-power laser systems, optical components are
exposed to a high light flux. These materials, such as
fused silica, amplifier glasses, or nonlinear crystals, must
be chosen to have a small nonlinear index. Nevertheless,
the power of the beams used is so strong that optical non-
linearities can alter their propagation. Therefore it is es-
sential to measure the nonlinearity of these materials
with high accuracy in order to control these modifications.
In the case of the Megajoule Laser (Commissariat a
l’Energie Atomique–Centre d’Etudes Scientifiques et
Techniques l’Aquitaine), an error of 10% on the nonlinear
index can lead to an equivalent error for the beam energy
on the target.

Numerous techniques for precise and sensitive mea-
surements of third-order nonlinearities have been pro-
posed in the past decade. Besides the Z-scan
techniques,1,2 spectral analysis,3 third-harmonic
generation,4,5 and time-resolved interferometry,6 we have
recently demonstrated a new kind of collinear transient
absorption experiment,7 in which the full complex third-
order nonlinear susceptibility can be measured.

2. COLLINEAR PUMP–PROBE EXPERIMENT
The aim of this paper is to design a practical setup able to
measure absolute and accurate values of the third-order
optical susceptibility of materials, mainly for optical
glasses. Usually, pump–probe experiments are per-
formed, and a small angle between the pump and the
probe for technical ease and for the beam polarization can
be arbitrarily chosen. As we have to provide absolute
measurements, this experiment used collinear beams,
which have the advantage of exact interaction zone
knowledge but the disadvantage with respect to polariza-
tion choice. First, the experimental setup will be de-
scribed, and then we will emphasize theoretical and tech-
nical approaches needed to extract from the experimental
data good and accurate measurements of the nonlinear
index. The theoretical point of view will focus on the
pulse propagation problem, and the experimental signal
and the original acquisition mode for real-time measure-
ment mode will be presented. Finally, the comparison of
this technique with the most common Z scan will be dis-
cussed.

A. Experimental Setup
The experimental setup (Fig. 1) is organized around an
ultralow noise, mode-locked laser source (a Titan sap-
phire oscillator, eventually frequency doubled) or an opti-
cal parametric oscillator providing ultrashort laser pulses
(;100 fs). The laser output beam is balanced unevenly
in a p-polarized pump and in a s-polarized probe by use of
a half-wave plate and a polarizing cube beam splitter.
These two beams are further mixed with another polariz-
ing cube, precisely adjusted to be exactly collinear, and
are focused into the sample. The collinearity of the two
beams in the sample allows us to perfectly control the in-
teraction zone, which is important for absolute measure-
ment.

Eventually, the pump beam is ejected by the last cube
polarizer, and the intensity of the probe beam is recorded
as a function of the delay between the two beams (Fig. 4).
As the polarizing cubes are not ideal, there are two leak-
ages of the pump beam through the first and the second
polarizing cube beam splitters. The leakage of the pump
through the first cube (Pol 1 of Fig. 1) goes through the
probe arm with a p polarization, so this pulse is not at-



tenuated through the second polarizing cube. Because
the polarizing cubes are identical, the leakage of the
pump beam through the second cube is equivalent to the
probe arm’s leakage. These two leakages, having the
same polarization and the same power, eventually inter-
fere with a high contrast. This can be used as a powerful
tool for perfect alignment and as a monitor for pulse du-
ration in this interferometric geometry. Indeed, just by
adding a lens and a GaAsP photodiode (two-photon
photodiode),8 one can easily record a second-order auto-
correlation.

Further in the experience, a silicon photodiode (one
photon) and a GaAsP photodiode (two photons) are used
for laser diagnostics. The Si photodiode allows us to
monitor the average power, and the GaAsP photodiode al-
lows us to monitor the spatial and temporal pulse param-
eters (discussed in Subsection 2.D).

B. Complete Theoretical Analysis and Calculus
of the n2
In the particular case of the collinear pump–probe experi-
ment, the transverse aspect of the field can be introduced
in a rigorous way. As the pump and probe beams are
completely overlapping, the propagation equation sug-
gests a perturbative analysis with transverse variables.

In the temporal space, assuming that the polarization
in a point depends only on the electric field in the same
point, the general expression of the third-order nonlinear
polarization can be written as
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where R(3)% (t1 , t2 , t3) is the local response function of the
media.

