
HAL Id: hal-00156828
https://hal.science/hal-00156828

Submitted on 22 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Abstract Regular Tree Model Checking
Ahmed Bouajjani, Peter Habermehl, Adam Rogalewicz, Tomas Vojnar

To cite this version:
Ahmed Bouajjani, Peter Habermehl, Adam Rogalewicz, Tomas Vojnar. Abstract Regular Tree Model
Checking. Electronic Notes in Theoretical Computer Science, 2006, 149 (1), pp.37-48. �hal-00156828�

https://hal.science/hal-00156828
https://hal.archives-ouvertes.fr


INFINITY 2005 Preliminary Version

Abstract Regular Tree Model Checking

Ahmed Bouajjani, Peter Habermehl1,2

LIAFA, University Paris 7, Case 7014, 2, place Jussieu, F-75251 Paris Cedex 05, France

Adam Rogalewicz, Toḿǎs Vojnar3,4

FIT, Brno University of Technology, Božeťechova 2, CZ-61266, Brno, Czech Republic

Abstract

Regular (tree) model checking (RMC) is a promising generic method for formal verifi-
cation of infinite-state systems. It encodes configurationsof systems as words or trees
over a suitable alphabet, possibly infinite sets of configurations as finite word or tree au-
tomata, and operations of the systems being examined as finite word or tree transducers.
The reachability set is then computed by a repeated application of the transducers on the
automata representing the currently known set of reachableconfigurations. In order to fa-
cilitate termination of RMC, various acceleration schemashave been proposed. One of
them is a combination of RMC with the abstract-check-refine paradigm yielding the so-
called abstract regular model checking (ARMC). ARMC has originally been proposed for
word automata and transducers only and thus for dealing withsystems with linear (or easily
linearisable) structure. In this paper, we propose a generalisation of ARMC to the case of
dealing with trees which arise naturally in a lot of modelling and verification contexts. In
particular, we first propose abstractions of tree automata based on collapsing their states
having an equal language of trees up to some bounded height. Then, we propose an ab-
straction based on collapsing states having a non-empty intersection (and thus “satisfying”)
the same bottom-up tree “predicate” languages. Finally, weshow on several examples that
the methods we propose give us very encouraging verificationresults.

1 Introduction
Regular model checking[14,4,5] is a general method for formal verification of
infinite-state systems. Configurations of systems are encoded as finite words over
a finite alphabetΣ and transitions are encoded as relations over words. Then, word
automata overΣ can naturally be used to represent and manipulate (infinite)sets
of configurations and transducers over(Σ ∪ {ε}) × (Σ ∪ {ε}) are used to repre-
sent the transition relation. To verify safety properties,a reachability analysis is
performed by calculating transitive closures of transducers or images of automata
by iteration of transducers. Termination is usually not guaranteed and therefore
various acceleration methods have been proposed.

1 Supported by the French ministry of research (ACI project Securité Informatique).
2 Email: abou@liafa.jussieu.fr,Peter.Habermehl@liafa.jussieu.fr
3 Supported by the Czech Grant Agency projects 102/05/H050, 102/03/D211, and 102/04/0780.
4 Email: rogalew@fit.vutbr.cz,vojnar@fit.vutbr.cz

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Bouajjani, Habermehl, Rogalewicz, Vojnar

As one of the most successful acceleration methods and also as a way to cope
with the problem of state space explosion in automata representing configurations,
abstract regular model checking(ARMC) [8] has been introduced recently. This
generic method uses the well knownabstract-check-refineparadigm within regular
model checking. Abstractions are defined on word automata representing configu-
rations. Then, an abstract reachability analysis which is guaranteed to terminate is
performed. Suitable refinements of abstractions are definedfor the case a spurious
counter-example is encountered. In this way, an abstraction detailed just enough to
answer a particular verification question is computed. ARMChas been successfully
applied to a lot of different systems, like counter automata, parameterised networks
of processes, and programs with lists [7].

