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ON THE COMPUTATION OF EXCITED STATES WITH MCSCF

METHODS

MATHIEU LEWIN

Abstract. We discuss the theoretical and practical problems arising when
trying to compute excited states of nonrelativistic electrons in a molecular
system, by multiconfiguration (MCSCF) methods. These nonlinear models
approximate the linear Schrödinger theory and are a generalization of the
well-known Hartree-Fock approach. Due to the MCSCF nonlinearity, a theo-
retical definition of what should be a MCSCF excited state is not clear at all,
contrarily to the ground state case. We compare various definitions used in
Quantum Chemistry. We in particular stress that some defects may lead to
important computational problems, already observed in Quantum Chemistry
(root flipping). We then present a definition of MCSCF excited states based
on a solid mathematical ground and compare it with the most used methods.
This new definition leads to a completely new algorithm for computing the

first excited state, which was proposed and tested in a collaboration with Éric
Cancès and Hervé Galicher. Numerical results are provided for the simple case
of two-electron systems, as an illustration of the possible issues which can arise
as consequences of the nonlinearity of the MCSCF method.

Electronic excited states play an essential role in various phenomena of high
interest, such as photo-induced chemical reactions, femtosecond spectroscopy, or
laser control of molecular processes. The method which seems to be best-adapted
to the computation of excited states is to date the multiconfiguration self-consistent
field (MCSCF) method. Loosely speaking, this approach leads to variational models
which fill the gap between the mean-field Hartree-Fock and the N -body Schrödinger
models. But important problems are encountered in practice during MCSCF com-
putations for excited states. The algorithms available at present do not always
converge (root-flipping problems) and, even when they converge, the interpretation
of the obtained state is not always completely clear.

The goal of this paper is to provide some possible mathematical explanation of
these phenomena. We shall in particular see that, due to the nonlinearity of the
MCSCF models, the definition of what is an MCSCF excited state is not always
clear. We shall present a mathematically valid definition which has been proposed
by the author in [9], and compare it to the usual definitions used in Quantum
Chemistry. Then, we describe a new algorithm for the computation of the first
excited state which has been proposed and tested in a collaboration with Éric
Cancès and Hervé Galicher in [2].

1. The MCSCF Method

The MCSCF method is a nonlinear approximate model for the computation
of eigenfunctions and eigenvalues of the N -body Schrödinger Hamiltonian. For a

I would like to thank my collaborators Éric Cancès and Hervé Galicher with whom the results
which are presented at the end of the paper were obtained [2]. I also would like to thank Patrick
Cassam-Chenäı and Frédéric Patras for their kind invitation to the conference “Mathematical
Methods for Ab Initio Quantum Chemistry” at Nice (FRANCE) in November 2005, where these
results were presented.
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molecule containing M pointwise nuclei of positive charges z1, · · · , zM and located
at x̄1, · · · , x̄M ∈ R

3 (we work within the usual Born-Oppenheimer approxima-
tion), and N nonrelativistic quantum electrons, the N -body Hamiltonian written
in atomic units reads

(1) HN =
N

∑

i=1

(

−1

2
∆xi

+ V (xi)

)

+
∑

16i<j6N

1

|xi − xj |
.

It acts on normalized electronic wavefunctions Ψ(x1, ..., xN ) ∈ L2
a((R3)N ),

∫

R3N Ψ2 =
1. The subscript a indicates that, due to the fermionic nature of the electrons, one
solely considers wavefunctions Ψ which are antisymmetric under permutations of
variables:

Ψ(x1, ..., xi, ..., xj , ..., xN ) = −Ψ(x1, ..., xj , ..., xi, ..., xN ).

Finally, V is the electrostatic potential generated by the nuclei

V (x) = −
M
∑

m=1

zm

|x− x̄m| .

In what follows, we denote by Z =
∑M

m=1 zm the total nuclear charge. For the
sake of simplicity, we do not take the spin into account in the first part of this
paper, but the following arguments can be straightforwardly adapted to the case
of spin-dependent wavefunctions.

