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Optimal signal representation in neural spikingodes: A model for the formation of simple ellreeptive �elds.Laurent U. PerrinetInstitut de Neurosienes Cognitives de la Méditerranée (INCM)CNRS / University of Provene13402 Marseille Cedex 20, Franee-mail: Laurent.Perrinet�inm.nrs-mrs.frFebruary 6, 2008AbstratTaking advantage of the onstraints of spiking representations, wederive an unsupervised learning algorithm solving e�iently the inverseproblem of pattern mathing and apply it to a model of the input to theprimary visual ortex. In fat, spikes arry temporal event-based infor-mation in bundles of parallel �bers and may be onsidered as all-or-nonebinary events. This property may be used to formulate the e�ieny of arepresentation problem as �nding the L0-norm sparsest representation, a�hard" NP-omplete problem. This framework improves previous resultsbased on an Adaptive Mathing Pursuit sheme by expliitly implement-ing an homeostati onstraint in the hoie funtion by a spiking gainontrol mehanism in the neural population. For omparison purposes,we applied this sheme to the learning of small images taken from naturalimages as in SparseNet and ompared the results and e�ieny of thislast algorithm with Mathing Pursuit and the proposed algorithm. Thisstudy provides a generi algorithm for learning independent omponentsin a set of inputs suh as natural images suggesting that this Sparse SpikeCoding strategy may provide a generi omputational module that helpus understanding the e�ieny of the Primary Visual Cortex.KeywordsNeural ode, spike-event omputation, orrelation-based inhibition, AdaptiveMathing Pursuit, Sparse-Hebbian Learning
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1 IntrodutionThe neural arhiteture on whih our ognitive abilities are based is a dy-namial, adaptive system whih evolves to provide optimal solutions in theinterations with the environment. In partiular, models for the formation ofsimple ell reeptive �elds in the primary visual ortex (V1) have attrated alot of attention as a model of learning applied to vision. Based on the fun-tional approah that the system should evolve to be e�ient [Barlow, 2001;Atik, 1992℄, the most aepted explanation for the formation of orientationseletive simple ells in V1 is that it optimizes the sparseness of the repre-sentation of images drawn from natural senes, that is from behaviorally rele-vant senes [Olshausen and Field, 1996℄. Similar approahes have been followedfor natural images [Lewiki and Sejnowski, 2000; Zibulevsky and Pearlmutter,2001; Perrinet, 2004a; Smith and Lewiki, 2006; Rehn and Sommer, 2007; Doi et al.,2007; Hamker and Wiltshut, 2007℄ and sounds [Lewiki and Sejnowski, 2000;Smith and Lewiki, 2006; Hamker and Wiltshut, 2007℄ that were based on solv-ing the inverse of a generative model of the signal. However, all of these solutionsrelied on spei� parameterizations and didn't expliitly demonstrated how theiralgorithm ould be spei�ally adapted to neural omputations. For instane,the oding was ahieved by onjugate gradient [Olshausen and Field, 1996℄ ororthogonal mathing pursuit [Rehn and Sommer, 2007℄ but none of these meth-ods are known to be spei�ally implemented in the ortex and they don'tspei�ally take advantage of the nature and arhiteture of the entral nervoussystem and that makes it di�erent from a traditional sequential omputer.In that diretion, a major aspet that seem to separate these models from theCNS is that most information between neurons is arried by spikes. Spikes (orAtion Potentials) are simple pulses of the membrane potential whose shapeseems to arry few information and whih may travel robustly over long dis-tanes on axons1. In the early visual system for instane, after presenting abrief visual stimulus a asade of mehanisms will take plae after the exita-tion of the retina's photoreeptors. A volley of spikes leaves the retina throughthe bundle of axons that forms the opti nerve to reah the lateral geniulatenulei (after approximately 25-30ms). There, a new proessing takes plae gen-erating a new volley of spikes toward the primary visual ortex that is reahedafter approx. 35ms [Bullier, 2001℄. The visual information that is �deoded�there is often onsidered to be �enoded� in the spikes' �ring frequeny or bytheir relative lateny of every �ber. As a onsequene, neural omputations areevent-based and dynamial and information transfer is parallel while in om-puters omputations are sequential on non-interruptible. However, one mayeasily understand that for the information transdution proess to be e�ient,the spike oding and deoding proesses and the representation should be bothtuned aordingly. A goal of this work is to show how spiking mehanisms anbe espeially adapted to represent visual information in a dynami, parallel and1Spikes have a shape of around 1ms and are also present on dendrites sine their pres-ene is linked to the dynamial properties of the ative ion hannels on the neuron's mem-brane [Cessa and Samuelides, 2007℄. 2



event-based fashion.To ahieve that agenda, we will �rst analytially formulate the problem of e�-ient spike oding and derive a measure attahed to the performane of infor-mation transmission in the neural assembly by introduing the L0-norm. Basedon previous results [Perrinet et al., 2002℄, we will de�ne an e�ient sparse spikeoding / deoding sheme using orrelation-based inhibition oupled with thespiking mehanism. Taking advantage of a biologially-inspired homeostatispike gain ontrol to ensure homeostasis of the assembly, we will improve theperformane of the previously proposed algorithm and allow to derive a simplehebbian-type learning sheme on the sparse representation. We will �nally om-pare the proposed algorithmwith standard methods: SparseNet [Olshausen and Field,1996℄ and Adaptive Mathing Pursuit [Perrinet et al., 2003℄. In partiular wewill fous on the robustness of this method thanks to di�erent measures of ef-�ieny. We will onlude by omparing this method with previously proposedshemes and how this may be reoniled to improve our understanding of theneural ode by drawing the link between struture (spikes in a distributed net-work) and funtion (e�ient oding) and explore the signi�ant parameters atwork in these mehanisms.1.1 A generative model of signal synthesisIn low-level sensory areas, the goal of neural omputations is to build e�ientintermediate representations to allow e�ient deision making [Field, 1994;Barlow, 2001℄. A �good� representation of the world should map at best theinformation from the physial signals whih are relevant for the sensory areaunder study. Furthermore, it will be more e�ient if it is easily transformableaording to usual transforms. In visual areas for instane, any representationof a sene should be easily transformed for any translation or rotation of thesene, sine these are ommon movements and that higher-level areas will needto take into aount this information. As a onsequene, it is easier to de�ne�rst a synthesis model of the world and its transformations and then to buildthe representation by inverting this model. This synthesis model (also alledthe forward model) may be built using statistial observations or with priorassumptions on the physis of the generation of the signal. A Linear GenerativeModel (LGM) [Olshausen and Field, 1998℄ is a generi ase where the signalmay be thought as the linear ombination of independent auses. Inverting theforward model orresponds in the terminology of signal proessing to the odingproess, sine it transforms the signal (for instane the observed image) into amore abstrat representation as a ombination of omponents from the forwardmodel (for instane the edges the image is formed from). It may then be usedto further validate both the synthesis model and understand the ontent of thesignal but also the algorithm solving the inverse problem. In fat, by buildinglearning proesses whih optimize the overall e�ieny of the representations fora known oding algorithm, it is then expeted that the omparison of di�erentlearning strategies will help us understand the proesses underlying reeptive�eld formation in the input layer of V1 (layer 4). In addition, some oding3