To handle other structures than linear (or easily linearisable) ones, regulartree
model checking [14,6,1,19,2] has been proposed. Instead of words, configurations
are finite trees and instead of word automata, tree automata are used to represent
sets of configurations. Then, tree transducers model transitions. Like in the word
case, several acceleration approaches for reachability analysis exist.

Tree like structures are very common and appear naturally inmany modelling
and verification contexts. For example, in the case of parameterized tree networks,
labelled trees of arbitrary height represent a configuration of the network: each
process is a node of the tree and the label its control state. Trees also arise natu-
rally, e.g., as a representation of configurations of multithreaded recursive programs
[12,17], as a representation structure of heaps [15], or when representing structured
data such as XML documents [9].

In this paper, we extend the framework of ARMC from words to trees. We use
bottom-up tree automata and transducers. Like in ARMC, we use abstract fixpoint
computations in somefinite domain of automata. The abstract fixpoint computa-
tions always terminate and provide overapproximations of the reachability sets. To
achieve this, we define techniques that systematically map any tree automatonM
to a tree automatonM ′ from some finite domain such thatM ′ recognises a super-
set of the language ofM . For the case that the computed overapproximation is
too coarse and a spurious counter-example is detected, we give effective principles
allowing the abstraction to be refined such that the new abstract computation does
not encounter the same counter-example.

We, in particular, propose two abstractions for tree automata. Similarly to
ARMC, both of them are based on collapsing automata states according to a suit-
able equivalence relation. The first is based on consideringtwo tree automata states
equivalent if theirlanguages of trees up to a certain fixed heightare equal. The sec-
ond abstraction is defined by a set of regularpredicate languagesLP . We consider
a stateq of a tree automatonM to “satisfy” a predicate languageLP if the intersec-
tion of LP with the tree languageL(M, q) accepted from the stateq is not empty.
Then, two states are equivalent if they satisfy the same predicates.

We have implemented the above abstractions in a prototype tool using the Tim-
buk [13] tree automata library. We have experimented with the tool on various
parameterized tree network protocols. The results are veryencouraging and com-

2



Bouajjani, Habermehl, Rogalewicz, Vojnar

pare very well with other tools, which gives us a very good basis and motivation
for a further development of the method.

2 Regular Tree Languages and Transducers

This section is a brief introduction to regular tree languages and transducers. A
more detailed description can be found, e.g., in [10,11].

An alphabetΣ is a finite set of symbols.Σ is calledrankedif there exists arank
functionρ : Σ → N. For eachk ∈ N, Σk ⊆ Σ is the set of all symbols with rankk.
Symbols ofΣ0 are calledconstants. Let χ be a denumerable set of symbols called
variables. TΣ[χ] denotes the set oftermsoverΣ andχ. The setTΣ[∅] is denoted
by TΣ, and its elements are calledground terms. A term t from TΣ[χ] is called
linear if each variable occurs at most once int. Terms inTΣ[χ] can be viewed as
trees—leaves are labelled by constants and variables, and each node withk sons is
labelled by a symbol fromΣk.

A bottom-up tree automatonover a ranked alphabetΣ is a tupleA = (Q, Σ, F, δ)
whereQ is a finite set of states,F ⊆ Q is a set of final states, andδ is a set of tran-
sitions of the following types: (i)f(q1, . . . , qn) →δ q, (ii) a →δ q, and (iii) q →δ q′

wherea ∈ Σ0, f ∈ Σn, andq, q′, q1, . . . , qn ∈ Q.

Note: Below, we call a bottom-up tree automaton simply a tree automaton.

Let t be a ground term. A run of a tree automatonA on t is defined as follows.
First, leaves are labelled with states. If a leave is a symbola ∈ Σ0 and there is a
rulea →δ q ∈ δ, the leave is labelled byq. An internal nodef ∈ Σk is labelled byq
if there exists a rulef(q1, q2, . . . , qk) →δ q ∈ δ and the first son of the node has the
state labelq1, the second oneq2, ..., and the last oneqk. Rules of the typeq →δ q′

are calledε-stepsand allow us to change a state label fromq to q′. If the top symbol
is labelled with a state from the set of final statesF , the termt is accepted by the
automatonA.