When Z > N − 1, it has been proved by Zhislin [18] and Zhislin-Sigalov [19],
that the spectrum σ(HN ) of HN has the form:

σ(HN ) = {λ0 ≤ λ1 ≤ · · · ≤ λk ≤ · · · } ∪ [Σ,∞),

where the {λk}k≥0 are eigenvalues of finite multiplicity which are below and con-
verge to the bottom of the essential spectrum Σ as k → ∞. A ground state is a
normalized eigenfunction associated with the first eigenvalue λ0, whereas excited
states are obtained for λk > λ0. A ground or excited state Ψk is a solution of
the time-independent Schrödinger equation HNΨk = λkΨk. The (λk)′s can be
obtained by the usual Rayleigh-Ritz formula

(2) λk = inf
V ⊂D(HN )

dim(V )=k+1

sup
Ψ∈V,

R

Ψ2=1

〈Ψ |HN |Ψ〉,

where D(HN ) is the domain of HN and 〈· ·〉 denotes the usual scalar product of
L2(R3N ) .

The MCSCF method is based on the following remark:

L2
a((R3)N ) =

N
∧

n=1

L2(R3),

an equality which can be explicited in the following way. Consider an orthonormal
basis (ψi)1≤i of L2(R3),

∫

R3 ψiψj = δij . Then, one obtains an orthonormal basis of

L2
a((R3)N ) by considering the antisymmetrized products (ψi1 ∧· · ·∧ψiN

)1≤i1<···<iN

where ψi1 ∧ · · · ∧ ψiN
denotes the so-called Slater determinant of the ψik

’s:

(3) (ψi1 ∧ · · · ∧ ψiN
)(x1, ..., xN ) =

1√
N !

det(ψik
(xl))k,l.

In other words every antisymmetric wavefunction Ψ is an infinite linear combination
of such Slater determinants:

(4) Ψ =
∑

1≤i1<···<iN

ci1...iN
ψi1 ∧ · · · ∧ ψiN

,
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the sum being convergent in L2
a((R3)N ). Remark that

∫

R3N Ψ2 = 1 is then equiva-

lent to the condition
∑

i1<···<iN
(ci1...iN

)2 = 1.

In the MCSCF approximation, one restricts the number of Slater determinants
appearing in (4), by restricting the number of occupied orbitals. Moreover, to
obtain a suitable approximation, the orbitals will not be fixed but rather optimized.
Let K ≥ N be the number of considered orbitals, denoted as ϕ1, ..., ϕK ∈ L2(R3)
and which still must satisfy the orthonormal condition

∫

ϕiϕj = δij . Both the

coefficients (ci1,...,iN
)1≤ik≤K and the K orbitals (ϕk)K

k=1 are considered as being
variational parameters, and the form of the N -body wavefunction Ψ is now

(5) Ψ =
∑

1≤i1<···<iN≤K

ci1...iN
ϕi1 ∧ · · · ∧ ϕiN

.

When there is no ambiguity, we shall use the following convenient notation

Ψ =
∑

I={i1<···<iN}

cI ΦI

where by definition ΦI = ϕi1 ∧ · · · ∧ ϕiN
when I = {i1 < · · · < iN} ⊂ {1, ...,K}.

Of course in practice not all the
(

K
N

)

possible Slater determinants in (5) are
considered during an MCSCF computation, and only some of them are selected.
One of the most used method to choose an appropriate form for the wavefunction
is the CASSCF method [12] in which the orbitals are divided into three groups
(the active, inactive and virtual ones). We refer to [9] in which an appropriate
formalism for treating these methods is provided. For the sake of clarity, we shall
only consider in this proceeding the “full” MCSCF method (5) in which all orbitals
are active.

