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Abstract

Neurons in the input layer of primary visual cortex in primates develop
edge-like receptive fields. One approach to understanding the emergence
of this response is to state that neural activity has to efficiently represent
sensory data with respect to the statistics of natural scenes. Furthermore,
it is believed that such an efficient coding is achieved using a competition
across neurons so as to generate a sparse representation, that is, where a
relatively small number of neurons are simultaneously active. Indeed, dif-
ferent models of sparse coding coupled with Hebbian learning and home-
ostasis have been proposed that successfully match the observed emer-
gent response. However, the specific role of homeostasis in learning such
sparse representations is still largely unknown. By quantitatively assess-
ing the efficiency of the neural representation during learning, we derive a
cooperative homeostasis mechanism which optimally tunes the competi-
tion between neurons within the sparse coding algorithm. We apply this
homeostasis while learning small patches taken from natural images and
compare its efficiency with state-of-the-art algorithms. Results show that
while different sparse coding algorithms give similar coding results, the
homeostasis provides an optimal balance for the representation of natural
images within the population of neurons. Competition in sparse coding is
optimized when it is fair: By contributing to optimize statistical compe-
tition across neurons, homeostasis is crucial in providing a more efficient
solution to the emergence of independent components.
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1 Introduction

The central nervous system is a dynamical, adaptive organ which constantly
evolves to provide optimal decisions for interacting with the environment. The
early visual pathways provide a powerful system for probing and modeling these
mechanisms. For instance, it is observed that edge-like receptive fields emerge
in simple cell neurons from the input layer of the primary visual cortex of
primates (IQh_apman_&_&‘u:x}mﬂ, ﬂ&&ﬂ) The development of cortical cell orien-
tation tuning is an activity-dependent process but it is still largely unknown
how neural computations implement this type of unsupervised learning mech-
anisms. A popular view is that such a population of neurons operates so that
relevant sensory information from the retino-thalamic pathway is transformed
(or “coded”) efficiently. Such efficient representation will allow decisions to
be taken optimally in higher-level layers or areas (lA_tig;H, 11992; Barlow, [2_0_0_]])
It is believed that this is achieved through lateral interactions which remove
redundancies in the neural representation, that is, when the representation is
sparse (Olshausen & Field, M) A representation is sparse when each input
signal is associated with a relatively small number of simultaneously activated
neurons within the population. For instance, orientation selectivity of simple
cells is sharper that the selectivity that would be predicted by linear filtering.
As a consequence, representation in the orientation domain is sparse and allows
higher processing stages to better segregate edges in the image , )
Sparse representations are observed prominently with cortical response to natu-
ral stimuli, that is, to behaviorally relevant sensory inputs (I&uldgtﬂ_aﬂ, 12004;
DeWeese et all, 2003; [Vinje & Gallant, 2000). This reflects the fact that, at
the learning time scale, coding is optimized relative to the statistics of natu-
ral scenes. The emergence of edge-like simple cell receptive fields in the input
layer of the primary visual cortex of primates may thus be considered as a cou-
pled coding and learning optimization problem: At the coding time scale, the
sparseness of the representation is optimized for any given input while at the
learning time scale, synaptic weights are tuned to achieve on average optimal
representation efficiency over natural scenes.

Most of existing models of unsupervised learning aim at optimizing a cost de-
fined on prior assumptions on representation’s sparseness. These sparse learning

algorithms have been applied both for images (I]lﬁjiu‘iu, 2007; Fyfe & Baddeleyl,
1995; Olshausen & Field, 1996; Perrinet, 2004; Rehn & Sommer, 2007; Zibulevsky & Pearlmutter,
2001) and sounds (Lewicki & Sejnowski, 2000; [Smith & Lewicki, 2006). For in-
stance, learning is accomplished in SPARSENET (Qlshausen & Field, 1996) on
patches taken from natural images as a sequence of coding and learning steps.
First, sparse coding is achieved using a gradient descent over a convex cost
derived from a sparse prior probability distribution function of the representa-
tion. At this step of the learning, it is performed using the current state of the
“dictionary” of receptive fields. Then, knowing this sparse solution, learning is
defined as slowly changing the dictionary using Hebbian learning. In general,
the parameterization of the prior has major impacts on results of the sparse cod-
ing and thus on the emergence of edge-like receptive fields and requires proper




tuning. In fact, the definition of the prior corresponds to an objective sparseness
and does not always fit to the observed probability distribution function of the
coefficients. In particular, this could be a problem during learning if we use the
cost to measure representation efficiency for this learning step. An alternative
is to use a more generic Lo norm sparseness, by simply counting the number
of non-zero coefficients. It was found that by using an algorithm like Matching
Pursuit, the learning algorithm could provide results similar to SPARSENET,
but without the need of parametric assumptions on the prior (Perrinet, |2004;
Perrinet et all;|2003;[Rehn & Sommer, 2007; [Smith & Lewicki, 2006). However,
we observed that this class of algorithms could lead to solutions corresponding
to a local minimum of the objective function: Some solutions seem as efficient as
others for representing the signal but do not represent edge-like features homo-
geneously. In particular, during the early learning phase, some cells may learn
“faster” than others. There is the need for a homeostasis mechanism that will
ensure convergence of learning. The goal of this work is to study the specific role
of homeostasis in learning sparse representations and to propose a homeostasis
mechanism which optimizes the learning of an efficient neural representation.

To achieve this, we first formulate analytically the problem of representa-
tion efficiency in a population of sensory neurons (section 2 and define the
class of Sparse Hebbian Learning (SHL) algorithms. For the particular non-
parametric Ly norm sparseness, we show that sparseness is optimal when av-
erage activity within the neural population is uniformly balanced. Based on a
previous implementation, Adaptive Matching Pursuit (AMP) (Perrinet, [2004;
Perrinet et all; 2003), we will define a homeostatic gain control mechanism that
we will integrate in a novel SHL algorithm (section B)). Finally, we compare in
section [ this novel algorithm with AMP and the state-of-the-art SPARSENET
method (Olshausen & Field, [1996). Using quantitative measures of efficiency
based on constraints on the neural representation, we show the importance of
the homeostasis mechanism in terms of representation efficiency. We conclude
in section Al by linking this original method with other Sparse Hebbian Learn-
ing schemes and how these may be united to improve our understanding of
the emergence of edge-like simple cell receptive fields, drawing the bridge be-
tween structure (representation in a distributed network) and function (efficient
coding).