A set of ground terms accepted by a tree automatonA is called aregular tree
languageand is denoted byL(A). Let A = (Q, Σ, F, δ) be a tree automaton and
q ∈ Q a state, then we define thelanguage of the state q—L(A, q)—as the set of
ground terms accepted by the tree automatonAq = (Q, Σ, {q}, δ). The language
L≤n(A, q) is defined to be the set{t ∈ L(A, q) | height(t) ≤ n}.

A bottom-up tree transduceris a tupleτ = (Q, Σ, Σ′, F, δ) whereQ is a finite
set of states,F ⊆ Q is a set of final states,Σ is an input ranked alphabet,Σ′ is an
output ranked alphabet, andδ is a set of transition rules of the following types: (i)
f(q1(x1), . . . , qn(xn)) →δ q(u), u ∈ TΣ′ [{x1, . . . , xn}], (ii) q(x) →δ q′(u), u ∈
TΣ′[{x}], and (iii) a →δ q(u), u ∈ TΣ′ wherea ∈ Σ0, f ∈ Σn, x, x1, . . . , xn ∈ χ,
andq, q′, q1, . . . , qn ∈ Q.

Note: In the following, we call a bottom-up tree transducer simplya tree transducer.
We always use tree transducers withΣ = Σ′.

A run of a tree transducerτ on a ground termt is similar to a run of a tree
automaton on this term. First, rules of type(iii) are used. If a leaf is labelled by
a symbola and there is a rulea →δ q(u) ∈ δ, the leaf is replaced by the term

3



Bouajjani, Habermehl, Rogalewicz, Vojnar

u and labelled by the stateq. If a node is labelled by a symbolf , there is a rule
f(q1(x1), q2(x2), . . . , qn(xn)) →δ q(u) ∈ δ, the first subtree of the node has the
state labelq1, the second oneq2, . . ., and the last oneqn, then the symbolf and
all subtrees of the given node are replaced according to the right-hand side of the
rule with the variablesx1, . . . , xn substituted by the corresponding left-hand-side
subtrees. The state labelq is assigned to the new tree. Rules of type(ii) are called
ε-steps. They allow us to replace aq-state-labelled tree by the right hand side of
the rule and assign the state labelq′ to this new tree with the variablex in the rule
substituted by the original tree. A run of a transducer is successful if the root of a
tree is processed and is labelled by a state fromF .

A tree transducer islinear if all right-hand sides of its rules are linear (no vari-
able occurs more than once). The class of linear bottom-up tree transducers is
closed under composition. A tree transducer is calledstructure-preserving(or a
relabelling) if it does not modify the structure of input trees and just changes the
labels of their nodes. By abuse of notation, we identify a transducerτ with the
relation{(t, t′) ∈ TΣ × TΣ | t →∗

δ q(t′) for someq ∈ F}. For a setL ⊆ TΣ and a
relationR ⊆ TΣ × TΣ, we denoteR(L) the set{w ∈ TΣ | ∃w′ ∈ L : (w′, w) ∈ R}
andR−1(L) the set{w ∈ TΣ | ∃w′ ∈ L : (w, w′) ∈ R}. If τ is a linear tree trans-
ducer andL is a regular tree language, then the setsτ(L) andτ−1(L) are regular
and effectively constructible [11,10].

Let id ⊆ TΣ × TΣ be the identity relation and◦ the composition of relations.
We define recursively the relationsτ 0 = id, τ i+1 = τ ◦ τ i andτ ∗ = ∪∞

i=0τ
i. Below,

we supposeid ⊆ τ meaning thatτ i ⊆ τ i+1 for all i ≥ 0.

3 Abstract Regular Tree Model Checking

In this section, we first recall the notion of regular tree model checking. Then, we
introduce abstract regular tree model checking by defining several abstractions on
tree automata.

