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Optimal signal representation in neural spiking
odes: A model for the formation of simple 
ellre
eptive �elds.Laurent U. PerrinetInstitut de Neuros
ien
es Cognitives de la Méditerranée (INCM)CNRS / University of Proven
e13402 Marseille Cedex 20, Fran
ee-mail: Laurent.Perrinet�in
m.
nrs-mrs.frFebruary 6, 2008Abstra
tTaking advantage of the 
onstraints of spiking representations, wederive an unsupervised learning algorithm solving e�
iently the inverseproblem of pattern mat
hing and apply it to a model of the input to theprimary visual 
ortex. In fa
t, spikes 
arry temporal event-based infor-mation in bundles of parallel �bers and may be 
onsidered as all-or-nonebinary events. This property may be used to formulate the e�
ien
y of arepresentation problem as �nding the L0-norm sparsest representation, a�hard" NP-
omplete problem. This framework improves previous resultsbased on an Adaptive Mat
hing Pursuit s
heme by expli
itly implement-ing an homeostati
 
onstraint in the 
hoi
e fun
tion by a spiking gain
ontrol me
hanism in the neural population. For 
omparison purposes,we applied this s
heme to the learning of small images taken from naturalimages as in SparseNet and 
ompared the results and e�
ien
y of thislast algorithm with Mat
hing Pursuit and the proposed algorithm. Thisstudy provides a generi
 algorithm for learning independent 
omponentsin a set of inputs su
h as natural images suggesting that this Sparse SpikeCoding strategy may provide a generi
 
omputational module that helpus understanding the e�
ien
y of the Primary Visual Cortex.KeywordsNeural 
ode, spike-event 
omputation, 
orrelation-based inhibition, AdaptiveMat
hing Pursuit, Sparse-Hebbian Learning
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1 Introdu
tionThe neural ar
hite
ture on whi
h our 
ognitive abilities are based is a dy-nami
al, adaptive system whi
h evolves to provide optimal solutions in theintera
tions with the environment. In parti
ular, models for the formation ofsimple 
ell re
eptive �elds in the primary visual 
ortex (V1) have attra
ted alot of attention as a model of learning applied to vision. Based on the fun
-tional approa
h that the system should evolve to be e�
ient [Barlow, 2001;Ati
k, 1992℄, the most a

epted explanation for the formation of orientationsele
tive simple 
ells in V1 is that it optimizes the sparseness of the repre-sentation of images drawn from natural s
enes, that is from behaviorally rele-vant s
enes [Olshausen and Field, 1996℄. Similar approa
hes have been followedfor natural images [Lewi
ki and Sejnowski, 2000; Zibulevsky and Pearlmutter,2001; Perrinet, 2004a; Smith and Lewi
ki, 2006; Rehn and Sommer, 2007; Doi et al.,2007; Hamker and Wilts
hut, 2007℄ and sounds [Lewi
ki and Sejnowski, 2000;Smith and Lewi
ki, 2006; Hamker and Wilts
hut, 2007℄ that were based on solv-ing the inverse of a generative model of the signal. However, all of these solutionsrelied on spe
i�
 parameterizations and didn't expli
itly demonstrated how theiralgorithm 
ould be spe
i�
ally adapted to neural 
omputations. For instan
e,the 
oding was a
hieved by 
onjugate gradient [Olshausen and Field, 1996℄ ororthogonal mat
hing pursuit [Rehn and Sommer, 2007℄ but none of these meth-ods are known to be spe
i�
ally implemented in the 
ortex and they don'tspe
i�
ally take advantage of the nature and ar
hite
ture of the 
entral nervoussystem and that makes it di�erent from a traditional sequential 
omputer.In that dire
tion, a major aspe
t that seem to separate these models from theCNS is that most information between neurons is 
arried by spikes. Spikes (orA
tion Potentials) are simple pulses of the membrane potential whose shapeseems to 
arry few information and whi
h may travel robustly over long dis-tan
es on axons1. In the early visual system for instan
e, after presenting abrief visual stimulus a 
as
ade of me
hanisms will take pla
e after the ex
ita-tion of the retina's photore
eptors. A volley of spikes leaves the retina throughthe bundle of axons that forms the opti
 nerve to rea
h the lateral geni
ulatenu
lei (after approximately 25-30ms). There, a new pro
essing takes pla
e gen-erating a new volley of spikes toward the primary visual 
ortex that is rea
hedafter approx. 35ms [Bullier, 2001℄. The visual information that is �de
oded�there is often 
onsidered to be �en
oded� in the spikes' �ring frequen
y or bytheir relative laten
y of every �ber. As a 
onsequen
e, neural 
omputations areevent-based and dynami
al and information transfer is parallel while in 
om-puters 
omputations are sequential on non-interruptible. However, one mayeasily understand that for the information transdu
tion pro
ess to be e�
ient,the spike 
oding and de
oding pro
esses and the representation should be bothtuned a

ordingly. A goal of this work is to show how spiking me
hanisms 
anbe espe
ially adapted to represent visual information in a dynami
, parallel and1Spikes have a shape of around 1ms and are also present on dendrites sin
e their pres-en
e is linked to the dynami
al properties of the a
tive ion 
hannels on the neuron's mem-brane [Cessa
 and Samuelides, 2007℄. 2



event-based fashion.To a
hieve that agenda, we will �rst analyti
ally formulate the problem of e�-
ient spike 
oding and derive a measure atta
hed to the performan
e of infor-mation transmission in the neural assembly by introdu
ing the L0-norm. Basedon previous results [Perrinet et al., 2002℄, we will de�ne an e�
ient sparse spike
oding / de
oding s
heme using 
orrelation-based inhibition 
oupled with thespiking me
hanism. Taking advantage of a biologi
ally-inspired homeostati
spike gain 
ontrol to ensure homeostasis of the assembly, we will improve theperforman
e of the previously proposed algorithm and allow to derive a simplehebbian-type learning s
heme on the sparse representation. We will �nally 
om-pare the proposed algorithmwith standard methods: SparseNet [Olshausen and Field,1996℄ and Adaptive Mat
hing Pursuit [Perrinet et al., 2003℄. In parti
ular wewill fo
us on the robustness of this method thanks to di�erent measures of ef-�
ien
y. We will 
on
lude by 
omparing this method with previously proposeds
hemes and how this may be re
on
iled to improve our understanding of theneural 
ode by drawing the link between stru
ture (spikes in a distributed net-work) and fun
tion (e�
ient 
oding) and explore the signi�
ant parameters atwork in these me
hanisms.1.1 A generative model of signal synthesisIn low-level sensory areas, the goal of neural 
omputations is to build e�
ientintermediate representations to allow e�
ient de
ision making [Field, 1994;Barlow, 2001℄. A �good� representation of the world should map at best theinformation from the physi
al signals whi
h are relevant for the sensory areaunder study. Furthermore, it will be more e�
ient if it is easily transformablea

ording to usual transforms. In visual areas for instan
e, any representationof a s
ene should be easily transformed for any translation or rotation of thes
ene, sin
e these are 
ommon movements and that higher-level areas will needto take into a

ount this information. As a 
onsequen
e, it is easier to de�ne�rst a synthesis model of the world and its transformations and then to buildthe representation by inverting this model. This synthesis model (also 
alledthe forward model) may be built using statisti
al observations or with priorassumptions on the physi
s of the generation of the signal. A Linear GenerativeModel (LGM) [Olshausen and Field, 1998℄ is a generi
 
ase where the signalmay be thought as the linear 
ombination of independent 
auses. Inverting theforward model 
orresponds in the terminology of signal pro
essing to the 
odingpro
ess, sin
e it transforms the signal (for instan
e the observed image) into amore abstra
t representation as a 
ombination of 
omponents from the forwardmodel (for instan
e the edges the image is formed from). It may then be usedto further validate both the synthesis model and understand the 
ontent of thesignal but also the algorithm solving the inverse problem. In fa
t, by buildinglearning pro
esses whi
h optimize the overall e�
ien
y of the representations fora known 
oding algorithm, it is then expe
ted that the 
omparison of di�erentlearning strategies will help us understand the pro
esses underlying re
eptive�eld formation in the input layer of V1 (layer 4). In addition, some 
oding3