2 Problem Statement

2.1 Definition of representation efficiency

In low-level sensory areas, the goal of neural computations is to generate efficient
intermediate representations to allow efficient decision making. Classically, a
representation is defined as the inversion of an internal generative model of
the sensory world, that is, by inferring the sources that generated the input
signal. Formally, as in|Olshausen & Field (1997), we define a Linear Generative
Model (LGM) for describing natural, static, grayscale images I (represented by



column vectors of dimension L pixels), by setting a “dictionary” of M images
(or “filters”) as the L x M matrix ® = {®;}1<;<m. Knowing the associated
“sources” as a vector of coefficients a = {a;}1<i<ar, the image is defined using
matrix notation as

I=%a+n (1)

where n is a decorrelated gaussian additive noise image of variance o2. The
decorrelation of the noise is achieved by applying Principal Component Analysis
to the raw input images, without loss of generality since this preprocessing is
invertible. Generally, the dictionary ® may be much larger than the dimension
of the input space (that is, if M > L) and it is then said to be over-complete.
However, given an over-complete dictionary, the inversion of the LGM leads
to a combinatorial search and typically, there may exist many coding solutions
a to equation [I for one given input I. The goal of efficient coding is to find,
given the dictionary ® and for any observed signal I, the “best” representation
vector, that is, as close as possible to the sources that generated the signal. It is
therefore necessary to define an efficiency criterion in order to choose between
these different solutions.

Using the LGM, we will infer the “best” coding vector as the most probable.
In particular, from the physical synthesis of natural images, we know a priori
that image representations are sparse: They are most likely generated by a small
number of features relatively to the dimension M of representation space. Sim-
ilarly to [Lewicki & Sejnowski (2000), this can be formalized in the probabilistic
framework defined by the LGM (see equation[I]), by assuming that we know the
prior distribution of the coefficients a; for natural images. The representation
cost of a for one given natural image is then:

C(all,®) = —logP(all,®)
1 2
= logZ+ m||1—<1>a|| _zi:logp(ai@) (2)
where Z is the partition function which is independent of the coding and || - || is

the Lo norm in image space. This efficiency cost is measured in bits if the loga-
rithm is of base 2, as we will assume without loss of generality thereafter. For any
representation a, the cost value corresponds to the description length (Rissanen,
1978): On the right hand side of equation [2] the second term corresponds to the
information from the image which is not coded by the representation (recon-
struction cost) and thus to the information that can be at best encoded using
entropic coding pixel by pixel (it’s the log-likelihood in Bayesian terminology).
The third term S(a|®) = — ", log P(a;|®) is the representation or sparseness
cost: It quantifies representation efficiency as the coding length of each coeffi-
cient of a independently which would be achieved by entropic coding knowing
the prior. In practice, the sparseness of coefficients for natural images is often
defined by an ad hoc parameterization of the prior’s shape. For instance, the



parameterization in |Qlshausen & Field dl_9_9l|) yields the coding cost:

2

1 a;
Ci(all, @) = ﬁ||1—‘1’a||2+5210g(1+ ;) (3)

where 8 corresponds to the prior’s steepness and o to its scaling (see Figure
13.2 from (Olshausen, [2002)). This choice is often favored because it results in a
convex cost for which known numerical optimization methods such as conjugate
gradient may be used.

A non-parametric form of sparseness cost may be defined by considering that
neurons representing the vector a are either active or inactive. In fact, the
spiking nature of neural information demonstrates that the transition from an
inactive to an active state is far more significant at the coding time scale than
smooth changes of the firing rate. This is for instance perfectly illustrated by the
binary nature of the neural code in the auditory cortex of rats (m,
). Binary codes also emerge as optimal neural codes for rapid signal trans-
mission (Bethge et all, 2003; Nikitin et all, [2009). With a binary event-based
code, the cost is only incremented when a new neuron gets active, regardless
to the analog value. Stating that an active neuron carries a bounded amount
of information of A bits, an upper bound for the representation cost of neural
activity on the receiver end is proportional to the count of active neurons, that
is, to the Lg norm:

ColalL, ®) = [T~ a2 + Alallo (4)

2% 2
This cost is snmlar w1th information criteria such as the AIC (Akaikd, 1974) or
distortion rate , p. 571). This simple non-parametric cost has the
advantage of belng dynamlc. The number of active cells for one given signal
grows in time with the number of spikes reaching the receiver (see architecture
of the model in figure [} Left). But equation ] defines a harder cost to optimize
since the hard Ly norm sparseness leads to a non-convex optimization problem
which is NP-complete with respect to the dimension M of the dictionary (Mallat

1998, p. 418).

2.2 Sparse Hebbian Learning (SHL)

Given a sparse coding strategy that optimizes any representation efficiency cost
as defined above, we may derive an unsupervised learning model by optimiz-
ing the dictionary ® over natural scenes. On the one hand, the flexibility in
the definition of the sparseness cost leads to a wide variety of proposed sparse
coding solutions (for a review, see (Pece, )) such as numerical optimiza-

tion (Lee et all, 2007; |Olshausen & Field, [1997), non-negative matrix factoriza-
tion (lLf@_&_&JmQ [LQQQ Ranzato et all, 2007) or Matching Pursuit (m,
2004; [Perrinet et. all, [2003; lRth_&_SQmmﬁﬂ 2007; [Smith & Lewicki, [2006). On
the other hand, these methods share the same LGM model (see equation[I]) and
once the sparse coding algorithm is chosen, the learning scheme is similar.




Indeed, after every coding sweep, the efficiency of the dictionary ® may be
increased with respect to equation By using the online gradient descent
approach given the current sparse solution, learning may be achieved using Vi:

(I)i — ‘I)l + 7’]04(1 — <I>a) (5)

where 7 is the learning rate. Similarly to Eq. 17 in (Olshausen & Field, 1997)
or to Eq. 2 in (Smith & Lewicki, 12006), the relation is a linear “Hebbian”
rule (Hebb, 1949) since it enhances the weight of neurons proportionally to
the correlation between pre- and post-synaptic neurons. Note that there is no
learning for non-activated coefficients. The novelty of this formulation compared
to other linear Hebbian learning rule such as (Ojd, [1982) is to take advantage
of the sparse representation, hence the name Sparse Hebbian Learning (SHL).

