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Ocean color sensors enable a quasi-permanent monitoring of the chlorophyll a concentration, Chl a, in surface waters. This ubiquitous photosynthetic pigment cannot, however, be used to distinguish between phytoplankton species.

Distinguishing phytoplankton groups from space is nevertheless necessary to better study some biochemical processes such as carbon fixation at the global scale, and is thus one of the major challenges of ocean color research. In situ data have shown that the water-leaving radiances (nLw), measured by ocean color sensors at different wavelengths in the visible spectrum, vary significantly for a given Chl a. This natural variability is due partly to differences in optical properties of phytoplankton species.

Here we derive relationships between nLw and phytoplankton species by using a large set of quantitative inventories of phytoplankton pigments collected during nine cruises from Le Havre (France) to Nouméa (New Caledonia) in the framework of the GeP&CO program. Coincident SeaWiFS nLw data between 412 and 555 nm are extracted and normalized to remove the effect of Chl a. These normalized spectra vary significantly with in-situ pigment composition, so that four major phytoplankton groups, i.e., haptophytes, Prochlorococcus, Synechococcus-like cyanobacteria and diatoms, can be distinguished. This classification (PHYSAT) is applied to the global SeaWiFS dataset for year 2001, and global maps of phytoplankton groups are 1 presented. Haptophytes and diatoms are found mostly in high latitudes and in eutrophic regions. Diatoms show a strong seasonal cycle with large-scale blooms during spring and summer. These results, obtained with only five channels in the visible spectrum, demonstrate that ocean color measurements can be used to discriminate between dominant phytoplankton groups provided that sufficient data are available to establish the necessary empirical relationships.

Introduction

The ocean carbon cycle and associated carbon fluxes are partly controlled by marine biology. Phytoplankton cells use dissolved inorganic carbon to photosynthesize organic matter, which in turn is recycled in the water column or exported toward sediments. Properly modeling the phytoplankton growth in the global ocean is thus a prerequisite to the modeling of the marine carbon cycle. Our current knowledge of the geographical distribution and of the seasonal cycle of photosynthesizing marine organisms at the global scale comes mainly from satellite observations. The first spaceborne ocean color sensor, CZCS (Coastal Zone Color Scanner), was launched in 1978 and provided data until 1986. New sensors have been launched since, e.g., SeaWiFS (Sea Wide Field-of-view Sensor) in 1997 or MODIS (Moderate Resolution Imaging Spectroradiometer) in 1999 and in 2002, but the principle of ocean color algorithms did not change much in 25 years. After atmospheric correction, the blueto-green ratio of water-leaving radiances permits the estimation of the so-called "chlorophyll a concentration" (Chl a) -actually the sum of the chlorophyll a and pheophytin a concentrations -which is used as a proxy for the phytoplankton (i.e., algae and photosynthetic cyanobacteria) biomass.

However, knowledge of Chl a is not sufficient to properly assess the photosynthesis contribution to the oceanic carbon cycle. Indeed all phytoplankton species contain chlorophyll a (or its substitute divinyl chlorophyll a), but they have different requirements and produce different organic substances. Well-known examples are the N 2 fixing cyanobacteria Trichodesmium, or the calcium carbonate fixing coccolithophorids. These two species have very specific optical properties that make them detectable from space [START_REF] Brown | Coccolithophorid blooms in the global ocean[END_REF]Subramaniam et al., 2002). Current ocean color algorithms, however, do not provide any information about other phytoplankton groups of primary importance to biogeochemical cycles. Diatoms, for instance, have a silica skeleton and export the organic matter toward sediments more efficiently than all other groups [START_REF] Lochte | Plankton succession and carbon cycling at 47°N 20°W during the JGOFS North Atlantic Bloom Experiment[END_REF], whereas prymnesiophytes produce dimethylsulfide (DMS), a compound that impacts the climate as a precursor of cloud condensation nuclei. Distinguishing phytoplankton species at the global scale from space is thus the next challenge for ocean color in case I waters (e.g., [START_REF] Kahru | Spectral reflectance and absorption of a massive red tide off Southern California[END_REF][START_REF] Martin-Traykovski | Optical Classification of Water Types based on Remotely-Sensed Ocean Colour[END_REF][START_REF] Moore | Linking algal functional groups with bio-optical provinces on a global scale[END_REF][START_REF] Morel | Consequences of a Synechococcus bloom upon the optical properties of oceanic Case 1 waters[END_REF][START_REF] Sathyendranath | Remote sensing of phytoplankton pigments: a comparison of empirical and theoretical approaches[END_REF][START_REF] Sathyendranath | Discrimination of diatoms from other phytoplankton using ocean color data[END_REF].