algorithms seem better than others and 
omparing their relative e�
ien
y inthe pro
ess may for instan
e explain the reasons why neural 
omputations use aparallel event-based ar
hite
ture or the parti
ular role of the lateral intera
tionsin the 
orti
al area.Formally, to de�ne the LGM, we will use a �di
tionary� of N sour
es as a set ofimages represented by the matrix A = {Aj}1≤j≤N . Every image is then de�nedby Aj = {Aij}1≤i≤M over the set of sampling positions i (that is the pixels ina simple image pro
essing framework). This di
tionary is possibly mu
h largerthan the dimension of the input spa
e (that is when N >> M); the di
tionaryis then said to be over-
omplete. Knowing A and the 
orresponding sour
es
s = {sj}1≤j≤N , the signal x = {xi}1≤i≤M is de�ned as

x =
∑

1≤j≤N
sj .Aj + n = A.s + n (1)where n is a de
orrelated gaussian additive noise of varian
e σ2

n. This noisemodel is a
hieved thanks to the prepro
essing (whi
h 
ould be a
hieved in gen-eral by Prin
ipal Component Analysis) without loss of generality sin
e the pro-
essing is invertible [Perrinet, 2004b℄ (see Fig. 5). The LGM is well adaptedto natural s
enes be
ause transparen
y laws are linear for luminan
es and thusthe LGM des
ribes well the synthesis in a lo
al neighborhood of any naturalimage. The goal of any 
oding algorithm for the inverse problem is to �nd foran observed x the best set s of sour
es that generated the signal. Then, the goalof a learning algorithm is to adapt at best in the long term to the parameters ofthe LGM, that is to the matrix A and the statisti
s of s. We will see in Se
. 1.3how we may quantify the global e�
ien
y of the 
oding, but let's �rst de�nehow one may evaluate the likelihood of any sour
e knowing an input x.In fa
t, having de�ned the forward model, we may now be interested in 
omput-ing how well a parti
ular instan
e of the signal (here an image) mat
hes withthe model. From [Perrinet, 2004b, 2007℄, we know that for a given signal x, thelog-probability log P ({sj}|x,A) 
orresponding to a single sour
e sj .Aj knowingit is a realization of the LGM as it is de�ned in Eq. 1 (and for whi
h we assumeno prior knowledge) is maximal for the proje
tion 
oe�
ient de�ned by:
s∗j =< x,

Aj

‖Aj‖2
>

def
=

∑

1≤i≤M x(i).Aj(i)
∑

1≤i≤M Aj(i)2
(2)where def

= means "equal by de�nition". The log-likelihood log P ({sj}|x,A) isthen maximum for the sour
e j∗ with maximal 
orrelation 
oe�
ient j∗ =ArgMaxjρj with
ρj =<

x

‖x‖
,

Aj

‖Aj‖
>

def
=

∑

1≤i≤M x(i).Aj(i)
√

∑

1≤i≤M Aj(i)2.
√

∑

1≤i≤M x(i)2
(3)It should be noted that ρj is the M th-dimensional 
osinus and that its absolutevalue is therefore bounded by 1. The value of Ar
Cos(ρj) would therefore give4



the angle of x with the pattern A and in parti
ular, the angle would be equal(modulo 2π) to zero if and only if ρj = 1 (full 
orrelation), π if and only if
ρj = −1 (full anti-
orrelation) and ±π/2 if ρj = 0 (both ve
tors are perpendi
-ular, there is no 
orrelation). Also, it is independent to the norm of the �ltersand we assume without loss of generality in the rest that these are normalizedto unity.In 
anoni
al models of neural modeling this 
orresponds to the linear dendriti
integration over the re
eptive �eld, produ
ing for a positive 
orrelation a driving
urrent leading to the hyper-polarization of the 
ell and possibly to spiking. Thisjusti�es the 
omputation of the 
orrelation in the per
eptron model [Rosenblatt,1960℄ as it provides a dire
t measure of the log-probability under the assump-tions that we used (the LGM with Gaussian noise). Starting from this basi
me
hanism, one 
ould 
ompute for every signal a set of a
tivities 
orrespondingto how well the neurons 
orresponded to patterns in the image prede�ned in theweights matri
es. However, we should now explain how this information maybe 
oded and de
oded by a set of spiking neurons.1.2 Spike 
oding and de
oding of a transient signal in apopulation of neuronsNeurons are intrinsi
ally dynami
al system and we will take advantage of thisproperty to transform a signal into a volley of spikes. For the large 
lass ofIntegrate-and-Fire neurons whi
h is relevant for pyramidal neurons, we may usethe fa
t that the larger the driving ex
itation, the larger the �ring frequen
y anddually the shorter the laten
y of spiking [Perrinet et al., 2004℄. More pre
isely,let's 
onsider a population of N pyramidal neurons as an information 
hannelfor whi
h we wish to 
ode and then de
ode a ve
tor s = {sj}1≤j≤N only bytransmitting a spiking pattern. Classi
ally, one would map ea
h value to an ex-
itation value whi
h 
orresponds through a monotonous in
reasing fun
tion to aspiking laten
y or frequen
y, whi
h 
an then be de
oded by the inverse fun
tion.However, when we 
onsider the set of di�erent ex
itation ve
tors globally, if theirprobability distribution fun
tions are di�erent, then the average a
tivity of theneurons will be systemati
ally di�erent. In the 
ompetitive network formed withthe pyramidal 
ells, this is in disagreement with the fa
t that spikes are similarand should therefore 
arry similar information or more generally that they havesimilar metabolism. Globally, neurons in one assembly build up a distributedsystem and should therefore be optimally tuned to uniformly distribute theirmetaboli
 usage.A standard method to a
hieve this homeostasis is to map the input ve
tor
s trough a point non-linearity2 whi
h provides a uniform probability for theoutput [Ati
k, 1992℄. This method is similar to histogram equalization in im-age pro
essing and provides an output with maximum entropy for a boundedoutput: it therefore optimizes the 
oding e�
ien
y of the representation interms of 
ompression [van Hateren, 1993℄ or dually the minimization of intrin-2That is a non-linearity applied independently to every single element of the ve
tor.5



si
 noise [Srinivasan et al., 1982℄. It may be esily derived from the probability
PSj

(sj) of a variable sj (bounded in absolute value by 1) by 
hoosing the non-linearity as the 
umulative fun
tion
fj(sj) =

∫ sj

−1

dPSj
(s) (4)where the symbol dP (x) = PX(x)dx will here denote in general the probabilitydistribution fun
tion (pdf) for the random variable X . This pro
ess has beenobserved in a variety of spe
ies and is for instan
e perfe
tly illustrated in thesalamander [Laughlin, 1981℄, see Fig. 1. It may evolve dynami
ally to slowlyadapt to varying 
hanges in luminan
es, su
h as when the light diminishes atdawn but also to some more elaborated s
heme within a map [Hosoya et al.,2005℄. In parti
ular, sin
e the pdf of all zj = fj(sj) is uniform and that sour
esare independent, the pdf of the ve
tor is uniform. Knowing the di�erent spikegain 
ontrol fun
tions, every ve
tor s will generate dynami
ally a list of spikes

{j(1), j(2), ...} (with 
orresponding laten
ies) at the sour
e so that the trans-formed ex
itation zj (to be transformed in a �ring frequen
y or in a �ringlaten
y) may be 
onsidered as a random ve
tor drawn from an uniform distri-bution in [0, 1].We 
oded any signal in a spike volley, but how 
an this spike list be �de
oded�,espe
ially if it is 
ondu
ted over some distan
e and therefore with an additionallaten
y? In the 
ase of transient signals, sin
e we 
oded the ve
tor s usingthe homeostati
 
onstraint from Eq. 4, we may retrieve the analog values fromthe spike list sorted in time. In fa
t, we know in parti
ular that for the �rstspike to arrive at the re
eiver end, knowing that it 
orresponds to �ber j(1),has been produ
ed by a value in the highest quantile of PSj(1)
on the emittingside. We may therefore de
ode the 
orresponding value with the best estimate

