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Optimal signal representation in neural spikingpopulation 
odes: a model for the formation ofsimple 
ell re
eptive �elds.Laurent U. PerrinetInstitut de Neuros
ien
es Cognitives de la Méditerranée (INCM)CNRS / University of Proven
e13402 Marseille Cedex 20, Fran
ee-mail: Laurent.Perrinet�in
m.
nrs-mrs.frMar
h 19, 2008Abstra
tTaking advantage of the 
onstraints of spiking representations, we de-rive an unsupervised learning algorithm whi
h we prove to e�
iently 
odenatural images and apply it to a model of the input to the primary visual
ortex. In fa
t, spikes 
arry temporal event-based information in bundlesof parallel �bers and may be 
onsidered as all-or-none binary events. Thisproperty may be used to formulate the e�
ien
y of a representation prob-lem as �nding the L0-norm sparsest representation, a �hard" NP-
ompleteproblem. We propose a solution for a bundle of Integrate-and-Fire neuronswhi
h improves previous results based on an Adaptive Mat
hing Pursuits
heme by expli
itly implementing an homeostati
 
onstraint in the 
hoi
efun
tion by a spiking gain 
ontrol me
hanism in the neural population.For 
omparison purposes, we applied this s
heme to the learning of smallimages taken from natural images as in SparseNet and 
ompared theresults and e�
ien
y of this last algorithm with Mat
hing Pursuit andthe proposed algorithm. Results show that the di�erent 
oding algorithmgive similar e�
ien
ies while the homeostasis provided an optimal bal-an
e whi
h was 
ru
ial during the learning. This study provides a simplerand more e�
ient algorithm for learning independent 
omponents in a setof inputs su
h as natural images suggesting that this Sparse Spike Cod-ing strategy may provide a generi
 
omputational module that help usunderstanding the e�
ien
y of the Primary Visual Cortex.KeywordsNeural population 
oding, spike-event 
omputation, 
orrelation-based inhibi-tion, Sparse Spike Coding, Adaptive Mat
hing Pursuit, Sparse-Hebbian Learn-ing 1



1 Introdu
tionThe neural ar
hite
ture on whi
h our 
ognitive abilities are based is a dynami
al,adaptive system whi
h evolves to provide optimal solutions in our intera
tionswith the environment. In parti
ular, models for the formation of simple 
ellre
eptive �elds in the primary visual 
ortex (V1) have attra
ted great attentionas a model of learning applied to vision and more generally as a generi
 modelof 
oding and representation in neural 
omputations. Based on the fun
tionalapproa
h that the system should evolve to be e�
ient, that is for low-level sen-sory areas that information is transformed e�
iently [1, 2℄, the most a

eptedexplanation for the formation of orientation sele
tive simple 
ells in V1 is thatit optimizes the sparseness of the representation of images drawn from naturals
enes, that is from behaviorally relevant s
enes [3℄. Similar approa
hes havebeen followed for natural images [4, 5, 6, 7, 8, 9℄ and sounds [10, 11℄ thatwere based on solving the inverse of a generative model of the signal. However,all of these solutions relied on spe
i�
 parameterizations and didn't expli
itlydemonstrated how their algorithm 
ould be spe
i�
ally adapted to neural 
om-putations. For instan
e, the 
oding was a
hieved by 
onjugate gradient [3℄ ororthogonal mat
hing pursuit [7℄ without expli
itly addressing the problem of theexisting representational 
onstraints in the 
ortex. More spe
i�
aly, they don'tspe
i�
ally take advantage of the nature and ar
hite
ture of neural 
omputa-tions that make them di�erent from the one o

uring in a traditional sequential
omputer.In that dire
tion, a key aspe
t of neural 
ommuni
ation is that most informationbetween neurons is 
arried by spikes. Spikes (or A
tion Potentials) are simplepulses of the membrane potential whose shape seems to 
arry few informationand whi
h may travel robustly over long distan
es on axons1. In the humanearly visual system for instan
e, after presenting a brief visual stimulus a 
as-
ade of me
hanisms will take pla
e after the a
tivation of the photore
eptors inthe retina. A volley of spikes leaves the retina through the bundle of axons thatforms the opti
 nerve to rea
h the lateral geni
ulate nu
lei (after approximately25ms). There, a new pro
essing takes pla
e generating a new volley of spikestoward the primary visual 
ortex that is rea
hed after approx. 35ms [13℄. Thevisual information that is �de
oded� there is often 
onsidered to be �en
oded� inthe spikes' �ring pattern of every �ber. As a 
onsequen
e, neural 
omputationsare event-based and dynami
al: information transfer is parallel while in 
lassi-
al solutions 
omputations are sequential and non-interruptible. A goal of thiswork is to show how we may take advantage of spiking me
hanisms to representvisual information in a dynami
, parallel and event-based fashion.To a
hieve that agenda, we will �rst analyti
ally formulate the problem of thee�
ient spike 
oding of a �ashed stati
 image and derive a measure atta
hed tothe performan
e of information transmission in the neural assembly by intro-1Spikes have a shape of around 1ms and are also present on dendrites sin
e their presen
eis linked to the dynami
al properties of the a
tive ion 
hannels on the neuron's membrane [12℄.They are universally present in the 
entral nervous system but also a
ross spe
ies and phy-logeny. 2



du
ing the L0-norm as a measure of the sparseness of the spike 
ode. Based onprevious results [14℄, we will de�ne an e�
ient sparse spike 
oding and de
odings
heme using 
orrelation-based inhibition 
oupled with the spiking me
hanism.Taking advantage of a biologi
ally-inspired homeostati
 spike gain 
ontrol to en-sure an optimal 
omputational balan
e within the assembly, we will improve theperforman
e of the previously proposed algorithm and derive a simple hebbian-type learning s
heme on the sparse representation. We will �nally 
omparethe proposed algorithm with standard methods: SparseNet [3℄ and AdaptiveMat
hing Pursuit [15℄ and show the relative importan
e of the 
oding s
hemeand of the homeostasis on the resulting systems thanks to the quantitative mea-sures of e�
ien
y. We will 
on
lude by 
omparing this method with previouslyproposed s
hemes and how this may be re
on
iled to improve our understandingof the neural 
ode by drawing the link between stru
ture (spikes in a distributednetwork) and fun
tion (e�
ient 
oding) and explore the signi�
ant parametersat work in these me
hanisms.1.1 A generative model of signal synthesisIn low-level sensory areas, the goal of neural 
omputations is to build e�
ientintermediate representations to allow e�
ient de
ision making [1, 16℄. A �good�representation of the world should map at best the information from the phys-i
al signals whi
h are relevant for the sensory area under study. Furthermore,it will be more e�
ient if it is easily transformable a

ording to usual trans-forms. In visual areas for instan
e, any representation of a s
ene should beeasily transformed for any translation or rotation of the s
ene, sin
e these are
ommon movements and that higher-level areas will need to take into a

ountthis information. As a 
onsequen
e, it is easier to de�ne �rst a synthesis modelof the world and its transformations and then to build the representation byinverting this model. This synthesis model (also 
alled the forward model) maybe built using statisti
al observations or with prior assumptions on the physi
sof the generation of the signal. A Linear Generative Model (LGM) [17℄ is ageneri
 
ase where the signal may be thought as the linear 
ombination of in-dependent 
auses. Inverting the forward model 
orresponds in the terminologyof signal pro
essing to the 
oding pro
ess, sin
e it transforms the signal (forinstan
e the observed image) into a more abstra
t representation as a 
ombina-tion of 
omponents from the forward model (for instan
e the edges the image isformed from). This 
oding may then be used to understand the 
ontent of thesignal relative to the (forward) synthesis model but also to validate on a longerterm the 
oding algorithm solving the inverse problem. In fa
t, one strategy isto build learning pro
esses whi
h optimize the overall e�
ien
y of the represen-tations for a known 
oding algorithm. It is then expe
ted that the 
omparisonof di�erent learning strategies will help us understand the pro
esses underlyingre
eptive �eld formation (here in the input layer 4 of V1) as a generi
 neural
omputation. For instan
e, some 
oding algorithms seem better than others and
omparing their relative e�
ien
y will highlight the reasons why some aspe
ts ofthe neural ar
hite
ture (parallel event-based 
omputations, lateral intera
tions3



within the 
orti
al area) were 
hosen during evolution.Formally, to de�ne the LGM, we will use a �di
tionary� of N images repre-sented by the matrix A = {Aj}1≤j≤N , ea
h of these being de�ned by Aj =
{Aij}1≤i≤M over the set of sampling positions i (that is the pixels in a simpleimage pro
essing framework). Knowing A and the �sour
es� s = {sj}1≤j≤N ,the signal x = {xi}1≤i≤M is de�ned as

x =
∑

1≤j≤N
sj .Aj + n = A.s + n (1)where n is a de
orrelated gaussian additive noise of varian
e σ2