Phytoplankton groups are generally characterized by some specific pigments -the biomarkers -and can thus be identified from pigment inventories derived from in situ samples. Such analysis requires an operator, whereas automatic optical measurements of the water absorption spectrum are tentatively used to retrieve information on the characteristics of the phytoplankton population (Stuart et al., 1998). However, it is often difficult to extract the contribution of each pigment to the measured absorption spectrum [START_REF] Bricaud | Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization[END_REF]. The package effect can also modify the absorption spectrum and thus lead to a wrong interpretation in terms of phytoplankton species. The identification of phytoplankton groups from space is even more difficult, because the signal detected by an ocean color sensor depends also on the light backscattered by small detritus particles [START_REF] Garver | Variability in near-surface particulate absorption spectra: What can a satellite ocean color imager see?[END_REF]. Two different approaches can be used to retrieve phytoplankton groups from space: (1) perform large sets of in-water radiative computations with various amount of phytoplankton cells of different sizes, shapes and pigment compositions to simulate the ocean's inherent optical properties [START_REF] Stramski | Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community[END_REF] and to interpret its variability in terms of biological state of the phytoplankton population [START_REF] Loisel | Seasonal and interannual variability of particulate organic matter in the global ocean[END_REF]; (2) use a large set of in situ pigment inventories with coincident ocean color spectral measurements to work out empirical relationships. Here we applied this latter approach to an unequalled set of in-situ measurements, performed in the framework of the GeP&CO program in the Atlantic and the Pacific between 1999 and 2002, for which SeaWiFS data are available. The Gep&Co program consists of simultaneous HPLC and spectrofluorometry pigment analysis performed five times a day during twelve 40-day cruises (October 1999 -July 2002) from Le Havre (France) to Nouméa (New Caledonia) onboard the merchant ship Contship London [START_REF] Dandonneau | Seasonal and interannual variability of ocean color and composition of phytoplankton communities in the North Atlantic, Equatorial Pacific and South Pacific[END_REF].

Data and methods

GeP&CO

Inventories of phytoplankton pigments are commonly used to discriminate between phytoplankton groups [START_REF] Mackey | CHEMTAX -A program for estimating class abundances from chemical markers[END_REF]Vidussi et al., 2001;[START_REF] Barlow | Phytoplankton pigment and absorption characteristics along meridional transects in the Atlantic Ocean[END_REF].

The GeP&CO (Geochemistry, Phytoplankton, and Color of the Ocean) program aims at describing and understanding the seasonal and inter-annual variability of phytoplankton populations in the North Atlantic and the tropical Pacific. The observations have been made quarterly, across the North Atlantic, along the eastern coast of the United States, through the Caribbean Sea to Panama, and across the equatorial and tropical South Pacific to New Zealand and New Caledonia [START_REF] Dandonneau | Seasonal and interannual variability of ocean color and composition of phytoplankton communities in the North Atlantic, Equatorial Pacific and South Pacific[END_REF]. As part of the routine measurements of GeP&CO, surface water samples were taken every 4 hours, i.e. 5 times a day, so that 1502 pigment inventories were analyzed. This homogeneous data set, which covers a wide range of water types from the North Atlantic to the equatorial Pacific, provides a unique opportunity to link satellite observations and phytoplankton groups in the global ocean.