ŝj(1) = f−1
j(1)(1). This is also true for the following spikes and if we write as

zj(k) = k
N

the relative rank of the spike (that is neuron j(k) �red at rank k),we 
an re
onstru
t the 
orresponding value as
ŝj(k) = f−1

j(k)(1− zj(k)) (5)This 
orresponds to a generalized rank 
oding s
heme [Perrinet, 1999; Perrinet et al.,2001℄ (see Fig. 1, Top Right). It has the parti
ular advantage of being invariantto 
ontrast and up to a �xed delay to the variability due to the noise. However,this 
ode fo
uses on the parti
ular sequen
e of neurons that were 
hosen andloses the parti
ular information that may be 
oded in the time intervals betweentwo su

essive spikes in the assembly. This 
ode also 
ompletly ignores all infor-mation that is not in the �rst spike of every �ber to fo
us on the transient aspe
tof the signal. A model a

ounting for the laten
y would 
orre
t this to the 
ost ofintrodu
ing new parameters but it seems that this information would have a lowimpa
t relative to the total information [Panzeri et al., 1999℄. More generally,one 
ould use di�erent mappings for the transformation of the z value into thea spike volley whi
h 
an be more adapted to 
ontinuous �ows, but this s
heme
orresponds to an extreme 
ase (a transient signal) whi
h is useful to stress on6
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Figure 1: Spike 
oding using spike gain 
ontrol. We illustrate the home-ostati
 me
hanism by showing the 
ase with two neurons with di�erent inputstatisti
s. This is de�ned (Bottom Left) by the probability distribution fun
tion(pdf) as a fun
tion of the value to represent, indi
ating here that one neuronhas a narrow pdf 
entered on a low value while the other has a higher averagebut with a bigger varian
e. By using the 
umulative fun
tion as a point non-linearity (Top Left), one ensures a transform where the probability of zj = fj(sj)(Eq. 4) is uniform. In parti
ular, the probability of 
hoosing any ve
tor z is uni-form. For instan
e, a parti
ular value s∗ will 
orrespond to di�erent z values.Inversely, after 
hoosing a parti
ular set of values, one may estimate the valuefrom for instan
e the rank of the value in the ve
tor (Top Right) sin
e the rankprovides an estimate of the quantile in the pdf sin
e the pdf of z is uniform.Using the inverse of fj one may retrieve the value in feature spa
e. For instan
eat a given rank (dotted line), the value will be di�erent for both neurons sin
etheir pdf are di�erent. Overall, this framework gives a simple 
oding / de
odingme
hanism for transient signals in a set s by (Bottom Right) transforming thevalues to 
ode in a uniformly distributed set of values whi
h are 
oded by a vol-ley of spikes. This volley of spikes may then de
oded (or dire
tly transformed)thanks to the relative timing of the spikes using Eq. 5: it thus builds a robustinformation 
hannel where information is solely 
arried by spikes.
7



the dynami
al part of the 
oding [van Rullen and Thorpe, 2001℄ and is mathe-mati
ally more tra
table. In parti
ular, one may show that the 
oding error isproportional to the variability of the sorted 
oe�
ients [Perrinet et al., 2004℄,the rest of the information being the information 
oded in the time intervalsbetween two su

essive spikes. Thus, the e�
ien
y of information transmissionwill dire
tly depend on the validity of the hypothesis of independen
e of the
hoi
e of 
omponents and therefore on the statisti
al model build by the LGM.It should be also noted that no expli
it re
onstru
tion is ne
essary (in the math-emati
al term) on the re
eiver side as we do here, sin
e the goal of the re
eiver
ould only be to manipulate information on for instan
e some subset on thespike list (that is on some re
eptive �eld 
overing a subpart of the population).In parti
ular one may imagine that we may add some arbitrary global point lin-earity to the z values in order to threshold low values or to quantize values (forinstan
e set all values to 1 only for the �rst 10% of the spikes). However, thisfull re
onstru
tion s
heme is a general framework for information transmission,and we may then imagine that if for instan
e we pool information over a limitedre
eptive �eld, the information needed (the ranks in the sub-spikelist) will stillbe available to the re
eiver dire
tly without having to 
ompute the full set (infa
t, sin
e the pdf of z is uniform, the pdf of a subset of 
omponents of z isalso uniform). By this simple 
onsiderations, we devised a simple spike 
odingalgorithm to transmit information robustly with events.1.3 De�nition of the e�
ien
y of Spike 
odingNow that we de�ned the spike 
oding algorithm, we should be able to derivea generi
 
ost fun
tion that will allow us to quantify the e�
ien
y of di�erent
oding algorithms but also to derive a learning algorithm for the spike 
odingalgorithm. For every signal x, one may state as in O

am's razor that giventwo solutions of similar quality, the best is the one with lowest representational
omplexity. This 
omplexity may be expressed as the Kolmogorov-Chaitin 
om-plexity and one 
an imagine that in the 
ontext of dynami
al 
oding by spikes,there will be a dynami
al 
ompromise between the pre
ision and the 
omplexityof the representation. This 
an be formalized in a probablilisti
 framework byusing the bound given by Shannon's 
oding theorem. It is the average Shannon'sinformation of solutions ŝ (the 
oding sequen
es) given the model's parameters(that is, using the same notation as in Se
. 1.1, C = E(− log P (ŝ|x,A)), where
E(.) denotes averaging over multiple images). For one 
oding sequen
e, this
ost may thus be written as the sum of its likelihood probability knowing theset of sour
es added to the des
ription length of the set of sour
es:

log P (ŝ|x,A) = − log Z + (−
1

2.σ2
n

‖x−
∑

j

ŝj .Aj‖
2) + log P (ŝ|A) (6)where Z is the partition fun
tion. Note that this 
oding may be dynami
aland that the 
oding sequen
e may 
omputed progressively. The 
ost will bemeasured in bits if the logarithm is of base 2 (as will be assumed without loss8



of generality in the sequel). For any 
oding ŝ, the �rst term 
orresponds tothe information from the image whi
h was not retrieved by the 
oding (re
on-stru
tion 
ost) and that 
an be en
oded at best using entropi
 
oding pixel bypixel. The se
ond term is the representation 
ost: it quanti�es the e�
ien
yof the representation as the des
ription length [Rissanen, 1978℄ 
omputed usingentropi
 
oding of the 
oe�
ients and is equal to the entropi
 
oding of ŝ know-ing its probability distribution fun
tion. We will assume independen
e of the
oe�
ients of the LGM and therefore log P (s,A) =
∑

j log P (sj ,A). Moreover,based on a parameterization of the 
oe�
ients' prior, this yields the sparseness
ost de�ned in Olshausen and Field [1998℄:
C1 =

1

2.σ2
n

‖x−
∑

j

ŝj .Aj‖
2 + β

∑

j

log(1−
ŝ
2

σ2
) (7)where β is the steepness of the prior and σ is the prior s
aling (see Figure 13.2from [Olshausen, 2002℄). It is somewhat related to the 
lassi
al 
ost with the