SHL algorithms are unstable without homeostasis. In fact, starting with a ran-
dom dictionary, the first filters to learn are more likely to correspond to salient
features (Perrinet et all,2004) and are therefore more likely to be selected again
in subsequent learning steps. In SPARSENET, the homeostatic gain control is
implemented by adaptively tuning the norm of the filters. This method equalizes
the variance of coefficients across neurons using a geometric stochastic learning
rule. The underlying heuristic is that this introduces a bias in the choice of
the active coefficients. In fact, if a neuron is not selected often, the geometric
homeostasis will decrease the norm of the corresponding filter, and therefore
—from equation [I] and the conjugate gradient optimization— this will increase
the value of the associated scalar. Finally, since the prior functions defined
in equation [3] are identical for all neurons, this will increase the relative proba-
bility that the neuron is selected with a higher relative value. The parameters of
this homeostatic rule have a great importance for the convergence of the global
algorithm. We will now try to define a more general homeostasis mechanism
derived from the optimization of representation efficiency.

2.3 Efficient cooperative homeostatis in SHL

The role of homeostasis during learning is to make sure that the distribution of
neural activity is homogeneous. In fact, neurons belonging to a same neu-
ral assembly (Hebb, [1949) form a competitive network and should a priori
carry similar information. This optimizes the coding efficiency of neural ac-
tivity in terms of compression (van Hateren, 1993) and thus minimizes intrinsic
noise (Srinivasan et all, [1982). Such a strategy is similar to introducing an in-
trinsic adaptation rule such that prior firing probability of all neurons have
a similar Laplacian probability distribution (Weber & Triesch, [2008). Dually,
since neural activity in the assembly actually represents the sparse coefficients,
we may understand the role of homeostasis as maximizing the average repre-
sentation cost C(a|®) at the time scale of learning. This is equivalent to say
that homeostasis should act such that at any time, invariantly to the selectivity
of features in the dictionary, the probability of selecting one feature is uniform
across the dictionary.
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Figure 1: Simple neural model of sparse coding and role of homeostasis.
(Left) We define the coding model as an information channel constituted by a
bundle of Linear/Non-Linear spiking neurons. (L) A given input image patch
is coded linearly by using the dictionary of filters ®; and transformed by sparse
coding (such as Matching Pursuit) into a sparse vector a. Each coefficient is
transformed into a driving coefficient in the (NL) layer by using a point non-
linearity which (S) drives a generic spiking mechanism. (D) On the receiver end
(for instance in an efferent neuron), one may then estimate the input from the
neural representation pattern. This decoding is progressive, and if we assume
that each spike carries a bounded amount of information, representation cost
in this model increases proportionally with the number of activated neurons.
(Right) However, for a given dictionary, the distribution of sparse coefficients
a; and hence the probability of a neuron’s activation is in general not uniform.
We show (Lower panel) the log-probability distribution function and (Upper
panel) the cumulative distribution of sparse coefficients for a dictionary of edge-
like filters with similar selectivity (dotted scatter) except for one filter which
was randomized (continuous line). This illustrates a typical situation which
may occur during learning when some components did learn less than others:
Since their activity will be lower, they are less likely to be activated in the
spiking mechanism and from the Hebbian rule, they are less likely to learn.
When selecting an optimal sparse set for a given input, instead of comparing
sparse coefficients with respect to a threshold (vertical dashed lines), it should
instead be done on the significance value z; (horizontal dashed lines): In this
particular case, the less selective neuron (a1 < ag) is selected by the homeostatic
cooperation (z1 > z3). The role of homeostasis during learning is that, even if
the dictionary of filters is not homogeneous, the point non-linearity in (NL)
modifies sparse coding in (L) such that the probability of a neuron’s activation
is uniform across the population.



This optimal uniformity may be achieved in all generality for any given dic-
tionary by using point non-linearities z; applied to the sparse coeflicients: In
fact, a standard method to achieve uniformity is to use an equalization of the
histogram (Atick, 1992). This method may be easily derived if we know the
probability distribution function dP; of variable a; by choosing the non-linearity
as the cumulative distribution function transforming any observed variable a;
into:

a;
zi(a;) = Pi(ai < a;) = / dP;i(a;) (6)
— 00
This is equivalent to the change of variables which transforms the sparse vector
a to a variable with uniform probability distribution function in [0,1]M. The
transformed coefficients may thus be used as a normalized drive to the spik-
ing mechanism of the individual neurons (see figure [[}FLeft). This equalization
process has been observed in the neural activity of a variety of species and is,
for instance, perfectly illustrated in the salamander’s retina (Laughlin, [1981).
It may evolve dynamically to slowly adapt to varying changes in luminance or
contrast values, such as when the light diminishes at twilight (Hosoya et all,
2005).

This novel and simple non-parametric homeostatic method is applicable to
Sparse Hebbian Learning algorithms by using this transform on the sparse co-
efficients. Let’s imagine for instance that one filter corresponds to a feature
of low selectivity while others correspond to similarly selective features: As a
consequence, this filter will correspond on average to lower sparse coefficients
(see figure[llRight). However, the respective gain control function z; will be such
that all transformed coefficients have the same probability density function. Us-
ing the transformed coefficients to evaluate which neuron should be active, the
homeostasis will therefore optimize the information in the representation cost
defined in equationd We will now illustrate how it may be applied to Adaptive
Matching Pursuit (Perrinet, 2004; Perrinet et al); 2003) and measure its role on
the emergence of edge-like simple cell receptive fields.

3 Methods

3.1 Matching Pursuit and Adaptive Matching Pursuit

Let’s first define Adaptive Matching Pursuit. We saw that optimizing the ef-
ficiency by minimizing the Ly norm cost leads to a combinatorial search with
regard to the dimension of the dictionary. In practice, it means that for a given
dictionary, finding the best sparse vector according to minimizing Co(alI, @)
(see equation M) is hard and thus that learning an adapted dictionary is diffi-
cult. As proposed in (Perrinet et all, [2002), we may solve this problem using
a greedy approach. In general, a greedy approach is applied when finding the
best combination of elements is difficult to solve globally: A simpler solution is
to solve the problem progressively, one element at a time.