n. This noisemodel is a
hieved thanks to the prepro
essing (whi
h 
ould be a
hieved in gen-eral by Prin
ipal Component Analysis) without loss of generality sin
e the pro-
essing is invertible [18℄ (see Fig. 5). The LGM is well adapted to natural s
enesbe
ause transparen
y laws are linear for luminan
es and thus the LGM des
ribeswell the synthesis in a lo
al neighborhood of any natural image. The goal ofany 
oding algorithm for the inverse problem is to �nd for an observed x thebest set s of sour
es that generated the signal. Then, the goal of a learningalgorithm is to adapt at best in the long term to the parameters of the LGM,that is to the matrix A and the statisti
s of s. This di
tionary A is possiblymu
h larger than the dimension of the input spa
e (that is when N >> M);the di
tionary is then said to be over-
omplete. One advantage of over-
ompletedi
tionaries is that it's representational power is greater and that for instan
e ifthe di
tionary is transform invariant then it easy to build a transform invariantrepresentation. On the other hand this leads to a 
ombinatorial explosion forthe inversion of the LGM and typi
ally, there exist many solution for one input.We will see in Se
. 1.3 how we may quantify the global e�
ien
y of the 
oding,but let's �rst de�ne how one may evaluate the likelihood of any sour
e knowingan input x.In fa
t, having de�ned the forward model, we may now be interested in 
omput-ing how well a parti
ular instan
e of the signal (here an image) mat
hes withthe model. From [18, 19℄, we know that for a given signal x, the log-probability
log P ({sj}|x,A) 
orresponding to a single sour
e sj .Aj knowing it is a realiza-tion of the LGM as it is de�ned in Eq. 1 (and for whi
h we assume no priorknowledge) is maximal for the proje
tion 
oe�
ient de�ned by:

s∗j =< x,
Aj

‖Aj‖2
>

def
=

∑

1≤i≤M x(i).Aj(i)
∑

1≤i≤M Aj(i)2
(2)where def

= means "equal by de�nition". The log-likelihood log P ({sj}|x,A) isthen maximum for the sour
e j∗ with maximal 
orrelation 
oe�
ient j∗ =ArgMaxjρj with
ρj =<

x

‖x‖
,

Aj

‖Aj‖
>

def
=

∑

1≤i≤M x(i).Aj(i)
√

∑

1≤i≤M Aj(i)2.
√

∑

1≤i≤M x(i)2
(3)It should be noted that ρj is the M th-dimensional 
osinus and that its absolutevalue is therefore bounded by 1. The value of Ar
Cos(ρj) would therefore give4



the angle of x with the pattern A and in parti
ular, the angle would be equal(modulo 2π) to zero if and only if ρj = 1 (full 
orrelation), π if and only if
ρj = −1 (full anti-
orrelation) and ±π/2 if ρj = 0 (both ve
tors are orthogonal,there is no 
orrelation). Also, it is independent to the norm of the �lters and weassume without loss of generality in the rest that these are normalized to unity.In 
anoni
al models of neural modeling this 
orresponds to the linear dendriti
integration over the re
eptive �eld, produ
ing for a positive 
orrelation a driving
urrent leading to the hyper-polarization of the 
ell and possibly to spiking. Thisjusti�es the 
omputation of the 
orrelation in the per
eptron model [20℄ as itprovides a dire
t measure of the log-probability under the assumptions that weused (the LGM with Gaussian noise). Starting from this basi
 me
hanism, one
ould 
ompute for every signal a set of a
tivities 
orresponding to how wellthe neurons 
orresponded to patterns in the image prede�ned in the weightsmatri
es. However, we should now explain how this information may be 
odedand de
oded by a set of spiking neurons.1.2 Spike 
oding and de
oding of a transient signal in apopulation of neuronsNeurons are intrinsi
ally dynami
al systems and we will take advantage of thisproperty to transform the signal into a volley of spikes. For the large 
lass ofIntegrate-and-Fire neurons whi
h is relevant for pyramidal neurons, we may usethe fa
t that the larger the driving ex
itation, the larger the �ring frequen
y anddually the shorter the laten
y of spiking [21℄. More pre
isely, let's 
onsider apopulation of N pyramidal neurons as an information 
hannel for whi
h we wishto 
ode and then de
ode a ve
tor {ρj}1≤j≤N only by transmitting a spiking pat-tern over the assembly. Classi
ally, one would map ea
h value to an ex
itationvalue whi
h 
orresponds through a monotonous in
reasing fun
tion to a spikinglaten
y or frequen
y, whi
h 
an then be de
oded by the 
orresponding inversefun
tion. However a �rst problem arises when we 
onsider the set of di�erentex
itation ve
tors globally. In fa
t, if the probability distribution fun
tion (pdf)of the input a
tivation is not uniform, then the average spiking a
tivity of theneurons will be systemati
ally di�erent. In the 
ompetitive network formed withthe pyramidal 
ells, this is in disagreement with the fa
t that spikes are similarand should therefore 
arry similar information to the di�erent e�erent neuronstheir axons are 
onne
ted to. While the impa
t of ea
h spike on a re
eivingneuron is variable (this being measured by the synapti
 weight as the for
e ofthe post-synapti
 
urrent) spikes are binary all-or-none events. To maximizethe representational information of possible spike patterns, it is ne
essary thatneurons of the same 
lass in one assembly should build up a distributed systemwhere a
tivity is uniformly distributed. Another dual explanation is that spikeshave similar metaboli
 
osts and that the system should balan
e the use of thedi�erent neurons so as to minimize the average metaboli
 use by the system2.2However, this argument is a 
onsequen
e through evolution from the �rst, sin
e the goalof neural 
omputations is primarily to be an e�
ient pro
essor before being an e
onomi
 one.5



A standard method to a
hieve this homeostasis is to map the input ve
tor
{ρj} trough a point non-linearity3 whi
h provides a uniform probability for theoutput [2℄. This method is similar to histogram equalization in image pro
ess-ing and provides an output with maximum entropy for a bounded output: ittherefore optimizes the 
oding e�
ien
y of the representation in terms of 
om-pression [22℄ or dually the minimization of intrinsi
 noise [23℄. It may be easilyderived from the probability P of variable ρj (bounded in absolute value by 1)by 
hoosing the non-linearity as the 
umulative fun
tion

fj(ρj) =

∫ ρj

−1

dP (ρ) (4)where the symbol dP (x) = PX(x)dx will here denote in general the probabilitydistribution fun
tion (pdf) for the random variable X . This pro
ess has beenobserved in a variety of spe
ies and is for instan
e perfe
tly illustrated in thesalamander [24℄ (see Fig. 1). It may evolve dynami
ally to slowly adapt tovarying 
hanges in luminan
es, su
h as when the light diminishes at dawn butalso to some more elaborated s
heme within a map [25℄. As in �ideal demo
ra-
ies� where all neurons are �equal�, this pro
ess has to be dynami
ally updatedover some 
hara
teristi
 period so as to a
hieve optimum balan
e. As a 
onse-quen
e, sin
e for all j, the pdf of zj = fj(ρj) is uniform and that sour
es areindependent, it may be 
onsidered as a random ve
tor drawn from an uniformdistribution in [0, 1]. Knowing the di�erent spike generation me
hanisms whi
hare similar in that 
lass of neurons, every ve
tor {ρj} will thus generate a listof spikes {j(1), j(2), . . .} (with 
orresponding laten
ies) where no information is
arried a priori in the laten
y pattern but all is in the relative timing a
rossneurons.We 
oded the signal in a spike volley, but how 
an this spike list be �de
oded�,espe
ially if it is 
ondu
ted over some distan
e and therefore with an additionallaten
y? In the 
ase of transient signals, sin
e we 
oded the ve
tor {ρj} usingthe homeostati
 
onstraint from Eq. 4, we may retrieve the analog values fromthe order of �ring neurons in the spike list. In fa
t, we know in parti
ular thatfor the �rst spike to arrive at the re
eiver end, knowing that it 
orresponds to�ber j(1), has been produ
ed by a value in the highest quantile of ρj(1) on theemitting side. We may therefore de
ode the 
orresponding value with the bestestimate ρ̂j(1) = f−1
j(1)(1). This is also true for the following spikes and if wewrite as zj(k) = k

N
the relative rank of the spike (that is neuron j(k) �red atrank k), we 
an re
onstru
t the 
orresponding value as