algorithms seem better than others and omparing their relative e�ieny inthe proess may for instane explain the reasons why neural omputations use aparallel event-based arhiteture or the partiular role of the lateral interationsin the ortial area.Formally, to de�ne the LGM, we will use a �ditionary� of N soures as a set ofimages represented by the matrix A = {Aj}1≤j≤N . Every image is then de�nedby Aj = {Aij}1≤i≤M over the set of sampling positions i (that is the pixels ina simple image proessing framework). This ditionary is possibly muh largerthan the dimension of the input spae (that is when N >> M); the ditionaryis then said to be over-omplete. Knowing A and the orresponding soures
s = {sj}1≤j≤N , the signal x = {xi}1≤i≤M is de�ned as

x =
∑

1≤j≤N
sj .Aj + n = A.s + n (1)where n is a deorrelated gaussian additive noise of variane σ2

n. This noisemodel is ahieved thanks to the preproessing (whih ould be ahieved in gen-eral by Prinipal Component Analysis) without loss of generality sine the pro-essing is invertible [Perrinet, 2004b℄ (see Fig. 5). The LGM is well adaptedto natural senes beause transpareny laws are linear for luminanes and thusthe LGM desribes well the synthesis in a loal neighborhood of any naturalimage. The goal of any oding algorithm for the inverse problem is to �nd foran observed x the best set s of soures that generated the signal. Then, the goalof a learning algorithm is to adapt at best in the long term to the parameters ofthe LGM, that is to the matrix A and the statistis of s. We will see in Se. 1.3how we may quantify the global e�ieny of the oding, but let's �rst de�nehow one may evaluate the likelihood of any soure knowing an input x.In fat, having de�ned the forward model, we may now be interested in omput-ing how well a partiular instane of the signal (here an image) mathes withthe model. From [Perrinet, 2004b, 2007℄, we know that for a given signal x, thelog-probability log P ({sj}|x,A) orresponding to a single soure sj .Aj knowingit is a realization of the LGM as it is de�ned in Eq. 1 (and for whih we assumeno prior knowledge) is maximal for the projetion oe�ient de�ned by:
s∗j =< x,

Aj

‖Aj‖2
>

def
=

∑

1≤i≤M x(i).Aj(i)
∑

1≤i≤M Aj(i)2
(2)where def

= means "equal by de�nition". The log-likelihood log P ({sj}|x,A) isthen maximum for the soure j∗ with maximal orrelation oe�ient j∗ =ArgMaxjρj with
ρj =<

x

‖x‖
,

Aj

‖Aj‖
>

def
=

∑

1≤i≤M x(i).Aj(i)
√

∑

1≤i≤M Aj(i)2.
√

∑

1≤i≤M x(i)2
(3)It should be noted that ρj is the M th-dimensional osinus and that its absolutevalue is therefore bounded by 1. The value of ArCos(ρj) would therefore give4



the angle of x with the pattern A and in partiular, the angle would be equal(modulo 2π) to zero if and only if ρj = 1 (full orrelation), π if and only if
ρj = −1 (full anti-orrelation) and ±π/2 if ρj = 0 (both vetors are perpendi-ular, there is no orrelation). Also, it is independent to the norm of the �ltersand we assume without loss of generality in the rest that these are normalizedto unity.In anonial models of neural modeling this orresponds to the linear dendritiintegration over the reeptive �eld, produing for a positive orrelation a drivingurrent leading to the hyper-polarization of the ell and possibly to spiking. Thisjusti�es the omputation of the orrelation in the pereptron model [Rosenblatt,1960℄ as it provides a diret measure of the log-probability under the assump-tions that we used (the LGM with Gaussian noise). Starting from this basimehanism, one ould ompute for every signal a set of ativities orrespondingto how well the neurons orresponded to patterns in the image prede�ned in theweights matries. However, we should now explain how this information maybe oded and deoded by a set of spiking neurons.1.2 Spike oding and deoding of a transient signal in apopulation of neuronsNeurons are intrinsially dynamial system and we will take advantage of thisproperty to transform a signal into a volley of spikes. For the large lass ofIntegrate-and-Fire neurons whih is relevant for pyramidal neurons, we may usethe fat that the larger the driving exitation, the larger the �ring frequeny anddually the shorter the lateny of spiking [Perrinet et al., 2004℄. More preisely,let's onsider a population of N pyramidal neurons as an information hannelfor whih we wish to ode and then deode a vetor s = {sj}1≤j≤N only bytransmitting a spiking pattern. Classially, one would map eah value to an ex-itation value whih orresponds through a monotonous inreasing funtion to aspiking lateny or frequeny, whih an then be deoded by the inverse funtion.However, when we onsider the set of di�erent exitation vetors globally, if theirprobability distribution funtions are di�erent, then the average ativity of theneurons will be systematially di�erent. In the ompetitive network formed withthe pyramidal ells, this is in disagreement with the fat that spikes are similarand should therefore arry similar information or more generally that they havesimilar metabolism. Globally, neurons in one assembly build up a distributedsystem and should therefore be optimally tuned to uniformly distribute theirmetaboli usage.A standard method to ahieve this homeostasis is to map the input vetor
s trough a point non-linearity2 whih provides a uniform probability for theoutput [Atik, 1992℄. This method is similar to histogram equalization in im-age proessing and provides an output with maximum entropy for a boundedoutput: it therefore optimizes the oding e�ieny of the representation interms of ompression [van Hateren, 1993℄ or dually the minimization of intrin-2That is a non-linearity applied independently to every single element of the vetor.5



si noise [Srinivasan et al., 1982℄. It may be esily derived from the probability
PSj

(sj) of a variable sj (bounded in absolute value by 1) by hoosing the non-linearity as the umulative funtion
fj(sj) =

∫ sj

−1

dPSj
(s) (4)where the symbol dP (x) = PX(x)dx will here denote in general the probabilitydistribution funtion (pdf) for the random variable X . This proess has beenobserved in a variety of speies and is for instane perfetly illustrated in thesalamander [Laughlin, 1981℄, see Fig. 1. It may evolve dynamially to slowlyadapt to varying hanges in luminanes, suh as when the light diminishes atdawn but also to some more elaborated sheme within a map [Hosoya et al.,2005℄. In partiular, sine the pdf of all zj = fj(sj) is uniform and that souresare independent, the pdf of the vetor is uniform. Knowing the di�erent spikegain ontrol funtions, every vetor s will generate dynamially a list of spikes

{j(1), j(2), ...} (with orresponding latenies) at the soure so that the trans-formed exitation zj (to be transformed in a �ring frequeny or in a �ringlateny) may be onsidered as a random vetor drawn from an uniform distri-bution in [0, 1].We oded any signal in a spike volley, but how an this spike list be �deoded�,espeially if it is onduted over some distane and therefore with an additionallateny? In the ase of transient signals, sine we oded the vetor s usingthe homeostati onstraint from Eq. 4, we may retrieve the analog values fromthe spike list sorted in time. In fat, we know in partiular that for the �rstspike to arrive at the reeiver end, knowing that it orresponds to �ber j(1),has been produed by a value in the highest quantile of PSj(1)
on the emittingside. We may therefore deode the orresponding value with the best estimate