Applied to equationHl it corresponds to first choosing the single element a;®;
that best fits the image. From the definition of the LGM, we know that for
a given signal I, the probability P({a;}|I, ®) corresponding to a single source
a;P; for any ¢ is maximal for the dictionary element ¢* with maximal correlation
coefficient:

. . I @

i* = ArgMax;(p;), with p; =< TR > (7)
This formulation is slightly different from Eq. 21 in (Olshausen & Field, [1997).
It should be noted that p; is the L-dimensional cosine (L is the dimension of the
input space) and that its absolute value is therefore bounded by 1. The value
of ArcCos(p;) would therefore give the angle of I with the pattern ®; and in
particular, the angle (modulo 27) would be equal to zero if and only if p; = 1
(full correlation), 7 if and only if p; = —1 (full anti-correlation) and +m/2 if
pi = 0 (both vectors are orthogonal, there is no correlation). The associated
coeflicient is the scalar projection:

@i*

P 8
@i =<LgE > ®)

Second, knowing this choice, the image can be decomposed in
I= Qg% (I)l'* + R (9)

where R is the residual image. We then repeat this 2-step process on the residual
(that is, with I +— R) until some stopping criterion is met.

Hence, we have a sequential algorithm which permits to reconstruct the signal
using the list of choices and that we called Sparse Spike Coding (Perrinet et al.,
2002). The coding part of the algorithm produces a sparse representation vector
a for any input image: Its Ly norm is the number of active neurons. Note that
the norm of the filters have no influence in this algorithm on the choice function
nor on the cost. For simplicity and without loss of generality, we will there-
after set the norm of the filters to 1: Vi, ||A;|| = 1. It is equivalent to Matching
Pursuit (MP) algorithm (Mallat & Zhang|, [1993) and we have proven previously
that this yields an efficient algorithm for representing natural images. Using MP
in the SHL scheme defined above (see section 2.2)) defines Adaptive Matching
Pursuit (AMP) (Perrinet, 2004; [Perrinet. et all, 2003) and is similar to other
strategies such as (Rehn & Sommer, 2007; [Smith & Lewicki, [2006). This class
of SHL algorithms offers a non-parametric solution to the emergence of simple
cell receptive fields, but compared to SPARSENET, the results often appear to be
qualitatively non-homogeneous. Moreover, the heuristic used in SPARSENET for
the homeostasis may not be used directly since in MP the choice is independent
to the norm of the filter. The coding algorithm’s efficiency may be improved
using Optimized Orthogonal MP (Rebollo-Neira & Lowe, [2002) and be inte-
grated in a SHL scheme (Rehn & Sommer, 2007). However, this optimization
is separate with the problem that we try to tackle here by optimizing the repre-
sentation at the learning time scale. Thus, we will now study how we may use
cooperative homeostasis in order to optimize the overall coding efficiency of the
dictionary learnt by AMP.



3.2 Competition-Optimized Matching Pursuit (COMP)

In fact, we may now include cooperative homeostasis into AMP. At the coding
level, it is important to note that if we simply equalize the sparse output of the
MP algorithm, transformed coefficients will indeed be uniformly distributed but
the sequence of chosen filters will not be changed. However, the MP algorithm is
non-linear and the choice of an element at one step may influence the rest of the
choices. This sequence is therefore crucial for the representation efficiency. In
order to optimize the competition of the choice step, we may instead choose at
every matching step the item in the dictionary corresponding to the most signifi-
cant value computed thanks to the cooperative homeostasis (see figure[IlRight).
In practice, it means that we select the best match in the vector corresponding
to the transformed coefficients z, that is, in the vector of the residual coefficients
weighted by the non-linearities defined by equation[@ This scheme thus extends
the MP algorithm which we used previously by linking it to a statistical model
which optimally tunes the ArgMax operator in the matching step: Over natural
images, for any given dictionary —and thus independently to the selectivity of
the different items from the dictionary— the choice of a neuron is statistically
equally probable. Thanks to cooperative homeostasis, the efficiency of every
match in MP is thus maximized, hence the name of Competition-Optimized
Matching Pursuit (COMP).

Let’s now explicitly describe the COMP coding algorithm step by step. Ini-
tially, given the signal I, we set up for all 4 an internal activity vector a as the
linear correlation using equation [§l The output sparse vector is set initially to
a zero vector: a = 0. Using the internal activity a, the neural population will
evolve dynamically in an event-based manner by repeating the two following
steps. First, the “Matching” step is defined by choosing the address with the
most significant activity:

i* = ArgMax;[z;(a;)] (10)

Then, we set the winning sparse coefficient at address i* with a;« < a;«. In
the second “Pursuit” step, as in MP, the information is fed-back to correlated
dictionary elements by:

i — Q5 — ax < Pyn, Oy > (11)

Note that after the update, the winning internal activity is zero: a;» = 0 and
that, as in MP, a neuron is selected at most once. Physiologically, as previously
described, the pursuit step could be implemented by a lateral, correlation-based
inhibition. The algorithm is iterated with equation [I0 until some stopping
criteria is reached, such as when the residual error energy is below the noise
level 02. As in MP, since the residual is orthogonal to ®;, the residual error
energy E = ||I]|? may be easily updated at every step as:

E+ E—ad2 (12)
COMP transforms the image I into the sparse vector a at any precision VE. As

in MP, the image may be reconstructed using: I = >, a;®;, which thus gives a

10



solution for equation [l COMP differs from MP only by the “Matching” step
and shares many properties with MP, such as the monotonous decrease of the
error (see equation [I2) or the exponential convergence of the coding. However,
the decrease of E will always be faster in MP than in COMP from the constraint
in the matching step.