ρ̂j(k) = f−1
j(k)(1− ρj(k)) (5)This 
orresponds to a generalized rank 
oding s
heme [28, 29℄ (see Fig. 1, TopRight). First, it loses the information on the absolute laten
y of the spiketrain whi
h is giving the maximal value of the input ve
tor. This has the3That is to a set of s
alar non-linearities applied independently to every single element ofthe ve
tor. 6
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Figure 1: Spike 
oding 
hannel using homeostati
 gain 
ontrol. We showhere how a bundle of L-NL neurons [26, 27℄ tuned by a simple homeostati
 me
h-anism allow to transfer a transient information, su
h as an image, using spikes.(L) The signal to be 
oded, for instan
e the mat
h ρj of an image pat
h (thetiger on the left bottom) with a set of �lters (edge-like images), may be 
on-sidered as a sto
hasti
 ve
tor de�ned by the probability distribution fun
tion(pdf) of the values ρj to be represented. (NL) By using the 
umulative fun
tionas a point non-linearity fj, one ensures that the probability of zj = fj(ρj) isuniform, that is that the entropy is maximal. This non-linearity in the L-NLneuron implements a homeostasis that is 
ontrolled only by the time 
onstantwith whi
h the 
umulative probability fun
tion fj is 
omputed (typi
ally 104image pat
hes in our 
ase). (S) Any instan
e of the signal may then be 
odedby a volley of spikes: a higher value 
orresponds to a shorter laten
y and ahigher frequen
y. (D) Inversely, for any spike events ve
tor, one may estimatethe value from the �ring frequen
y, the laten
y. We may simply use the orderingof the spikes sin
e the rank provides an estimate of the quantile in the proba-bility distribution fun
tion thanks to the equalization. Using the inverse of fjone retrieves the value in feature spa
e so that this volley of spikes is de
oded(or dire
tly transformed) thanks to the relative timing of the spikes using themodulation (see Eq. 5). This builds a robust information 
hannel where infor-mation is solely 
arried by spikes as binary events. Given this model, the goalof this work is to �nd the most e�
ient ar
hite
ture to 
ode natural images andin parti
ular to de�ne a 
oding 
ost and to derive a learning algorithm.To drawa quantitative 
omparison with state-of-the-art algorithms [7, 10, 11℄, we willuse the framefork used in SparseNet [17℄.7



parti
ular advantage of making this 
ode invariant to 
ontrast (up to a �xeddelay due to the pre
ision loss indu
ed by noise). Se
ond, when normalizedby the maximal value, it is a �rst order approximation of the ve
tor whi
his espe
ially relevant for over-
omplete representations where the information
ontained in the rank ve
tor (whi
h is thanks to Stirling's approximation oforder log2(N !) = O(N. log(N)), that is more than 2000 bits for 256 neurons)is greater than the information 
ontained in the parti
ular quantization of theimage4. This 
ode therefore fo
uses on the parti
ular sequen
e of neurons thatwere 
hosen and loses the parti
ular information that may be 
oded in the pat-tern of individual inter-spike intervals in the assembly. A model a

ountingfor the exa
t spiking me
hanism would 
orre
t this information loss, but thiswould be at the 
ost of introdu
ing new parameters (hen
e new information),while it seems that this information would have a low impa
t relative to thetotal information [30℄. More generally, one 
ould use di�erent mappings for thetransformation of the z value into the a spike volley whi
h 
an be more adaptedto 
ontinuous �ows, but this s
heme 
orresponds to an extreme 
ase (a transientsignal) whi
h is useful to stress on the dynami
al part of the 
oding [31℄ andis mathemati
ally more tra
table. In parti
ular, one may show that the 
odingerror is proportional to the variability of the sorted 
oe�
ients [21℄, the rest ofthe information being the information 
oded in the time intervals between twosu

essive spikes. Thus, the e�
ien
y of information transmission will dire
tlydepend on the validity of the hypothesis of independen
e of the 
hoi
e of 
om-ponents and therefore on the statisti
al model build by the LGM.It should be also noted that no expli
it re
onstru
tion is ne
essary (in the math-emati
al sense of the term) on the re
eiver side as we do here, sin
e the goalof the re
eiver 
ould only be to manipulate information on for instan
e somesubset on the spike list (that is on some re
eptive �eld 
overing a subpart ofthe population). In parti
ular one may imagine that we may add some arbi-trary global point linearity to the z values in order to threshold low values orto quantize values (for instan
e set all values to 1 only for the �rst 10% of thespikes). However, this full re
onstru
tion s
heme is a general framework forinformation transmission, and we may then imagine that if for instan
e we poolinformation over a limited re
eptive �eld, the information needed (the ranks inthe sub-spikelist) will still be available to the re
eiver dire
tly without havingto 
ompute the full set (in fa
t, sin
e the pdf of z is uniform, the pdf of a subsetof 
omponents of z is also uniform). Finally, we de�ned a simple spike 
odingalgorithm to transmit information robustly with events. However, it is not yet
lear how we may quantitatively estimate its e�
ien
y.1.3 De�nition of the e�
ien
y of Spike 
odingNow that we de�ned the spike 
oding algorithm, we should be able to derivea generi
 
ost fun
tion that will allow us to quantify the e�
ien
y of di�erent4We are generally unable to dete
t quantization errors on an image 
onsisting of more 256gray levels, that is for 8 bits. 8




oding algorithms but also to derive a learning algorithm for the spike 
odingalgorithm de�ned above. For every signal x, one may state as in O

am'srazor that given two solutions of similar quality, the best is the one with lowestrepresentational 
omplexity. Globally, we may introdu
e an "O

am fa
tor" to
ompare the e�
ien
y of di�erent representations [32, Ch. 28.3℄. This fa
tor maybe expressed as the Kolmogorov-Chaitin 
omplexity and 
an be formalized in aprobabilisti
 framework by using the bound given by Shannon's 
oding theoremas the average Shannon's information of solutions ŝ (the 
oding sequen
es) giventhe model's parameters. A goal is therefore to maximize the eviden
e of themodel that is to minimize this information or similarly minimize the des
riptionlength [33℄. Furthermore, in the 
ontext of dynami
al 
oding by spikes, this
oding is progressive and there will be a dynami
al 
ompromise between thepre
ision and the 
omplexity of the representation.Using the same notation as in Se
. 1.1, the total representational 
ost is C def
=

E(− log P (ŝ|x,A)), where E(.) denotes averaging over multiple images. Forone 
oding sequen
e, this 
ost may thus be written as the sum of its likelihoodprobability knowing the set of sour
es added to the 
oding length of the set ofsour
es:
C(x)

def
= − logP (ŝ|x,A) = log Z +

1

2.σ2
n

‖x−
∑

j

ŝj .Aj‖
2)− log P (ŝ|A) (6)where Z is the partition fun
tion (that we will omit in the sequel). The e�-
ien
y 
ost will be measured in bits if the logarithm is of base 2 (as will beassumed without loss of generality in the sequel). For any 
oding ŝ, the �rstterm 
orresponds to the information from the image whi
h was not retrieved bythe 
oding (re
onstru
tion 
ost) and that 
an be en
oded at best using entropi

oding pixel by pixel. The se
ond term is the representation 
ost: it quanti�esthe e�
ien
y of the representation as the des
ription length of the 
oe�
ientsand is equal to the entropi
 
oding of ŝ knowing its probability distributionfun
tion.We will assume independen
e of the 
oe�
ients of the LGM and therefore

log P (s,A) =
∑

j log P (sj,A). Moreover, based on a parameterization of the
oe�
ients' prior, this yields the sparseness 
ost de�ned in Olshausen and Field[17℄:
C1 =

1

2.σ2
n

‖x−
∑

j

ŝj .Aj‖
2 + β

∑

j

log(1−
ŝ
2

σ2
) (7)where β is the steepness of the prior and σ is the prior s
aling (see Figure13.2 from [34℄). This 
ost is related to the 
lassi
al 
ost with the L1-norm butrepresents a more kurtoti
 probability distribution fun
tion for the prior thanthe lapla
ian prior 
orresponding to the L1-norm. This 
ost therefore links thee�
ien
y to the sparseness of the 
ode by parametrizing a priori the 
oe�
ientsto be sparse, the "o

am fa
tor" measuring the eviden
e of the model knowingthis prior.This liberty in the de�nition of the sparseness leads to a wide variety of proposed9



solutions to optimizing this 
ost or sparse 
oding (for a review, see [35℄) su
h asnumeri
al optimization [17, 36℄, non negative matrix fa
torization [37, 38℄ or byusing Mat
hing Pursuit [7, 11℄. Note that this 
ost will e�
iently quantify therepresentation e�
ien
y if the pdf of the 
oe�
ients is indeed well �tted to theparameterization. However, this parameterization is not known a priori andmust be tuned a

ordingly to �t the model to the statisti
s of natural imagesand be further validated. This is the reason why we did build a non-parametri
measure by taking advantage of the fa
t that thanks to the homeostasis, theprobability of �ring of every �ber is uniform a
ross the population. In fa
t,spikes are a priori equally likely to be generated on any of the N neurons (seeSe
. 1.2), so that the probability of the origin of any new spike is simply 1
N
.Therefore, di�erently to the SparseNet algorithm, the model for the statisti
sof the LGM assumes that spikes are independent all-or-none events and 
arry abinary representation [39℄ as was presented above for the Sparse Spike Codingalgorithm. This expli
itly de�nes the information 
ontent of a spike volley asan ordered list of spikes where the whole information is 
oded in the �addresses�of the di�erent spikes in the list. Using a di
tionary of N neurons, the 
ost perspike may then be de�ned as log2(N) bits per spike, so that we propose for the
oding 
ost of a spike list :

C0 =
1

2σ2
n

.‖x−
∑

j

ŝj .Aj‖
2 + log2(N).‖ŝ‖0 (8)where ‖ŝ‖0 is the length of the retrieved solution (or also the L0 norm). Again,this 
ost is only valid if the probability of every spike is a priori uniform andtherefore the 
ost used in [7℄ should in
lude a 
orre
tion term in the L0-norm toa

ount for this non-unifomity. It also expli
tely rates the e
onomy of 
onsumedmetaboli
 ressour
es as is used in [7℄, but we retain this only as a 
onsequen
eof the algorithm. Note �rst that for any spike 
oding solution, this 
ost fun
tionis dynami
 sin
e the number of spikes may in
rease in time. Note also that itnow links e�
ien
y to sparseness only on the basis that the spiking representa-tion is binary event-based. More generally, su
h a sparse representation is thebest solution to allow a good dis
riminability between di�erent patterns and issimilar with information 
riterions su
h as the AIC [40℄ or distorition rate [41,p. 488℄. For instan
e, as a model of the input layer of the primary visual 
ortex,optimizing the 
oding a

ording to Eq. 8 will provide the best representation tosegregate di�erent orientations for instan
e by representing the ridge of edgesin images instead of representing the linear 
orrelation as de�ned by Eq. 3 (ina nutshell, sparser representation make "peaker" 
ross-
orrelograms). However,resolving the 
oding problem with the L0 norm (getting the best ŝ in the senseof Eq. 8 knowing x, that is ArgMins(C0(x, s)) ) is NP-
omplete with respe
t tothe dimension N of the di
tionary [41, p. 409℄. We will present here a solutionto this problem inspired by the ar
hite
ture and dynami
s of the primary visual
ortex. 10