When the quadratic form Ψ 7→ 〈Ψ |HN |Ψ〉 is restricted to states of the form (5),
one obtains an energy depending on (ci1,...,iN

)1≤ik≤K and (ϕ1, ..., ϕK) ∈ L2(R3)K

which is nonlinear. This is due to the fact that functions of the form (5) do not form
a vector subspace of L2

a((R3)N ). In the following, we denote by c = (ci1,...,iN
)1≤ik≤K

the collection of the cI ’s (lexicographical ordering), and by Φ = (ϕ1, ..., ϕK) ∈
(L2(R3))K the collection of the orbitals. Due to the normalization constraint on
the wavefunction Ψ, our variable (c,Φ) belongs to the following manifold

(6) MK
N =

{

(c,Φ) ∈ R
(K

N) × (L2(R3))K ,
∑

I

(cI)
2 = 1,

∫

R3

ϕiϕj = δij

}

.

The MCSCF energy is then defined as EK
N (c,Φ) = 〈Ψ |HN |Ψ〉 where Ψ is given by

(5).
We shall not give here an explicit expression of the MCSCF energy in terms of

(c,Φ) and refer to [9]. However, it is important to realize that the two variables c
and Φ play different roles. The energy EK

N is still quadratic with respect to c:

EK
N (c,Φ) =

∑

I,J

cIcJ 〈ΦI |HN |ΦJ〉 =
∑

I,J

cIcJ(HΦ)IJ

where (HΦ)IJ = 〈ΦI |HN |ΦJ〉 and Ψ =
∑

I cIΦI . The Hamiltonian matrix HΦ

is the
(

K
N

)

×
(

K
N

)

matrix of the quadratic form associated with HN , when it is

restricted to the
(

K
N

)

-dimensional space VΦ = Span(ΦI) spanned by the Slater
determinants that can be constructed with the orbitals Φ = (ϕ1, ..., ϕK). But, as
mentioned above, the energy EK

N is not quadratic with respect to the ϕi’s and takes
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the following general form:

(7) EK
N (c,Φ) =

∑

i,j

γij

2

∫

R3

(∇ϕi · ∇ϕj + V ϕiϕj)

+
∑

i,j,k,l

Wijkl

∫∫

R6

ϕi(x)ϕj(x)ϕk(y)ϕl(y)

|x− y| dx dy

where γij and Wijkl only depend on c. The first sum in (7) is quadratic whereas
the last term is quartic. Thus, the MCSCF equations (i.e. the equations satisfied
by a stationary point of EK

N on the manifold MK
N ) consist in an eigenvalue equation

for c coupled with a system of K nonlinear elliptic partial differential equations for
(ϕ1, ..., ϕK), of the general form

(8)











ni(c)

(

−∆

2
+ V

)

ϕi +
∑

j

W
(c,Φ)
i,j ϕj =

∑

j

λijϕj

HΦ c = β c.

The operators W
(c,Φ)
i,j depend on (c,Φ) in a complicated manner.

Mathematically, it is not at all obvious to prove the existence of solutions to the
MCSCF equations (8) when the problem is posed in infinite dimension. There is a
possible lack of compactness at infinity: for any sequence (cn,Φn) of approximate
solutions of (8) it is possible that some electrons “escape to infinity” as n→ ∞ [4].
This phenomenon will typically occur when N ≫ Z, if the nuclei are not able to
bind the N electrons.

Of course, in practice the computation is carried out in finite dimension: the
space L2(R3) is replaced by a finite dimensional space V , usually spanned by a cho-
sen finite set of atomic orbitals. Then the possible lack of compactness mentioned
above never occurs. Notice however that the problems that will be raised below
concerning the existence and the computation of excited states (specific solutions
of (8) which approximate the true eigenfunctions of HN ) appear in finite dimension
also. They will not be related to the mathematical problem of lack of compactness
at infinity which only occurs in infinite dimension.