Yet, for a given dictionary, we do not know a priori the functions z; since
they depend on the computation of the sparse coefficients. In practice, the z;
functions are initialized for all neurons to similar arbitrary cumulative distribu-
tion functions (COMP is then equivalent to the MP algorithm since choices
are not affected). Since we have at most one sparse value a; per neuron,
the cumulative histogram function for each neuron for one coding sweep is
P(a; < a;) = 6(a; < a;) where variable a; is the observed coefficient to be
transformed and § is the Dirac measure: §(B) = 1 if the boolean variable B
is true and 0 otherwise. We evaluate equation [] after the end of every coding
using an online stochastic algorithm, Vi, Va;:

zi(ai) < (1 —np)zi(@;) + nnd(a; < a;) (13)

where 7y, is the homeostatic learning rate. Note that this corresponds to the
empirical estimation and assumes that coefficients are stationary on a time
scale of ih learning steps. The time scale of homeostasis should therefore in
general be less than the time scale of learning. Moreover, due to the exponential
convergence of MP, for any set of components, the z; functions converge to the
correct non-linear functions as defined by equation

3.3 Adaptive Sparse Spike Coding (aSSC)

We may finally apply COMP to Sparse Hebbian Learning (see section2.2)). Since
the efficiency is inspired by the spiking nature of neural representations, we call
this algorithm adaptive Sparse Spike Coding (aSSC). From the definition of
COMP, we know that whatever the dictionary, the competition between filters
will be fair thanks to the cooperative homeostasis. We add no other homeostatic
regulation. We normalize filters’ energy since it is a free parameter in equation[71

In summary, the whole learning algorithm is given by the following nested
loops in pseudo-code:

1. Initialize the point non-linear gain functions z; to similar cumulative dis-
tribution functions and the components ®; to random points on the unit
L-dimensional sphere,

2. repeat until learning converged:

(a) draw a signal I from the database, its energy is E = ||I||?,
(b) set sparse vector a to zero, initialize a; =< I, ®; > for all 4,
(c) while the residual energy F is above a given threshold do:

i. select the best match: i* = ArgMax;[z;(a;)],

11



Figure 2: Comparison of the dictionaries obtained with SPARSENET
and aSSC. We show the results of Sparse Hebbian Learning using two different
sparse coding algorithms at convergence (20000 learning steps): (Left) conjugate

radient function (CGF) method as used in SPARSENET (Qlshausen & Field,
@) with (Right) COMP as used in aSSC. Filters of the same size as the
image patches are presented in a matrix (separated by a black border). Note
that their position in the matrix is arbitrary as in ICA.

ii. set the sparse coefficient: a;« = a;«,
iii. update residual coefficients: Vi, a; < a; — a;x < @y, B; >,
iv. update energy: E <+ E — a?..
(d) when we have the sparse representation vector a, apply Vi:
i. modify dictionary: ®; + ®; + na;(I — ®a),
ii. normalize dictionary: ®; < ®; /|||,
iii. update homeostasis functions: z;(-) « (1—np)z:(-)+nrd(a; < -).

4 Results on natural images

The aSSC algorithm differs from the SPARSENET algorithm by the MP sparse
coding algorithm and by the cooperative homeostasis. Using natural images,
we evaluate the relative contribution of these different mechanisms to the rep-
resentation efficiency.

4.1 Receptive field formation

We first compare the dictionaries of filters obtained by both methods. We use a
similar context and architecture as the experiments described in i
@) and specifically the same database of image patches as the SPARSENET

12



algorithm. These images are static, grayscale and whitened according to the
same parameters to allow a one-to-one comparison of both algorithms. Here,
we show the results for 16 x 16 image patches (so that L = 256) and the learn-
ing of M = 324 filters which are replicated as ON and OFF filters. Assuming
this symmetry in the aSSC algorithm, we use the absolute value of the coeffi-
cient in equation [I0 and equation EIZEL the rest of the algorithm being identical.
Results replicate the original results of |Olshausen & Field (1997) and are com-
parable for both methods: Dictionaries consist of edge-like filters similarly to
the receptive fields of simple cells in the primary visual cortex (see figure [2]).
Studying the evolution of receptive fields during learning shows that they first
represent any salient feature (such as sharp corners or edges), because these
correspond to larger Lipschitz coefficients (Perrinet et all, [2004). If a receptive
field contains multiple singularities, only the most salient remains later on dur-
ing learning: Due to the competition between filters, the algorithm eliminates
features that are duplicated in the dictionary. Filters which already converged
to independent components will be selected sparsely and with high associated
coeflicients, but inducing a slower learning since corresponding error is small
(see equation [B]). We observe for both algorithms that when considering very
long learning times, the solution is not fixed and edges may slowly drift from one
orientation to another while global efficiency remains stable. This is due to the
fact that there are many solutions to the same problem (note, for instance, that
solutions are invariant up to a permutation of neurons’ addresses). It is possible
to decrease these degrees of freedom by including for instance topological links
between filters (Bednar et all,2004). Qualitatively, the main difference between
both results is that filters produced by aSSC look more diverse and broad (so
that they often overlap), while the filters produced by SPARSENET are more
localized and thin.

We also perform robustness experiments to determine the range of learning
parameters for which these algorithms converged. One advantage of aSSC is
that it is based on a non-parametric sparse coding and a non-parametric home-
ostasis rule and is entirely described by 2 structural parameters (L and M)
and 2 learning parameters (n and 7)) while parameterization of the prior and
of the homeostasis for SPARSENET requires 5 more parameters to adjust (3
for the prior, 2 for the homeostasis). By observing at convergence the prob-
ability distribution function of selected filters, homeostasis in aSSC converges
for a wide range of 7, values (see equation [[3]). Furthermore, we observe that
at convergence, the z; functions become very similar (see dotted lines in fig-
ure [[}Right) and that homeostasis does not favor the selection of any particular
neuron as strongly as at the beginning of the learning. Therefore, thanks to the
homeostasis, equilibrium is reached when the dictionary homogeneously rep-
resents different features in natural images, that is, when filters have similar
selectivities. Finally, we observe the counter-intuitive result that non-linearities
implementing cooperative homeostasis are important for the coding only during

1That is, following section B3] step 2-c-i becomes i* = ArgMax;[z;(|a;|)], and step 2-d-iii
is changed to z;(-) <= (1 —mn)2i (") + npd(Jas| < ).
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the learning period but that it may be ignored for the coding after convergence
since at this point non-linearities are the same for all neurons.