2 Method : adaptive Sparse Spike Coding (aSSC)In fa
t, unless the di
tionary is orthogonal, when 
hoosing one 
omponent overan other (for instan
e the one that maximizes Eq. 3), any 
hoi
e may modifythe 
hoi
e of the other 
omponents. If we 
hose the su

essive neurons withmaximum 
orrelation values, the resulting representation will be proportionallymore redundant when the di
tionary gets more over-
omplete. Also we saw thatover
oming this ine�
ien
y by optimizing the 
hoi
e a

ording to Eq. 8 leadsthen to a 
ombinatorial explosion. To solve this NP-
omplete problem to modelrealisti
 representations su
h as when modeling the primary visual 
ortex, onemay implement a solution designed after the ri
hly laterally 
onne
ted ar
hi-te
ture of 
orti
al layers. In fa
t, an important part of 
orti
al areas 
onsistsof a lateral network propagating information in parallel between neurons. Wewill here propose that the NP-problem 
an be approximately solved by using a
ross-
orrelation based inhibition between neurons.2.1 Sparse Spike Coding: Adaptive Mat
hing Pursuit withegalitarian homeostasisIn fa
t, as was �rst proposed in the Sparse Spike Coding (SSC) [14℄, one 
oulduse a greedy algorithm on the L0-norm 
ost and that these led to use of Mat
hingPursuit algorithm [42℄. It is de�ned as the greedy approa
h applied on thee�
ien
y 
riterion de�ned in Eq. 8. More generally, let's �rst de�ne WeightedMat
hing Pursuit (WMP) by introdu
ing a non-linearity in the 
hoi
e step.Like Mat
hing Pursuit, it is based on two repetitive steps. First, given thesignal x, we are sear
hing for the single sour
e s∗j∗ .Aj∗ that 
orresponds to themaximum a posteriori (MAP) realization for x (see Eq. 3) transformed by apoint non-linearity fj . This Mat
hing step is de�ned by:
j∗ = ArgMaxj [fj(ρj)] (9)where fj(.) is some gain fun
tion that we will des
ribe below and whi
h may beset initially to stri
tly in
reasing fun
tions and ρj is initialized by Eq. 3. In ase
ond step (Pursuit), the information is fed-ba
k to 
orrelated sour
es through:

x← x− s∗j∗ .Aj∗ (10)where s∗j∗ is the s
alar proje
tion < x,Aj∗ > (see Eq. 2). Equivalently, fromthe linearity of the s
alar produ
t, we may propagate laterally:
< x,Aj >←< x,Aj > − < x,Aj∗ >< Aj∗ ,Aj > (11)that is from Eq. 3:

ρj ← ρj − ρj∗ < Aj∗ ,Aj > (12)For any set of monotonously in
reasing fun
tions fj , WMP shares many prop-erties with MP, su
h as the monotonous de
rease of the error or the exponential
onvergen
e of the 
oding. The algorithm is then iterated with Eq. 9 until some11



stopping 
riteria is rea
hed.Sparse Spike Coding (SSC) is then de�ned as the spike 
oding/de
oding algo-rithm whi
h uses WMP as the 
oder and where the point non-linearities arede�ned by Eq. 4. As des
ribed in [18℄, while the Mat
hing step is e�
ientlyperformed by the LIF neurons driven by the NL input (see Fig. 1), the pursuitstep 
ould be implemented in a 
orti
al area by a 
orrelation-based inhibition.This type of inhibition is typi
al of fast-spiking interneurons though there is nodire
t eviden
e of this a
tivity-based synapti
 topology. In Fig. 1, it will 
or-respond to a lateral intera
tion within the linear (L) neuronal population. Inpra
ti
e, the fj fun
tions are initialized for all neurons to the identity fun
tion(that is to a MP algorithm) and then evaluated using an online sto
hasti
 al-gorithm with a �learning� parameter 
orresponding to a smooth average whi
he�e
t was 
ontrolled (see Fig. 4 and Annex. 5.5). As a matter of fa
t, this al-gorithm is 
ir
ular sin
e the 
hoi
e of s is non-linear and depends on the 
hoi
eof fj . However, thanks to the exponential 
onvergen
e of MP, for any set of
omponents, the fj will 
onverge to the 
orre
t non-linear fun
tions as de�nedby Eq. 4. This s
heme extends the Mat
hing Pursuit (MP) algorithm by linkingit to a statisti
al model whi
h tunes optimally the mat
hing step (in the sensethat all 
hoi
es are statisti
ally equally probable) thanks to the adaptive pointlinearity. In fa
t, as stated before, thanks to the uniform distribution of the
hoi
e of a 
omponent, one maximizes the entropy of every mat
h and thereforeof the 
omputational power of the ArgMax operator. Think a 
ontrario to atotally unbalan
ed network where the mat
h will be always a given neuron: thespikes are totally predi
table and the information 
arried by the spike list thendrops to zero. It therefore optimizes the e�
ien
y of MP for this problem byderiving it as the greedy solution of the 
ost de�ned in Eq. 8.2.2 Introdu
ing Hebbian Learning in SSCOn a longer time s
ale, the e�
ien
y of the system may be optimized by slowlyadapting the di
tionary as in SparseNet thanks to the sparse solution given bythe 
oding algorithm. We may implement this for every image at every 
odingstep sin
e we have for ea
h sele
ted spike an evaluation of the log-likelihood bythe distan
e of the residual image to the sele
ted �lter, that is to ‖x−s∗j∗ .Aj∗‖
2(whi
h is equal to ρj up to a 
onstant), the rest of the signal being regardedas a perturbation whi
h will 
an
el out by the averaging. At every step afterEq. 9 and using the gradient des
ent approa
h as in [17℄, we similarly infer thatwe may slowly modify the winning weight ve
tor 
orresponding to the winning�lter Aj∗ by taking it 
loser to x

s∗
j∗

:
∂C

∂Aj∗
=

∂

∂Aj∗

1

2σ2
n

.‖x− ŝ∗j∗ .Aj∗‖
2 (13)

=
1

2σ2
n

.ŝ∗j∗(x− ŝ∗j∗ .Aj∗) (14)12



that is noting s∗ = ŝ∗j∗ :
Aj∗ ← Aj∗ + ηs∗(x − s∗.Aj∗) (15)where η is the learning rate, whi
h is inversely proportional to the time s
aleof the features being learned. It is an �hebbian� rule [43℄ in the 
lassi
al sensesin
e it will enhan
e the weight of neurons of 
orrelated neurons. However, thenovelty of this formulation is to apply this formulation to the sparse represen-tation. Similarly to Eq. 17 in [17℄ or to Eq. 2 in [11℄ the relation is linear. Amore rigorous mathemati
al approa
h were to 
onsider a rotation of Aj toward

x using a Ja
obi Matrix rotation so that all 
omponent ve
tors stay on the unitsphere. In pra
ti
e, Eq. 15 for small learning rates η followed by a normalizationis a good approximation of this high-dimensional (linear) transform. Anotherimprovement is �ba
k-propagate� in early spikes of the following 
hoi
es to 
or-re
t the gradient des
ent instead of regarding the residuals as a perturbation.This 
orresponds to Orthogonal Mat
hing Pursuit as was 
hosen as the 
odingbehind the learning algorithm used in [7℄. However, this would imply a more
omplex neural ar
hite
ture and it did not drasti
ally 
hange the e�
ien
y ofthe system.Without homeostasis, this algorithm (as well as SparseNet) is unstable. Infa
t, sin
e we start with random �lters, it is is more likely that any salientfeature was sele
ted at �rst and will modify the �rst winning �lter. Then thesame neuron will be sele
ted with a higher probability in subsequent learningsteps, 
ausing a non uniformity in the balan
e of the learning a
ross neurons.Whereas SparseNet uses the norm of the �lters to 
ontrol the varian
e of the
oe�
ients a
ross neurons, the SSC mat
hing 
riteria (see Eq. 9) is indepen-dent to the norm of the �lters. However, thanks to the homeostati
 regulation(whi
h has a similar time-s
ale than the learning) the probability of 
hoosing anyneuron in WMP remains uniform and ensures the 
onvergen
e of the learningalgorithm (see Annex. 5.4). The homeostasis will therefore optimize the balan
ebetween the neurons, the homeostasis 
onstraint assuring that the internal rep-resentation driving the spiking neurons may always be 
onsidered as a uniformlydistributed random ve
tor. Note then that on a long time s
ale, if two �ltersat some point during the learning 
orrespond to �lters with di�erent sele
tivity(thus, they have di�erent pdf, the more sele
tive being more kurtoti
), they arestill sele
ted with the same probability thanks to the non-linearity. However,sin
e on a bat
h of natural s
enes, the �lters 
orresponding to the less sele
tiveneurons are less likely to be present and from the relative �boost� indu
ed bythe non-linearity and whi
h a
ts as a 
orti
al gain 
ontrol, these �lters are morelikely to 
hange. It is easier to imagine this property by drawing the Voronoidiagram in �lter spa
e (the unit N -dimensional sphere) 
orresponding to thedi
tionary: ea
h 
entroid will (as in the K-means algorithm) be attra
ted to-ward the mean ve
tor of inputs from its 
orresponding Voronoi 
ell. Sin
e wefor
e the probability of sele
ting 
entroids to be uniform, the equilibrium of thelearning is when the population of �lters, that is the di
tionary, forms an uni-13