In materials out of resonance, and with the classical
Born–Oppenheimer approximation, the effect of the field
on materials can be separated into two phenomena with
different response times. Under these conditions, the
nonlinear polarization is given by Hellwarth9:

Fig. 1. Experimental setup for measurements of the third-order
nonlinear susceptibility at 800 nm. HWP, half-wave plate; Pol,
polarizer; PhD-Si, silicon photodiode detector; PhD-GaAsP, gal-
lium arsenic phosphor photodiode detector used as a two-photon
photodiode; Glan, Glan polarizer.
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The first term is the third-order nonlinear electronic
polarization of the media. The associated physical pro-
cess is the electronic cloud bending, which is indeed an ul-
trafast effect (less than 1 fs). The second one is the third-
order nonlinear nuclear polarization. The associated
physical effect is the molecules’ vibrations and rotations.
As this phenomena have a response time longer than that
of electronic one (from 100 fs to several nanoseconds), the
second term includes a convolution with the material non-

linear complex tensor d (3)% . In the collinear pump–probe
experiment, as the pump pulse and the probe pulse have
perpendicular polarization, the nonlinear polarization can
be further developed along the probe axis as
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The basic equation is obtained from the general propa-
gation equation within the reasonable framework of the
dispersionless approximation and without self-
steepening. The general equation for the probe beam
propagation with nonlinear third-order coupling to the
pump beam in isotropic media can be written as
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where As(r, z, t) is the complex amplitude of the probe
electric field, Ap(r, z, t) is the complex amplitude of the
pump electric field, z is the spatial variable along the
beams’ propagation, r 5 Ax2 1 y2, and the two expres-
sions s1 and s2 are equal to
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where s(t) is the temporal shape of the pump or probe
pulse and u is the variable delay between the pump and
the probe pulses.

As we are dealing with a rather thin sample (1 mm)
and short laser pulses of the order of 100 fs, temporal ef-
fects on propagation have been shown to be not significant
in numerical simulations, and thus they have been ne-
glected in this analysis. Moreover, as we want to keep
this experiment as linear as possible, we use moderate
pump peak power so that the nonlinear propagation of the
pump beam can be neglected.

Although the differential propagation equation cannot
be analytically solved, the transient absorption configura-
tion suggests an easier perturbation treatment with re-
spect to the transverse variables of the field. However,
the presence in the right-hand side of the complex ampli-
tude and complex conjugate of the probe field complicates,
at first glance, the analysis and requires the use of two
perturbation variables, s1 as the coefficient of As(r, z)
and s2 as the coefficient of As(r, z). It is worth noting
that the perturbation coefficients s1 and s2 are time de-
pendent. In fact, the differential equation concerns only
the transverse aspect of the probe field, and not the time,
so the time dependence of the fields can be conveniently
included in the perturbation coefficients.

The solution at zero order is taken as the usual funda-
mental transverse Gaussian mode:
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Then the solution for the probe beam with this perturba-
tive approach restricted to the first order is

As 5 A0 1 s1A1 1 s̄1A2 1 s2A3 1 s̄2A4 . (8)

The substitution of the amplitude As in the equation does
simplify the development as the solutions A1 and A3 are

H~ f, u ! 5
identical and the solutions A2 and A4 are equal to the
zero-order solution:

As 5 A0 1 ~ s1 1 s2!A1 . (9)

In first order the calculus of the amplitude of the electric
field is reduced to the resolution of the differential equa-
tion (6), which can be resolved analytically in Fourier
space:
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Finally, the signal due to the probe intensity can be writ-
ten as
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where Pm is the average power, T is the repetition rate of
the laser, and F(w0 , k0 , L) 5 arctan@L/(k0n0w0

2)# is a nu-
merical factor depending on the spatial properties of the
laser beam. In this expression, all the material informa-
tion arise from the correlation function between the pump
and the probe pulses:
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with the following definitions:
a and b are the real and imaginary parts of the elec-

tronic third-order optical susceptibility, respectively: a
5 R(x1111

(3) ), b 5 Ix1111
(3) with the classical property for the

third-order nonlinear susceptibility; x1111
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isotropic medium;
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of the signal;

is the correlation function for the nuclear contribution;
f 5 arctan(2b/a) is the phase of the electronic nonlinear
fringes; and c 5 arctan@I(d1212
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the imaginary parts of d1212
(3) or d1122

(3) , Raman gain or loss
can be expected.

G(u) is a temporal term, delay dependent. At zero de-
lay, this function is equal to the ratio between the second-
order momentum of s(t) and the squared first-order mo-
mentum of s(t). It represents how the intensity of the
light is spread along the pulse. For example, this func-
tion is equal (for the same temporal width t0 fs) to
1/(t0A2p) 5 0.3989/t0 for a Gaussian pulse, 1/(3t0)
5 0.3333/t0 for a secant hyperbolic pulse, and 1/t0 for a
rectangular one.