Both dictionaries appear to be qualitatively different and for instance param-
eters of the emerging edges (frequency, length, width) are distributed differ-
ently. In fact, it seems that rather than the shape of each dictionary element
taken individually, it is their distribution in image space that yields different
efficiencies. Such an analysis of the filters’ shape distribution was performed
quantitatively for SPARSENET in (Lewicki & Sejnowski, [2000). The filters were
fitted by Gabor functions (Jones & Palmer, [1987). A recent study compares
the distribution of fitted Gabor functions’ parameters between the model and
receptive fields obtained from neurophysiological experiments conducted in pri-
mary visual cortex of macaques (Rehn & Sommer, 2007). It has shown that
their SHL model based on Optimized Orthogonal MP better matches to phys-
iological observations than SPARSENET. However, there is no theoretical basis
for the fact that receptive fields’ shape should be well fitted by Gabor func-
tions (Saitd, 2001)) and the variety of shapes observed in biological systems may
for instance reflect adaptive regulation mechanisms when reaching different op-
timal sparseness levels (Assisi et all, [2007). Moreover, even though this type of
quantitative method is certainly necessary, it is not sufficient to understand the
role of each individual mechanism in the emergence of edge-like receptive fields.
To asses the relative role of coding and homeostasis in SHL, we rather compare
these different dictionaries quantitatively in terms of representation efficiency.

4.2 Coding efficiency in SHL

To address this issue, we first compare the quality of both dictionaries (from
SPARSENET and aSSC) by computing the mean efficiency of their respective
coding algorithms (respectively CGF and COMP). Using 10° image patches
drawn from the natural image database, we perform the progressive coding of
each image using both sparse coding methods. When plotting the probability
distribution function of the sparse coefficients, one observes that distributions
fit well the bivariate model introduced in (Olshausen & Millman, 2000) where a
sub-set of the coeflicients are null (see figure B}Left). Log-probability distribu-
tions of non-zero coefficients is quadratic with the initial random dictionaries.
At convergence, non-zero coefficients fit well to a Laplacian probability distri-
bution function. Measuring mean kurtosis of resulting sparse vectors proves to
be very sensitive and a poor indicator of global efficiency, in particular at the
beginning of the coding, when many coefficients are still strictly zero. In gen-
eral, COMP provides a sparser final distribution. Dually, plotting the decrease
of the sorted coefficients as a function of their rank shows that coefficients for
COMP are first higher and then decrease more quickly, due to the link between
the z; functions and the function of sorted coefficients (see equation [@). As a
consequence, a Laplacian bivariate model for the distribution of sparse coeffi-
cient emerge from the statistics of natural images. The advantage of aSSC is
that this emergence is not dependent of a parametric model of the prior.

In a second analysis, we compare the efficiency of both methods while varying
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Figure 3: Coding efficiency of SPARSENET versus aSSC. We evaluate the
quality of both learning schemes by comparing coding efficiency of their respec-
tive coding algorithms, that is CGF and COMP, with the respective dictionary
that was learnt (see figure2)). (Left) We show the probability distribution func-
tion of sparse coefficients obtained by both methods with random dictionaries
(respectively 'SN-init’ and ’aSSC-init’) and with the dictionaries obtained after
convergence of respective learning schemes (respectively SN’ and ’'aSSC’). At
convergence, sparse coeflicients are more sparsely distributed than initially, with
more kurtotic probability distribution functions for aSSC in both cases.(Right)
We plot the average residual error (Lg norm) as a function of the relative num-
ber of active (non-zero) coeflicients. This provides a measure of the coding
efficiency for each dictionary over the set of image patches (error bars are scaled
to one standard deviation). The Ly norm is equal to the coding step in COMP.
Best results are those providing a lower error for a given sparsity (better com-
pression) or a lower sparseness for the same error (Occam’s razor). We observe
similar coding results in aSSC despite its non-parametric definition. This re-
sult is also true when using the two different dictionaries with the same OOMP
sparse coding algorithm: The dictionaries still have similar coding efficiencies.
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the number of active coefficients (the Ly norm). We perform this in COMP
by simply measuring the residual error (Ls norm) with respect to the coding
step. To compare this method with the conjugate gradient method, we use a
2-pass sparse coding: A first pass identifies best neurons for a fixed number of
active coefficients, while a second pass optimizes the coefficients for this set of
“active” vectors. This method was also used in (Rehn & Sommer, 2007) and
proved to be fair when comparing both algorithms. We observe in a robust
manner that the greedy solution to the hard problem (that is, COMP) is as
efficient as conjugate gradient as used in SPARSENET (see figure Bl Right). We
also observe that aSSC is also slightly more efficient for the cost defined in equa-
tion B} a result which may reflect the fact that the Ly norm defines a stronger
sparseness constraint than the convex cost. Moreover, we compare the coding
efficiency of both dictionaries using Optimized Orthogonal MP. Results show
that OOMP provides a slight coding improvement, but also confirms that both
dictionaries are of similar coding efficiency, independently of their respective
coding algorithm.

These results prove that, without the need of a parameterization of the prior,
coding in aSSC is as efficiency than SPARSENET. In addition, there are a number
of other advantages offered by this approach. First, COMP simply uses a feed-
forward pass with lateral interactions, while conjugate gradient is implemented
as the fixed point of a recurrent network (see Figure 13.2 from (Olshausen,
2002)). Moreover, we have already seen that aSSC is a non-parametric method
which is controlled by fewer parameters. Therefore, applying a “higher-level”
Occam razor confirms that for a similar overall coding efficiency, aSSC is bet-
ter since it is of lower structural complexity@. Finally, in SPARSENET and
in algorithms defined in (Lewicki & Sejnowski, [2000; [Rehn & Sommer, [2007;
Smith & Lewicki, 2006), representation is analog without explicitly defining a
quantization. This is not the case in the aSSC algorithm where cooperative
homeostasis introduces a regularity in the distribution of sparse coefficients.