Twenty-two pigments were measured on each sample by spectrofluorometry for chlorophyllous pigments and by HPLC for both chlorophyllous and carotenoid pigments. Spectrofluorometric measurements were made according to [START_REF] Neveux | Spectrofluorometric assay of chlorophylls and phaeopigments using the least squares approximation technique[END_REF], and the HPLC method was adapted from [START_REF] Goericke | Chlorophylls a and b and divinyl chlorophylls a and b in the open subtropical North Atlantic Ocean[END_REF]. Here we considered only 7 pigments, which are characteristic of the main phytoplankton groups that can be potentially found (Table 1). Note that for mono-and divinyl-chlorophyll a, we preferred spectrofluorimetry results because they were shown to be more accurate than HPLC ones during an inter-calibration exercise performed on some Gep&Co samples with the Laboratoire d'Océanographie de Villefranche. Note also that we excluded the first three cruises from our database because of failures in the HPLC instrumentation, reducing the number of available pigment inventories to 1123. Despite this, the GeP&CO database remains unique in the sense that all measurements were made by a single operator and by the same protocols and techniques. The main characteristics of each GeP&CO cruise are given in Table 2, and more details on the methodology can be found on the GeP&CO web site at http://www.lodyc.jussieu.fr/gepco.

SeaWiFS

We used SeaWiFS Level 3 binned daily products provided by the NASA/GSFC/DAAC to get a set of Chl a, aerosol optical thickness at 865 nm, and normalized water-leaving radiances (nLw) at 412, 443, 490, 510 and 555 nm that are coincident with GeP&CO measurements. SeaWiFS normalized water-leaving radiances are outputs of the atmospheric correction [START_REF] Gordon | retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm[END_REF] and are used in turn to retrieve Chl a with the help of the OC4v4 bio-optical model, which relies on the ratio of the maximum nLw in blue bands (443, 490 or 510 nm) to nLw at 555 nm [START_REF] O'reilly | Ocean color chlorophyll-a algorithms for SeaWiFS, OC2 and OC4 : Version 4[END_REF]. Our objective is to show spectral changes of nLw related to pigments other than chlorophyll a in order to use them as biomarkers of specific phytoplankton groups. To isolate this second order variation from the total nLw spectral variability, we defined a specific water-leaving radiance, nLw * , defined as:

nLw * (λ)=nLw(λ)/nLw ref (λ,Chl a) (1)
where A subset of SeaWiFS data was then extracted from the previous dataset of 28800 nLw and Chl a values by selecting only clear-sky pixels of the same day and located within an area of ±1 pixel around a GeP&CO measurement, so that a maximum of 9 valid SeaWiFS pixels can be associated with each GeP&CO measurement. We applied two additional criteria to keep only the highest quality SeaWiFS measurements: (1) the SeaWiFS aerosol optical thickness at 865 nm has to be lower than 0.15 in order to minimize the impact of atmospheric correction errors and of sub-pixel cloud contamination, and (2) the SeaWiFS Chl a has to be lower than 3 mg.m -3 to exclude possibly contaminated coastal waters, and higher than 0.04 mg.m -3 to discard ultraoligotrophic waters where it is unlikely to find a dominant phytoplankton group in sea color data. For each GeP&CO in situ observation, nLw * (λ) was computed for all valid pixels using Equation 1, where nLw ref was interpolated within the look-up table for the actual SeaWiFS Chl a. The mean and the standard deviation of nLw * (λ) was then calculated using all valid pixels in order to associate only one nLw * spectrum to a

given Gep&CO in situ observation. We thus applied a last selection criterion by removing data for which the standard deviation of nLw * was larger than 0.1, i.e., about 10% of nLw * , for at least one wavelength.