The definition of the MCSCF ground state energy is clear: it suffices to minimize
the energy EK

N on MK
N , i.e. to minimize the N -body energy over MCSCF functions

of the type (5):

(9) λK
0 = inf

(c,Φ)∈MK
N

EK
N (c,Φ).

It can be proved that λK
0 > λ0 and that limK→∞ λK

0 = λ0, which justifies the MC-
SCF approach for ground states. Recall that K is the number of orbitals appearing
in the model.

In infinite dimension, the existence of an MCSCF ground state was proved when
Z > N − 1 first by C. Le Bris [8] for a subcase of K = N + 2, and then by G.
Friesecke [4] in the general case K ≥ N . In the latter article, it is also shown that
the MCSCF ground state wavefunction ΨK

0 converges to the true eigenfunction Ψ0

of HN . Finally, the case of the methods used in practice like the CASSCF method
was studied by the author in [9].

Numerically, a minimizer of (9) is usually computed by a Newton-like algorithm,
sometimes improved by a trust-region method, see e.g. [14, 15, 13, 3, 5, 6] and the
references in [2]. For the Hartree-Fock model K = N , efficient numerical methods
based on combinations of fixed-point and optimization strategies are available [1].
Unfortunately, such algorithms are specifically designed for solving the Hartree-Fock
problem and seem to be difficult to adapt to the more general MCSCF setting.
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2. MCSCF Excited States

It is not obvious at all to define what an MCSCF excited state is. Indeed, due
to the nonlinearity, the functional EK

N has many spurious stationary points. In [2],
the following general guiding principles for a dth excited state were proposed:

• P1 (First order condition) It should be a critical point of EK
N on MK

N , i.e.
a solution of the MCSCF equations (8).

• P2 (Second order condition) Its total Hessian matrix should have at most d
negative eigenvalues [5]. This in particular implies that c should be at most
the (d + 1)th eigenvector of the Hamiltonian matrix HΦ. But in principle,
it could be a lower eigenvector, because the d negative directions of the
Hessian matrix do not necessarily correspond to variations of c only.

• P3 (HUM-type theorem and large K behavior) Its energy λK
d should satisfy

λK
d ≥ λd and limK→∞ λK

d = λd. The associated wavefunction ΨK
d should

converge to the true excited state Ψd, solution of HNΨd = λdΨd.

If one wants to impose the third property P3, there is a natural definition for
the MCSCF excited state energies, which is indeed the one which is mostly used
in Quantum Chemistry (see, e.g. [13, 14, 15] and the references of [2]). Let us

denote by µK
d (Φ) the

(

K
N

)

eigenvalues of the Hamiltonian matrix HΦ, depending on
the orbitals Φ = (ϕ1, ..., ϕK). By the usual Rayleigh-Ritz formula (2), one deduces
that

λd ≤ µK
d (Φ).

This inequality is usually referred to as the Hylleraas-Undheim-MacDonald (HUM)
theorem in Chemistry. It is therefore natural to define the following energy:

(10) µK
d = inf

Φ
µK

d (Φ),

that is to say, quoting [13], “the MCSCF energy results from minimizing the ap-
propriate eigenvalue of the Hamiltonian matrix with respect to orbital variations”.
It can actually be proved that µK

d ց λd as K → ∞. However, (10) is a minimiza-
tion of an eigenvalue of a symmetric matrix depending on a parameter Φ. This
type of variational method is generally very ill-posed mathematically (even in finite
dimensions) and we believe that most of the convergence problems encountered
in practical computations are due to this issue. We shall now give very simple
examples in dimensions 1 or 2 to illustrate the possible theoretical and numeri-
cal difficulties when trying to optimize the eigenvalue of a matrix depending on a
parameter.