4.3 Role of homeostasis in representation efficiency

In the context of an information channel such as implemented by a neural as-
sembly, one should rather use the coefficients that could be decoded from the
neural signal in order to define the reconstruction cost (see figure [I] Left). As
was described in section 2.1 knowing a dictionary @, it is indeed more correct
to consider the overall average coding and decoding cost over image patches
C(al]I, ®) (see equation ), where & corresponds to the analog vector of coeffi-
cients inferred from the neural representation. The overall transmission error
may be described as the sum of the reconstruction and the quantization error.
This last error will increase both with inter-trial variability but also with the

2A quantitative measure of the structural complexity for the different methods is given by
the minimal length of a code that would implement them, this length being defined as the
number of characters of the code implementing the algorithm. It would therefore depend on
the machine on which it is implemented, and there is, of course, a clear advantage of aSSC on
parallel architectures.
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Figure 4: Cooperative homeostasis implements efficient quantization.
(Left) When switching off the cooperative homeostasis during learning, the cor-
responding Sparse Hebbian Learning algorithm, Adaptive Matching Pursuit
(AMP), converges to a set of filters that contains some less localized filters
and some high-frequency Gabor functions that correspond to more “textural”
features (Perrinet et all, [2003). One may wonder if these filters are inefficient
and capturing noise or if they rather correspond to independent features of nat-
ural images in the LGM model. (Right, Inset) In fact, when plotting residual
energy as a function of Ly norm sparseness with the MP algorithm (as plotted
in figure Bl Right), the AMP dictionary gives a slightly worse result than aSSC.
(Right) Moreover, one should consider representation efficiency as the overall
coding and decoding algorithm. We compare the efficiency for these dictionar-
ies thanks to same coding method (SSC) and the same decoding method (using
rank quantized coefficients). Representation length for this decoding method is
proportional to the Ly norm with A = % ~ 0.032 bits per coefficient and
per pixel as defined in equation @l We observe that the dictionary obtained
by aSSC is more efficient than the one obtained by AMP while the dictionary
obtained with SPARSENET (SN) gives an intermediate result thanks to the ge-
ometric homeostasis: Introducing cooperative homeostasis globally improves
neural representation.
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non homogeneity of the represented features. It is however difficult to evaluate
a decoding scheme in most sparse coding algorithms since this problem is gener-
ally not addressed. Our objective when defining Co(a|I, ®) (see equation [) was
to define sparseness as it may be represented by spiking neural representations.
Using a decoding algorithm on such a representation will help us to quantify
overall coding efficiency.

An effective decoding algorithm is to estimate the analog values of the sparse
vector (and thus reconstruct the signal) from the order of neurons’ activation
in the sparse vector (Perrinet, 2007, Section 2.2). In fact, knowing the address
of the fiber i® corresponding to the maximal value, we may infer that it has
been produced by an analog value on the emitter side in the highest quan-
tile of the probability distribution function of a;0. We may therefore decode
the corresponding value with the best estimate which is given as the average
maximum sparse coefficient for this neuron by inverting z;0 (see equation IEI)%
ajo =z (1). This is also true for the following coefficients. We write as -
the relative rank of the r*"* and o the order function which gives the address
of the winning neuron at rank r. Since z,y = 1 — 57 = 2o(y)(a0(r)), We can
reconstruct the corresponding value as

&o(r) = Z;(i)(l - M) (14)

Physiologically, equation [[4] could be implemented using interneurons which
would “count” the number of received spikes and by modulating efficiency of
synaptic events on receiver efferent neurons —for instance with shunting inhi-
bition (Delorme & Thorpe, 2003). Recent findings show that this type of code
may be used in cortical in vitro recurrent networks (Shahaf et all, 2008). This
corresponds to a generalized rank coding scheme. However this quantization
does not require that neural information explicitly carries rank information.
In fact, this scheme is rather general and is analogous to scalar quantization
using the modulation function z; ! as a Look-Up-Table. It is very likely that
fine temporal information such as inter-spike intervals also play a role in neu-
ral information transmission. As in other decoding schemes, the quantization
error directly depends on the variability of the modulation functions across
trials (Perrinet et all, 2004). This scheme thus rather shows a representative
behavior for the retrieval of information from spiking neural activity.

To evaluate the specific role of cooperative homeostasis, we compare previous
dictionaries (see figure 2) with the one obtained by Adaptive Matching Pursuit
(AMP). In fact, SPARSENET and aSSC differ at the level of the homeostasis
but also for the sparse coding. The only difference between aSSC and AMP is
the introduction of cooperative homeostasis. To obtain the solution to AMP, we
use the same sparse coding algorithm but switch off the cooperative homeostasis
during learning (n, = 0 in equation [[3)). We observe at convergence that the
dictionary corresponds qualitatively to features which are different from aSSC
and SPARSENET (see figured] Left). In particular, we observe the emergence of

3Mathematically, the z; are not always strictly increasing and we state here that z;l(z) is
defined in a unique way as the average value of the coefficients a; such that z;(a;) = 2.
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Gabor functions with broader width which better match textures. These filters
correspond to lower Lipschitz coefficients (Perrinet et all, [2004), and because
of their lower saliency, these textural filters are more likely to be selected with
lower correlation coeflicients. They fit more to Fourier filters that are obtained
using Principal Component Analysis (Fyfe & Baddeley, 1995) and are still op-
timal to code arbitrary image patches such as noise (Zhaoping, 2006). When
we plot Ly norm with respect to Ly norm for the different dictionaries with
the same MP coding algorithm averaged over a set of 10° image patches from
natural scenes (see figure [ Right Inset), the resulting dictionary from AMP
is less efficient than those obtained with aSSC and SPARSENET. This is not
an expected behavior since COMP is more constrained than MP (MP is the
“greediest” solution) and using both methods with a similar dictionary would
necessarily give an advantage to MP: the AMP thus reached a local minima
of the coding cost. To understand why, recall that in the aSSC algorithm, the
cooperative homeostasis constraint, by its definition in equation [6] plays the
role of a gain control and that the point non-linearity from equation [I0] ensures
that all filters are selected equally. Compared to AMP, textured elements are
“boosted” during learning relative to a more generic salient edge component
and are thus more likely to evolve (see figure Il Right). This explains why they
would end up being less probable and that at convergence there are no textured
filters in the dictionary obtained with aSSC.