We ended up with a set of only 176 coincident GeP&CO pigment inventories and "high quality" SeaWiFS nLw * (λ). This relatively small number of coincident measurements (14% of the initial GeP&CO dataset) recalls the need for routine field measurements of phytoplankton pigment such as those performed during the GeP&CO program. Note that we attempted to increase the number of coincident SeaWiFS measurements by increasing the search area to 4x4 pixels and the search period to ±1 day. By doing this, however, we found that, when several pixels were available, the standard deviation on nLw or Chl a increases rapidly, which is unacceptable for our approach. Figure 2 nevertheless shows that this limited dataset is still representative of a wide range of locations, seasons and biophysical regimes, even in the North Atlantic, where many SeaWiFS pixels were not available because of the cloud coverage. Figure 3 also shows that nLw * strongly varies in terms of both mean value and spectral shape within this reduced dataset. This observation confirms that the GeP&Co dataset includes waters with a large variety of waters optical properties. We hereafter attempt to show relationships between SeaWiFS nLw * and phytoplankton groups using co-located pigment inventories and SeaWiFS data.

Identification of Phytoplankton Groups in GeP&CO Measurements

The objective of this section is to develop a method to associate a dominant phytoplankton group, if any, with each GeP&CO pigment inventory. It is important to point out that, while there is a general agreement on the taxonomic message of each biomarker (e.g., divinyl chlorophyll a is used to characterize Prochlorococcus), a large range of relative concentrations (pigments ratios) can be found in the literature.

Pigment ratios, P rel , are defined as:

P rel = P / (Chl a + d-Chl a ) ( 2 
)
where P is the measured pigment concentration in the seawater and d-Chl a is the concentration in divinyl chlorophyll a. Our interpretation of the 176 selected pigment inventories relies mostly on the bibliographic analysis performed by [START_REF] Mackey | CHEMTAX -A program for estimating class abundances from chemical markers[END_REF] for phytoplankton populations in equatorial and tropical waters and by [START_REF] Lampert | Dynamique saisonnière et variabilité pigmentaire des populations phytoplanctoniques dans l'Atlantique Nord (golfe de Gascogne)[END_REF] for diatoms in the North Atlantic. Table 3 summarizes the relative concentrations of the major biomarkers for five main phytoplankton groups: diatoms, Prochlorococcus, haptophytes, Synechococcus-like cyanobacteria (SLC) and dinoflagellates. This table shows that, even for pure assemblages of phytoplankton, the relative concentration of the primary biomarker is highly variable except for divinyl-chlorophyll a. Table 3 thus shows that it is virtually impossible to define a single threshold for each biomarker.

This difficulty has been managed by assuming that all phytoplankton groups are represented within our dataset and by adjusting thresholds on the various biomarker concentrations, shown in Table 4, to obtain a set of coherent pigment inventories for each phytoplankton group. Fucoxanthin and 19'HF are used as primary biomarkers for diatoms and haptophytes, respectively, only when all other pigments were at low concentration. We did not impose any maximum threshold on these two biomarkers for the three other phytoplankton groups because these pigments are generally abundant in all GeP&CO observations. An additional criterion on the Pheo a/Chl a ratio has been added in Table 4 to remove a few water samples that could have been affected by the degradation of organic matter. Note that thresholds in Table 4 are all within the range found in the literature (see Table 3). Note also that although we used the smallest peridinin relative concentration in Table 3, no pigment inventory was classified as dinoflagellates. This is not surprising since dinoflagellates are known to be present almost everywhere, but only as a minor component of the total phytoplankton population [START_REF] Jeffrey | Phytoplankton pigments in oceanography[END_REF]. As a consequence only four assemblages (dominated respectively by diatoms, Prochlorococcus, haptophytes, and SLC) could be identified within the data set.

The criteria defined in Table 4 were used to classify the 176 pigment inventories for which a mean SeaWiFS nLw * spectrum is available. Only 41 inventories, shown in Figure 4, were successfully classified; the others have been removed because they do not fulfill the pigment criteria of any phytoplankton group, suggesting only one quarter of the GeP&CO samples was dominated by a single phytoplankton group.

Note that although the diatom group is based on only three measurements, it was considered as significant because only "high-quality" SeaWiFS pixels were kept.

Figure 4 shows that individual pigment inventories are well organized within each group and that the mean pigment compositions are clearly different for the four groups of phytoplankton.