ŝj(1) = f−1
j(1)(1). This is also true for the following spikes and if we write as

zj(k) = k
N

the relative rank of the spike (that is neuron j(k) �red at rank k),we an reonstrut the orresponding value as
ŝj(k) = f−1

j(k)(1− zj(k)) (5)This orresponds to a generalized rank oding sheme [Perrinet, 1999; Perrinet et al.,2001℄ (see Fig. 1, Top Right). It has the partiular advantage of being invariantto ontrast and up to a �xed delay to the variability due to the noise. However,this ode fouses on the partiular sequene of neurons that were hosen andloses the partiular information that may be oded in the time intervals betweentwo suessive spikes in the assembly. This ode also ompletly ignores all infor-mation that is not in the �rst spike of every �ber to fous on the transient aspetof the signal. A model aounting for the lateny would orret this to the ost ofintroduing new parameters but it seems that this information would have a lowimpat relative to the total information [Panzeri et al., 1999℄. More generally,one ould use di�erent mappings for the transformation of the z value into thea spike volley whih an be more adapted to ontinuous �ows, but this shemeorresponds to an extreme ase (a transient signal) whih is useful to stress on6



� ��� � ��� ��� ��� ���� ��� 	
� �������
������������������

����� ��� ����� � ���� !

Figure 1: Spike oding using spike gain ontrol. We illustrate the home-ostati mehanism by showing the ase with two neurons with di�erent inputstatistis. This is de�ned (Bottom Left) by the probability distribution funtion(pdf) as a funtion of the value to represent, indiating here that one neuronhas a narrow pdf entered on a low value while the other has a higher averagebut with a bigger variane. By using the umulative funtion as a point non-linearity (Top Left), one ensures a transform where the probability of zj = fj(sj)(Eq. 4) is uniform. In partiular, the probability of hoosing any vetor z is uni-form. For instane, a partiular value s∗ will orrespond to di�erent z values.Inversely, after hoosing a partiular set of values, one may estimate the valuefrom for instane the rank of the value in the vetor (Top Right) sine the rankprovides an estimate of the quantile in the pdf sine the pdf of z is uniform.Using the inverse of fj one may retrieve the value in feature spae. For instaneat a given rank (dotted line), the value will be di�erent for both neurons sinetheir pdf are di�erent. Overall, this framework gives a simple oding / deodingmehanism for transient signals in a set s by (Bottom Right) transforming thevalues to ode in a uniformly distributed set of values whih are oded by a vol-ley of spikes. This volley of spikes may then deoded (or diretly transformed)thanks to the relative timing of the spikes using Eq. 5: it thus builds a robustinformation hannel where information is solely arried by spikes.
7



the dynamial part of the oding [van Rullen and Thorpe, 2001℄ and is mathe-matially more tratable. In partiular, one may show that the oding error isproportional to the variability of the sorted oe�ients [Perrinet et al., 2004℄,the rest of the information being the information oded in the time intervalsbetween two suessive spikes. Thus, the e�ieny of information transmissionwill diretly depend on the validity of the hypothesis of independene of thehoie of omponents and therefore on the statistial model build by the LGM.It should be also noted that no expliit reonstrution is neessary (in the math-ematial term) on the reeiver side as we do here, sine the goal of the reeiverould only be to manipulate information on for instane some subset on thespike list (that is on some reeptive �eld overing a subpart of the population).In partiular one may imagine that we may add some arbitrary global point lin-earity to the z values in order to threshold low values or to quantize values (forinstane set all values to 1 only for the �rst 10% of the spikes). However, thisfull reonstrution sheme is a general framework for information transmission,and we may then imagine that if for instane we pool information over a limitedreeptive �eld, the information needed (the ranks in the sub-spikelist) will stillbe available to the reeiver diretly without having to ompute the full set (infat, sine the pdf of z is uniform, the pdf of a subset of omponents of z isalso uniform). By this simple onsiderations, we devised a simple spike odingalgorithm to transmit information robustly with events.1.3 De�nition of the e�ieny of Spike odingNow that we de�ned the spike oding algorithm, we should be able to derivea generi ost funtion that will allow us to quantify the e�ieny of di�erentoding algorithms but also to derive a learning algorithm for the spike odingalgorithm. For every signal x, one may state as in Oam's razor that giventwo solutions of similar quality, the best is the one with lowest representationalomplexity. This omplexity may be expressed as the Kolmogorov-Chaitin om-plexity and one an imagine that in the ontext of dynamial oding by spikes,there will be a dynamial ompromise between the preision and the omplexityof the representation. This an be formalized in a probablilisti framework byusing the bound given by Shannon's oding theorem. It is the average Shannon'sinformation of solutions ŝ (the oding sequenes) given the model's parameters(that is, using the same notation as in Se. 1.1, C = E(− log P (ŝ|x,A)), where
E(.) denotes averaging over multiple images). For one oding sequene, thisost may thus be written as the sum of its likelihood probability knowing theset of soures added to the desription length of the set of soures:

log P (ŝ|x,A) = − log Z + (−
1

2.σ2
n

‖x−
∑

j

ŝj .Aj‖
2) + log P (ŝ|A) (6)where Z is the partition funtion. Note that this oding may be dynamialand that the oding sequene may omputed progressively. The ost will bemeasured in bits if the logarithm is of base 2 (as will be assumed without loss8



of generality in the sequel). For any oding ŝ, the �rst term orresponds tothe information from the image whih was not retrieved by the oding (reon-strution ost) and that an be enoded at best using entropi oding pixel bypixel. The seond term is the representation ost: it quanti�es the e�ienyof the representation as the desription length [Rissanen, 1978℄ omputed usingentropi oding of the oe�ients and is equal to the entropi oding of ŝ know-ing its probability distribution funtion. We will assume independene of theoe�ients of the LGM and therefore log P (s,A) =
∑

j log P (sj ,A). Moreover,based on a parameterization of the oe�ients' prior, this yields the sparsenessost de�ned in Olshausen and Field [1998℄:
C1 =

1

2.σ2
n

‖x−
∑

j

ŝj .Aj‖
2 + β

∑

j

log(1−
ŝ
2

σ2
) (7)where β is the steepness of the prior and σ is the prior saling (see Figure 13.2from [Olshausen, 2002℄). It is somewhat related to the lassial ost with the

L1-norm but represents a more kurtoti probability distribution funtion for theprior than the orresponding laplaian prior. This liberty in the de�nition of thesparseness leads to a wide variety of proposed solutions to sparse oding [Pee,2002℄ suh as optimization [Olshausen and Field, 1998; Lee et al., 2007℄, nonnegative matrix fatorization [Lee and Seung, 1999; Ranzato et al., 2007℄ or byusing Mathing Pursuit [Smith and Lewiki, 2006; Rehn and Sommer, 2007℄.However, this parameterization is not known a priori and must be tuned a-ordingly to �t the model to the statistis of natural images and be furthervalidated.This is the reason why we did build a non-parametri measure by taking ad-vantage of the fat that thanks to the homeostasis, the probability of �ring ofevery �ber is uniform aross the population. In fat, spikes are a priori equallylikely to be generated on any of the N neurons (see Se. 1.2), so that the prob-ability of the origin of any new spike is simply 1
N
. Therefore, di�erently tothe SparseNet algorithm, the model for the statistis of the LGM assumesthat spikes are independent all-or-none events: they arry a binary representa-tion [Deweese and Zador, 2003℄. This expliitly de�nes the information ontentof a spike volley as an ordered list of spikes where the whole information isoded in the �addresses� of the di�erent spikes in the list. Using a ditionary of