H( f, u) is a more complicated term owing to the non-
instantaneous response time of the Raman phenomena.
So this function includes the correlation of a classical con-
volution of the material response function with the tem-
poral shape of the laser pulse.

More obvious, F(w0 , k0 , L) is a spatial term, which in-
cludes the beam waist w0 , the linear index of refraction
n0 , and the sample thickness L.

Both approaches can then be done, to perform either
relative or absolute measurements of the nonlinear indi-
ces.

For the simplest case of relative measurements, if the
temporal characterization and the average power of the
laser are not required, the beam waist and the wave-
length of the laser must be accurately known owing to de-
pendence of the function F(w0 , k0 , L) on the thickness
and the linear index. On the other hand, for absolute
measurements, all the characteristics of the laser must be
known accurately and especially the temporal profile of
the pulse s(t).

This analytical analysis of the propagation equation
has been obtained with the following approximations:
dispersion, self-steepening of the probe beam, and nonlin-

Expression (11) shows that the useful signal corre-
sponds to the probe intensity variations within the coher-
ence zone, arising from either electronic or nuclear cou-
pling contributions. These two types of variation are 
proportional to the average power of the pump beam and 
to the repetition rate of the laser and depend on the main 
characteristics of the laser (wavelength and beam waist) 
and of the sample to analyze (linear index and sample 
length). These variations are representative of the cou-
pling between the pump pulse and the probe pulse in the 
sample via the nondiagonal electronic and nuclear com-
plex tensor elements. The signal shape is driven by the 
function Y(u), where u is the delay between the pump 
and the probe pulses. The two origins are different and 
deserve detailed analysis.

First, in the (main) electronic contribution, two terms 
in Eq. (12) will control the probe beam intensity: a zero 
frequency term proportional to the imaginary part of the 
x (3) (b is always positive), which represents the nonlinear 
absorption, and an oscillating term—at twice the optical 
frequency versus delay (the nonlinear fringes)—
proportional to the modulus of x (3).

Second, for the nuclear contribution, three terms in Eq.
(12) will then control the probe intensity: one oscillating 
term—also at twice the optical frequency versus the 
delay—depending on the real and imaginary parts of 
(3) and two zero frequency terms proportional to the1212

imaginary parts of d (3
1212

) and d (3
1122

) . Whatever the sign of
ear propagation of the pump beam that is neglected. The
leading parameter for validation of these approximations
is indeed the self-phase modulation length of the pump
(the propagation length corresponding to a p/4 nonlinear
phase shift): LSPM 5 pw0

2/2k0n2Pc . This length must
be larger than the thickness of the sample. With an av-
erage power of 500 mW and a waist of 30 mm, this length
can be as long as 17.3 cm in the fused silica but as small
as a few millimeters in a strong nonlinear glass (tellu-
rium glasses).

C. Effect of the Nuclear Contribution to the Signal
(Theoretical Aspect)
This collinear pump–probe experiment is not too sensitive
to nuclear phenomena. If the signal measured by this
experiment includes the nuclear contribution, neverthe-
less, its signature will be also included in the electronic
contribution in the so-called nonlinear fringes. As an ex-
ample, Fig. 2 presents a simulated signal for liquid CS2 .
We intentionally display the three different fringe enve-
lopes contributing to the signal. Previous measurements
of the CS2 nonlinearity with a Mach–Zehnder
interferometer11 by use of the same pulsed laser (100 fs)
have shown two nuclear contributions. In this case, the
electronic nonlinearity accounts for 19% of the total non-
linear signal, whereas a fast nuclear nonlinearity, with a
measured response time of 170 fs, is the main contribu-
tion (64%). Finally, a smaller nuclear orientation nonlin-
earity, with a measured response time tr of 880 fs, ac-
counts for 17%. The imaginary part of the nuclear
nonlinearity was undetected, even within our high experi-
mental accuracy. With these results, the collinear
pump–probe signal can be computed and presented in
Fig. 2. First, the electronic signal (solid thin curve)
shows a nonlinear absorption appearing as a dissymme-
try between the top and the bottom of the signal envelope.