Identification of Phytoplankton Groups in SeaWiFS Measurements

The objective of this section is to assess whether the SeaWiFS nLw * spectrum depends on the phytoplankton group identified from the water sample. Figure 5 shows that the nLw * spectra associated with the 41 classified GeP&CO pigment inventories are remarkably similar for a given phytoplankton group and differ significantly from one group to the other. This suggests that a relationship actually exists between both the spectral shape and the amplitude of the satellite signal and the dominant phytoplankton group, at least for the four groups identified within the GeP&CO 5). These criteria are broad enough to maximize the number of nLw * spectra classified and narrow enough to avoid any overlapping between phytoplankton groups. Twenty six individual spectra out of 41 were thus successfully classified using these criteria. It is important to note that unclassified spectra are really "not classified" and not "misclassified", except for 4 individual Prochlorococcus spectra.

Preliminary Global Results

The criteria defined in Table 5 were used to process SeaWiFS daily level 3 binned products at a resolution of 1/12° (9 km), available from the NASA/GSFC/DAAC web site. As a result, we obtained global monthly maps of phytoplankton groups at a resolution of 1°. The first step of the processing is to discard all pixels with an aerosol optical thickness greater than 0.15 or with a Chl a not in the range [0.04, 3] mg.m -3 .

For each remaining pixel, Equation 1 is applied to derive nLw * from nLw and Chl a at the five wavelengths. The criteria defined in Table 5 are then used to identify the dominant phytoplankton group. Pixels with a nLw * spectrum that cannot be classified within one of the four phytoplankton groups are still considered as valid and are associated with an additional group of "unidentified phytoplankton assemblages".

Assuming that a phytoplankton group usually prevails at least for a few weeks, we used the daily phytoplankton group maps at a resolution of 1/12° to generate monthly maps at a 1° resolution by selecting the group that had been retrieved for at least half of the valid (including unidentified) pixels within each 1° x 1° grid box. Note that no phytoplankton group is assigned to a grid box for which no phytoplankton group dominates or for which unidentified pixels prevail. This method to assign phytoplankton dominant groups to SeaWiFS pixels will be mentioned hereafter as PHYSAT. Note finally that the assumption of a prevailing phytoplankton group at the monthly scale may not apply in some specific conditions (e.g., transient blooms or brief episodes in regions with highly variable currents will not appear in monthly maps) but is likely valid in most cases. Since PHYSAT was developed using only 15% of GeP&CO field data, the extensive analysis of the whole dataset performed by [START_REF] Dandonneau | Seasonal and interannual variability of ocean color and composition of phytoplankton communities in the North Atlantic, Equatorial Pacific and South Pacific[END_REF] can be used to validate the maps shown in Figure 6. Their analysis shows phytoplankton species distributions on the ship track between Le Havre and New York that are consistent with our results, with relatively rich waters dominated by haptophytes in January and dominated by diatoms in spring. On the ship track between Panama and Tahiti, [START_REF] Dandonneau | Seasonal and interannual variability of ocean color and composition of phytoplankton communities in the North Atlantic, Equatorial Pacific and South Pacific[END_REF] show that Prochlorococcus and SLC are the dominant species all year long, a result consistent with Figure 6. Measurements performed during the Atlantic Meridional Transect (AMT) cruises [START_REF] Gibb | Surface phytoplankton pigment distributions in the Atlantic Ocean: an assessment of basin scale variability between 50°N and 50°S[END_REF] in 1996

and 1997 can also be used to validate our global results. Fucoxanthin concentrations measured during these cruises show the presence of diatoms north of 40°N in April-May and south of 40°S in September-October, which is consistent with Figure 6.

Similarly, the distribution of nanoflagellates, which is equivalent to our haptophyte species, during AMT cruises shows a maximum at high latitudes when diatoms do not prevail. AMT zeaxanthin and divinyl chlorophyll a concentrations also confirm our results by showing the dominance of both Prochlorococcus and SLC at low latitudes.