N neurons, the ost per spike may then be de�ned as log2(N) bits per spike, sothat we propose for the oding ost of a spike list :
C0 =

1

2σ2
n

.‖x−
∑

j

ŝj .Aj‖
2 + log2(N).‖ŝ‖0 (8)where ‖ŝ‖0 is the length of the retrieved solution (or also the L0 norm). Note�rst that for any spike oding solution, this ost funtion is dynami sine thenumber of spikes may inrease in time. Note also that it links e�ieny tosparseness, as with information riterions suh as the AIC [Akaike, 1974℄. Italso explitely rates the eonomy of onsumed metaboli ressoures as is used9



in [Rehn and Sommer, 2007℄, but we retain this only as a onsequene of thealgorithm. More generally, suh a sparse representation is the best solutionto allow a good disriminability between di�erent patterns. For instane, as amodel of the input layer of the primary visual ortex, optimizing the odingaording to Eq. 8 will provide the best representation to segregate di�erentorientations for instane by representing the ridge of edges in images instead ofrepresenting the linear orrelation as de�ned by Eq. 3. However, resolving theoding problem with the L0 norm (getting the best ŝ in the sense of Eq. 8 know-ing x, that is ArgMins(C0(x, s)) ) is NP-omplete with respet to the dimension
N of the ditionary [Mallat, 1998, p. 409℄. We will present hare a solution tothis problem inspired by the arhiteture and dynamis of the primary visualortex.2 Method : Sparse Spike Hebbian LearningIn fat, when hoosing one omponent over an other (for instane the one thatmaximizes Eq. 3), any hoie may modify the hoie of the other omponents,unless the ditionary is orthogonal. This leads to a ombinatorial explosion whenthe ditionary beomes over-omplete suh as when modeling the primary visualortex. To solve this NP-omplete problem, one may implement an approximatesolution designed after the rihly laterally onneted arhiteture of ortiallayers by passing in parallel information between neurons that will take intoonsideration their ross-orrelations. The Sparse Spike Coding (SSC) algorithmpresented here is inspired by di�erent oding strategies [Perrinet et al., 2002;Perrinet, 2004b, 2007℄ and that gave rise here to a ompletely novel spike odingalgorithm thanks to the formalization of the e�ieny (see Eq. 8).2.1 Sparse Spike Coding: Adaptive Mathing Pursuit withegalitarian homeostasisLet's de�ne Weighted Mathing Pursuit (WMP) as the greedy approah appliedon the e�ieny riterion de�ned in Eq. 8. Like Mathing Pursuit, it is basedon two repetitive steps. First, given the signal x, we are searhing for the singlesoure s∗j∗ .Aj∗ that orresponds to the maximum a posteriori (MAP) realizationfor x (see Eq. 3) transformed by a point non-linearity fj . It is de�ned by:

j∗ = ArgMaxj [fj(ρj)] (9)with < ., . > denoting the salar produt and fj(.) is some gain funtion thatwe will desribe below and whih may be set initially to stritly inreasingfuntions. In a seond step, the information is fed-bak to orrelated souresthrough :
x← x− s∗j∗ .Aj∗ (10)where s∗j∗ is the salar projetion < x,Aj∗ > (see Eq. 2). Equivalently, fromthe linearity of the salar produt, we may propagate laterally:

< x,Aj >←< x,Aj > − < x,Aj∗ >< Aj∗ ,Aj > (11)10



that is from Eq. 3:
ρj ← ρj − ρj∗ < Aj∗ ,Aj > (12)For any set of monotonously inreasing funtions, WMP shares many proper-ties with MP, suh as the monotonous derease of the error or the exponentialonvergene of the oding. The algorithm is then iterated with Eq. 9 until somestopping riteria is reahed.Sparse Spike Coding (SSC) is then de�ned as the spike oding/deoding algo-rithm whih uses WMP as the oder and where the point non-linearities arede�ned by Eq. 4. This sheme extends the Mathing Pursuit (MP) algorithmby linking it to a statistial model whih tunes optimally the mathing step (inthe sense that all hoies are statistially equally probable) thanks to the adap-tive point linearity. In fat, as stated before, thanks to the uniform distributionof the hoie of a omponent, one maximizes the entropy of every math andtherefore of the omputational power of the ArgMax operator. Think a on-trario to a totally unbalaned network where the math will be always a givenneuron: the spikes are totally preditable and the information arried by thespike list then drops to zero. In pratie, the fj funtions are initialized for allneurons to the identity funtion (that is to a MP algorithm) and then evaluatedusing an online stohasti algorithm with a �learning� parameter orrespondingto a smooth average whih e�et was ontrolled (see Fig. 4 and Annex. 5.4). Asa matter of fat, this algorithm is irular sine the hoie of s is non-linear anddepends on the hoie of fj. However, thanks to the exponential onvergeneof MP, for any set of omponents, the fj will evolve to the orret non-linearfuntions de�ned by Eq. 4.2.2 Sparse Hebbian Learning in SSCOn a longer time sale, the e�ieny of the system may be optimized by slowlyadapting the ditionary as in SparseNet thanks to the sparse solution given bythe oding algorithm. We may implement this for every image at every odingstep sine we have for eah seleted spike an evaluation of the log-likelihoodby the distane of the residual image to the seleted �lter, that is to ‖x −