Fig. 2. Theoretical signal with a 1-mm sample of CS2 . This
signal is calculated at 800 nm for a 100-fs-width laser pulse.
There are three contributions to the signal: the electronic one
(solid thin curve), the nuclear orientation one (long-dashed
curve), and the fast nuclear one (short-dashed curve). The solid
curve is the full envelope signal. The curves have been com-
puted with the tensor element definitions studied by Owyoung10:
d1122(t) 5 2A exp(2t/tr), d1221(t) 5 d1212(t) 5 (3A/2)exp(2t/tr),
and d1111(t) 5 2A exp(2t/tr), where A is the amplitude of the
nuclear phenomena and tr is the response time of this process.



The fast nuclear nonlinear signal (short dashed curve) is
shifted approximately tens of femtoseconds. Owing to
the relative long response time (880 fs), the reorientation
signal (long dashed curve) is not significantly shifted.
Figure 3 shows a zoom of the nonlinear fringes for all
these nonlinear contributions around zero delay (u
5 0 fs). This figure shows indeed a very small phase
shift of the electronic nonlinear fringes (150 mrad, corre-
sponding to a delay of 0.064 fs) due to the nonlinear ab-
sorption present in the term: f 5 arctan(2b/a). In con-
trast, there is no phase shift in the nuclear signals. The
nonlinear absorption in the CS2 induces a phase shift on
the full signal of approximately 66 mrad (0.028 fs).

All these results are theoretical calculations using re-
sults on the CS2 to explain the theoretical analysis ex-
posed previously. Nevertheless, this eventual small shift
of the envelope of the signal or the possible phase of the
nonlinear fringes can be either difficult (signal compari-
son with the autocorrelation) or even impossible to mea-
sure in any experiment as, in fact, the moving delay be-
tween the pump and the probe cannot be precise enough
to determine the zero-delay position.

Practically, only the amplitude of the nonlinear fringes
around the zero-delay position and the amplitude shift in
the presence of nonlinear absorption can be measured
and analyzed.

D. Experimental Signal
The signal in Fig. 4 displays the photoelectric signal of
the probe beam (in volts) versus the delay between the
pump and the probe (in femtoseconds) for a silicon sample
(wafer, 1 mm thick). The main characteristics are a
mean value reflecting the nonlinear absorption and an os-
cillating behavior that accounts for the expected coupling
between the pump and the probe in the sample through
the nondiagonal x (3) tensor elements. This signal is ex-
perimentally superimposed on the unavoidable linear
mixing between the probe and a leak of the pump acting

Fig. 3. Zoom of the nonlinear fringes around the zero delay for
the CS2 signal. There are three contributions to the signal:
the electronic one (solid thin curve), the nuclear orientation one
(long-dashed curve), and the fast nuclear one (short-dashed
curve). These phase shifts of the nonlinear fringes have been
computed for intelligibility but are not experimentally detect-
able.
as a noise. A straightforward Fourier analysis of the ex-
perimental signal is displayed in Fig. 5. It clearly iso-
lates the linear mixing (linear fringes classically oscillat-
ing at the optical frequency) and the nonlinear coupling
(nonlinear fringes).7 By this technique, the measure-
ment of the amplitude of the nonlinear fringes and the
nonlinear absorption allows us to characterize the x (3)

tensor elements of isotropic materials.
Two modes of acquisition are then possible: either use

of a lock-in amplifier coupled to an oscilloscope that re-
quires a slow-moving delay (note the frequency of the
fringes in Fig. 5) so as to give time for the lock-in ampli-
fier to average the signal or, in a more effective way, use of
a fast multichannel personal computer acquisition card
(sampling frequency of 250 kHz). A rapid scan of the de-
lay at a 10-Hz rate will lead to a quasi-real-time experi-
ment. Also, in the first acquisition mode, a Fourier
transform can be performed to measure the nonlinear ef-
fect. Technically, the Fourier transform is applied to only
512 points on a signal of more than 9000 points around
the zero delay where the nonlinear signal is at its maxi-
mum. In this small window the nonlinear fringes can be
compared with a simple sinusoid without amplitude
variation, and a flat-top filter—a short-pulse response
filter—directly in the Fourier space [Eq. (13)] will lead to
the correct amplitude:

Fig. 4. Experimental signal obtained from a sample of silicon at
1.5 mm. This signal was acquired at low-speed delay.