L1-norm but represents a more kurtoti
 probability distribution fun
tion for theprior than the 
orresponding lapla
ian prior. This liberty in the de�nition of thesparseness leads to a wide variety of proposed solutions to sparse 
oding [Pe
e,2002℄ su
h as optimization [Olshausen and Field, 1998; Lee et al., 2007℄, nonnegative matrix fa
torization [Lee and Seung, 1999; Ranzato et al., 2007℄ or byusing Mat
hing Pursuit [Smith and Lewi
ki, 2006; Rehn and Sommer, 2007℄.However, this parameterization is not known a priori and must be tuned a
-
ordingly to �t the model to the statisti
s of natural images and be furthervalidated.This is the reason why we did build a non-parametri
 measure by taking ad-vantage of the fa
t that thanks to the homeostasis, the probability of �ring ofevery �ber is uniform a
ross the population. In fa
t, spikes are a priori equallylikely to be generated on any of the N neurons (see Se
. 1.2), so that the prob-ability of the origin of any new spike is simply 1
N
. Therefore, di�erently tothe SparseNet algorithm, the model for the statisti
s of the LGM assumesthat spikes are independent all-or-none events: they 
arry a binary representa-tion [Deweese and Zador, 2003℄. This expli
itly de�nes the information 
ontentof a spike volley as an ordered list of spikes where the whole information is
oded in the �addresses� of the di�erent spikes in the list. Using a di
tionary of

N neurons, the 
ost per spike may then be de�ned as log2(N) bits per spike, sothat we propose for the 
oding 
ost of a spike list :
C0 =

1

2σ2
n

.‖x−
∑

j

ŝj .Aj‖
2 + log2(N).‖ŝ‖0 (8)where ‖ŝ‖0 is the length of the retrieved solution (or also the L0 norm). Note�rst that for any spike 
oding solution, this 
ost fun
tion is dynami
 sin
e thenumber of spikes may in
rease in time. Note also that it links e�
ien
y tosparseness, as with information 
riterions su
h as the AIC [Akaike, 1974℄. Italso expli
tely rates the e
onomy of 
onsumed metaboli
 ressour
es as is used9



in [Rehn and Sommer, 2007℄, but we retain this only as a 
onsequen
e of thealgorithm. More generally, su
h a sparse representation is the best solutionto allow a good dis
riminability between di�erent patterns. For instan
e, as amodel of the input layer of the primary visual 
ortex, optimizing the 
odinga

ording to Eq. 8 will provide the best representation to segregate di�erentorientations for instan
e by representing the ridge of edges in images instead ofrepresenting the linear 
orrelation as de�ned by Eq. 3. However, resolving the
oding problem with the L0 norm (getting the best ŝ in the sense of Eq. 8 know-ing x, that is ArgMins(C0(x, s)) ) is NP-
omplete with respe
t to the dimension
N of the di
tionary [Mallat, 1998, p. 409℄. We will present hare a solution tothis problem inspired by the ar
hite
ture and dynami
s of the primary visual
ortex.2 Method : Sparse Spike Hebbian LearningIn fa
t, when 
hoosing one 
omponent over an other (for instan
e the one thatmaximizes Eq. 3), any 
hoi
e may modify the 
hoi
e of the other 
omponents,unless the di
tionary is orthogonal. This leads to a 
ombinatorial explosion whenthe di
tionary be
omes over-
omplete su
h as when modeling the primary visual
ortex. To solve this NP-
omplete problem, one may implement an approximatesolution designed after the ri
hly laterally 
onne
ted ar
hite
ture of 
orti
allayers by passing in parallel information between neurons that will take into
onsideration their 
ross-
orrelations. The Sparse Spike Coding (SSC) algorithmpresented here is inspired by di�erent 
oding strategies [Perrinet et al., 2002;Perrinet, 2004b, 2007℄ and that gave rise here to a 
ompletely novel spike 
odingalgorithm thanks to the formalization of the e�
ien
y (see Eq. 8).2.1 Sparse Spike Coding: Adaptive Mat
hing Pursuit withegalitarian homeostasisLet's de�ne Weighted Mat
hing Pursuit (WMP) as the greedy approa
h appliedon the e�
ien
y 
riterion de�ned in Eq. 8. Like Mat
hing Pursuit, it is basedon two repetitive steps. First, given the signal x, we are sear
hing for the singlesour
e s∗j∗ .Aj∗ that 
orresponds to the maximum a posteriori (MAP) realizationfor x (see Eq. 3) transformed by a point non-linearity fj . It is de�ned by:

j∗ = ArgMaxj [fj(ρj)] (9)with < ., . > denoting the s
alar produ
t and fj(.) is some gain fun
tion thatwe will des
ribe below and whi
h may be set initially to stri
tly in
reasingfun
tions. In a se
ond step, the information is fed-ba
k to 
orrelated sour
esthrough :
x← x− s∗j∗ .Aj∗ (10)where s∗j∗ is the s
alar proje
tion < x,Aj∗ > (see Eq. 2). Equivalently, fromthe linearity of the s
alar produ
t, we may propagate laterally:

< x,Aj >←< x,Aj > − < x,Aj∗ >< Aj∗ ,Aj > (11)10



that is from Eq. 3:
ρj ← ρj − ρj∗ < Aj∗ ,Aj > (12)For any set of monotonously in
reasing fun
tions, WMP shares many proper-ties with MP, su
h as the monotonous de
rease of the error or the exponential
onvergen
e of the 
oding. The algorithm is then iterated with Eq. 9 until somestopping 
riteria is rea
hed.Sparse Spike Coding (SSC) is then de�ned as the spike 
oding/de
oding algo-rithm whi
h uses WMP as the 
oder and where the point non-linearities arede�ned by Eq. 4. This s
heme extends the Mat
hing Pursuit (MP) algorithmby linking it to a statisti
al model whi
h tunes optimally the mat
hing step (inthe sense that all 
hoi
es are statisti
ally equally probable) thanks to the adap-tive point linearity. In fa
t, as stated before, thanks to the uniform distributionof the 
hoi
e of a 
omponent, one maximizes the entropy of every mat
h andtherefore of the 
omputational power of the ArgMax operator. Think a 
on-trario to a totally unbalan
ed network where the mat
h will be always a givenneuron: the spikes are totally predi
table and the information 
arried by thespike list then drops to zero. In pra
ti
e, the fj fun
tions are initialized for allneurons to the identity fun
tion (that is to a MP algorithm) and then evaluatedusing an online sto
hasti
 algorithm with a �learning� parameter 
orrespondingto a smooth average whi
h e�e
t was 
ontrolled (see Fig. 4 and Annex. 5.4). Asa matter of fa
t, this algorithm is 
ir
ular sin
e the 
hoi
e of s is non-linear anddepends on the 
hoi
e of fj. However, thanks to the exponential 
onvergen
eof MP, for any set of 
omponents, the fj will evolve to the 
orre
t non-linearfun
tions de�ned by Eq. 4.2.2 Sparse Hebbian Learning in SSCOn a longer time s
ale, the e�
ien
y of the system may be optimized by slowlyadapting the di
tionary as in SparseNet thanks to the sparse solution given bythe 
oding algorithm. We may implement this for every image at every 
odingstep sin
e we have for ea
h sele
ted spike an evaluation of the log-likelihoodby the distan
e of the residual image to the sele
ted �lter, that is to ‖x −

s∗j∗ .Aj∗‖
2 (whi
h is equal to ρj up to a 
onstant), the rest of the signal beingregarded as a perturbation whi
h will 
an
el out by the averaging. At every stepafter Eq. 9 and using the gradient des
ent approa
h as in [Olshausen and Field,1998℄, we similarly infer that we may slowly modify the winning weight ve
tor
orresponding to the winning �lter Aj∗ by taking it 
loser to x

s∗
j∗

:
∂C

∂Aj∗
=

∂

∂Aj∗

1

2σ2
n

.‖x− ŝ∗j∗ .Aj∗‖
2 (13)