This result has also been confirmed by flow cytometry counts of Synechococcus and (Zubkhov et al., 1998).

Prochlorococcus

Figure 6 also shows that our results are in good agreement with the long term monitoring of phytoplankton communities performed at two historic stations:

DYFAMED in the western Mediterranean and BATS in the Sargasso Sea. In the northwestern Mediterranean, the phytoplankton biomass is dominated all year long by Haptophytes (in blue in Figure 6), except during the stratified summertime period, which is often characterized by a high of prochlorophytes (in green in Figure 6) [START_REF] Chiavérini | Seasonal and interannual dynamics of nutrients and phytoplankton pigments in the western Mediterranean Sea at the DYFAMED time-series station (1991-1999)[END_REF]. A similar agreement is found with the dynamic of phytoplankton populations observed at the BATS station, with a dominance of prymnesiophytes from January to early summer, followed by high concentrations of Prochlorococcus during summer [START_REF] Durand | Phytoplankton population dynamics at the Bermuda Atlantic Time-Series station in the Sargasso Sea[END_REF][START_REF] Steinberg | Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry[END_REF].

The comparison of PHYSAT results with standard SeaWiFS maps shows that high Chl a are associated mostly with diatoms, as expected, or with haptophytes. There is, however, no strong correlation between phytoplankton group and Chl a maps in Figure 6. On the contrary Figure 7 shows that a large range of SeaWiFS Chl a is associated with each phytoplankton group, indicating that chlorophyll-a alone is not sufficient to identify a phytoplankton assemblage. Some expected relationships between chlorophyll concentration and phytoplankton assemblage, however, appear in Figure 7: diatoms are always associated with high Chl a values, whereas very low Chl a concentrations (< 0.07 mg.m -3 ) are always associated with Prochloroccus. For Chl a concentration between 0.1 and 0.3 mg.m -3 , i.e., for a large fraction of the global ocean (see Figure 6), almost all phytoplankton groups have an approximately equal contribution.

Discussion

The global variability of marine phytoplankton is presented here using only four groups, or assemblages. This is much less than the number of taxonomic groups identified in the oceans. For instance, cryptophytes, chrysophytes, and chlorophytes are not considered here. In addition, important groups such as the N 2 -fixing

Trichodesmium or the calcium carbonate fixing coccolithophorids have been missed

by the present study. This is partly due to the specificities of the GeP&CO sampling.

In spite of a seasonal coverage from ~50°N to 35°S and of the wide variety of oceanic regimes sampled, the cruises did not sample intense blooms of Trichodesmium or coccolithophorids. We also did not consider in this study carotenoid pigments such as alloxanthin or prasinoxanthin, which are unambiguous biomarkers of cryptophytes and prasinophytes, respectively, but are never abundant, entailing large relative measurement errors.

As shown in section 3, PHYSAT often fails in classifying pixels at high latitudes, particularly in the Southern Ocean, where large unidentified patches are observed.

The presence of phytoplankton assemblages with specific optical properties (such as coccolithophorids or Phaeocystis blooms), which were not sampled during GeP&CO cruises, may explain the large number of unclassified pixels. This hypothesis has to be validated, but it seems unlikely that a bias in SeaWiFS nLw, due for example to a low sun elevation, affects our results in some patches because patches of diatoms and haptophytes are successfully identified elsewhere at the same latitude. It is finally important to note that the relationships proposed here to associate nLw * spectra with phytoplankton groups are purely empirical and raise questions about their bio-optical interpretation. Indeed, former studies based on absorption measurements suggest that, contrary to what is shown in this work, it is impossible to detect phytoplankton groups from space (e.g., [START_REF] Garver | Variability in near-surface particulate absorption spectra: What can a satellite ocean color imager see?[END_REF].