form tiling of �lter spa
e5. As a 
onsequen
e, at 
onvergen
e the fj fun
tionsbe
ome equal and the mat
hing step be
omes similar to the one in MP and inparti
ular if one perturbs a �lter (by setting it to a random ve
tor for instan
e)the algorithm will 
hange the whole di
tionary so that it settles to a new sta-ble point (see Annex. 5.4 for supplementary information). Finally, we �nd the
ounter-intuitive result that in aSSC, the homeostasis is more important duringthe learning period and may be ignored when synapses don't evolve anymore.2.3 Adaptive Sparse Spike Coding (aSSC)In summary, the solution of the 
oding problem is given by the following nestedloops:1. Initialize the 
omponents A to random values on the unit N -dimensionalsphere and set the point non-linear gain fun
tion to unity (fj(s) = s forall j),2. draw a signal x from the database,3. 
ompute ρj for all j using Eq. 3,4. until ‖x‖2 is below a threshold do sparse spike 
oding (SSC):(a) sele
t the best mat
h j∗ with Eq. 9,(b) modify 
orrelated information by updating ρj for all j using Eq. 12,(
) slowly modify Aj∗ using Eq. 15,5. then update the fj for all j and draw a new image (step 2)When 
onvergen
e is a
hieved, one 
ould simply make a 
oding by using steps2, 3 and 4 and optionally for the pure spike 
oding evaluate the 
oe�
ient usingEq. 5 in step 4-b. In fa
t, sin
e the greedy algorithm may adapt to quantizationerrors [21, Fig.10℄. The de
oding of a spike list {j(1), j(2), . . .} is then simply:1. Initialize x̂ to a zero image; the rank k is one,2. while we have spikes do :(a) retrieve the address j(k) of the spike and the 
orrseponding value ŝof the 
oe�
ient using Eq. 5,(b) add ŝ.Aj(k) to x̂,(
) in
rement the rank k,5In fa
t, this is true if the 
hoi
e of �lters is uniform, in general it will form a tiling
orresponding to the a priori distribution of features in the �lter spa
e. Therefore, it is more
orre
t to say that the algorithm settles when the probability of any 
entroid is uniform.
14



Note that this pseudo-
ode is given in a traditional sequential way where allsteps are given the one after the other. This 
orresponds to our simulationsbut only 
orresponds to an event based des
ription of the dynami
al pro
esseso

urring in the system. In fa
t, in a dynami
al implementation, all pro
essesare done in parallel and events just 
orrespond to the times where the integrationrea
hed a threshold [18℄.3 Results on natural images3.1 Comparison with SparseNetof re
eptive �eld forma-tionWe 
ompared this novel aSSC algorithm with the SparseNet algorithm. Infa
t, this algorithm as other similar s
hemes mainly di�ers by the 
oding methodused to obtain the sparse representation and by the homeostasis s
heme. Inparti
ular, we fo
used herein in the validation and quantitative 
omparison ofboth algorithms in terms of e�
ien
y on the task at hand that we de�ned6. Weused a similar 
ontext and ar
hite
ture as the experiments des
ribed in [17℄ andused in parti
ular the same database of inputs as the SparseNet algorithmand restri
t ourselves to study the sele
tion of optimal �lters on imagelets (thatis small pat
hes from natural images)7. In parti
ular, these images are stati
,grays
ale and �ltered a

ording to similar parameters to allow a one-to-one
omparison of the di�erent algorithms.Here, we show the results for 16 × 16 pat
hes (so that M = 256) from thewhitened images and we 
hose to learn N = 324 �lters. Results show theemergen
e of edge-like �lters (see Fig. 2) for a wide range of parameters (seeAnnex. 5.5 for an analysis of the robustness of the methods to variations ofthe parameters). Studying the evolution of one single �lter during the learningshows that it �rsts represent any salient feature (su
h as a sharp edge) andthat if it 
ontains multiple edges only the most salient edge remains later in thelearning. This is due to the 
ompetition between �lters, the algorithm ensuringthat independent features should not be mixed sin
e this will result in a larger
L0-norm. When looking at very long learning times, the solution is not �xed (forboth algorithms) and edges may smoothly drift from one orientation to anotherwhile the 
ost still remains stable. This is due to the fa
t that there are manysolutions to the problem and that there is no 
onstraint su
h as topologi
al linksbetween �lters to de
rease the degree of liberty of solutions. Thus, results areto be understood as a whole, and if for instan
e two �lters are swapped in thedi
tionary, the e�
ien
y stays the same.However, it is not 
lear by the sole shape of the �lters alone whi
h solution is6See Annex. 5.1 for the table of parameters, details of the experimental setup and to a linkto reprodu
e the results.7This will give a lower bound for the e�
ien
y of aSSC, sin
e it is known that sparsenessin natural images is greater than in imagelets sin
e sparseness is also spatial. For instan
e, itis highly probable in natural images that large parts of the spa
e �su
h as the sky� are �at.See [19, Se
. 3.3.4℄ for an extension to whole images.15



Figure 2: Results of the proposed aSSC s
heme 
ompared toSparseNet. Starting with random �lters, we 
ompare here the results of thelearning s
heme with 324 �lters at 
onvergen
e (20000 steps) using (Left) the
lassi
al 
onjugate gradient fun
tion method as is used in [17℄ with (Right)the Sparse Spike Coding method. Filters of the same size as the imagelets(16 × 16) are presented in a matrix (separated with a bla
k border). Notethat their position in the matrix is as in ICA arbitrary (invariant up to anypermutation). Results repli
ate the original results of [17℄ and are similar forboth methods: both di
tionary 
onsist of gabor-like �lters whi
h are similar tothe re
eptive �elds of simple 
ells in the primary visual 
ortex. Edges appear inthese 
onditions to be the independent 
omponents of natural images. However,the distribution of the quality of the edges (in parti
ular their mean frequen
y,length, width) appears to be di�erent and the question remains as how we may
ompare the e�
ien
y of the di�erent ar
hite
tures quantitatively.
16



most e�
ient and that rather than the shape of the 
omponents individually,it is the distribution of the assembly of 
omponents that will yield di�erente�
ien
ies. Su
h an analysis was performed with a qualitative analysis of the�lters' shape, by �tting them with Gabor �lters [10℄. A re
ent study 
omparesthe distribution of the parameters of the Gabor �lters with neurophysiologi
alexperiments [7℄. They did indeed show that their learning s
heme, whi
h isalso based on a Mat
hing pursuit algorithm, did better mat
h than SparseNetsome parameters of Gabor �lters over the set of �lter observed in the ma
aque'sprimary visual 
ortex. However, if this similarity is 
ertainly ne
essary, it isnot su�
ient to understand the e�e
t of ea
h parameter and more generallyto re
eptive �eld formation. We will rather try to evaluate quantitatively therelative e�
ien
y of the di�erent learning s
hemes to extra
t what aspe
t is themost relevant.3.2 E�
ien
y 
ompared to SparseNetTo address this question, we 
ompared the quality of both methods by 
om-puting the mean e�
ien
y of the 
oding as the learning 
onverged. Using 5.104imagelets drawn from the natural image database, we performed the progressive
oding of the images using both methods �rst for random ve
tors and then forthe �lters learned by ea
h method. First, we quanti�ed at the end of the 
odingthe distribution of 
oe�
ients for the di�erent 
ases. To allow a 
omparison ofthe 
oe�
ients, we normalized the 
oe�
ients by the energy of the imagelets(sin
e thanks to Eq. 3 and Eq. 2, we have ρj = sj .
‖Aj‖
‖x‖ ) and by the norm of the�lters to retrieve 
oe�
ients su
h that

x

‖x‖
=

∑

1≤j≤N
ρj.