=
1

2σ2
n

.ŝ∗j∗(x− ŝ∗j∗ .Aj∗) (14)that is noting s∗ = ŝ∗j∗ :
Aj∗ ← Aj∗ + ηs∗(x − s∗.Aj∗) (15)11



where η is the learning rate, whi
h is inversely proportional to the time s
ale ofthe features being learned. It is an �hebbian� rule [Hebb, 1949℄ in the 
lassi
alsense sin
e it will enhan
e the weight of neurons of 
orrelated neurons. How-ever, the novelty of this formulation is to apply this formulation to the sparserepresentation. Similarly to Eq. 17 in [Olshausen and Field, 1998℄ or to Eq. 2in [Smith and Lewi
ki, 2006℄ the relation is linear. A more rigorous mathemat-i
al approa
h were to 
onsider a rotation of Aj toward x using a Ja
obi Matrixrotation so that all 
omponent ve
tors stay on the unit sphere. In pra
ti
e,Eq. 15 for small learning rates η followed by a normalization is a good approxi-mation of this high-dimensional (linear) transform.Without homeostasis, the algorithm (as well as SparseNet) is unstable. Infa
t, sin
e we start with random �lters, it is is more likely that any salientfeature was sele
ted at �rst and will modify the �rst winning �lter. Then thesame neuron will be sele
ted with a higher probability in subsequent learningsteps, 
ausing a non uniformity in the balan
e of the learning a
ross neurons.Whereas SparseNet uses the norm of the �lters to 
ontrol the varian
e of the
oe�
ients a
ross neurons, the SSC mat
hing 
riteria (see Eq. 9) is independentto the norm of the �lters. In fa
t, thanks to the homeostati
 regulation (whi
hhas a similar time-s
ale than the learning) the probability of 
hoosing any neu-ron remains uniform and ensures the 
onvergen
e of the learning algorithm (seeAnnex. 5.3). The homeostasis will therefore optimize the balan
e between theneurons, the homeostasis 
onstraint assuring that the internal representationmay always be 
onsidered as a uniformly distributed random ve
tor.2.3 Sparse Spike Hebbian Learning (SSHL)In summary, the solution of the 
oding problem is given by the following nestedloops:1. Initialize the 
omponents A to random values on the unit N -dimensionalsphere and set the point non-linear gain fun
tion to unity (fj(s) = s forall j),2. draw a signal x from the database,3. 
ompute ρj for all j using Eq. 3,4. until ‖x‖2 is below a threshold do a sparse spike 
oding (SSC):(a) sele
t the best mat
h j∗ with Eq. 9,(b) modify 
orrelated information by updating ρj for all j using Eq. 12,(
) slowly modify Aj∗ using Eq. 15,5. then update the fj for all j and draw a new image (step 2)When 
onvergen
e is a
hieved, one 
ould simply make a 
oding by using steps2, 3 and 4 and optionally for the pure spike 
oding evaluate the 
oe�
ient usingEq. 5 in step 4-b. In fa
t, sin
e the greedy algorithm may adapt to quantizationerrors [Perrinet et al., 2004, Fig.10℄. The de
oding of a spike list is then simply:12



Figure 2: Results of the proposed SSHL s
heme 
ompared toSparseNet. Starting with random �lters, we 
ompare here the results of thelearning s
heme with 324 �lters at 
onvergen
e (20000 steps) using (Left) the
lassi
al 
onjugate gradient fun
tion method as is used in [Olshausen and Field,1998℄ with (Right) the Sparse Spike Coding method. Filters of the same size asthe imagelets (16×16) are presented in a matrix (separated with a bla
k border).Note that their position in the matrix is as in ICA arbitrary (invariant up toany permutation). Results repli
ate the original results of [Olshausen and Field,1998℄ and are similar for both methods: both di
tionary 
onsist of gabor-like �l-ters whi
h are similar to the re
eptive �elds of simple 
ells in the primary visual
ortex. Edges appear in these 
onditions to be the independent 
omponents ofnatural images. However, the distribution of the quality of the edges (in parti
u-lar their mean frequen
y, length, width) appears to be di�erent and the questionremains as how we may 
ompare the two resulting systems quantitatively?1. Initialize x̂ to a zero image; the rank is zero,2. while we have spikes do :(a) retrieve the value ŝ of the 
oe�
ient using Eq. 5,(b) add ŝ.Aj to x̂,(
) in
rement the rank,3 Results on natural images3.1 Comparison of produ
ed re
eptive �eld maps withSparseNetWe 
ompared this novel Sparse Spike Hebbian Learning algorithm with theSparseNet algorithm. In fa
t, this algorithm as other similar s
hemes mainly13



di�ers by the 
oding method used to obtain the sparse representation. Inparti
ular, we fo
used herein in the validation and quantitative 
omparisonof both algorithms in terms of e�
ien
y on the task at hand that we de-�ned3. We used a similar 
ontext and ar
hite
ture as the experiments des
ribedin [Olshausen and Field, 1998℄ and used in parti
ular the same database of in-puts as the SparseNet algorithm. Similarly to the study by Olshausen and Field[1998℄, we 
hose here to restri
t ourselves to study the sele
tion of optimal �lterson imagelets (that is small pat
hes from natural images). In parti
ular, theseimages are stati
, grays
ale and �ltered a

ording to similar parameters to allowa one-to-one 
omparison of the di�erent algorithms.Here, we show the results for 16 × 16 pat
hes (so that M = 256) from thewhitened images and we 
hose to learn N = 324 �lters. Results show theemergen
e of edge-like �lters (see Fig. 2) for a wide range of parameters (seeAnnex. 5.4 for an analysis of the robustness of the methods to variations ofthe parameters). Studying the evolution of one single �lter during the learningshows that it �rsts represent any salient feature (su
h as a 
olle
tion of sharpedges) and that if it 
ontains multiple edges only the most salient edge remainslater in the learning. This is due to the 
ompetition between �lters, the algo-rithm ensuring that independent features should not be mixed sin
e this willresult in a larger L0-norm. When looking at very long learning times, the solu-tion is not �xed (for both algorithms) and edges may smoothly drift from oneorientation to another while the 
ost still remains stable. This is due to thefa
t that there is no 
onstraint su
h as topologi
al links between �lters and thatthey may be only be understood as a whole, so that if for instan
e two �ltersare swapped, the e�
ien
y stays the same.However, it is not 
lear by the sole shape of the �lters alone whi
h solution ismost e�
ient and that rather than the shape of the 
omponents individually,it is the distribution of the assembly of 
omponents that will yield di�erente�
ien
ies. Su
h an analysis was performed with a qualitative analysis of the�lters' shape, by �tting them with Gabor �lters [Lewi
ki and Sejnowski, 2000℄.A re
ent study 
ompares the distribution of the parameters of the Gabor �l-ters with neurophysiologi
al experiments [Rehn and Sommer, 2007℄. They didindeed show that their learning s
heme, whi
h is also based on a Mat
hing pur-suit algorithm, did better mat
h some parameters of Gabor �lters over the setof �lter observed in the ma
aque's primary visual 
ortex. However, if this sim-ilarity is 
ertainly ne
essary, it is not su�
ient to understand the e�e
t of ea
hparameter and more generally to re
eptive �eld formation. We will rather tryto evaluate quantitatively the relative e�
ien
y of the di�erent learning s
hemesto extra
t what aspe
t is the most relevant.3.2 E�
ien
y 
ompared to SparseNetTo address this question, we 
ompared the quality of both methods by 
om-puting the mean e�
ien
y of the 
oding as the learning 
onverged. Using 5.1043See Annex. 5.1 for the table of parameters, details of the experimental setup and to a linkto reprodu
e the results. 14
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Figure 3: E�
ien
y of the proposed SHL s
heme 
ompared toSparseNet. We evaluated the quality of the SHL algorithm with two di�erent
oding strategies by 
omparing the 
oding e�
ien
y of the sparse spike 
oding('ss
') method with the 
lassi
al 
onjugate gradient fun
tion ('
gf') method asis used in [Olshausen and Field, 1998℄ for the 
oding of a set of 5000 imagepat
hes drawn from a database of natural images. We plot (Left) the distri-bution of both methods before and after the 
onvergen
e of the learning phase(see Fig. 2) whi
h show that and initialization, the distribution os more gaussian(
urves (
g-init and ss
-init) while they get more kurtoti
 (with kurtosis valuesof respe
tively 20 and 60) illustrating the sparseness of the 
oe�
ients. We alsodraw (Right) the mean �nal residual error (L2 norm) as a fun
tion of the relativenumber of a
tive (or non-zero) 
oe�
ients (that is the normalized L0 norm andthe 
oding step for SSC) and whi
h provides an estimate of the mean 
odinge�
ien
y for the image pat
hes. Best results are those giving a lower error fora given sparsity or a lower sparseness (better 
ompression) for the same error.O