This apparent contradiction suggests that satellite normalized water-leaving radiances are not sensitive solely to the absorption coefficient of the phytoplankton. Indeed nLw depends also on backscattering characteristics of phytoplankton cells and of other water constituents, such as phytoplankton detritus, zooplankton detritus and colored dissolved organic matter. While the phytoplankton backscattering coefficient is generally almost spectrally neutral, its mean value may strongly vary from one species to the other [START_REF] Bricaud | Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation[END_REF][START_REF] Stramski | Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community[END_REF]Vaillencourt et al., 2004). It is thus likely that backscattering properties explain the observed differences in nLw * mean value at all wavelengths in Table 5 and Figure 5, whereas absorption is responsible for the observed differences in nLw * spectral shape between 412 and 490 nm. This interpretation would, however, have to be confirmed, for example by comparing our maps of dominant species to available maps of both absorption and backscattering coefficients [START_REF] Loisel | Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering[END_REF][START_REF] Loisel | Seasonal and interannual variability of particulate organic matter in the global ocean[END_REF]. Besides, the classes of nLw * would also have to be compared with theoretical spectra computed from a radiative transfer model in which specific inherent optical properties are used for each phytoplankton group [START_REF] Stramski | Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community[END_REF].

Conclusion

We used coincident SeaWiFS spectral normalized water-leaving radiances and pigment inventories collected in the framework of the GeP&CO program to investigate the relationships between phytoplankton groups and satellite measurements. We first defined the specific normalized water-leaving radiance, nLw * , to analyze the second order spectral variability of satellite ocean color measurements, which is likely related to the characteristics of the ecosystem. In parallel, we developed a classification based on seven phytoplankton pigments to associate a dominant phytoplankton group, if any, with each GeP&CO pigment inventory. The comparison between the two datasets shows that the main phytoplankton groups are related to a specific nLw * spectral signature that can be used to identify phytoplankton assemblages at the global scale. These principles form the basis of PHYSAT.

Such an approach requires a very large and diverse collection of in-situ data. Indeed in the large initial GeP&CO dataset (1123 measurements), only 41 pigment inventories were finally useable to define the relationships between nLw * and phytoplankton groups. Most of the measurements were discarded because there was no coincident SeaWiFS pixel, or because the in situ pigment inventories did not show any dominant phytoplankton group. This demonstrates the importance of long-term and large-scale measurements for future improvements of ocean color algorithms.

SeaWiFS daily level 3 binned products maps for year 2001 were processed and yielded global monthly maps of phytoplankton groups, which are spatially coherent and in agreement with our current knowledge of phytoplankton group distributions, both in terms of seasonality and spatial variability. This work essentially demonstrates that remote sensing of marine ecosystems is possible, even with a relatively simple ocean color sensor like SeaWiFS. The SeaWiFS archive covers seven years, a period that is long enough to study the time (seasonal, inter-annual) and space variability of phytoplankton assemblages in relation with major climate phenomena such as El Niño. Further improvements of the method would certainly be possible with more accurate multi-spectral (e.g., MODIS and MERIS) or forthcoming hyper-spectral sensors. Other remarkable phytoplankton species such as coccolithophorids, Phaeocystis or Trichodesmium, which are known for their specific normalized waterleaving radiance spectra, may be added to our classification of ocean color imagery. show the minimum and maximum spectral values of nLw * defined in Table 5 to characterize phytoplankton groups. 
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  dataset. Haptophytes are characterized by low nLw * values at any wavelength, with a particularly strong drop of nLw * at 412 and 443 nm. Prochlorococcus are associated to more neutral nLw * spectra and to nLw * values slightly below unity. SLC are characterized by nLw * values above unity and by a slightly larger value of nLw * at 412 nm. Finally, Diatoms are detectable because of their high nLw * values and their steep spectrum, which decreases from 412 to 510 nm. From these results, a characteristic range of nLw * (λ) was derived (Table
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 6 Figure 6 compares monthly maps of phytoplankton groups with monthly mean maps
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 1 Figure 1 Normalized water leaving radiance nLw as a function of wavelength for various chlorophyll-a. Average spectra were obtained from 28800 coincident SeaWiFS chlorophyll a concentration and nLw spectra located in the vicinity of the GeP&CO ship tracks.
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 2 Figure 2. Maps of the selected GeP&CO measurements for a) July to September, b) October to December, c) January to March and d) April to June.
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 3 Figure 3. Spectral shapes of nLw * for the selected GeP&CO measurements in a) January to March, b) April to June, c) July to September, and d) October to December.