s∗j∗ .Aj∗‖
2 (whih is equal to ρj up to a onstant), the rest of the signal beingregarded as a perturbation whih will anel out by the averaging. At every stepafter Eq. 9 and using the gradient desent approah as in [Olshausen and Field,1998℄, we similarly infer that we may slowly modify the winning weight vetororresponding to the winning �lter Aj∗ by taking it loser to x
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where η is the learning rate, whih is inversely proportional to the time sale ofthe features being learned. It is an �hebbian� rule [Hebb, 1949℄ in the lassialsense sine it will enhane the weight of neurons of orrelated neurons. How-ever, the novelty of this formulation is to apply this formulation to the sparserepresentation. Similarly to Eq. 17 in [Olshausen and Field, 1998℄ or to Eq. 2in [Smith and Lewiki, 2006℄ the relation is linear. A more rigorous mathemat-ial approah were to onsider a rotation of Aj toward x using a Jaobi Matrixrotation so that all omponent vetors stay on the unit sphere. In pratie,Eq. 15 for small learning rates η followed by a normalization is a good approxi-mation of this high-dimensional (linear) transform.Without homeostasis, the algorithm (as well as SparseNet) is unstable. Infat, sine we start with random �lters, it is is more likely that any salientfeature was seleted at �rst and will modify the �rst winning �lter. Then thesame neuron will be seleted with a higher probability in subsequent learningsteps, ausing a non uniformity in the balane of the learning aross neurons.Whereas SparseNet uses the norm of the �lters to ontrol the variane of theoe�ients aross neurons, the SSC mathing riteria (see Eq. 9) is independentto the norm of the �lters. In fat, thanks to the homeostati regulation (whihhas a similar time-sale than the learning) the probability of hoosing any neu-ron remains uniform and ensures the onvergene of the learning algorithm (seeAnnex. 5.3). The homeostasis will therefore optimize the balane between theneurons, the homeostasis onstraint assuring that the internal representationmay always be onsidered as a uniformly distributed random vetor.2.3 Sparse Spike Hebbian Learning (SSHL)In summary, the solution of the oding problem is given by the following nestedloops:1. Initialize the omponents A to random values on the unit N -dimensionalsphere and set the point non-linear gain funtion to unity (fj(s) = s forall j),2. draw a signal x from the database,3. ompute ρj for all j using Eq. 3,4. until ‖x‖2 is below a threshold do a sparse spike oding (SSC):(a) selet the best math j∗ with Eq. 9,(b) modify orrelated information by updating ρj for all j using Eq. 12,() slowly modify Aj∗ using Eq. 15,5. then update the fj for all j and draw a new image (step 2)When onvergene is ahieved, one ould simply make a oding by using steps2, 3 and 4 and optionally for the pure spike oding evaluate the oe�ient usingEq. 5 in step 4-b. In fat, sine the greedy algorithm may adapt to quantizationerrors [Perrinet et al., 2004, Fig.10℄. The deoding of a spike list is then simply:12



Figure 2: Results of the proposed SSHL sheme ompared toSparseNet. Starting with random �lters, we ompare here the results of thelearning sheme with 324 �lters at onvergene (20000 steps) using (Left) thelassial onjugate gradient funtion method as is used in [Olshausen and Field,1998℄ with (Right) the Sparse Spike Coding method. Filters of the same size asthe imagelets (16×16) are presented in a matrix (separated with a blak border).Note that their position in the matrix is as in ICA arbitrary (invariant up toany permutation). Results repliate the original results of [Olshausen and Field,1998℄ and are similar for both methods: both ditionary onsist of gabor-like �l-ters whih are similar to the reeptive �elds of simple ells in the primary visualortex. Edges appear in these onditions to be the independent omponents ofnatural images. However, the distribution of the quality of the edges (in partiu-lar their mean frequeny, length, width) appears to be di�erent and the questionremains as how we may ompare the two resulting systems quantitatively?1. Initialize x̂ to a zero image; the rank is zero,2. while we have spikes do :(a) retrieve the value ŝ of the oe�ient using Eq. 5,(b) add ŝ.Aj to x̂,() inrement the rank,3 Results on natural images3.1 Comparison of produed reeptive �eld maps withSparseNetWe ompared this novel Sparse Spike Hebbian Learning algorithm with theSparseNet algorithm. In fat, this algorithm as other similar shemes mainly13



di�ers by the oding method used to obtain the sparse representation. Inpartiular, we foused herein in the validation and quantitative omparisonof both algorithms in terms of e�ieny on the task at hand that we de-�ned3. We used a similar ontext and arhiteture as the experiments desribedin [Olshausen and Field, 1998℄ and used in partiular the same database of in-puts as the SparseNet algorithm. Similarly to the study by Olshausen and Field[1998℄, we hose here to restrit ourselves to study the seletion of optimal �lterson imagelets (that is small pathes from natural images). In partiular, theseimages are stati, graysale and �ltered aording to similar parameters to allowa one-to-one omparison of the di�erent algorithms.Here, we show the results for 16 × 16 pathes (so that M = 256) from thewhitened images and we hose to learn N = 324 �lters. Results show theemergene of edge-like �lters (see Fig. 2) for a wide range of parameters (seeAnnex. 5.4 for an analysis of the robustness of the methods to variations ofthe parameters). Studying the evolution of one single �lter during the learningshows that it �rsts represent any salient feature (suh as a olletion of sharpedges) and that if it ontains multiple edges only the most salient edge remainslater in the learning. This is due to the ompetition between �lters, the algo-rithm ensuring that independent features should not be mixed sine this willresult in a larger L0-norm. When looking at very long learning times, the solu-tion is not �xed (for both algorithms) and edges may smoothly drift from oneorientation to another while the ost still remains stable. This is due to thefat that there is no onstraint suh as topologial links between �lters and thatthey may be only be understood as a whole, so that if for instane two �ltersare swapped, the e�ieny stays the same.However, it is not lear by the sole shape of the �lters alone whih solution ismost e�ient and that rather than the shape of the omponents individually,it is the distribution of the assembly of omponents that will yield di�erente�ienies. Suh an analysis was performed with a qualitative analysis of the�lters' shape, by �tting them with Gabor �lters [Lewiki and Sejnowski, 2000℄.A reent study ompares the distribution of the parameters of the Gabor �l-ters with neurophysiologial experiments [Rehn and Sommer, 2007℄. They didindeed show that their learning sheme, whih is also based on a Mathing pur-suit algorithm, did better math some parameters of Gabor �lters over the setof �lter observed in the maaque's primary visual ortex. However, if this sim-ilarity is ertainly neessary, it is not su�ient to understand the e�et of eahparameter and more generally to reeptive �eld formation. We will rather tryto evaluate quantitatively the relative e�ieny of the di�erent learning shemesto extrat what aspet is the most relevant.3.2 E�ieny ompared to SparseNetTo address this question, we ompared the quality of both methods by om-puting the mean e�ieny of the oding as the learning onverged. Using 5.1043See Annex. 5.1 for the table of parameters, details of the experimental setup and to a linkto reprodue the results. 14
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Figure 3: E�ieny of the proposed SHL sheme ompared toSparseNet. We evaluated the quality of the SHL algorithm with two di�erentoding strategies by omparing the oding e�ieny of the sparse spike oding('ss') method with the lassial onjugate gradient funtion ('gf') method asis used in [Olshausen and Field, 1998℄ for the oding of a set of 5000 imagepathes drawn from a database of natural images. We plot (Left) the distri-bution of both methods before and after the onvergene of the learning phase(see Fig. 2) whih show that and initialization, the distribution os more gaussian(urves (g-init and ss-init) while they get more kurtoti (with kurtosis valuesof respetively 20 and 60) illustrating the sparseness of the oe�ients. We alsodraw (Right) the mean �nal residual error (L2 norm) as a funtion of the relativenumber of ative (or non-zero) oe�ients (that is the normalized L0 norm andthe oding step for SSC) and whih provides an estimate of the mean odinge�ieny for the image pathes. Best results are those giving a lower error fora given sparsity or a lower sparseness (better ompression) for the same error.Oam's razor translates in this �gure into the fat for a given L2 norm, the L0norm is lower (an horizontal line would ross from left the best solution �rst).In both ases, the proposed algorithm provides a paradigm whih is of bettere�ieny ompared to SparseNet. It should be noted that it is also superiorfor the ost based on the L1 norm, a result whih may re�et the fat that theL0 norm de�nes a stronger sparseness onstraint.
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imagelets drawn from the natural image database, we performed the progressiveoding of the images using both methods �rst for random vetors and then forthe �lters learned by eah method. First, we quanti�ed at the end of the odingthe distribution of oe�ients for the di�erent ases. To allow a omparison ofthe oe�ients, we normalized the oe�ients by the energy of the imageletswith ρj = sj .
‖Aj‖
‖x‖ and the norm of the �lters to retrieve oe�ients suh that

x

‖x‖
=

∑

1≤j≤N
ρj.