3.1 Regular Tree Model Checking

Regular tree model checking [1,6,14] is a generalisation of regular model checking
[5] to trees. A configuration of a system is encoded as a term (tree) over a ranked
alphabet and a set of such terms as a regular tree automaton. The transition relation
of a system is encoded as a linear tree transducerτ . We are given a tree automaton
Init encoding the set of initial states. For safety properties, aset of bad states (rep-
resented by a tree automatonBad) is given. Then, the basic verification problem
consists in deciding whether

τ ∗(L(Init)) ∩ L(Bad) = ∅ (1)

This problem is in general undecidable (an iterative computation ofτ ∗(L(Init))
does not terminate). Several methods [1,2,6] have been proposed to calculate in
some casesτ ∗ or τ ∗(L(Init)). These techniques all compute exact sets or relations.
We tackle the model-checking problem by generalising the abstract regular model

4



Bouajjani, Habermehl, Rogalewicz, Vojnar

checking method [8] to tree automata. This method computes an overapproxima-
tion of τ ∗(L(Init)) with a precision just sufficient to safely solve the verification
problem (1).

3.2 Abstract Regular Tree Model Checking

Abstract regular tree model checking (ARTMC) combines regular tree model check-
ing with automatic abstraction. The main idea of ARTMC is a generalisation of ab-
stract regular model checking [8] to regular tree languages. For this, the abstraction
techniques designed for word automata have to be adapted to tree automata.

We start by recalling the basic framework of abstract regular model checking
(here phrased directly for trees).

Let Σ be a ranked alphabet andMΣ the set of all tree automata overΣ. We
define an abstraction function as a mappingα : MΣ → AΣ whereAΣ ⊆ MΣ and
∀M ∈ MΣ : L(M) ⊆ L(α(M)). An abstractionα′ is called arefinementof the
abstractionα if ∀M ∈ MΣ : L(α′(M)) ⊆ L(α(M)). Given a tree transducerτ
and abstractionα, we define a mappingτα : MΣ → MΣ as∀M ∈ MΣ : τα(M) =
τ̂(α(M)) whereτ̂(M) is a minimal automaton describing the languageτ(L(M)).
An abstractionα is finite rangeif the setAΣ is finite.

Let Init be a tree automaton representing the set of initial configurations and
Bad be a tree automaton representing the set of bad configurations. Now, we may
iteratively compute the sequence(τ i

α(Init))i≥0. Since we supposeid ⊆ τ , it is
clear that ifα is finitary, there existsk ≥ 0 such thatτk+1

α (Init) = τk
α(Init).

The definition ofα implies L(τk
α(Init)) ⊇ τ ∗(L(Init)). This means that in a

finite number of steps, we can compute an overapproximation of the reachability
setτ ∗(L(Init)).

If L(τk
α(Init)) ∩ L(Bad) = ∅, then the verification problem (1) has a pos-

itive answer. Otherwise, the answer to the problem (1) is not necessarily neg-
ative since during the computation ofτ ∗

α(L(Init)), the abstractionα may intro-
duce extra behaviours leading toL(Bad). Let us examine this case. Assume that
τ ∗
α(Init) ∩ L(Bad) 6= ∅, which means that there is a symbolic path:

Init, τα(Init), τ 2

α(Init), · · · τn−1

α (Init), τn
α (Init) (2)

such thatL(τn
α (Init)) ∩ L(Bad) 6= ∅. We analyse this path by computing the sets

Xn = L(τn
α (Init))∩L(Bad), and for everyk ≥ 0, Xk = L(τk

α(Init))∩τ−1(Xk+1).
Two cases may occur: (i) eitherX0 = L(Init)∩(τ−1)n(Xn) 6= ∅, which means that
the problem (1) has anegative answer, or (ii) there is ak ≥ 0 such thatXk = ∅, and
this means that the symbolic path (2) is actually aspurious counter-exampledue to
the fact thatα is too coarse. In this last situation, we need to refineα and iterate
the procedure. Therefore, our approach is based on the definition of abstraction
schemas allowing to compute families of (automatically) refinable abstractions.