Aj

‖Aj‖
(16)these 
oe�
ients then dire
tly 
orrespond to a measure of the 
orrelation 
oef-�
ient (see Eq. 3). It 
orresponds to the linear 
oe�
ients when the di
tionarywhi
h was sele
ted at ea
h 
oding is quasi-in
oherent, that is that every se-le
ted �lter is perpendi
ular to the residual of the 
oding [44℄. This is nottrue in general and the ρj 
orrespond here rather to the quality (measured asa log-probability) of the mat
h with the signal of ea
h from the sparse set ofsele
ted sour
es. When plotting the histogram of the 
orresponding 
oe�
ients,one sees that distributions are approximately gaussians with the initial random�lters but that these be
ome very kurtoti
 after the 
onvergen
e of the learning(see Fig. 3-Left). The measure of the kurtosis of the resulting 
ode words provedto be very sensitive and a poor indi
ator of the global e�
ien
y, in parti
ularfor 
ode words at the beginning of the 
oding, when many 
oe�
ients are stillstri
tly zero. In parti
ular, it seemed ina

urate to 
ompare the kurtosis forsystems with di�erent over-
ompleteness fa
tors as in [7℄. Both �nal distribu-tions seemed to �t well the bivariate model introdu
ed in [45℄ where 
oe�
ientsare L0 sparse and the non-zero 
oe�
ients follow a lapla
ian pdf. However, theSSC algorithm provided the most kurtoti
 distribution of the 
oe�
ients (withvalues around 60 versus 10 for SparseNet). Plotting the de
rease of the sorted17
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Figure 3: Coding e�
ien
y of adaptive Sparse Spike Coding. We eval-uated the quality of the algorithm with two di�erent 
oding strategies by 
om-paring the 
oding e�
ien
y of the sparse spike 
oding ('ss
') method with the
lassi
al 
onjugate gradient fun
tion ('
gf') method as is used in [17℄. For the
oding of a set of 5.104 image pat
hes drawn from a database of natural images,we plot (Left) the distribution of both methods before and after the 
onver-gen
e of the learning phase. At initialization, the distributions are more gaus-sian (
urves '
g-init' and 'ss
-init') while they get more kurtoti
 (with kurtosisvalues of respe
tively 20 and 60): both algorithms yield at 
onvergen
e sparsedistributions of the 
oe�
ients. We also plot (Right) the mean �nal residualerror (L2 norm) as a fun
tion of the relative number of a
tive (or non-zero)
oe�
ients (that is the normalized L0 norm and the 
oding step for SSC) whi
hprovides an estimate of the mean 
oding e�
ien
y for the image pat
hes. Bestresults are those providing a lower error for a given sparsity or a lower sparseness(better 
ompression) for the same error. In fa
t, the e�
ien
y 
ost measuresO

am's razor applied to 
oding: it states that for a given L2 norm, a lower
omplexity (that is a lower L0 norm) is more e�
ient (graphi
ally, an horizontalline would 
ross from left the best solution �rst). It should be noted that it isalso superior for the 
ost based on the L1 norm, a result whi
h may re�e
t thatthe L0 norm de�nes a stronger sparseness 
onstraint. Moreover, one should takeinto a

ount the fa
t that in the proposed algorithm the 
oding is simply binarywhile it is analogous in SparseNet or in [7, 10, 11℄ and there is no expli
itlyde�ned quantization. While in these s
hemes this aspe
t of the 
oding is notstudied or is expe
ted to be the �xed point of a re
urrent system, we take hereadvantage of the spiking representation to optimize the representation and thespeed of information transmission. These results should be taken as a lowerbound for the e�
ien
y of adaptive Sparse Spike Coding, sin
e the sparsenessin imagelets is only lo
al, but sparseness is also spatial in natural images [21℄.18




oe�
ients as a fun
tion of the number of sele
ted 
oe�
ients again showedthat �rst 
oe�
ients for SSC were higher and de
reased qui
ker (see Fig. 3-LeftInset) following the link between both 
urves from Eq. 5. It illustrated also thepossible bivariate parameterization of the 
oe�
ients.In a se
ond analysis, we 
ompared the e�
ien
y of both methods while varyingthe number of a
tive 
oe�
ients (the L0 norm), that is the number of spikesduring the progressive 
oding for SSC (Eq. 8). To 
ompare this method withthe 
onjugate gradient, a �rst pass of the latter method was assigning for a �xednumber of a
tive 
oe�
ients the best neurons while a se
ond pass optimized the
oe�
ients for this set of "a
tive" ve
tors (see Fig. 3, Right). This method wasalso used in [7℄ and proved to be a fair method to 
ompare both methods. Atthe same time, one 
ould yield di�erent mean residual error with di�erent meansparseness of the 
oe�
ients, as de�ned in Eq. 7 (see Fig. 3, Right Inset).Controlling with a wide range of parameters and a variety of methods yieldedsimilar qualitative results (su
h as 
hanging the learning rate or the parametersof the 
onjugate gradient, see Annex. 5.5) proving that the hebbian learning
onverged robustly as long as the 
oding algorithm provided a good sparse rep-resentation of the input. As a result, it appeared in a robust manner that thegreedy solution to the hard problem (that is SSC) is more e�
ient for the op-timized 
ost but also to the 
ost de�ned in the relaxed problem (see Fig. 3).Sin
e the 
oding used in aSSC is rather sub-optimal (MP) 
ompared to othermethods su
h as [7℄, we 
on
lude that this improvement is mainly due to howwe tuned the algorithm a

ording to the e�
ien
y 
ost de�ned in Eq. 8 and inparti
ular to the homeostasis me
hanism ensuring that all neurons �re equally.Moreover, it should be noted that this non-parametri
 method is 
ontrolled byless parameters (whi
h were here optimized to give best operating point, seeAnnex. 5.1) and we should stress again that the SSC method simply uses afeed-forward pass with lateral intera
tions, while the Conjugate Gradient 
ouldonly be implemented as the �xed point of a re
urrent network. Therefore, ap-plying an O

am razor 
on�rms that for a similar mean 
oding e�
ien
y, aSSCis better sin
e it is of lower stru
tural 
omplexity8.3.3 E�
ien
y 
ompared to Adaptive Mat
hing PursuitThe 
hoi
e of the homeostati
 regulation was based on the 
ost fun
tion and thehypothesis that led to it. In fa
t, by for
ing that all neurons should be 
hosenwith equal probability, we impose a strong 
onstraint for the neural assembly(all neurons should be �equal�) and this may hinder the global e�
ien
y of thesystem. On the other hand, when 
hoosing a more relaxed system (su
h asnormalizing the �lters or using the homeostati
 rule de�ned in SparseNet) weobtain qualitatively di�erent �lters whose e�
ien
y would depend on a di�erent8A

ounting for a quantitative measure of the stru
tural 
omplexity of the di�erent meth-ods is for instan
e measured by the minimal length of a 
ode that would implement them (forinstan
e the number of 
hara
ters of the program in memory). It would therefore depend onthe ma
hine on whi
h it is implemented, and one would of 
ourse see a 
lear advantage ofaSSC on parallel ma
hines. 19
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Figure 4: Homeostasis implements e�
ient spike quantization. (Left)When relaxing the homeostati
 
onstraint in the SHL algorithm to the oneimplemented in Adaptive Mat
hing Pursuit (AMP), the algorithm 
onverges to aset of �lters whi
h 
ontains some less lo
alized �lters and to some high-frequen
yGabors whi
h 
orrespond to more 'textural' features. One may wonder if these�lters are ine�
ient and 
apturing noise or if they rather 
orrespond to inherentfeatures of natural images in this LGM model (see Fig. 3). (Right) In fa
t, theAMP solution gives a better result than aSSC in terms of residual energy asa fun
tion of pure L0 sparseness (see inset) and is for that purpose of similare�
ien
y than 
onjugate gradient. However, when de�ning the e�
ien
y interms of the residual energy as a fun
tion of the des
ription length of the spiking
ode word, then the proposed model is more e�
ient than AMP be
ause of thequantization errors inherent to the higher variability of 
oded 
oe�
ients. Thus,in
luding homeostasis improved the e�
ien
y of adaptive Sparse Spike Coding.It should be noted that homeostasis is important during learning but that fromthe inherent equalization it is not useful in 
oding (see Se
. 2.2).
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ost fun
tion. To resolve this ambiguity, we therefore 
ompared the e�
ien
yfor the SHL s
heme that we presented above (see Fig. 2, Right) with a systemwhere we just imposed the 
omponents to stay on the unit sphere, that is set-ting the homeostati
 learning time to in�nity). This last algorithm is exa
tly theAdaptive Mat
hing Pursuit (AMP) algorithm that was studied previously [15℄and whi
h is similar to other strategies su
h as [7, 11℄.In fa
t, in the AMP algorithm the homeostasis 
onstraint is relaxed and the�lters will 
orrespond to features of more various salien
ies. In parti
ular,we observe the emergen
e of both broader Gabor �lters whi
h better mat
htextures and of 
he
kerboard-like patterns (see the result after 
onvergen
e atFig. 4, Left). Be
ause of their lower generality, these 'textural' �lters will bemore likely to be sele
ted with lower 
orrelation 
oe�
ients. They 
orrespondmore to the Fourier �lters that one may obtain by PCA (see for instan
e [4℄)or the simple Hebbian rule on linear 
oe�
ients and that are still optimal to
ode arbitrary imagelets su
h as noise [46℄. The SHL algorithm ensures with thehomeostasis 
onstraint that all �lters will be sele
ted equally by the de�nitionof the homeostasis in Eq. 4. In parti
ular, the point non-linearity from Eq. 9plays the role of a gain 
ontrol. Compared to AMP, textured elements will berelatively �boosted� during the learning 
ompared to the 
orrelation 
oe�
ient
omputed on a more generi
 �edge� 
omponent. This explains that they wouldend up being less probable and why at the 
onvergen
e of the learning there isno textured �lters in Fig. 2, Right. As a 
on
lusion as was stated formally inSe
. 2.2, the homeostasis e�
iently 
onstrains the di
tionary to better mat
hthe a priori pdf of natural s
enes in the M -dimensional feature spa
e.We may then 
ompare quantitatively the e�
ien
y of these two approa
hes.When not using the quantization step using the inverse fj fun
tion (see Eq. 5),the AMP yields a better �nal result sin
e it represents more e�
iently thenoisy aspe
ts of the signal. On average, the SHL strategy provides a betterinitial de
rease of the residual energy: the 
omponents of the signal are betterrepresented for a similar number of neurons. However, it is weaker when the
L0-sparseness is greater than ∼ 10% of the dimension M , at whi
h point noisedominates the signal (see Fig. 4, Right, inset). On the other hand, when usingthe quantization and therefore when rating the e�
ien
y of the full spike 
od-ing / de
oding system, the AMP approa
h will display a greater variability andthere will be a greater quantization error9. Results show that in average, theloss in information transmission makes the AMP solution obviously less e�
ientthan the SHL approa
h (see Fig. 4, Right). This is due to the higher variabilityof 
oding 
oe�
ients in AMP and therefore of the greater quantization errorindu
ed from the re
onstru
tion using Eq. 5. As a 
on
lusion, both solutionshave advantages, the e�
ien
y depending on a de�nition of the utility fun
tionand how we assigned the distribution of resour
es to a
hieve this goal. In a nut-shell, for the rapid spike 
oding of a transient signal an homeostati
 approa
has implemented in aSSC seems more adequate while on a longer term for a spike9This result did not 
hange qualitatively when using an entropi
 