Aj

‖Aj‖
(16)these oe�ients then diretly orrespond to a measure of the orrelation oe�-ient (see Eq. 3) when the ditionary whih was seleted at eah oding is quasi-inoherent, that is that every seleted �lter is perpendiular to the residual ofthe oding [Gribonval and Vandergheynst, 2006℄. When plotting the histogramof the orresponding oe�ients, one sees that distributions are relatively gaus-sians with the initial random �lters but that these beome very kurtoti afterthe onvergene of the learning (see Fig. 3-Left). The measure of the kurtosisof the resulting ode words proved to be very sensitive and a poor indiatorof the global e�ieny, in partiular with ode words at the beginning of theoding, when many oe�ients are still stritly zero. In partiular, it seemedinaurate to ompare the kurtosis for systems with di�erent over-ompletenessfators as in [Rehn and Sommer, 2007℄. However, the SSC algorithm providedthe most kurtoti distribution of the oe�ients (with values around 60 versus10 for SparseNet). Plotting the derease of the sorted oe�ients as a fun-tion of the number of seleted oe�ients again showed that �rst oe�ients forSSC were higher and dereased quiker (see Fig. 3-Left Inset). This is neessaryfollowing the link between both urves from Eq. 5.In a seond analysis, we ompared the e�ieny of both methods while varyingthe number of ative oe�ients (the L0 norm), that is the number of spikesduring the progressive oding (Eq. 8). To ompare this method with the onju-gate gradient, a �rst pass of the latter method was assigning for a �xed numberof ative oe�ients the best neurons while a seond pass optimized the oe�-ients for this set of "ative" vetors (see Fig. 3, Right). This method was alsoused in [Rehn and Sommer, 2007℄ and proved to be a fair method to omparethis method. At the same time, one ould yield di�erent mean residual errorwith di�erent mean sparseness of the oe�ients, as de�ned in Eq. 7 (see Fig. 3,Right Inset).Controlling with a wide range of parameters and a variety of methods yieldedsimilar qualitative results (suh as hanging the learning rate or the parametersof the onjugate gradient, see Annex. 5.4) proving that the hebbian learningonverged robustly as long as the oding algorithm provided a good sparse rep-resentation of the input. As a result, it appeared in a robust manner that thegreedy solution to the hard problem (that is SSC) is more e�ient for the op-timized ost but also to the ost de�ned in the relaxed problem (see Fig. 3).Moreover, it should be noted that the non-parametri method is ontrolled byless parameters (whih were here optimized to give best operating point, see16
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Figure 4: Gain of using homeostasis. (Left) When relaxing the homeostationstraint in the SHL algorithm to the one implemented in Adaptive MathingPursuit (AMP), the algorithm onverges to a set of �lters whih ontains someless loalized �lters and to some high-frequeny Gabors whih orrespond tomore 'textural' features. One may wonder if these �lters are ine�ient andapturing noise or if they rather orrespond to inherent features of naturalimages in this LGM model (see Fig. 3). (Right) In fat, the AMP solution givesa better result than SHL in terms of residual energy as a funtion of pure L0sparseness (see inset). However, when de�ning the e�ieny in terms of theresidual energy as a funtion of the desription length of the ode word, thenthe proposed SHL model is more e�ient than AMP beause of the quantizationerrors inherent to the higher variability of oded oe�ients.Annex. 5.1) and we should stress again that the SSC method simply uses afeed-forward pass, while the Conjugate Gradient ould only be implemented asthe �xed point of a reurrent network.3.3 E�ieny ompared to Adaptive Mathing PursuitThe hoie of the homeostati regulation was based on the ost funtion andthe hypothesis that led to it. In fat, by assuming that all neurons should behosen with equal probability, we impose a strong onstraint for the neural as-sembly (all neurons should be �equal�) and this may hinder the global e�ienyof the system. On the other hand, when hoosing a more relaxed system (suhas normalizing the �lters or using the homeostati rule de�ned in SparseNet)we obtain qualitatively di�erent �lters whose quality would depend on the ho-sen ost funtion. To resolve this ambiguity, we therefore ompared the e�-ieny for the SHL sheme that we presented above (see Fig. 2, Right) witha system where we just imposed the omponents to stay on the unit sphere,that is setting the homeostati learning time to in�nity). This last algorithmis exatly the Adaptive Mathing Pursuit (AMP) algorithm that was studiedpreviously [Perrinet et al., 2003℄ and whih is similar to other strategies suh17



as [Smith and Lewiki, 2006; Rehn and Sommer, 2007℄.In fat, in the AMP algorithm the homeostasis onstraint is relaxed and the �l-ters will orrespond to features of more various salienies. In partiular, we ob-serve the emergene of both broader Gabor �lters whih better math texturesand of hekerboard-like patterns (see the result after onvergene at Fig. 4,Left). Beause of their lower generality, these 'textural' �lters will be morelikely to be seleted with lower orrelation oe�ients. They orrespond moreto the Fourier �lters that one may obtain by PCA or the simple Hebbian ruleon linear oe�ients and that are still optimal to ode arbitrary imagelets suhas noise [Li, 2006℄. The SHL algorithm ensures with the homeostasis onstraintthat all �lters will be seleted equally by the de�nition of the homeostasis inEq. 4. In partiular, the point non-linearity from Eq. 9 plays the role of a gainontrol. Compared to AMP, textured elements will be relatively �boosted� dur-ing the learning ompared to the orrelation oe�ient omputed on a moregeneri �edge� omponent. This explains that they would end up being lessprobable and why at the onvergene of the learning there is no textured �ltersin Fig. 2, Right.We may then ompare quantitatively the e�ieny of these two approahes.When not using the quantization step using the inverse fj funtion (see Eq. 5),the AMP yields a better �nal result sine it represents better the noisy aspetsof the signal. On average, the SHL strategy provides a better initial dereaseof the residual energy: the omponents of the signal are better represented fora similar number of neurons. However, it is weaker when the L0-sparsenessis greater than ∼ 10% of the dimension M , at whih point noise dominatesthe signal (see Fig. 4, Right, plain lines). On the other hand, when using thequantization and therefore when rating the e�ieny of the full spike oding /deoding system, the AMP approah will display a greater variability and therewill be a greater quantization error4. Results show that in average, the loss ininformation transmission makes the AMP solution less e�ient than the SHLapproah (see Fig. 4, Right, dotted lines). This is due to the higher variabilityof oding oe�ients in AMP and therefore of the greater quantization error in-dued from the reonstrution using Eq. 5. As a onlusion, both solutions haveadvantages, the e�ieny depending on the de�nition of the ost funtion andhow we assigned the distribution of resoures to ahieve this goal. In a nutshell,for the rapid spike oding of a transient signal an homeostati approah seemsmore adequate while on a longer term for a spike frequeny representation, themore relaxed system may be su�ient.4 DisussionUsing the tools of statistial inferene and information theory, we derived quanti-tative osts for the e�ieny of low-level sensory areas and designed a oding andlearning solution whih heavily relied on basi aspets of the neural arhiteture,4This result did not hange qualitatively when using an entropi ost in bits per spike, theAMP requiring neessarily less bits per pixel sine in SHL the distribution is uniform18