am's razor translates in this �gure into the fa
t for a given L2 norm, the L0norm is lower (an horizontal line would 
ross from left the best solution �rst).In both 
ases, the proposed algorithm provides a paradigm whi
h is of bettere�
ien
y 
ompared to SparseNet. It should be noted that it is also superiorfor the 
ost based on the L1 norm, a result whi
h may re�e
t the fa
t that theL0 norm de�nes a stronger sparseness 
onstraint.
15



imagelets drawn from the natural image database, we performed the progressive
oding of the images using both methods �rst for random ve
tors and then forthe �lters learned by ea
h method. First, we quanti�ed at the end of the 
odingthe distribution of 
oe�
ients for the di�erent 
ases. To allow a 
omparison ofthe 
oe�
ients, we normalized the 
oe�
ients by the energy of the imageletswith ρj = sj .
‖Aj‖
‖x‖ and the norm of the �lters to retrieve 
oe�
ients su
h that

x

‖x‖
=

∑

1≤j≤N
ρj.

Aj

‖Aj‖
(16)these 
oe�
ients then dire
tly 
orrespond to a measure of the 
orrelation 
oe�-
ient (see Eq. 3) when the di
tionary whi
h was sele
ted at ea
h 
oding is quasi-in
oherent, that is that every sele
ted �lter is perpendi
ular to the residual ofthe 
oding [Gribonval and Vandergheynst, 2006℄. When plotting the histogramof the 
orresponding 
oe�
ients, one sees that distributions are relatively gaus-sians with the initial random �lters but that these be
ome very kurtoti
 afterthe 
onvergen
e of the learning (see Fig. 3-Left). The measure of the kurtosisof the resulting 
ode words proved to be very sensitive and a poor indi
atorof the global e�
ien
y, in parti
ular with 
ode words at the beginning of the
oding, when many 
oe�
ients are still stri
tly zero. In parti
ular, it seemedina

urate to 
ompare the kurtosis for systems with di�erent over-
ompletenessfa
tors as in [Rehn and Sommer, 2007℄. However, the SSC algorithm providedthe most kurtoti
 distribution of the 
oe�
ients (with values around 60 versus10 for SparseNet). Plotting the de
rease of the sorted 
oe�
ients as a fun
-tion of the number of sele
ted 
oe�
ients again showed that �rst 
oe�
ients forSSC were higher and de
reased qui
ker (see Fig. 3-Left Inset). This is ne
essaryfollowing the link between both 
urves from Eq. 5.In a se
ond analysis, we 
ompared the e�
ien
y of both methods while varyingthe number of a
tive 
oe�
ients (the L0 norm), that is the number of spikesduring the progressive 
oding (Eq. 8). To 
ompare this method with the 
onju-gate gradient, a �rst pass of the latter method was assigning for a �xed numberof a
tive 
oe�
ients the best neurons while a se
ond pass optimized the 
oe�-
ients for this set of "a
tive" ve
tors (see Fig. 3, Right). This method was alsoused in [Rehn and Sommer, 2007℄ and proved to be a fair method to 
omparethis method. At the same time, one 
ould yield di�erent mean residual errorwith di�erent mean sparseness of the 
oe�
ients, as de�ned in Eq. 7 (see Fig. 3,Right Inset).Controlling with a wide range of parameters and a variety of methods yieldedsimilar qualitative results (su
h as 
hanging the learning rate or the parametersof the 
onjugate gradient, see Annex. 5.4) proving that the hebbian learning
onverged robustly as long as the 
oding algorithm provided a good sparse rep-resentation of the input. As a result, it appeared in a robust manner that thegreedy solution to the hard problem (that is SSC) is more e�
ient for the op-timized 
ost but also to the 
ost de�ned in the relaxed problem (see Fig. 3).Moreover, it should be noted that the non-parametri
 method is 
ontrolled byless parameters (whi
h were here optimized to give best operating point, see16
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Figure 4: Gain of using homeostasis. (Left) When relaxing the homeostati

onstraint in the SHL algorithm to the one implemented in Adaptive Mat
hingPursuit (AMP), the algorithm 
onverges to a set of �lters whi
h 
ontains someless lo
alized �lters and to some high-frequen
y Gabors whi
h 
orrespond tomore 'textural' features. One may wonder if these �lters are ine�
ient and
apturing noise or if they rather 
orrespond to inherent features of naturalimages in this LGM model (see Fig. 3). (Right) In fa
t, the AMP solution givesa better result than SHL in terms of residual energy as a fun
tion of pure L0sparseness (see inset). However, when de�ning the e�
ien
y in terms of theresidual energy as a fun
tion of the des
ription length of the 
ode word, thenthe proposed SHL model is more e�
ient than AMP be
ause of the quantizationerrors inherent to the higher variability of 
oded 
oe�
ients.Annex. 5.1) and we should stress again that the SSC method simply uses afeed-forward pass, while the Conjugate Gradient 
ould only be implemented asthe �xed point of a re
urrent network.3.3 E�
ien
y 
ompared to Adaptive Mat
hing PursuitThe 
hoi
e of the homeostati
 regulation was based on the 
ost fun
tion andthe hypothesis that led to it. In fa
t, by assuming that all neurons should be
hosen with equal probability, we impose a strong 
onstraint for the neural as-sembly (all neurons should be �equal�) and this may hinder the global e�
ien
yof the system. On the other hand, when 
hoosing a more relaxed system (su
has normalizing the �lters or using the homeostati
 rule de�ned in SparseNet)we obtain qualitatively di�erent �lters whose quality would depend on the 
ho-sen 
ost fun
tion. To resolve this ambiguity, we therefore 
ompared the e�-
ien
y for the SHL s
heme that we presented above (see Fig. 2, Right) witha system where we just imposed the 
omponents to stay on the unit sphere,that is setting the homeostati
 learning time to in�nity). This last algorithmis exa
tly the Adaptive Mat
hing Pursuit (AMP) algorithm that was studiedpreviously [Perrinet et al., 2003℄ and whi
h is similar to other strategies su
h17