Finally, we test quantitatively representation efficiency of these different dic-
tionaries with the same quantization scheme. At the decoding level, we compute
in all cases the modulation functions as defined in equation [I4] on a set of 10°
image patches from natural scenes. Since addresses’ choices may be generated
by any of the M neurons, the representation cost is defined as A = log(M)
bits per chosen address (see equation [)). Then, when using the quantization
(see equation [I4]), the AMP approach displays a larger variability reflecting
the lack of homogeneity of the features represented by the dictionary: There
is a much larger reconstruction error and a slower decrease of error’s energy
(see figure @ Right). The aSSC on the contrary is adapted to quantization
thanks to the cooperative homeostasis and consequently yields a more regular
decrease of coefficients as a function of rank, that is, a lower quantization error.
The dictionary obtained with the SPARSENET algorithm yields an intermediate
result. This shows that the heuristic implementing the homeostasis in this algo-
rithm regulates relatively well the choices of the elements during the learning.
It also explains why the three parameters of the homeostasis algorithm had to
be properly tuned to fit the dynamics of the heuristics. Results therefore show
that homeostasis optimizes the efficiency of the neural representation during
learning and that the cooperative homeostasis provides a simple and effective
optimization scheme.
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5 Discussion

We have shown in this paper that homeostasis plays an essential role in Sparse
Hebbian Learning (SHL) schemes and thus on our understanding of the emer-
gence of simple cell receptive fields. First, using statistical inference and infor-
mation theory, we have proposed a quantitative cost for the coding efficiency
based on a non-parametric model using the number of active neurons, that
is, the Ly norm of the representation vector. This allowed to design a coop-
erative homeostasis rule based on neurophysiological observations (Laughlin,
1981)). This rule optimizes the competition between neurons by simply con-
straining the choice of every selection of an active neuron to be equiprobable.
This homeostasis defined a new sparse coding algorithm, COMP, and a new
SHL scheme, aSSC. Then, we have confirmed that the aSSC scheme provides
an efficient model for the formation of simple cell receptive fields, similarly to
other approaches. The sparse coding algorithms in these schemes are variants
of conjugate gradient or of Matching Pursuit. They are based on correlation-
based inhibition since this is necessary to remove redundancies from the linear
representation. This is consistent with the observation that lateral interactions
are necessary for the formation of elongated receptive fields (Bolz & Gilbert,
1989). With a correct tuning of parameters, all schemes show the emergence
of edge-like filters. The specific coding algorithm used to obtain this sparse-
ness appears to be of secondary importance as long as it is adapted to the data
and yields sufficiently efficient sparse representation vectors. However, resulting
dictionaries vary qualitatively among these schemes and it was unclear which
algorithm is the most efficient and what was the individual role of the different
mechanisms that constitute SHL schemes. At the learning level, we have shown
that the homeostasis mechanism had a great influence on the qualitative dis-
tribution of learned filters. In particular, using the comparison of coding and
decoding efficiency of aSSC with and without this specific homeostasis, we have
proven that cooperative homeostasis optimized overall representation efficiency.
This efficiency is comparable with that of SPARSENET , but with the advantage
that our unsupervised learning model is non-parametric and does not need to
be properly tuned.

This work might be advantageously applied to signal processing problems.
First, we saw that optimizing the representation cost maximizes the indepen-
dence between features and is related to the goal of ICA. Since we have built
a solution to the LGM inverse problem that is more efficient than standard
methods such as the SPARSENET algorithm, it is thus a good candidate so-
lution to Blind Source Separation problems. Second, at the coding level, we
optimized in the COMP algorithm the efficiency of Matching Pursuit by in-
cluding an adaptive cooperative homeostasis mechanism. We proved that for a
given compression level, image patches are more efficiently coded than in the
Matching Pursuit algorithm. Since we have shown previously that MP compares
favorably with compression methods such as JPEG with a fixed log-Gabor fil-
ter dictionary (Fischer et all, 12007), we can predict that COMP should provide
promising results for image representation. An advantage over other sparse
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coding schemes is that it provides a progressive dynamical result while the con-
jugate gradient method has to be recomputed for every different number of
coefficients. The most relevant information is propagated first and progressive
reconstruction may be interrupted at any time. Finally, a main advantage of
this type of neuromorphic algorithm is that it uses a simple set of operations:
computing the correlation, applying the point non-linearity from a Look-Up
Table, choosing the ArgMax, doing a subtraction, retrieving a value from a
Look-Up-Table. In particular, the complexity of these operations, such as the
ArgMax operator, would in theory not depend on the dimension of the system
in parallel machines and the transfer of this technology to neuromorphic hard-
ware such as aVLSIs (Briiderle et all, 2009; [Schemmel et all, 2006) will provide
a supra-linear gain of performance.

In this paper, we focused on transient input signals and of relatively abstract
neurons. This choice was made to highlight the powerful function of the paral-
lel and temporal competition between neurons in contrast to traditional analog
and sequential strategies using analog spike frequency representations. This
strategy allowed to compare the proposed learning scheme with state-of-the-art
algorithms. One obvious extension to the algorithm is to implement learning
with more realistic inputs. In fact, sparseness in image patches is only local
while it is also spatial and temporal in whole-field natural scenes: For instance,
it is highly probable in whole natural images that large parts of the space —
such as the sky— are flat and contain no information. Our results should be
thus taken as a lower bound for the efficiency of aSSC in natural scenes. This
also suggests the extension to representations with some built-in invariances,
such as translation and scaling. A gaussian pyramid, for instance, provides a
multi-scale representation where the set of learned filters would become a dic-
tionary of mother wavelets (Perrinet, 2007, Section 3.3.4). Such an extension
leads to a fundamental question: How does representation efficiency evolves
with the number M of elements in the dictionary, that is, with the complexity
of the representation? In fact, when increasing the over-completeness in aSSC,
one observes the emergence of different classes of edge filters: at first different
positions, then different orientations of edges, followed by different frequencies
and so on and so forth. This specific order indicates the existence of an un-
derlying hierarchy for the synthesis of natural scenes. This hierarchy seems to
correspond to the level of importance of the different transformations that are
learned by the system, respectively translation, rotation and scaling. Exploring
the efficiency results for different dimensions of the dictionary in aSSC will thus
give a quantitative evaluation of the optimal complexity of the model needed to
describe images in terms of a trade-off between accuracy and generality. But it
may also provide a model for the clustering of the low-level visual system into
different areas, such as the emergence of position-independent representations in
the ventral visual pathway versus motion-selective neurons in the dorsal visual
pathway.
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