3.3 Abstraction Based on Automata State Equivalence

Below, we discuss two possible tree automata abstraction schemas which are based
on tree automata state equivalence. First, tree automata states are split into sev-

5



Bouajjani, Habermehl, Rogalewicz, Vojnar

eral equivalence classes by an equivalence relation. Then,the abstraction function
collapses states from each equivalence class into one state. Formally, a tree au-
tomata state equivalence schemaE is defined as follows: To each tree automaton
M = (Q, Σ, F, δ) ∈ MΣ, an equivalence relation∼E

M⊆ Q×Q is assigned. Then the
automata abstraction functionαE corresponding to the abstraction schemaE is de-
fined as∀M ∈ MΣ : αE(M) = M/ ∼E

M . We callE finitary if αE is finitary (i.e.
there is a finite number of equivalence classes). We refineE by making∼E

M finer.

3.4 Abstraction Based on Languages of Finite Height

We now present the possibility of defining automata state equivalence schemas
based on comparing automata states wrt. a certain bounded part of their languages.
The abstraction schemaHn is a generalisation of a similar schema proposed for
word automata in [8]. This schema defines two states of a tree automatonM as
equivalent if their languages up to the given heightn are identical.

Formally, for a tree automatonM = (Q, Σ, F, δ), Hn defines the state equiva-
lence as the equivalence∼n

M such that∀q1, q2 ∈ Q : q1 ∼n
M q2 ⇔ L≤n(M, q1) =

L≤n(M, q2).
There is a finite number of languages of trees with a maximal height n, and so

this abstraction is finite range. Refining of the abstractioncan be done by increasing
the value ofn.

The abstraction schemaHn can be implemented in a similar way as minimisa-
tion of tree automata. Just the main loop of the minimisationprocedure is stopped
aftern iterations.

3.5 Abstraction Based on Predicate Languages

We next introduce a predicate-based abstraction schemaPP , which was inspired by
the predicate based abstraction on words [8].

Let P = {P1, P2, . . . , Pn} be a set ofpredicates. Each predicateP ∈ P is a
tree language represented by a tree automaton. LetM = (Q, Σ, F, δ) be a tree au-
tomaton, then two statesq1, q2 ∈ Q are equivalent if their languagesL(M, q1) and
L(M, q2) have a nonempty intersection with exactly the same subset ofpredicates
from the setP.

Formally, for an automatonM = (Q, Σ, F, δ), PP defines the state equivalence
as the equivalence∼P

M such that∀q1, q2 ∈ Q : q1 ∼P
M q2 ⇔ (∀P ∈ P : L(P ) ∩

L(M, q1) 6= ∅ ⇔ L(P ) ∩ L(M, q2) 6= ∅).
Clearly, sinceP is finite and there is only a finite number of subsets ofP rep-

resenting the predicates with which a given state has a nonempty intersection,PP

is finitary. This schema can be refined by adding new predicates into the set P.
The following theorem shows that we may eliminate a spuriouscounter-example
by extending the predicate setP by the languages of all states of the tree automa-
ton representingXk+1 in the analysis of the spurious counter-example (recall that
Xk = ∅) as presented in Section3.2.

6



Bouajjani, Habermehl, Rogalewicz, Vojnar

Theorem 3.1 Let us have any two tree automataM = (QM , Σ, FM , δM) andX =
(QX , Σ, FX , δX) and a finite set of predicate automataP s.t. ∀qX ∈ QX : ∃P ∈
P : L(X, qX) = L(P ). Then, ifL(M) ∩ L(X) = ∅, L(αPP

(M)) ∩ L(X) = ∅ too.

Proof. The proof is a generalisation of the proof [8] for word automata. We
prove the theorem by contradiction. SupposeL(αPP

(M)) ∩ L(X) 6= ∅. Let
t ∈ L(αPP

(M)) ∩ L(X). As t is accepted byαPP
(M), M must accept it when we

allow it to perform a certain number of “jumps” between states equal wrt.∼P
M—

after accepting a subtree oft and getting to someq ∈ QM , M is allowed to jump
to anyq′ ∈ QM such thatq ∼P

M q′ and go on accepting from there (with or without
further jumps).