First, it can happen that there is no stationary state (c,Φ) solution of (8) with
an energy µK

d , in which case it will not be possible to find a state satisfying the
properties P1 and P2. We give as an example an energy of the form E(v,x) =
(v,A(x)v)R2 where v is a normalized vector in R

2, A(x) is a symmetric matrix
depending on the parameter x ∈ R

2, and (·, ·)R2 denotes the usual scalar product
of R

2. In our situation, x corresponds to the set of the orbitals Φ whereas v plays
the role of c. Let us consider the following matrix

(11) A(x) =

(

− sinx sin y
sin y sinx

)

,

where x = (x, y) ∈ R
2. The two eigenvalues of A(x) are

µ1(x) = −
√

x2 + y2 and µ2(x) =
√

x2 + y2,

see Figure 1. Hence

inf
x∈R2

µ2(x) = 0,
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Figure 1. The eigenvalues of the matrix A(x)

the infimum being attained when x = 0. But it is an exercise to check that the
energy (v,x) 7→ (v,A(x)v)R2 has no stationary state of the form (v, 0).

A second important problem is that there is no general well-behaved numerical
method for minimizing the eigenvalue of a symmetric matrix depending on a pa-
rameter, except in very special cases not applicable to our situation. One might
be temped to consider the following naive two-step algorithm, in which the orbitals
and the coefficients cI ’s are optimized separately:

Algorithm 1.

(1) Φ being fixed, take c′ to be a (d+ 1)th eigenvector of HΦ;

(2) c′ being fixed, find Φ′ as a minimizer of Φ̃ 7→ EK
N (c′, Φ̃) and go back to (1).

This naive algorithm does not always converge and can oscillate between non phys-
ical states. As before, we give an example for a toy model in finite dimension. We
introduce E(v, x) = (v,B(x)v)R2 where v is a normalized vector in R

2, x ∈ R and
B(x) is this time defined as:

(12) B(x) =

(

− sinx 0
0 sinx

)

.

When Algorithm 1 is adapted to this example, one obtains an oscillation between
x = −π/2 and x = π/2.

In many Quantum Chemistry programs, an improved version of Algorithm 1
is implemented [13, 16, 14]. The oscillation phenomenon reported on in the pre-
vious example is called root-flipping and is a typical drawback when trying to
compute MCSCF excited states. Many solutions have been proposed to avoid
this issue. First, the computation is always done in a special symmetry sub-
space in order to avoid degeneracy problems. Then, it has been proposed to
optimize the average of different eigenvalues µK

d ’s instead of only one [16]. On
example (12), the optimization of sin(x)/2 − sin(x)/2 = 0 of course leads to
the correct answer, but this is the only convex combination of the two eigenval-
ues that solves the root-flipping problem. Any other combination of the form
m sin(x) + (1 −m)(− sin(x)) = (2m− 1) sin(x) with m ∈ [0; 1], m 6= 1/2, leads to
the same root-flipping phenomenon.

Even when there is a stationary state with an energy µK
d , and when no root-

flipping is encountered, the state obtained with Definition (10) can be unphysical.
An example of such a situation is given in [10] for a two-electron system. This will
be developed below in Section 3. All this means that (10) cannot be considered as
a relevant definition in general: imposing that c is a specific eigenvector of HΦ may
lead to unphysical results.
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The issues raised by Definition (10) have already been described and studied in
details in [7, 5, 17, 11] by the team of the DALTON software [20]. They proposed
a different definition of excited states which consists in just imposing that only the
first two properties P1 and P2 hold. A dth excited state is therefore defined as
a stationary state whose total Hessian matrix has exactly d negative eigenvalues.
Such states are computed in DALTON by a well-behaved Newton-type algorithm
followed by a trust region method, which does not lead to any root-flipping problem.
However, one might ask why any stationary state whose Hessian matrix has the
right number of negative eigenvalues would correspond to an approximation of the
true excited state. Recall that due to the nonlinearity, many spurious stationary
states may exist. We will provide below an example of an MCSCF solution whose
Hessian matrix has exactly one negative eigenvalue and which is not at all an
approximation of the first excited state. Finally, states which do not satisfy the
property P3 can be obtained by the DALTON method1, which is not completely
satisfactory.