Fig. 5. Fourier transform of the signal obtained on the silicon
sample (Fig. 4).
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Table 1. Synthesis of Error Studies in this Papera

Parameters Relative Accuracy (%) Absolute Accuracy (%)

Average power — 5%–7%
Wavelength ,0.1% ,0.1%
Repetition rate — ,0.1%
Beam waist 2%–3% (800 and 1500 nm) 2%–3% (800 and 1500 nm)

3%–4% (400 nm) 3%–4% (400 nm)
Temporal width — 3%–5% (800 and 1500 nm)

4%–10% (400 nm)
Nonlinear amplitude
fringes

0.1%–10% 0.1%–10%

Sample thickness 0.1%–1% 0.1%–1%
Sample linear index 0.1%–2% 0.1%–2%
Full accuracy 2%–16% (800 and 1500 nm) 10%–28% (800 and 1500 nm)

3%–17% (400 nm) 12%–34% (400 nm)

a The table shows the relative and absolute accuracy ranges that strongly depend on the sample optical quality and on the laser wavelength.
The final analysis consists of measuring the height of
the dc and the nonlinear peaks to calculate the real and
imaginary parts of the third-order optical susceptibility.
As beam parameters such as the average power and the
time width are acquired simultaneously with one- and
two-photon photodiodes8 (previously calibrated with a
power meter and an autocorrelation), the calculated val-
ues are not affected by eventual deviations of the laser.
We have recently demonstrated (not published) that the
two-photon absorption in the photodiode and the nonlin-
ear signal in the sample result from the same third-order
nonlinear effect. So, these two signals have the same de-
viations when the pulse width or the beam waist of the
laser changes. Consequently, the sample nonlinear sig-
nal’s eventual deviations can be corrected with the two-
photon photodiode signal in real time.

All this analysis is thus performed in quasi real time
and allows powerful signal optimization. We found it
pertinent to adjust the position of the sample in the waist
precisely, and we were even able to detect eventual para-
sitic signals due to coupling into the laser cavity. This
experimental protocol has been proven reliable, and we
make use of the high repetition rate of the laser oscillator
and delay scan rate to average the measured data and in-
crease furthermore the signal-to-noise ratio.

The accuracy of the nonlinear measurement (including
all the nonlinear effects: nuclear and electronic) will
greatly depend on the laser parameters. A standard,
straightforward—although tedious—procedure can tie
the experimental parameters’ accuracy on average power,
beam size, and temporal shape to the absolute error mar-
gin. Table 1 presents our efforts to reach a (record) value
of 10%. Nevertheless, the relative error bars, owing to
an excellent signal-to-noise ratio, is routinely well below
2% even for weakly nonlinear samples.

For comparison purposes, we deduce the usual nonlin-
ear index from the above results by using the classical for-
mulation (in SI); conversion to the electrostatic unit (esu)
system is also presented:

n2~m2/W! 5
3x1111

~3 ! ~m2/V2!

2ce0n0
2

, (14)

n2~m2/W! 5
80p

n0c
n2 ~esu!. (15)

E. Comparison with the Z-Scan Technique
This collinear pump–probe technique can be roughly com-
pared with the single-beam Z-scan technique by one’s sub-
stituting the scan of the sample around the waist by the
delay between the pump and the probe. Nevertheless,
the time resolution greatly improves the data analysis.
Obviously, the Z-scan experiment appears easier to imple-
ment but is proven sensitive to eventual scattering and
phase distortion due to the sample. The usual measure-
ment must be performed on good optical quality samples.
In the present experiment, as the signal is due to the co-
herent nonlinear coupling between the pump and the
probe, it is less affected by static phase defaults, and mea-
surements of low nonlinearity samples in the early stage
of development have been carried out.

3. EXPERIMENTAL RESULTS
In the following results on fused-silica and some oxide
glasses, no gain or nonlinear absorption is evidenced in
our experimental signals. Without any nonlinear ab-
sorption (b coefficient) or imaginary parts of the nuclear
nonlinear coefficients, the equation describing the probe
intensity variations can be simplified as
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Moreover, in the fused-silica or oxide glasses, the ampli-
tude of the nuclear phenomena is too weak to be evalu-
ated in this experimental setup. So, electronic and
nuclear phenomena are measured as a whole and are col-
lected in one single parameter. Finally, the probe inten-
sity variations can be written for the following measure-
ments as

Is } Is
0F1 2

k0
2

4A2

PmT

ce0
F~w0 , k0 , L !LG~u !sin~2v0u !G .

(18)

L is the global nonlinear third-order nonlinear suscepti-
bility, including electronic and nuclear nonlinear phenom-
ena.

A. Nonlinearities in Fused Silica
Fused silica is the material of choice for fabrication of
lenses and windows for high-power lasers owing to its ex-
ceptionally large transparency windows and industrial
optical quality. We will nevertheless point out the unex-
pected large variation of the nonlinearity of different
samples of fused silica from different fabrication pro-
cesses. Our measurements at several wavelengths will
be compared with available experimental values, and the
observed dispersion will be analyzed by use of two theo-
retical models: the Kramers–Kronig dispersion law12

and the pertubative model.13 Finally, noninstantaneous
nonlinearities for these samples will be emphasized with
Raman spectra.