Let i > 0 be the minimum number of jumps needed for accepting a tree from
L(αPP

(M))∩L(X) in M and lett′ be such a tree. When looking at the acceptance
of t′ in M (with some jumps allowed), we can identify maximum subtreesof t′ that
may be accepted without jumps—in the worst case, they are just the leaves. Let us
take any of such subtrees. Such a subtreet1 is accepted in someq1, from whichM
jumps to someq2 and goes on accepting the rest of the input. Suppose thatt1 is
accepted in someqX ∈ QX in X. As t1 ∈ L(M, q1), L(M, q1) ∩ L(P ) 6= ∅ for the
predicateP ∈ P for whichL(P ) = L(X, qX). Moreover, asq1 ∼

P
M q2, L(M, q2)∩

L(P ) 6= ∅ too. This implies there existst2 ∈ L(P ) such thatt2 ∈ L(M, q2) and
t2 ∈ L(X, qX). However, this means that the treet′′ that we obtain fromt′ by
replacing its subtreet1 with t2 and that clearly belongs toL(αPP

(M)) ∩ L(X) can
be accepted inM with i− 1 jumps, which is a contradiction to the assumption ofi
being the minimum number of jumps needed. 2

The abstraction of an automatonM wrt. the state equivalence based on pred-
icate languagesPP can be implemented as labelling each state ofM by the pred-
icates with which its language has a non-empty intersection, and then collapsing
states with an equal labelling. Here, let us stress that whenrefining PP , it is not
necessary to store each of the newly introduced predicates corresponding to the
states ofXk+1 independently and then perform the labelling independently for each
of them. We may keep justXk+1 and then perform labelling not by justXk+1 but
by each of its states. Moreover, this labelling may be implemented by one simul-
taneous run throughM andXk+1, which corresponds to an efficient simultaneous
labelling by all the predicates contained inXk+1.

4 Experiments with ARTMC

In order to be able to practically evaluate the proposed methods of ARTMC, we
have implemented them in a prototype tool. We have based our prototype tool
on theTimbuk library [13] written in Ocaml. Timbuk provided us with the ba-
sic operations over tree automata needed in ARTMC (such as union, intersection,
complementation, etc.). However, we had to extend Timbuk with a support for tree
transducers. We added two implementations of tree transducers—a simpler and
more efficient for structure-preserving transducers and a more complex for general
transducers. The latter implementation exploits a decomposition of a tree trans-

7



Bouajjani, Habermehl, Rogalewicz, Vojnar

ducer into three less complicated ones as described in [11]. This decomposition
can be performed automatically for any tree transducer.

We have tested our verification methods on several examples of protocols using
a parameterised tree-shaped network cited in the literature [14,3,1,2] where the
necessity to cover all possible values of the parameters leads to dealing with infinite
state spaces:

• Simple Token Protocol. A token is being passed in a tree-shaped network from a
leave to the root. We check that the token does not disappear nor replicate.

• Two-Way Token Protocol. An analogy to the previous example, but we allow the
token to be passed upwards as well as downwards.

• Percolate Protocol. A tree-shaped network of processors computes the logical
disjunction of the boolean values that appear in the leave nodes. We check that
the computed value is always correct.

• Tree Arbiter Protocol. A tree-shaped network is used to implement mutual exclu-
sion among the leave processors. A request to enter the critical section is prop-
agated upwards till a node is found which has a token allowingone to enter the
critical section or which knows where the token is (because it granted the token
to one of its children). A node with the token can always send the token upwards
or grant it to any of its children. We check the mutual exclusion property.