In [9], an alternate definition of MCSCF excited state energies was proposed and
the following theorem was proved:

Theorem 1 (Existence of MCSCF Excited States [9]). Let be Z > N −1. For any

K ≥ N and any d = 0, ...,
(

K
N

)

− 1, there exists a stationary state (cKd ,Φ
K
d ) of EK

N

on MK
N , whose Hessian matrix has at most d negative eigenvalues, and which is

such that, denoting λK
d = EK

N (cKd ,Φ
K
d ),

λd ≤ λK
d ≤ µK

d , and lim
K→∞

λK
d = λd.

Except the convergence of the wavefunction as K → ∞ which is still not proved
mathematically, one can therefore construct an MCSCF excited state which satisfies
the three properties P1—P3. In Theorem 1, it is not explained how the MCSCF
excited states are defined and constructed. Indeed, they are obtained by compli-
cated min-max variational methods which fully take into account the nonlinearity
of the functional EK

N , and differ from (10). Unfortunately, these variational meth-
ods are quite complicated to present and also probably too involved to be used in
practice when d is too large. For this reason, we shall now only present and explain
the case of the first excited state energy λK

1 . Details for higher excited states can
be found in [9, 2].

As explained in [2], the variational formula providing the first excited state
(cK1 ,Φ

K
1 ) of Theorem 1 is the following:

(13) λK
1 = inf

(c,Φ)∈MK
N

{

inf
γ∈Γ(c,Φ)

sup
t∈[0;1]

EK
N (γ(t))

}

where

Γ(c,Φ) =
{

γ ∈ C0
(

[0; 1],MK
N

)

, γ(0) = (c,Φ), γ(1) = (−c,Φ)
}

.

It was argued in [2] that a solution of the first inf in (13) is very probably given by
an MCSCF ground state (c0,Φ0), i.e. such that EK

N (c0,Φ0) = λK
0 (we do not write

the superscript K on (c0,Φ0) for simplicity). In this case, (13) reduces to

(14) λK
1 = inf

γ:[0;1]→MK
N

γ(0)=(c0,Φ0),
γ(1)=(−c0,Φ0)

sup
t∈[0;1]

EK
N (γ(t)).

1H.J.Aa. Jensen, private communication.
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Figure 2. The true (Schrödinger) first excited state Ψ1 can be
obtained as a mountain pass point between the two ground states
±Ψ0: any path linking Ψ0 and −Ψ0 necessarily intersects the or-
thogonal of SpanΨ0, on which the energy is ≥ λ1.

This formula is probably clearer to the reader: it corresponds to a mountain pass
problem between the two ground states (c0,Φ0) and (−c0,Φ0), similar to those
encountered in molecular simulation in the search for transition states between re-
actants and products on potential energy surfaces. The function γ in (14) represents
the path, parametrized on [0; 1]. The path which has the smallest higher energy is
the one which goes through the mountain pass point, the latter being interpreted
as the first MCSCF excited state.

Let us now explain why such a mountain pass problem to find the first nonlinear
excited state is somehow natural. Let us denote by Ψ̄0 the MCSCF ground state
wavefunction associated with (c0,Φ0), which is a good approximation of the true
Schrödinger ground state Ψ0 when K is large enough. Then the wavefunction
associated with (−c0,Φ0) is −Ψ̄0 and (14) corresponds to a mountain pass problem
between ±Ψ̄0, on the MCSCF manifold. This is now very natural since the true
first excited state Ψ1 can also be obtained as a mountain pass point between ±Ψ0,
but on the whole sphere of L2

a(R
3N ) (not only MCSCF states). An optimal path

is given by the half circle passing through Ψ0 and Ψ1, see Figure 2.
Therefore, the computation of the first excited state is reduced to the problem

of finding a transition state between two ground states, on the manifold MK
N . This

gives rise to the following new algorithm which was proposed, studied and tested
in [2]:

Algorithm 2.