1. Nonlinear Index Measurement
There are essentially two types of fused silica: natural
fused silica and pure synthetic fused silica. Table 2 dis-
plays our results obtained at 800 and 400 nm. Synthetic
samples present a smaller value than natural ones but a
difference larger than 30% is clearly demonstrated, al-
though the linear index will be affected only by less than
1%.

Variations of the nonlinear index of refraction at 800
nm have also been observed at 400 nm, which confirm
these differences.

Table 2. Absolute Measurements of the Nonlinear
Index of Refraction of Several Samples of Fused

Silicaa

Sample of Fused Silica

Nonlinear index
at 800 nm

(10216 cm2/W)

Nonlinear index
at 400 nm

(10216 cm2/W)

Heraeus S300 3.5 4.0
Herasil 3.3 3.3
Suprasil 3.2 3.4
Heraeus Homosil 3.1 3.4
Heraeus S1 3.0 3.4
Herasil S1V 3.0 3.4
Suprasil EN1027A 2.7 3.3
F851053 2.7 3.0
Heraeus H1 2.6 3.3
Schott SQ1 2.5 2.8

a Relative accuracy between the different samples is inferior to 1%.
Few clues can be pointed out to account for this rather
large and surprising deviation. Although some empirical
relations have linked the nonlinearity (electronic) to the
bandgap,14 they will not be applied here; all the samples
tested here have similar bandgaps in the 200-nm region
and are excited in the near infrared. Although no corre-
lation has been found, clearly a trend between residual
absorption (due to impurities) and nonlinearity can be
seen in our experimental data. Another way will be to
explore a link between density and nonlinearity more
likely to happen. Obviously, the material density is pro-
portional to the small entities’ (SiO2) concentration. As
the macroscopic polarization is globally the product of the
microscopic contribution times the number of the active
entities, one expects that density and the nonlinear index
of refraction would be strongly coupled. Figure 6, indeed,
shows such a trend, but a more accurate density measure-
ment is necessary to confirm this argument.

Nonlinear index mapping has been made on several
samples. Some of them present small inhomogeneities
that can induce some variations on the measurement of
the same sample if the position of the beam has moved.
It is worth noting that these commercial samples present
an overall homogeneity much higher than that of experi-
mental samples. This greatly eases the measurement
procedure.

The influence of density (and fluctuation) of the mate-
rial as well as the amount of residual impurity will be fur-
ther analyzed to eventually enhance the performance of
the industrial process with respect to the nonlinearity.

2. Dispersion of the Nonlinear Index
Using the same technique, we measure the nonlinear in-
dex of one standard fused-silica sample—Suprasil—at
three wavelengths: 400, 800, and 1500 nm.

The values are 3.4 3 10220 m2/W at 400 nm, 3.2
3 10220 m2/W at 800 nm, and 2.5 3 10220 m2/W at 1500
nm.

The relationship among the nonlinear index n2 , the
linear index, and its dispersion as first proposed by the
Boling–Glass–Owyoung theory15 has been long accepted,
and many transparent materials have successfully been
screened.16 As this theory predicts only the low-
frequency behavior of the nonlinearity, no differential dis-
persion can be found between linear and nonlinear indi-
ces. This model has been widely improved with another

Fig. 6. Density of fused-silica samples as a function of the non-
linear index of refraction. The solid curve is a fit.
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where Ep 5 2u pvcu2/m0 , pvc is the interband momentum
matrix element, m0 is the free-electron mass, Eg is the
gap energy, and K8 is a constant that takes different val-
ues according to the material, and
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(x is in inverse centimeters and K is the kurtosis electron
distribution,15 which has a value close to 0.5 for wide-
bandgap glasses).

This analysis is summarized in Fig. 7. The quality of
our absolute measurement and accuracy allows us to re-
view the usual conclusion and find that the observed dis-

Fig. 7. Measured values of the nonlinear refractive-index coef-
ficient as a function of wavelength. Coefficients are plotted in
multiples of 1 3 10220 m2/W. The source of the data is indi-
cated in Ref. 18. The solid curve is a fit of the data by the PERT
equation, and the dashed curve is a fit of the Kramers–Kronig
model.

approach17 taking into account mainly two-photon ab-
sorption. Those authors used a two-band model to calcu-
late the nonlinear absorption. The corresponding nonlin-
ear refractive index is simply retrieved with the 
Kramers–Kronig transformation [Eq. (19)]. They were 
able to predict an especially good scaling in a wealth of 
different materials, ranging from semiconductors to insu-
lators, and even proposed an universal dispersion curve. 
More recently a new perturbation theory analysis13 

[PERT equation (20)] has been proposed for the disper-
sion of the nonlinear refractive index. We also take into 
account other published nonlinear measurements for 
analysis by use of these two powerful models:
crepancies are rather more affected by the sample origin
than by the measurement technique.