• Leader Election Protocol. One of a set of processors is to be elected a leader and
a tree-shaped network is used for this purpose. The leaves are divided into can-
didates and non-candidates. The information about the existence of candidates
is propagated upwards. In the subsequent downward phase, a path leading from
the root to one of the candidate nodes is non-deterministically selected and thus
a leader is established. We check that exactly one leader is chosen.

All the above examples work with a tree-shaped network of a fixed structure.
In order to test the ability of our method to work with non-structure-preserving
systems, we have considered asimple broadcast protocol. In the protocol, the root
sends a message to all leave nodes. They answer and the answers are combined
when travelling upwards. An intermediate node may decide toresend the message
downwards and wait for new data. New nodes may dynamically join the network
at leaves and also leave the network in a suitable moment. We check that there is at
most one active message on each path from the root to the leaves.

The results of our experiments are summarised in Table1. We performed ex-
periments with both the finite-height abstraction as well aswith the predicate-based
abstraction. We considered both forward as well as backwardverification—i.e.
starting with the set of initial states and checking that thebad states cannot be
reached or vice versa. In the table, we always present the better result of these two
approaches. For the finite-height abstraction, we considered the initial height one
(and increased it by one if necessary—in the cases presentedin Table1, this was
not necessary). For the predicate-based abstraction, we considered the automaton
describing the set of bad states as the only initial predicate (or—more precisely—
all the automata that can be obtained from it by considering each of its states as the
only accepting one; in the cases presented in Table1, no refinement was necessary

8



Bouajjani, Habermehl, Rogalewicz, Vojnar

when using these initial predicates). We experimented withthe empty initial set of
predicates too—this turned out to be the fastest option for the Percolate protocol
(one refinement was necessary in this case).

Table 1
Some results of experimenting with ARTMC

Protocol Hn PP

Token passing backwards: 0.08s forwards: 0.06s

Two-way token passing backwards: 1.0s forwards: 0.09s

Percolate backwards: 20.8s forwards: 2.4s

Tree arbiter backwards: 0.31s backwards: 0.34s

Leader election backwards: 2.0s forwards: 1.74s

Broadcasting backwards: 9.1s forwards: 1.0s

Notice that the predicate-based abstraction is almost always better than the
finite-height abstraction. This is different from the word case where the results
differ. An explanation of this phenomenon is a part of our future work. The ver-
ification times presented in Table1 were obtained on an Intel Centrino 1.6GHz
machine with 768MB of memory. We consider these results veryencouraging and
we are now working on a new version of our tool that will be based on the Mona
library [16]. This gives us hope of even better results and an expectation of a suc-
cessful applicability of the tool on real-life case studies(including, e.g., verification
of programs with dynamic linked data structures).

5 Conclusions

We have proposed abstract regular tree model checking as a generalisation of the
successful approach of abstract regular model checking. Inparticular, we have
proposed two kinds of abstractions over tree automata basedon collapsing in some
sense equivalent states of these automata. One of the abstractions decides which
states are equivalent by comparing their languages of treesof a bounded height
while the second one compares the states wrt. whether their languages satisfy (i.e.
are not disjoint with) a set of predicates having the form of regular tree languages.
Both of these abstractions are automatically refinable whena spurious counter-
example is found and allow one to deal with an overapproximation of the state
space precise just enough to verify a given property of interest. In this way, the
state explosion in automata representing the reachabilityset is fought. The above
abstractions were inspired by some of the schemas used in theoriginal ARMC.

We have implemented the proposed methods in a prototype tooland evaluated
them on multiple verification examples with very encouraging results. Currently,
we are building a new and much more elaborate version of our tool based on the tree
libraries of Mona [16]. This tool promises even better results and a high potential
for a successful application on real-life verification problems.