(1) Find an MCSCF ground state (c0,Φ0), by a Newton-like method.
(2) Find an initial path γ0 linking (c0,Φ0) and (−c0,Φ0) on the manifold MK

N .
For instance one can choose the following half circle where the orbitals are
frozen: γ0(t) = (c(t),Φ0) with c(t) = cos(πt)c0 + sin(πt)c′0 where c′0 is the
second eigenvector of the Hamiltonian matrix HΦ0 . This initial path can
then be perturbed randomly.

(3) Deform γ0 to solve the mountain pass problem between (c0,Φ0) and (−c0,Φ0).
(4) When the highest point on the path has a small-enough derivative, switch

to a Newton algorithm.

We refer to [2] for a detailed explanation of the method which has been used to
deform the paths, and which could be useful in other setting, for instance when one
wants to compute a transition state during a chemical reaction.
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Remark: on the orthogonality of the MCSCF wavefunctions. It is important to
realize that the wavefunction Ψ̄1 of the first MCSCF excited state (c1,Φ1) is not
necessarily orthogonal to the MCSCF ground state wavefunction Ψ̄0. In some
Quantum Chemistry programs, the orthogonality between the ground and the first
excited states is always assumed. This is also a reason why an average of the first
two eigenvalues of the Hamiltonian matrix is sometimes optimized: the computation
aims at finding both the MCSCF ground state and the first MCSCF excited state,
in the same orbital basis (ϕ1, ..., ϕK).

However, there is no reason for assuming that the MCSCF ground state and
the first MCSCF excited state are orthogonal: this is a linear property, true for
the Schrödinger linear model, and which will not necessarily be true for the MC-
SCF nonlinear approximation. Imposing this condition might lead to important
theoretical and numerical problems, similar to the ones encountered and explained
above. Indeed, it is the (nonlinear) mountain pass configuration which replaces the
orthogonality property in the case of the MCSCF first excited state. Of course, in
the limit K → ∞, the states will become orthogonal and there will be a choice for
the optimal path which converges to the half circle. We notice that in DALTON
[20], different excited states are also not necessarily orthogonal.

3. A test case: two-electron systems

In this last section, we report some numerical results that have been obtained in
[2], using Algorithm 2, on the simple case of the singlet state of two-electron sys-
tems. Interesting properties in relation with previous remarks will be demonstrated
when the MCSCF wavefunction is not assumed to belong to any specific symmetry
subspace.

We shall concentrate on the H2 molecule. We assume that the two protons are
located at (−R/2, 0, 0) and (R/2, 0, 0) in R

3. We restrict ourselves to singlet states
which take the form

Ψ(x, σ; y, σ′) = ψ(x, y)|αβ〉(σ, σ′)

where ψ is symmetric, ψ(x, y) = ψ(y, x), i.e. the antisymmetry is in the spin
variable. Of course, all the previous study can be easily adapted to the case of
symmetric two-body wavefunctions.

The Schrödinger Hamiltonian (denoted as H in this section) commutes with the
symmetry operator τ defined as (τf)(x, y) = f(−x,−y), i.e. Hτ = τH . Therefore
H stabilizes the two eigenspaces of τ which are the spaces of even and odd two-body
wavefunctions

Σg := {ψ | ψ(−x,−y) = ψ(x, y)} and Σu := {ψ | ψ(−x,−y) = −ψ(x, y)}.
It is known in Chemistry that the ground state is in the Σg symmetry whereas the
first excited state is in the Σu symmetry. It is therefore natural to find the first
excited state as a minimizer in the Σu subspace, and this is what is done in the
usual Quantum Chemistry programs.

However, the following will be dedicated to the behavior of the MCSCF method
in the full space, without taking any space symmetry into account. Of course, we
do not claim at all that this should be used in practice to compute the first excited
state! But rather this example provides a nice illustration of the possible difficulties:
it could be useful for a better understanding of the behavior of the MCSCF method
when it is used for the computation of excited states which are not the lowest of
their symmetry.