namely the parallel event-based nature of the ode. Applied on pathes fromnatural senes, we proved here that SSC is superior to the SparseNet arhite-ture in terms of the global e�ieny of information transmission. The advan-tage of our formulation is that we expliitly link here the sparseness onstraintwith the e�ieny of inverting the generative problem. Similar approahes havebeen taken that ould be grouped under the name of Sparse-Hebbian Learn-ing (SHL) [Smith and Lewiki, 2006; Rehn and Sommer, 2007℄. One ommonlaim of these strategies is that Hebbian learning may aount for the forma-tion of reeptive �elds if applied on a sparse representation and that the odingalgorithm used to obtain this sparseness was of seondary importane. Thesealgorithm may be variants of onjugate gradient, of Mathing Pursuit or moregenerally based on orrelation-based inhibition. A more radial solution basedon neurophysiologial evidene and not based on a generative model was pro-posed by [Hamker and Wiltshut, 2007℄, but was in the end also interpretableas an optimization sheme and therefore to the de�nition of a ost through agenerative model of the signal to ode. Thus, these SHL shemes are all similaroptimization algorithms, gradually improving the e�ieny using a stohastialgorithm on the database of signals. All these unsupervised learning algorithmsshow the emergene of edge-like �lters thanks to a orrelation-based inhibitionsuh as may be observed to be neessary for the formation of elongated reeptive�elds [Bolz and Gilbert, 1989℄. However, a major advantage of our formulationis the fat that it is tightly oupled to the oding representation. In parti-ular, the e�ieny is based on spiking nature neural information while otheralgorithms relied on a �ring-frequeny representations. In these shemes basedon an analog representation, the problem of oding and deoding of the valueswas not spei�ally addressed and in most of the ases the deoding solutionwas ahieved as the �xed point solution of a reurrent network This solutiontherefore requires at eah oding step to settle to a �xed point and is there-fore inompatible with the rapidity of ortial proessing [Keysers et al., 2000℄.Moreover, a ruial feature of our solution is that the output of the odingalgorithm gives non-linear results. For instane, for a mixture of images, theoutput to the sum of two images is not neessarily the sum of both individ-ual output. Moreover, the response seletivity to rotated oriented lines will besharper than the linear response [Perrinet, 2005℄. This provides an alternativeto the debate between forward and reurrent models for the origin of seletivityby o�ering a funtional reasoning behind the emergene of orientation sele-tivity. In partiular, we predit that it will exhibit a similar non-linearity inthe spiking response without the need of expliitly adding after the �rst stageof mathing a parametrized non-linear gain ontrol that mathes physiologialreordings [Carandini et al., 1997, 2005℄. As a onsequene, by taking advan-tage of the parallel arhiteture of the ortex, we propose a new interpretationfor the reeptive �elds of neurons whih in this view self organize optimally inaordane with neighboring neurons and an therefore only be understood asa whole in an assembly.The work presented here is part of a larger program aiming at assessing qualita-tively the funtional e�ieny of di�erent modeling solutions to omputational19



neurosiene problems. Using onstraints from neurosiene, we have built asolution to the LGM inverse problem whih we proved to be more e�ient thanthe Mathing Pursuit algorithm by using these quantitative tools. In fat, byinluding an adaptive homeostasis mehanism, we optimized the e�ieny of therepresentation and proved that image pathes ould be e�iently oded by abinary event-based representation. We proved also that this homeostasis playeda signi�ant role in these results but also that ounter-intuitively textured �ltersould also be good andidates for optimal oding in V1 if the goal was set bya di�erent oding ost. Computationally, the omplexity of the algorithms andthe time required by both methods was similar on the di�erent simulations ona standard sequential omputer. All these models were implemented with theintention of providing reproduible researh and are freely available and we en-ourage to modify them (see Annex. 5.1). However it should be stressed that thetransfer of this tehnology to parallel arhitetures will provide a supra-lineargain of performane. In fat, the SSC algorithm onsists of simple operations(integrating and spiking) partiularly adapted to an implementation on parallelarhiteture suh as an aVLSI. A major advantage is that it provides a progres-sive dynamial result while the onjugate gradient method had to be reomputedfor any di�erent number of oe�ients. In fat, the most relevant informationis propagated �rst and the reonstrution may be interrupted at any time. Itse�ieny makes it a good andidate for future tehnologies of information pro-essing. In partiular, it ompares favorably with ompression methods suh asJPEG [Fisher et al., 2007℄. Going bak to biology, the e�ieny of suh arhi-tetures may explain on a funtional level why spikes have been seleted duringevolution as an e�ient signal for long range, rapid ommuniations quanta.The main limit of this algorithm is the use of transient signals and of relativelyabstrat neurons. This hoie was deided on purpose to stress the importaneof the network's dynamis: it shows that solutions using spike oding/deodingmay be built and that they prove to be of better e�ieny than traditionalsolutions. A solution of SSC for ontinuous �ows was proposed under the termCausal Sparse Spike Coding in [Perrinet, 2007, Se. 3.4℄, but some new problemsarise (for instane the dynamial ompromise between speed and preision) thatwere beyond the sope of this paper. Moreover, an implementation of SSC usingLeaky Integrate-and-Fire neurons was previously proposed [Perrinet, 2005℄, butthis solution proved to be omputationnaly expensive on a sequential omputerand that it introdued artifats from integration approximations. At least, tokeep mathematial tratability, it is preferable of stiking with abstrat neu-rons whih use a simple set of operations: omputing the orrelation, hoosingthe ArgMax, doing a substrating, retrieving a value from a Look-Up-Table,see Se. 2.3. The advantage is that it eases the extension of this algorithm toother type of parallel event-based algorithms. One extension of the algorithmis to not use the impliit symmetry of �lters whih introdues the onstraintthat if a �lter exists, then the symmetri �lter exists, that is that we rate thee�ieny of a math by the absolute value of the orrelation oe�ient. The re-laxed ondition proved to be more e�ient, suggesting that the symmetry thatis observed is more a general e�et and that sine neurons are not linear inte-20