Apart from finishing the new version of our tool, our future work includes a
research on the various application domains of ARTMC. They include, e.g. ver-

9



Bouajjani, Habermehl, Rogalewicz, Vojnar

ification of programs with dynamic linked data structures. ARMC has already
been shown useful for verification of programs with 1-selector linked dynamic data
structures [7]. The use of ARTMC could allow us to handle much more general
structures. To encode data structures with a graph shape, weplan to use trees with
some special symbols placed in their nodes to describe additional edges over the
tree. Another promising application area is the domain of XML manipulations. In-
deed, XML documents have a tree structure and most of XML parsers are based
on the tree automata theory—in particular, on hedge automata [9]. Furthermore,
we intend to use our approach for programs with abstract datastructures and cryp-
tographic protocols along the lines of [18]. For all these applications we plan to
study the encoding in tree automata and transducers and the possibility of defining
application dependent abstractions.

References
[1] P.A. Abdulla, B. Jonsson, P. Mahata, and J. d’Orso. Regular Tree Model Checking. InProc.

of CAV’02, LNCS2404. Springer, 2002.
[2] P.A. Abdulla, A. Legay, J. d’Orso, and A. Rezine.Simulation-Based Iteration of Tree

Transducers.In Proc. of TACAS’05, LNCS3440. Springer, 2005.
[3] R. Alur, R. Brayton, T. Henzinger, S. Qadeer, S. Rajamani. Partial-Order Reduction in

Symbolic State Space Exploration. InProc. of CAV’97, LNCS1254. Springer, 1997.
[4] B. Boigelot and P. Wolper. Verifying systems with infinite but regular state spaces. InProc. of

CAV’98, LNCS1427. Springer, 1998.
[5] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular Model Checking. InProc. of

CAV’00, LNCS1855. Springer, 2000.
[6] A. Bouajjani and T. Touili. Extrapolating Tree Transformations. InProc. of CAV’02, LNCS

2404. Springer, 2002.
[7] A. Bouajjani, P. Habermehl, P. Moro, T. Vojnar.Verifying Programs with Dynamic 1-Selector-

Linked Structures in Regular Model Checking. In TACAS’05, LNCS3440. Springer, 2005.
[8] A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract Regular Model Checking, InProc.

CAV’04, LNCS3114. Springer, 2004.
[9] A. Bruggemann-Klein, M. Murata, and D. Wood.Regular tree and regular hedge languages

over unranked alphabets: Version 1. Technical Report HKUST-TCSC-2001-0, The Hongkong
University of Science and Technology, 2001.

[10] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi.
Tree Automata Techniques and Applications, 2005.
http://www.grappa.univ-lille3.fr/tata

[11] J. Engelfriet. Bottom-up and Top-down Tree Transformations—A Comparison,Mathematical
System Theory, 9:198–231, 1975.

[12] J. Esparza. Grammars as Processes. InFormal and Natural Computing, LNCS2300, 2002.
[13] T. Genet. Timbuk, a tree automata library, 2005.

http://www.irisa.fr/lande/genet/timbuk
[14] Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar.Symbolic Model Checking with

Rich Assertional Languages. InProc. CAV’97, LNCS1254. Springer, 1997.
[15] N. Klarlund and M.I. Schwartzbach. Graph Types. InProc. of POPL’93, ACM, 1993.
[16] N. Klarlund and A. Møller. MONA Version 1.4 User Manual. BRICS, Department of

Computer Science, University of Aarhus, Denmark, 2001.
[17] M. Křetı́nský, V.Řehák, and J. Strejček. Extended Process Rewrite Systems: Expressiveness

and Reachability. InProc. of Concur’04, LNCS3170. Springer, 2004.
[18] D. Monniaux. Abstracting cryptographic protocols with tree automata. InScience of

Computer Programming, Volume 47, Issue 2-3 (May 2003).
[19] A. Pnueli and E. Shahar.Acceleration in Verification of Parameterized Tree Networks.

Technical report MCS02-12, Weizmann Institute of Science,Israel, 2004.

10


	Introduction
	Regular Tree Languages and Transducers
	Abstract Regular Tree Model Checking
	Regular Tree Model Checking
	Abstract Regular Tree Model Checking
	Abstraction Based on Automata State Equivalence
	Abstraction Based on Languages of Finite Height
	Abstraction Based on Predicate Languages

	Experiments with ARTMC
	Conclusions
	References