Figure 4 .

 4 Figure 4. Individual pigment inventories (see Table 1) for the four populations identified, dominated by: a) haptophytes, b) Prochlorococcus, c) SLC, and d) diatoms. Grey bars represent the mean pigment relative concentrations, and black dots show the individual pigment relative concentrations.
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 5 Figure 5. Spectral signatures of nLw * of the four different phytoplankton assemblages, dominated by a) haptophytes, b) Prochlorococcus, c) SLC, and d) diatoms. Individual SeaWiFS nLw * are depicted by the grey lines. Bold plain lines
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 6 Figure 6. Monthly mean maps of the phytoplankton assemblages (left panels with haptophytes in blue, Prochlorococcus in green, SLC in yellow, and diatoms in red) and of the standard SeaWiFS Chl a (right panels) for January, April, June, August and October 2001. Unidentified pixels are in black.
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 7 Figure 7. Relative frequency histogram of the SeaWiFS Chl a for year 2001 for the four different phytoplankton assemblages, dominated by: a) haptophytes, b) Prochlorococcus, c) SLC, and d) diatoms.
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  nLw ref is a simple model of nLw that accounts only for the SeaWiFS standard Chl a. Ideally, nLw ref should have been the inverse function of the OC4v4 bio-optical model, but because this model is based on a choice between several nLw ratios, it cannot be inverted. We thus defined nLw ref empirically from a large dataset of SeaWiFS Chl a and nLw. This dataset of 28800 nLw and Chl a values was built with

all SeaWiFS measurements available within ±60 km and ±1 day around each GeP&CO measurement performed during the GeP&CO cruises. Mean values of nLw(λ) were computed for 26 narrow Chl a intervals (Figure

1

), and a look-up table of nLw ref (λ, Chl a) was generated. Note that because we used Level 3 binned products at 9 km resolution, which are obtained by averaging Level 2 GAC products at 4 km resolution, we verified that our nLw ref spectra are consistent with SeaWiFS products by comparing the Chl a retrieved using OC4v4 on our nLw ref with the Level 3 binned Chl a.

Tables Chlorophyll-a Divinyl Chlorophyll-a Pheophytin-a Fucoxanthin Peridinin 19'-Hexanoylo- xyfucoxanthin

  

								Zeaxanthin
	Notation	Chl a	Div a	Pheo a	fucox	perid	19'HF	Zeax
	Method	Spectrofluo	Spectrofluo	Spectrofluo	HPLC	HPLC	HPLC	HPLC
	Taxonomic	All, except	Prochloro-	Degradation	Diatoms	Dinofla-	Prymnesio-	SLC
	message	Prochloro-	coccus			gellates	phytes	Prochloro-
		coccus						coccus

Table 1 .

 1 Description of the 7 phytoplankton pigments used in this study (summarized from[START_REF] Jeffrey | Phytoplankton pigments in oceanography[END_REF].

		D	E	F	G	H	I	J	K	L
	Period	23/07/00	16/10/00	15/01/01	10/04/01	09/07/01	03/10/01	01/01/02	30/03/02	25/06/02
		25/08/00	20/11/00	16/02/01	13/05/01	12/08/01	07/11/01	06/02/02	04/05/02	01/09/02
	Number of selected	17	18	23	18	20	23	17	15	25
	measurements									

Table 2 .

 2 Description of the nine cruises used in this study.

	Div a	perid	fucox	19'HF	zeax
	Diatoms		0.15-0.80		
	Prochlorococcus 1.00				0.15-0.35
	Haptophytes			0.10-1.40	
	SLC				0.10-0.60
	Dinoflagellates	0.10-1.00			

Table 3 .

 3 Mean relative concentration of the main biomarkers for the most frequent phytoplankton groups.
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