3. Nonresonant Vibrational Contributions
Our experimental approach for nonlinearity measure-
ments relies on femtosecond laser pulses, whereas nano-
second pulses are usually used in high-power laser
chains. If electronic contributions in glasses are identi-
cal for femtosecond and nanosecond pulse excitations,
nuclear contributions are not identical. The correspond-
ing noninstantaneous nonlinearity will strongly depend
on the spectral width of the excited pulses and then indi-
rectly on the temporal width of these pulses. To study
the influence of the nonresonant vibrational contribution,
we compute the noninstantaneous signal with experimen-
tal polarized and depolarized Raman spectra displayed in
Fig. 8.

Two dominant low-frequency components are clearly
visible in the Raman spectra of SiO2 (quasi similar for all
the samples of fused silica) in the Raman spectra: a
broadband at 450 cm21 attributed to the out-of-plane
rocking of the oxygen in the bridging SiuOuSi and a Bo-
son peak19 associated with acousticlike excitations. For
a 100-fs laser pulse, the frequency components are excited
up to 150 cm21, corresponding to the Boson peak.

By using the response function symmetry properties of
the nuclear contribution and following the model pro-
posed by Hellwarth9 and Stolen and Tomlinson,20 one can
extract first the nuclear nonlinear susceptibility and then
the two independent real nonlinear response functions
d1122

(3) (t) and d1212
(3) (t) from Raman spectra corrected by the

Boltzman factor: @1 2 exp(2\v/kT)#21. These response
functions are presented in Fig. 9. It is worth noting that
Eq. (12) shows that in the case of no Raman loss or gain—
which is the case in a bulk of fused silica—the nuclear
nonlinear polarization depends only on the response func-
tion d1212

(3) (t).
As suggested by Stolen and Tomlinson,20 we compute

the Raman contribution to the nonlinear effective index of
fused silica for pulses of different widths (Fig. 10). The
nonlinear Raman contribution begins to be significant for
pulses longer than 100 fs and reaches the maximum for a
pulse width of 10 ps. In contrast to Stolen and Tomlin-
son’s findings, negative Raman contribution to n2 due to a
quadratic phase has not been found for extremely

Fig. 8. Polarized and depolarized low-frequency Raman spectra
of a sample of fused silica (Suprasil), excited at 514.5 nm.



short pulses in our case. The reason is that the transient
absorption technique does not give the sign of the nonlin-
ear index but only the modulus. Nevertheless, this nega-
tive contribution measured in fibers disappears for pulses
longer than 30 fs. As our experimental conditions are
the use of pulses longer than 100 fs and the measure of a
thin fused-silica bulk, the nuclear contribution cannot be
negative. Figure 10 shows that, in our experience, the
nuclear contribution to the signal cannot be more than
5%. As Hellwarth et al.21 has found that approximately
18% of the nonlinear index of refraction in fused silica is
attributed to the Raman effect, we can conclude that a
maximum Raman contribution is approximately 1% in
our signal. The more recent measurements of Smolorz
and Wise22 (who measured a nuclear fraction between
13% and 18% in SiO2uGeO2 fibers) confirm this conclu-
sion.

Fig. 9. Nuclear response functions d1122(t) (thin curve) and
d1212(t) (thick curve) of fused-silica glass, calculated from the Ra-
man spectra shown in Fig. 5.

Fig. 10. Calculated evolution of the nuclear contributions aris-
ing from the response d1212(t) of the nonlinear signal in arbitrary
units as a function of the temporal width.
In consideration of this result, the nuclear signal has
been computed and compared with the electronic one on
Fig. 11. As the decrease of the response function d1212

(3)

3 (t) is relatively short, the envelope of the nuclear sig-
nal is shifted several tens of femtoseconds. This tempo-
ral shift is similar to the shift of the CS2 fast nuclear non-
linear signal on Fig. 2. Nevertheless, in consideration of
the error bars of our measurements, the Raman contribu-
tion can easily be neglected in these analyses, and we can
conclude that pure electronic nonlinear susceptibility
measurements are possible in fused silica.