ost in bits per spike, theAMP requiring ne
essarily less bits per pixel sin
e in SHL the distribution is uniform21



frequen
y representation, the more relaxed system in AMP may be su�
ient.4 Dis
ussionUsing the tools of statisti
al inferen
e and information theory, we derived quan-titative 
osts for the e�
ien
y of di�erent representation models for low-levelsensory areas. We then designed a 
oding and learning solution whi
h heavily re-lied on basi
 aspe
ts of the neural ar
hite
ture, namely the parallel event-basednature of the 
ode. Applied on pat
hes from natural s
enes, we proved herethat aSSC is superior to the SparseNet ar
hite
ture in terms of the global e�-
ien
y of information transmission. The advantage of our formulation is that weexpli
itly link here the sparseness 
onstraint with the e�
ien
y of inverting thegenerative problem. Similar approa
hes have been taken that 
ould be groupedunder the name of Sparse-Hebbian Learning (SHL) [3, 4, 5, 6, 7, 10, 11℄. A 
om-mon solution of these strategies is that Hebbian learning may a

ount for theformation of re
eptive �elds if applied on a sparse representation and that the
oding algorithm used to obtain this sparseness was of se
ondary importan
e.These algorithms may be variants of 
onjugate gradient, of Mat
hing Pursuitor more generally based on 
orrelation-based inhibition (for a review, see [35℄).A more radi
al solution based on neurophysiologi
al eviden
e and not based ona generative model was proposed by [9℄, but was in the end also interpretableas an optimization s
heme and therefore to the de�nition of a 
ost through agenerative model of the signal to 
ode. Thus, these SHL s
hemes are all similaroptimization algorithms, gradually improving the e�
ien
y using a sto
hasti
algorithm on the database of signals. With a 
orre
t tuning of parameters, allof these unsupervised learning algorithms will show the emergen
e of edge-like�lters thanks to the 
orrelation-based inhibition su
h as may be observed to bene
essary for the formation of elongated re
eptive �elds [47℄. However, a majoradvantage of our formulation is the fa
t that it tightly 
oupled the e�
ien
ymeasure to the 
oding representation. In parti
ular, the e�
ien
y is based onthe spiking nature neural information while other algorithms relied on a �ring-frequen
y representations. In these s
hemes based on an analog representation,the problem of 
oding and de
oding of the values was not expli
itly addressedand in most of the 
ases the de
oding solution was a
hieved as the �xed pointsolution of a re
urrent network. This solution therefore requires at ea
h 
odingstep to settle to a �xed point and is therefore in
ompatible with the rapidityof 
orti
al pro
essing [48℄. Moreover, a 
ru
ial feature of our solution is thatthe output of the 
oding algorithm gives non-linear results. For instan
e, for amixture of images, the output to the sum of two images is not ne
essarily thesum of both individual output. Moreover, the response sele
tivity to rotatedoriented lines will be sharper than the linear response [49℄. This provides analternative to the debate between forward and re
urrent models for the ori-gin of sele
tivity by o�ering a fun
tional reasoning behind the emergen
e oforientation sele
tivity. In parti
ular, we predi
t that it will exhibit a similarnon-linearity in the spiking response without the need of expli
itly adding after22



the �rst stage of mat
hing a parametrized non-linear gain 
ontrol that mat
hesphysiologi
al re
ordings [26, 27℄. As a 
onsequen
e, by taking advantage of theparallel ar
hite
ture of the 
ortex, we propose a new and simple interpretationfor the re
eptive �elds of neurons whi
h in this view self organize optimallywith neighboring neurons and 
an therefore only be understood as a whole inan assembly.The work presented here is part of a larger program aiming at assessing qualita-tively the fun
tional e�
ien
y of di�erent modeling solutions to 
omputationalneuros
ien
e problems. Using 
onstraints from neuros
ien
e, we have built asolution to the LGM inverse problem whi
h we proved to be more e�
ient thanthe Mat
hing Pursuit algorithm by using these quantitative tools. We provedthat this aSSC algorithm was an e�
ient unsupervised algorithm that 
ompeteswith standard methods for sear
hing independent signals in signals and that the
oding was an e�
ient 
oder for binary messages with over-
omplete di
tionar-ies. In fa
t, by in
luding an adaptive homeostasis me
hanism, we optimizedthe e�
ien
y of the representation and proved that image pat
hes 
ould be ef-�
iently 
oded by the binary event-based representation. We proved also thatthis homeostasis played a signi�
ant role in these results but also that 
ounter-intuitively textured �lters 
ould also be good 
andidates for optimal 
oding inV1 if the goal was set by a di�erent 
oding 
ost. Computationally, the 
om-plexity of the algorithms and the time required by both methods was similar onthe di�erent simulations on a standard sequential 
omputer. All these modelswere implemented with the intention of providing reprodu
ible resear
h and arefreely available and we en
ourage to modify them (see Annex. 5.1). Moreover,a major advantage is that it provides a progressive dynami
al result while the
onjugate gradient method had to be re
omputed for any di�erent number of
oe�
ients. In fa
t, the most relevant information is propagated �rst and there
onstru
tion may be interrupted at any time. Its e�
ien
y makes it a good
andidate for future te
hnologies of information pro
essing. In parti
ular, it
ompares favorably with 
ompression methods su
h as JPEG [50℄. However itshould be stressed that the transfer of this te
hnology to parallel ar
hite
tureswill provide a supra-linear gain of performan
e. In fa
t, the SSC algorithm 
on-sists of simple operations (integrating and spiking) parti
ularly adapted to animplementation on parallel ar
hite
ture su
h as an aVLSI.To 
on
lude, we proved that using a spiking representation 
ould produ
e sim-ple yet e�
ient ar
hite
ture. Thus, this may explain on a fun
tional level whyspikes have been sele
ted during evolution as an e�
ient signal for long range,rapid 
ommuni
ation quanta. However, the main limit of this algorithm is theuse of transient signals and of relatively abstra
t neurons. This 
hoi
e was madeon purpose to stress the importan
e of the transient network's dynami
s ver-sus traditional strategies using spike frequen
y representations. It shows thatsolutions using spike 
oding/de
oding may be built and that they prove to beof better e�
ien
y than traditional solutions. A solution of SSC for 
ontin-uous �ows was proposed under the term Causal Sparse Spike Coding in [19,Se
. 3.4℄, but some new problems arise (for instan
e the dynami
al 
ompro-mise between speed and pre
ision) that were beyond the s
ope of this paper.23