Algorithm 2 was applied to find the first singlet excited state of the H2 molecule,
in the cc-pVDZ atomic basis of orbitals. In Figure 3, the energy along the successive
paths generated by the algorithm is shown. The MCSCF first excited state is the



10 MATHIEU LEWIN

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-1.2

-1.1

-1.0

-0.9

-0.8

-0.7

-0.6

-0.5

Figure 3. Energy along the successive deformed paths generated
by Algorithm 2 for the computation of the first singlet excited state
of H2, with R = 1 Å.

state of highest energy on the converged path, and it has two interesting features.
First, its parameter c is the first eigenvector of the Hamiltonian matrix HΦ, and
not the second as this is imposed by (10). This was predicted first by McCourt and
McIver in [10]. Notice however that the obtained energy is known to be an upper
bound to the true Schrödinger first excited state energy by Theorem 1, but this has
nothing to do with the usual linear Hylleraas-Undheim-MacDonald Theorem.

Then, our first excited state is close to the one which is computed by the usual
chemistry programs in the Σu symmetry, but not equal to it. Indeed, it is also
only very close to be in the Σu symmetry subspace, but does not exactly belong
to Σu. On the other hand it has a very small gradient (of the order of 10−8),
whereas the gradient of the state found by restriction to the Σu space has a norm
only of order 10−4 (of course when all variations into account, and not only those
of the Σu symmetry). This shows that the restriction to the Σu subspace is not
necessarily compatible with a nonlinear method like MCSCF: the MCSCF excited
states do not a priori satisfy the symmetries of the Schrödinger solution. This kind
of symmetry breaking is very usual for nonlinear theories. On the other hand, notice
that there is no symmetry breaking for the MCSCF ground state: even when there
is no symmetry constraint, the MCSCF ground state is indeed automatically found
in the Σg subspace.

Since there is no degeneracy problem, it was possible in [2] to find a solution of
the eigenvalue minimization problem (10), which is the one used in most Quantum
Chemistry programs µK

1 . What is surprising is that the so-obtained state does
not at all approximate the first excited state: its energy is greater than the one
computed by the mountain pass method, µK

1 > λK
1 , and the optimal state itself

belongs to the Σg symmetry subspace. This shows that imposing that c is a spe-
cific eigenvector of the Hamiltonian matrix HΦ might lead to a spurious solution,
although the Hessian matrix has exactly one negative eigenvalue. This also shows
that not all the stationary states having this last property are related to the true
first excited state.

The above computation were carried out in [2] for different values of the distance
R, giving the Potential Energy Surface of the singlet state of H2, see Figure 4.
Notice that the spurious solution of (10) has an energy which is closer to the true
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Figure 4. Potential Energy Surface of the singlet state of the
molecule H2.

energy as R grows, but the state itself is far from the true solution since it belongs
to the Σg subspace.

As a conclusion, we have shown that the nonlinear features of the MCSCF model
raise important issues for the definition and the computation of excited states. Some
properties which are true for the linear Schrödinger model (orthogonality, symme-
tries...) can be lost when using the MCSCF approximation. Imposing them by brute
force may sometimes lead to wrong results, or to involved numerical difficulties. A
mathematically well-posed definition was provided in [9], but its complicated for-
mulation (unavoidable consequence of the MCSCF nonlinearity) probably restricts
its applicability to the first or possibly the second excited states only. For the first
excited state, it consists in solving a mountain pass between two MCSCF ground
states whose configuration coefficients c are opposite. This method could be used
to compute first excited states which are not the lowest of their symmetry, and
for which the usual methods might fail. It could help in understanding better the
behavior of the nonlinear MCSCF methods.
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Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, FRANCE.

E-mail address: Mathieu.Lewin@math.cnrs.fr