B. Nonlinearities in Oxide Glasses

1. High Nonlinearity and Material Science
The development of new glassy materials for photonic de-
vices or all-optical communication systems requires glass
composition choices that are dictated by the necessity of
increasing the nonlinear optical efficiency.23,24 A com-
parative study25 on oxide glasses identifies some promis-
ing compositions (gallate and tellurite glasses) in terms of
nonlinear index and figures of merit. In this context the
identification of the microscopic origin of the optical non-
linearities in glasses proves to be essential. Among the
candidates inducing the largest nonlinear indices when
introduced into oxide glasses, heavy cations with ns2 elec-
tron pairs (Te41, Tl1, Pb21...) or d0 ions (Ti41, Nb51...)
can be studied. The relationship between structural
properties of such oxide glasses and optical (nonlinear)
properties has already been largely discussed first theo-
retically in Lines26 and then experimentally
intensively.27–30 An optimization of nonlinear efficien-
cies was consecutively performed, leading to a gain of 1 or
2 orders of magnitude when compared with fused-silicate
glasses. Here we will review the nonlinear performances
for different oxide glass matrices that contain increasing
proportions of additive niobium oxide. Third-order non-
linear measurements are precisely correlated to struc-
tural data.

Concerning the noninstantaneous contribution to the
nonlinearity of these high nonlinear glasses, the Raman
contribution in these glasses can be four times higher

Fig. 11. Pure theoretical signal of a 1-mm sample of fused silica
at 800 nm with a 100-fs-width laser pulse. Nuclear contribution
to the signal represents 1.5%.



Fig. 12. Measurement of the real part of the third-order optical
susceptibility of glasses as a function of the concentration in nio-
bium at 800 nm.

than in fused silica.31 Nevertheless, that means that the 
Raman contribution to our signal cannot exceed 4%, 
which is in the error bars of these sample 
measurements—their optical quality is less good than in 
the commercial fused-silica samples. So we can conclude 
that our measurements are quite pure electronic ones for 
the tellurium and niobium glasses.

2. Measurements and Origin of the Nonlinearity in 
Niobium Glasses
Niobium oxide32 has been introduced in borate, either so-
dium or calcium borophosphate glass matrices (Fig. 12).

The nonlinearity of a calcium borophosphate glass with 
the largest concentration of niobium can reach values 
around 25 times the fused-silica response. Indeed, these 
d0 niobium transition metals form oxygenated sites
(NbuO)6 in oxide glasses in which oxygen electrons are 
delocalized toward niobium atoms to form metal–oxygen
bonds. This phenomenon gives rise to large hyperpolar-
izabilities of (NbuO)6 entities. The nonlinear response 
is then currently proportional to the niobium concentra-
tion for (NbuO)6 isolated oxygenated sites in the poorest 
niobium glasses regardless of the glass matrix.

An enhancement of the nonlinear response is observed 
for the richest niobium borophosphate glasses. This has 
been explained by the progressive formation of two-
dimensional and then three-dimensional associations of
niobium-oxygenated sites. The creation of NbuOuNb 
bridges increases the delocalization of (NbuO)6 elec-
tronic clouds, inducing an enhancement of each (NbuO)6 
site hyperpolarizability.

The nonlinear absorption of these materials remains 
very small, around ten times the silica glass’s nonlinear 
absorption level. Indeed, the contribution to the imagi-
nary part of the third-order nonlinear susceptibility is es-
sentially due to a two-photon absorption process. The 
differences between presented glass compositions are not 
significant for their absorption edge slightly evolving from
300 to 380 nm; thus no correlation can be established be-
tween the absorption-edge position and the nonlinear ab-
sorption.

4. CONCLUSION
Transient absorption experiments show a high efficiency
on the measurement of nonlinearities in isotropic materi-
als. The sensitivity of the experiment has been exploited
to study either weak or strong nonlinearities. The accu-
racy of this technique allows precise measurement of vari-
ous fused silica as well as to finely optimize oxide glasses
for optronic applications.

Fundamentally, we now investigate the surface nonlin-
earities with an equivalent setup. Although, in our con-
ditions, the surface does not contribute to the measure-
ment of the nonlinear index within the volume as the
number of hyperpolarizable entities is small, it will be in-
teresting to study the nonlinear properties of glasses and
crystals at the surface. For example, it has been already
shown33 that xsurface

(3) is higher than xvolume
(3) at the air–

dielectric interface by use of third-harmonic generation.
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