grator with a reti�er, more e�ient solutions may exist (see Annex. 5.2). Thissimple arhiteture provided also a rih range of other novel experiments, suhas introduing topologial relations between �lters or by using a representationwith some build-in invarianes, suh as translation and saling in a gaussianpyramid suh as in [Hyvärinen et al., 2001; Bednar et al., 2004℄. This last ex-ample provided a multi-sale analysis algorithm were the set of �lters that werelearned were a ditionary of mother wavelets of the multi-sale analysis, henethe name of SparseLet Analysis [Perrinet, 2007, Se. 3.3.4℄. Another interestingperspetive is to study the evolution of the e�ieny of the algorithm with theomplexity of the representation: when inreasing the over-ompleteness, oneobserves the emergene of di�erent lasses of �lters, suh as �rst di�erent po-sitions and edges and then a similar edge with di�erent phases. Exploring theresults for di�erent dimensions of the ditionary may give an evaluation of theoptimal omplexity of the LGM to desribe imagelets in terms of a trade-o� be-tween auray and generality (see Annex. ??). Pushing this experiment to theextreme (that is when the over-ompleteness equals the size of the ditionary ofsignals), one would get a ditionary where every single signal from the databasewould be represented, the so-alled grand-mother neurons. However, the arhi-teture of the onnetions between ortial areas suggests that information isdistributed, that this distribution is organized aording to a hierarhial butalso reursive arhiteture and that an important feature is the generalization ofthe representation aording to noise or ommon transformations (for an imagea translation, a di�erent non-uniform lighting, an olusion,...). This alls forthe extension of this kind of approah to a more integrated multi-sale approahwere events ould be a more general bit of information, from a synapti quanta,a spike (suh as studied here), a burst in a ortial olumn or an ativation inan area.AknowledgmentsThis work was supported by a grant form the Frenh Researh Counil (ANR�NatStats�) and by EC IP projet FP6-015879, "FACETS".5 Supplementary material5.1 Annex: Computational implementationThe whole olletion of simulation sripts were written with the intention of on-trolling the onvergene of the algorithms and the relative e�et of the di�erentparameters. All sripts to reprodue the �gures and supplementary material areavailable on the author's website (see http://inm.nrs-mrs.fr/LaurentPerrinet/SparseHebbianLearning)Version 1.5 and experiment 20080115T201309was used for this paper, and other�gures regarding ontrol experiments may be found there. The original param-eters of SparseNet were used for the CGF algorithm.21
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Table 1: Parameters used in the simulations
where ′../results/20080115T 201309′version mp-sparsenet-1.5

L 256
M 324

num− trials 32001
eta− cgf 1
eta− ssc 0.1

switch− sym 1
image− base ′../data/IMAGES′

batch− size 100
frac 0.5

noise− var − cgf 0.017
noise− var − ssc 0.008

alpha−mp 0.8
eta− homeo 0.01

var − eta− cgf 0.001
var − eta− ssc 0.0025

n− quant 256
alpha 0.02

V AR −GOAL 0.1
beta 0.2

sigma 0.1
tol 0.0031
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Figure 5: Control of the statistis of the inputs. (Left) One set of imageletsdrawn from SparseNet. Another set of images was used as a ontrol and gavesimilar results. However, the images had to be fairly homogeneous (and thereforetextured) sine it happened to draw a path from a �at area (suh as the sky) inwhih ase the signal was poor and the onvergene of the learning was slower.When omparing the e�ieny of two algorithms, we were areful to show forboth the same set of imagelets. (Right)We show here a 16×16 matrix of 16×16orrelation values representing the ovariane matrix of the set of images. Thisshows that luminane's orrelation between 2 points is low (gray) omparedto auto-orrelation (white) when inreasing the distane between both pointsto more than one pixel, validating the whitening hypothesis for the image'spreproessing.
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Figure 6: Solution with non-negative oe�ients. When releasing thesymmetry onstraint, the learning algorithm onverged to a similar set of �lters.However, the onvergene was quiker and proved to be of higher e�ieny.This suggested that the assumption of symmetry of the sign of the oe�ientsis not stritly true for the LGM and that a non-negative representation is moree�ient. See sript experiment_symmetri.m to reprodue the �gure.5.2 Annex: Symmetry of �ltersTo ompare our algorithm with SparseNet, we similarly assumed that in theditionary, �lters were symmetri. In fat, inspired by biology, reeptive �eldsoften oexist with opposite polarities (the so-alled ON/OFF symmetry). Thisimplied a onstraint in the generative model that when looking for a math,the orrelation ould be positive or negative and therefore that the best mathshould be hosen as the greatest absolute value in Eq. 9. If we rather hoose aditionary of double the size and that we hoose only the greatest values (thatis not applying the absolute operator) we will obtain a system were eah spikewould have the same informational ost (the additional bit replaing the polaritybit from the symmetri ase). We therefore look similarly to the non-negativerepresentation without any further modi�ation of the algorithm. The solutionto the problem when releasing the symmetry onstraint looked qualitativelysimilar but proved to be of slightly higher e�ieny (see Fig. 6).5.3 Annex: Robustness to a perturbationAs an adaptive algorithm, we heked that the system returned to a similarmarosopi state after a perturbation. To illustrate that, we perturbed one�lter (by re-initializing it to a random �lter) and ran again the algorithm. The�rst e�et was that the orresponding gain funtion hanged sine the orrela-tion oe�ients values dropped for that partiular neuron. As a onsequene,24



the homeostati onstraint relatively �boosted� the orrelation values of thisneuron relative to the other neurons so that the hoie of hoosing any neu-ron was uniform. After a few steps, the �lter retrieved and edge-like shapewhih was often lose to the feature prior to the perturbation, sine this fea-ture was momentarily �absent� from the representation ditionary. See sriptexperiment_perturb.m to reprodue this experiment.5.4 Annex: Robustness of the methodsWe inluded in our omputational framework the ability of exploring the evolu-tion of the e�ieny of one model when hanging one single parameter aroundthe operating point that was hosen over the experienes (see table in An-nex. 5.1). This �perturbation analysis� allowed to trae if the hosen parameterswere giving loally the best e�ieny so that the omparison of two algorithmswas valid. It also allows to identify the parameters whih are the most relevantin the sense that small variations will indue big hanges of e�ieny. This wasin partiular true for the SparseNetalgorithm. It showed in partiular thatSparseNetwas more sensitive to parameters (inluding learning rate, home-ostasis parameter) than our solution and that the parameters for tuning theparametri model (in partiular the parameters β and σ) were of partiularimportane.ReferenesHorae B. Barlow. Redundany redution revisited. Network: Computation inNeural Systems, 12:241�25, 2001.Joseph J. Atik. Could Information Theory Provide an Eologial Theory ofSensory Proessing? Network: Computation in Neural Systems, 3(2):213�52,1992. URL http://ib.nea.gov.ar/~redneu/atik92.pdf.Bruno A. Olshausen and David J. Field. Emergene of simple-ell reeptive �eldproperties by learning a sparse ode for natural images. Nature, 381(6583):607�9, jun 1996.Mihael S. Lewiki and Terrene J. Sejnowski. Learning Overom-plete Representations. Neural Computation, 12(2):337�65, 2000. URLiteseer.nj.ne.om/lewiki98learning.html.Mihael Zibulevsky and Barak A. Pearlmutter. Blind Soure Separation bySparse Deomposition in a Signal Ditionary. Neural Computation, 13(4):863�82, 2001. URL iteseer.nj.ne.om/artile/zibulevsky99blind.html.Laurent U. Perrinet. Finding Independent Components us-ing spikes : a natural result of hebbian learning in a sparsespike oding sheme. Natural Computing, 3(2):159�75, Jan-uary 2004a. doi: 10.1023/B:NACO.0000027753.27593.a7. URLhttp://inm.nrs-mrs.fr/LaurentPerrinet/Publiations/Perrinet04n.25
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