Moreover, an implementation of SSC using Leaky Integrate-and-Fire neuronswas previously proposed [49℄, but this solution proved to be 
omputationallyexpensive on a sequential 
omputer and that it introdu
ed artifa
ts from in-tegration approximations. In parti
ular it showed that indeed, the 
omplexityof the ArgMax operator did not depend on the dimension of the ve
tor as in
lassi
al solutions, but that on the other hand its pre
ision de
reases for a 
on-stant level of noise with the number of neurons. At least, to keep mathemati
altra
tability, it is preferable of sti
king with abstra
t neurons whi
h use a simpleset of operations: 
omputing the 
orrelation, applying the point non-linearityfrom a Look-Up Table, 
hoosing the ArgMax, doing a subtra
tion, retrievinga value from a Look-Up-Table, see Se
. 2.3. The advantage is that it easesthe extension of this algorithm to other type of parallel event-based algorithms.One extension of the algorithm is to not use the impli
it symmetry of �lterswhi
h introdu
es the 
onstraint that if a �lter exists, then the symmetri
 �lterexists, that is that we rate the e�
ien
y of a mat
h by the absolute value ofthe 
orrelation 
oe�
ient. The relaxed 
ondition proved to be more e�
ient,suggesting that the symmetry that is observed is more a general e�e
t and thatsin
e neurons are not linear only integrators with a re
ti�er, more e�
ient so-lutions may exist (see Annex. 5.2). This simple ar
hite
ture provided also ari
h range of other novel experiments, su
h as introdu
ing topologi
al relationsbetween �lters or by using a representation with some build-in invarian
es, su
has translation and s
aling in a gaussian pyramid su
h as in [51, 52℄. This lastexample provided a multi-s
ale analysis algorithm were the set of �lters thatwere learned were a di
tionary of mother wavelets of the multi-s
ale analysis,hen
e the name of SparseLet Analysis [19, Se
. 3.3.4℄. Another interesting per-spe
tive is to study the evolution of the e�
ien
y of the algorithm with the
omplexity of the representation: when in
reasing the over-
ompleteness, oneobserves the emergen
e of di�erent 
lasses of �lters, su
h as di�erent positionsand edges at �rst and then a similar edge with di�erent phases. Exploring theresults for di�erent dimensions of the di
tionary may give an evaluation of theoptimal 
omplexity of the LGM to des
ribe imagelets in terms of a trade-o� be-tween a

ura
y and generality (see Annex. 5.3). Pushing this experiment to theextreme (that is when the over-
ompleteness equals the size of the di
tionary ofsignals), one would get a di
tionary where every single signal from the databasewould be represented, the so-
alled grand-mother neurons. However, the ar
hi-te
ture of the 
onne
tions between 
orti
al areas suggests that information isdistributed, that this distribution is organized a

ording to a hierar
hi
al butalso re
ursive ar
hite
ture and that an important feature is the generalization ofthe representation a

ording to noise or 
ommon transformations (for an imagea translation, a di�erent non-uniform lighting, an o

lusion,...). This 
alls forthe extension of this kind of approa
h to a more integrated multi-s
ale approa
hwere events 
ould be a more general bit of information, from a synapti
 quanta,a spike (su
h as studied here), a burst in a 
orti
al 
olumn or an a
tivation inan area. 24
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t FP6-015879, "FACETS".5 Supplementary material5.1 Annex: Computational implementationThe whole 
olle
tion of simulation s
ripts were written with the intention of 
on-trolling the 
onvergen
e of the algorithms and the relative e�e
t of the di�erentparameters. All s
ripts to reprodu
e the �gures and supplementary material areavailable upon request on the author's website (see http://in
m.
nrs-mrs.fr/LaurentPerrinet/SparseHebbianLearning)Version 1.5 and experiment 20080129T193338was used for this paper, and other�gures regarding 
ontrol experiments may be found there (in parti
ular, all �g-ures ex
ept Fig. 1 were produ
ed dire
tly by the s
ripts without any editing).The original parameters of SparseNet were used for the CGF algorithm.Table 1: Parameters used in the simulationss
ript revision mp-sparsenet-1.5number of SVN's release 603dimension of imagelets (CGF & SSC) 256dimension of di
tionary (CGF & SSC) 324number of learning steps (CGF & SSC) 32001learning rate (CGF) 1learning rate (SSC) 0.1bat
h size (CGF & SSC) 100noise varian
e (CGF) 0.017noise varian
e (SSC) 0.008homeostasis' learning rate (SSC) 0.001homeostasis' learning rate (CGF) 0.0025homeostasis smoothing rate (CGF) α 0.02desired varian
e (CGF) V AR −GOAL 0.1prior steepness (CGF) beta 0.2prior s
aling (CGF) sigma 0.1toleran
e (CGF) tol 0.00315.2 Annex: Releasing the 
onstraint of symmetry of �ltersTo 
ompare our algorithm with SparseNet, we similarly assumed that in thedi
tionary, �lters were symmetri
. In fa
t, inspired by biology, re
eptive �eldsoften 
oexist with opposite polarities (the so-
alled ON/OFF symmetry). Thisimplied a 
onstraint in the generative model that when looking for a mat
h,25
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Figure 5: Control of the statisti
s of the inputs. (Left) One set of 324
16 × 16 imagelets drawn from the database provided with SparseNet . Weuse the same presentation as Fig. 2. In order to have 
omparable pat
hes, theimages had to be fairly homogeneous (and therefore textured) sin
e it happenedto draw a pat
h from a �at area (su
h as the sky) in whi
h 
ase the signal waspoor and the 
onvergen
e of the learning was slower. (Right) We show here a
16× 16 matrix of 16× 16 
orrelation values representing the 
ovarian
e matrixof the set of images. This shows in every box the luminan
e's 
ross-
orrelationbetween 2 points: it is low (gray) 
ompared to auto-
orrelation (white) whenin
reasing the distan
e between both points to more than one pixel, validat-ing the whitening hypothesis for the image's prepro
essing. See s
ript experi-ment_stats_images.m to reprodu
e the �gure.
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Figure 6: Solution with non-negative 
oe�
ients. When releasing thesymmetry 
onstraint, the learning algorithm 
onverged to a similar set of �lters.However, the 
onvergen
e was qui
ker and proved to be of higher e�
ien
y whenthe information for the poalrity (that is, one bit) was rather used to double thesize of the di
tionary (e�
ien
y measure not shown here). This suggested thatthe assumption of symmetry of the sign of the 
oe�
ients is not stri
tly true forthe LGM and that a non-negative representation is more e�
ient. See s
riptexperiment_symmetri
.m to reprodu
e the �gure.the 
orrelation 
ould be positive or negative and therefore that the best mat
hshould be 
hosen as the greatest absolute value in Eq. 9. If we rather 
hoose adi
tionary of double the size and that we 
hoose only the greatest values (thatis not applying the absolute operator) we will obtain a system were ea
h spikewould have the same informational 
ost (the additional bit repla
ing the polaritybit from the symmetri
 
ase). We therefore look similarly to the non-negativerepresentation without any further modi�
ation of the algorithm. The solutionto the problem when releasing the symmetry 
onstraint looked qualitativelysimilar but proved to be of slightly higher e�
ien
y (see Fig. 6).5.3 Annex: Over-
ompletenessWe analyzed the e�e
t of in
reasing the size of the di
tionary, that is of in
reas-ing the 
omplexity of the representation, on the qualitative re
eptive �elds mapsand on the e�
ien
y. When in
reasing the over-
ompleteness, one observes theemergen
e of di�erent 
lasses of �lters, su
h as di�erent positions and edgesat �rst and then a similar edge with di�erent phases (see Fig. 7). Exploringthe results for di�erent dimensions of the di
tionary gave an evaluation of theoptimal 
omplexity of the LGM to des
ribe imagelets in terms of a trade-o�between a

ura
y and generality for the dimension that we use in this study(not shown). 27



Figure 7: Solution with an in
reasing number of 
oe�
ients. Whenin
reasing the number of 
oe�
ients from 8 × 8 (
enter,bottom), 13 × 13(left,bottom), 21 × 21 (left, top) to 34 × 34 one sees that the 
omplexity ofthe features represented by the �lters progressively in
reases. However, only byusing the biggest map, 
ould one yield textured �lters and �end-stopping� 
ells.This 
ould be a result of a la
k of 
onvergen
e (we used the same number ofsteps for all experiments), but also the sign to a transition from representingedges and their di�erent transforms (apparently from the lower-dimension mapto the more 
omplex position, s
ale, spatial frequen
y and phase). An interest-ing perspe
tive is to do a 
luster analysis on the distribution of the parametersof the best �t Gabors to observe bifur
ations as a fun
tion of the 
omplexity.See s
ript experiment_stability_o
.m to reprodu
e the �gure.
28



5.4 Annex: Robustness to a perturbationAs an adaptive algorithm, we 
he
ked that the system returned to a similarma
ros
opi
 state after a perturbation. To illustrate that, we perturbed one�lter (by re-initializing it to a random �lter) and ran again the algorithm. The�rst e�e
t was that the 
orresponding gain fun
tion 
hanged sin
e the 
orrela-tion 
oe�
ients values dropped for that parti
ular neuron. As a 
onsequen
e,the homeostati
 
onstraint relatively �boosted� the 
orrelation values of thisneuron relative to the other neurons so that the 
hoi
e of 
hoosing any neu-ron was uniform. After a few steps, the �lter retrieved and edge-like shapewhi
h was often 
lose to the feature prior to the perturbation, sin
e this fea-ture was momentarily �absent� from the representation di
tionary. See s
riptexperiment_perturb.m to reprodu
e this experiment.5.5 Annex: Robustness of the methodsWe in
luded in our 
omputational framework the ability of exploring the evolu-tion of the e�
ien
y of one model when 
hanging one single parameter aroundthe operating point that was 
hosen over the experien
es (see table in An-nex. 5.1). This �perturbation analysis� allowed to tra
e if the 
hosen param-eters were giving lo
ally the best e�
ien
y so that the 
omparison of two al-gorithms was valid. It also allows to identify the parameters whi
h are themost relevant in the sense that small variations will indu
e big 
hanges of ef-�
ien
y. This was in parti
ular true for the SparseNet algorithm. It showedin parti
ular that SparseNet was more sensitive to parameters (in
ludinglearning rate, homeostasis parameter) than our solution and that the param-eters for tuning the parametri
 model (in parti
ular the parameters β and σ)were of parti
ular importan
e. See s
ripts experiment_stability_eta.m, exper-iment_stability_homeo.m and experiment_stability_
gf.m to reprodu
e theexperiments.Referen
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