as [Smith and Lewi
ki, 2006; Rehn and Sommer, 2007℄.In fa
t, in the AMP algorithm the homeostasis 
onstraint is relaxed and the �l-ters will 
orrespond to features of more various salien
ies. In parti
ular, we ob-serve the emergen
e of both broader Gabor �lters whi
h better mat
h texturesand of 
he
kerboard-like patterns (see the result after 
onvergen
e at Fig. 4,Left). Be
ause of their lower generality, these 'textural' �lters will be morelikely to be sele
ted with lower 
orrelation 
oe�
ients. They 
orrespond moreto the Fourier �lters that one may obtain by PCA or the simple Hebbian ruleon linear 
oe�
ients and that are still optimal to 
ode arbitrary imagelets su
has noise [Li, 2006℄. The SHL algorithm ensures with the homeostasis 
onstraintthat all �lters will be sele
ted equally by the de�nition of the homeostasis inEq. 4. In parti
ular, the point non-linearity from Eq. 9 plays the role of a gain
ontrol. Compared to AMP, textured elements will be relatively �boosted� dur-ing the learning 
ompared to the 
orrelation 
oe�
ient 
omputed on a moregeneri
 �edge� 
omponent. This explains that they would end up being lessprobable and why at the 
onvergen
e of the learning there is no textured �ltersin Fig. 2, Right.We may then 
ompare quantitatively the e�
ien
y of these two approa
hes.When not using the quantization step using the inverse fj fun
tion (see Eq. 5),the AMP yields a better �nal result sin
e it represents better the noisy aspe
tsof the signal. On average, the SHL strategy provides a better initial de
reaseof the residual energy: the 
omponents of the signal are better represented fora similar number of neurons. However, it is weaker when the L0-sparsenessis greater than ∼ 10% of the dimension M , at whi
h point noise dominatesthe signal (see Fig. 4, Right, plain lines). On the other hand, when using thequantization and therefore when rating the e�
ien
y of the full spike 
oding /de
oding system, the AMP approa
h will display a greater variability and therewill be a greater quantization error4. Results show that in average, the loss ininformation transmission makes the AMP solution less e�
ient than the SHLapproa
h (see Fig. 4, Right, dotted lines). This is due to the higher variabilityof 
oding 
oe�
ients in AMP and therefore of the greater quantization error in-du
ed from the re
onstru
tion using Eq. 5. As a 
on
lusion, both solutions haveadvantages, the e�
ien
y depending on the de�nition of the 
ost fun
tion andhow we assigned the distribution of resour
es to a
hieve this goal. In a nutshell,for the rapid spike 
oding of a transient signal an homeostati
 approa
h seemsmore adequate while on a longer term for a spike frequen
y representation, themore relaxed system may be su�
ient.4 Dis
ussionUsing the tools of statisti
al inferen
e and information theory, we derived quanti-tative 
osts for the e�
ien
y of low-level sensory areas and designed a 
oding andlearning solution whi
h heavily relied on basi
 aspe
ts of the neural ar
hite
ture,4This result did not 
hange qualitatively when using an entropi
 
ost in bits per spike, theAMP requiring ne
essarily less bits per pixel sin
e in SHL the distribution is uniform18



namely the parallel event-based nature of the 
ode. Applied on pat
hes fromnatural s
enes, we proved here that SSC is superior to the SparseNet ar
hite
-ture in terms of the global e�
ien
y of information transmission. The advan-tage of our formulation is that we expli
itly link here the sparseness 
onstraintwith the e�
ien
y of inverting the generative problem. Similar approa
hes havebeen taken that 
ould be grouped under the name of Sparse-Hebbian Learn-ing (SHL) [Smith and Lewi
ki, 2006; Rehn and Sommer, 2007℄. One 
ommon
laim of these strategies is that Hebbian learning may a

ount for the forma-tion of re
eptive �elds if applied on a sparse representation and that the 
odingalgorithm used to obtain this sparseness was of se
ondary importan
e. Thesealgorithm may be variants of 
onjugate gradient, of Mat
hing Pursuit or moregenerally based on 
orrelation-based inhibition. A more radi
al solution basedon neurophysiologi
al eviden
e and not based on a generative model was pro-posed by [Hamker and Wilts
hut, 2007℄, but was in the end also interpretableas an optimization s
heme and therefore to the de�nition of a 
ost through agenerative model of the signal to 
ode. Thus, these SHL s
hemes are all similaroptimization algorithms, gradually improving the e�
ien
y using a sto
hasti
algorithm on the database of signals. All these unsupervised learning algorithmsshow the emergen
e of edge-like �lters thanks to a 
orrelation-based inhibitionsu
h as may be observed to be ne
essary for the formation of elongated re
eptive�elds [Bolz and Gilbert, 1989℄. However, a major advantage of our formulationis the fa
t that it is tightly 
oupled to the 
oding representation. In parti
-ular, the e�
ien
y is based on spiking nature neural information while otheralgorithms relied on a �ring-frequen
y representations. In these s
hemes basedon an analog representation, the problem of 
oding and de
oding of the valueswas not spe
i�
ally addressed and in most of the 
ases the de
oding solutionwas a
hieved as the �xed point solution of a re
urrent network This solutiontherefore requires at ea
h 
oding step to settle to a �xed point and is there-fore in
ompatible with the rapidity of 
orti
al pro
essing [Keysers et al., 2000℄.Moreover, a 
ru
ial feature of our solution is that the output of the 
odingalgorithm gives non-linear results. For instan
e, for a mixture of images, theoutput to the sum of two images is not ne
essarily the sum of both individ-ual output. Moreover, the response sele
tivity to rotated oriented lines will besharper than the linear response [Perrinet, 2005℄. This provides an alternativeto the debate between forward and re
urrent models for the origin of sele
tivityby o�ering a fun
tional reasoning behind the emergen
e of orientation sele
-tivity. In parti
ular, we predi
t that it will exhibit a similar non-linearity inthe spiking response without the need of expli
itly adding after the �rst stageof mat
hing a parametrized non-linear gain 
ontrol that mat
hes physiologi
alre
ordings [Carandini et al., 1997, 2005℄. As a 
onsequen
e, by taking advan-tage of the parallel ar
hite
ture of the 
ortex, we propose a new interpretationfor the re
eptive �elds of neurons whi
h in this view self organize optimally ina

ordan
e with neighboring neurons and 
an therefore only be understood asa whole in an assembly.The work presented here is part of a larger program aiming at assessing qualita-tively the fun
tional e�
ien
y of di�erent modeling solutions to 
omputational19



neuros
ien
e problems. Using 
onstraints from neuros
ien
e, we have built asolution to the LGM inverse problem whi
h we proved to be more e�
ient thanthe Mat
hing Pursuit algorithm by using these quantitative tools. In fa
t, byin
luding an adaptive homeostasis me
hanism, we optimized the e�
ien
y of therepresentation and proved that image pat
hes 
ould be e�
iently 
oded by abinary event-based representation. We proved also that this homeostasis playeda signi�
ant role in these results but also that 
ounter-intuitively textured �lters
ould also be good 
andidates for optimal 
oding in V1 if the goal was set bya di�erent 
oding 
ost. Computationally, the 
omplexity of the algorithms andthe time required by both methods was similar on the di�erent simulations ona standard sequential 
omputer. All these models were implemented with theintention of providing reprodu
ible resear
h and are freely available and we en-
ourage to modify them (see Annex. 5.1). However it should be stressed that thetransfer of this te
hnology to parallel ar
hite
tures will provide a supra-lineargain of performan
e. In fa
t, the SSC algorithm 
onsists of simple operations(integrating and spiking) parti
ularly adapted to an implementation on parallelar
hite
ture su
h as an aVLSI. A major advantage is that it provides a progres-sive dynami
al result while the 
onjugate gradient method had to be re
omputedfor any di�erent number of 
oe�
ients. In fa
t, the most relevant informationis propagated �rst and the re
onstru
tion may be interrupted at any time. Itse�
ien
y makes it a good 
andidate for future te
hnologies of information pro-
essing. In parti
ular, it 
ompares favorably with 
ompression methods su
h asJPEG [Fis
her et al., 2007℄. Going ba
k to biology, the e�
ien
y of su
h ar
hi-te
tures may explain on a fun
tional level why spikes have been sele
ted duringevolution as an e�
ient signal for long range, rapid 
ommuni
ations quanta.The main limit of this algorithm is the use of transient signals and of relativelyabstra
t neurons. This 
hoi
e was de
ided on purpose to stress the importan
eof the network's dynami
s: it shows that solutions using spike 
oding/de
odingmay be built and that they prove to be of better e�
ien
y than traditionalsolutions. A solution of SSC for 
ontinuous �ows was proposed under the termCausal Sparse Spike Coding in [Perrinet, 2007, Se
. 3.4℄, but some new problemsarise (for instan
e the dynami
al 
ompromise between speed and pre
ision) thatwere beyond the s
ope of this paper. Moreover, an implementation of SSC usingLeaky Integrate-and-Fire neurons was previously proposed [Perrinet, 2005℄, butthis solution proved to be 
omputationnaly expensive on a sequential 
omputerand that it introdu
ed artifa
ts from integration approximations. At least, tokeep mathemati
al tra
tability, it is preferable of sti
king with abstra
t neu-rons whi
h use a simple set of operations: 
omputing the 
orrelation, 
hoosingthe ArgMax, doing a substra
ting, retrieving a value from a Look-Up-Table,see Se
. 2.3. The advantage is that it eases the extension of this algorithm toother type of parallel event-based algorithms. One extension of the algorithmis to not use the impli
it symmetry of �lters whi
h introdu
es the 
onstraintthat if a �lter exists, then the symmetri
 �lter exists, that is that we rate thee�
ien
y of a mat
h by the absolute value of the 
orrelation 
oe�
ient. The re-laxed 
ondition proved to be more e�
ient, suggesting that the symmetry thatis observed is more a general e�e
t and that sin
e neurons are not linear inte-20



grator with a re
ti�er, more e�
ient solutions may exist (see Annex. 5.2). Thissimple ar
hite
ture provided also a ri
h range of other novel experiments, su
has introdu
ing topologi
al relations between �lters or by using a representationwith some build-in invarian
es, su
h as translation and s
aling in a gaussianpyramid su
h as in [Hyvärinen et al., 2001; Bednar et al., 2004℄. This last ex-ample provided a multi-s
ale analysis algorithm were the set of �lters that werelearned were a di
tionary of mother wavelets of the multi-s
ale analysis, hen
ethe name of SparseLet Analysis [Perrinet, 2007, Se
. 3.3.4℄. Another interestingperspe
tive is to study the evolution of the e�
ien
y of the algorithm with the
omplexity of the representation: when in
reasing the over-
ompleteness, oneobserves the emergen
e of di�erent 
lasses of �lters, su
h as �rst di�erent po-sitions and edges and then a similar edge with di�erent phases. Exploring theresults for di�erent dimensions of the di
tionary may give an evaluation of theoptimal 
omplexity of the LGM to des
ribe imagelets in terms of a trade-o� be-tween a

ura
y and generality (see Annex. ??). Pushing this experiment to theextreme (that is when the over-
ompleteness equals the size of the di
tionary ofsignals), one would get a di
tionary where every single signal from the databasewould be represented, the so-
alled grand-mother neurons. However, the ar
hi-te
ture of the 
onne
tions between 
orti
al areas suggests that information isdistributed, that this distribution is organized a

ording to a hierar
hi
al butalso re
ursive ar
hite
ture and that an important feature is the generalization ofthe representation a

ording to noise or 
ommon transformations (for an imagea translation, a di�erent non-uniform lighting, an o

lusion,...). This 
alls forthe extension of this kind of approa
h to a more integrated multi-s
ale approa
hwere events 
ould be a more general bit of information, from a synapti
 quanta,a spike (su
h as studied here), a burst in a 
orti
al 
olumn or an a
tivation inan area.A
knowledgmentsThis work was supported by a grant form the Fren
h Resear
h Coun
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t FP6-015879, "FACETS".5 Supplementary material5.1 Annex: Computational implementationThe whole 
olle
tion of simulation s
ripts were written with the intention of 
on-trolling the 
onvergen
e of the algorithms and the relative e�e
t of the di�erentparameters. All s
ripts to reprodu
e the �gures and supplementary material areavailable on the author's website (see http://in
m.
nrs-mrs.fr/LaurentPerrinet/SparseHebbianLearning)Version 1.5 and experiment 20080115T201309was used for this paper, and other�gures regarding 
ontrol experiments may be found there. The original param-eters of SparseNet were used for the CGF algorithm.21
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Table 1: Parameters used in the simulations
where ′../results/20080115T 201309′version mp-sparsenet-1.5

L 256
M 324

num− trials 32001
eta− cgf 1
eta− ssc 0.1

switch− sym 1
image− base ′../data/IMAGES′

batch− size 100
frac 0.5

noise− var − cgf 0.017
noise− var − ssc 0.008

alpha−mp 0.8
eta− homeo 0.01

var − eta− cgf 0.001
var − eta− ssc 0.0025

n− quant 256
alpha 0.02

V AR −GOAL 0.1
beta 0.2

sigma 0.1
tol 0.0031
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Figure 5: Control of the statisti
s of the inputs. (Left) One set of imageletsdrawn from SparseNet. Another set of images was used as a 
ontrol and gavesimilar results. However, the images had to be fairly homogeneous (and thereforetextured) sin
e it happened to draw a pat
h from a �at area (su
h as the sky) inwhi
h 
ase the signal was poor and the 
onvergen
e of the learning was slower.When 
omparing the e�
ien
y of two algorithms, we were 
areful to show forboth the same set of imagelets. (Right)We show here a 16×16 matrix of 16×16
orrelation values representing the 
ovarian
e matrix of the set of images. Thisshows that luminan
e's 
orrelation between 2 points is low (gray) 
omparedto auto-
orrelation (white) when in
reasing the distan
e between both pointsto more than one pixel, validating the whitening hypothesis for the image'sprepro
essing.
23



Figure 6: Solution with non-negative 
oe�
ients. When releasing thesymmetry 
onstraint, the learning algorithm 
onverged to a similar set of �lters.However, the 
onvergen
e was qui
ker and proved to be of higher e�
ien
y.This suggested that the assumption of symmetry of the sign of the 
oe�
ientsis not stri
tly true for the LGM and that a non-negative representation is moree�
ient. See s
ript experiment_symmetri
.m to reprodu
e the �gure.5.2 Annex: Symmetry of �ltersTo 
ompare our algorithm with SparseNet, we similarly assumed that in thedi
tionary, �lters were symmetri
. In fa
t, inspired by biology, re
eptive �eldsoften 
oexist with opposite polarities (the so-
alled ON/OFF symmetry). Thisimplied a 
onstraint in the generative model that when looking for a mat
h,the 
orrelation 
ould be positive or negative and therefore that the best mat
hshould be 
hosen as the greatest absolute value in Eq. 9. If we rather 
hoose adi
tionary of double the size and that we 
hoose only the greatest values (thatis not applying the absolute operator) we will obtain a system were ea
h spikewould have the same informational 
ost (the additional bit repla
ing the polaritybit from the symmetri
 
ase). We therefore look similarly to the non-negativerepresentation without any further modi�
ation of the algorithm. The solutionto the problem when releasing the symmetry 
onstraint looked qualitativelysimilar but proved to be of slightly higher e�
ien
y (see Fig. 6).5.3 Annex: Robustness to a perturbationAs an adaptive algorithm, we 
he
ked that the system returned to a similarma
ros
opi
 state after a perturbation. To illustrate that, we perturbed one�lter (by re-initializing it to a random �lter) and ran again the algorithm. The�rst e�e
t was that the 
orresponding gain fun
tion 
hanged sin
e the 
orrela-tion 
oe�
ients values dropped for that parti
ular neuron. As a 
onsequen
e,24



the homeostati
 
onstraint relatively �boosted� the 
orrelation values of thisneuron relative to the other neurons so that the 
hoi
e of 
hoosing any neu-ron was uniform. After a few steps, the �lter retrieved and edge-like shapewhi
h was often 
lose to the feature prior to the perturbation, sin
e this fea-ture was momentarily �absent� from the representation di
tionary. See s
riptexperiment_perturb.m to reprodu
e this experiment.5.4 Annex: Robustness of the methodsWe in
luded in our 
omputational framework the ability of exploring the evolu-tion of the e�
ien
y of one model when 
hanging one single parameter aroundthe operating point that was 
hosen over the experien
es (see table in An-nex. 5.1). This �perturbation analysis� allowed to tra
e if the 
hosen parameterswere giving lo
ally the best e�
ien
y so that the 
omparison of two algorithmswas valid. It also allows to identify the parameters whi
h are the most relevantin the sense that small variations will indu
e big 
hanges of e�
ien
y. This wasin parti
ular true for the SparseNetalgorithm. It showed in parti
ular thatSparseNetwas more sensitive to parameters (in
luding learning rate, home-ostasis parameter) than our solution and that the parameters for tuning theparametri
 model (in parti
ular the parameters β and σ) were of parti
ularimportan
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