N
N

N

HAL

open science

A Sequent Calculus for Modelling Interferences

Christophe Fouqueré

» To cite this version:

‘ Christophe Fouqueré. A Sequent Calculus for Modelling Interferences. 2007. hal-00156386

HAL Id: hal-00156386
https://hal.science/hal-00156386

Preprint submitted on 21 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00156386
https://hal.archives-ouvertes.fr

hal-00156386, version 1 - 21 Jun 2007

A Sequent Calculus for Modelling Interferences

Christophe Fouqueré

LIPN — UMR7030
CNRS — Université Paris 13
99 av. J-B Clément, F-93430 Villetaneuse, France
cf@lipn.univ-parisi3.fr

Abstract. A logic calculus is presented that is a conservative extension
of linear logic. The motivation beneath this work concerns lazy evalu-
ation, true concurrency and interferences in proof search. The calculus
includes two new connectives to deal with multisequent structures and
has the cut-elimination property. Extensions are proposed that give first
results concerning our objectives.

1 Introduction

Linear Logic is a good framework for interpreting and computing over linear
structures. Since Girard’s seminal paper [1] that gives first insights (proof nets,
phase and coherent spaces), a lot has been achieved among which normaliza-
tion of proofs via focusing and polarization [2,3]. These last results seem to be
intrinsically related to principles underlying cut elimination as it allows for inves-
tigating a reconstruction of logical structures as in Ludics [4]. Recent works done
on concurrent modelling using such a framework seem promising [5, 6]. However,
non series-parallel situations are not taken into account.

We present a logic calculus (and variants) that is a conservative extension
of linear logic. The motivation beneath this work is a careful study of lazy
evaluation in logic programming. Since works of Andreoli [2], we know that full
linear logic may be used as a logical programming language thanks to focalization
and works have been done on lazy evaluation in this case [9]. However we show
in Sect. 3 that cut elimination is false for a naive calculus taking laziness as
a principle. A second motivation concerns the control of true concurrency and
interferences in proof search. For instance, suppose the following problem to be
modelled in logic programming. We have two packs’ of actions: f = € f,, (resp.
g = P gn) such that f, (resp. gn) transforms n occurences of a (resp. b) into n
occurences of a and n occurences of b, where n > 1. We suppose at the initial
state only one resource of each kind (hence one a and one b). We want to simulate
exactly the two following situations:

(i) if the two actions are applied (whatever may be the order) then we have three
possible results: 3 @ and 2 b, 2 a and 3 b, 2 a and 2 b. The first (resp. second)
result is obtained when action f (resp. g) is applied first followed by action
g (resp. f). The third result occurs when the two actions are performed
independently.

(ii) if the two actions are applied strictly concurrently, there is only one possible
result: we get 2 a and 2 b.

This is not possible inside propositional classical or linear logic as it requires a
control between proofs. For that purpose, we basically shift from a sequent view
to a multisequent view. Moreover sharing of formulas occurences between such
sequents is allowed. The reader should have in mind the following elements:

— logical operations are done on occurences of formulas that may be shared
among different sequents,

— a sequent is a place grouping a bunch of occurences,

— each step of a proof transforms zero, one or two multisequents into one
by means of an operation, either structural or logical (in this last case the
operation is done on occurences of formula and entails the structure of the
conclusion),

— equivalently, a multisequent may be defined as a set of places, a set of oc-
curences of formulas and a function relating a place to a set of occurences.

In the following the two interpretations may be used. Shifting from sequents
to multisequents gives place for a new structural operation that joins sequents
(to be compared with the par operation that joins occurences in a sequent).
In a first step we consider a ”2-way” connective that ”relates” two sequents
in a multisequent. Its dual is denoted | and called cpar. We then consider the
following extensions:

— add of a ’cloning’ structural rule: this comes from the observation that inter-
action of a sequent by means of a cut elimination is behaviouraly equivalent
to interaction with two sequents sharing exactly the same occurences. How-
ever this last observation is not provable without such a cloning rule.

— add exponential-like modalities (Sec. 4): standard modalities for linear logic
are available. However as sharing is internal, it allows for adding modalities
whose behaviour is the converse of the standard one.

2 Related Works

Modelling interferences has not yet been really investigated in logic. First of
all, classical logic as well as modal logic do not take seriously into account the
notion of resource, hence appear to be inadequate. Second, modelling (and con-
trolling) interferences may seem contradictory in the framework of Linear Logic
as the splitting mechanism seems at the heart of cut-elimination. However, cur-
rent works done on concurrency are close. Following Girard’s works on Ludics,
Curien, Faggian, Giamberardino [5,6] were able to formalize L-nets that quo-
tient (abstract) proof trees w.r.t. commutation of tensors. This normalization
goes further than the one given by Andreoli with focusing and polarization.
However, non series-parallel situations cannot be taken into account in their de-
notational model. Works close to the research presented here include Bunched
Implications [7] and Deep Inference [8]. But these two last frameworks seem to

fail in keeping basic logical properties as focalization and polarization. The line
of research that is undertaken here introduces a syntactic novelty by considering
that occurences of formulae may be shared by different sequents. This sharing in-
duces a strict synchronization between different computations (i.e. developments
of proofs) and new connectives may be defined that internalize this mechanism.

3 A Multisequent Calculus

Besides the classical multiplicative and additive connectives of Linear Logic, we
introduce two new connectives ctimes ® and cpar | whose intended meaning is
to model strict concurrency.

Definition 1. The formulas, denoted A, B, ..., are built from atoms p, q, ...,
pt, g, ..., constants 1, L, 0, T and the following (linear) connectives:

— (parallel) multiplicative conjunction @ (times) and disjunction % (par),
— (concurrent) multiplicative conjunction ® (ctimes) and disjunction | (cpar),
— additive conjunction @ (plus) and disjunction & (with).

Negation is defined by De Morgan rules:

((ph)* =

()P =Bt® ALt (A¥®B)t=BtoAt

(A® B)* = B+ | A+ (A| Byt =Bt oAt

(A® B)* = B+ & At (A& B)t = Bt @ A+

1t=1 o0ot=T 1t=1 Tt=o0
A—oB=A*%®B

p
1

3.1 Structures of Multisequents

Definition 2. A formula context I" has one of the two following forms:

— A formula A
— A finite multiset of formula contexts separated by commas Aq,...,Ay,. 7, is
considered commutative and associative.

Sequents are of the form {I'}, where I' is a formula context. A multisequent is a
finite multiset of sequents. Multisequents are denoted S, 7, ... If a multisequent
is reduced to one sequent, {’ and '}’ may be omitted. A multisequent may contain
sequents that are not disjoint: an occurence of a formula may appear in different
sequents. Such sequents are said to be linked. Superscripts are put if different
occurences of the same formula occur. The principal formulas occurences of a
(logical) rule are formulas from the hypotheses on which the rule applies. The
principal sequents are sequents where the principal formulas occur.

Ezample 1 (multisequents). {A, BY{C, D}: this multisequent involves four for-
mulas and two (disjoint) sequents whereas {A, B}{B, C}{C, D} involves three
sequents and four occurences of formulas.

At first glance, rules given in sequent calculi may seem strange: Throughout
the paper, contexts of a principal occurence are identified by a free subscript. For
example, {I};, A} means a multiset of sequents (the domain of the free subscript
i) where the same occurence A appears. Note that the domain of ¢ cannot be
empty. Sequents that remain unchanged by a rule are either replaced by dots or
by a notation for a multisequent. If a proof involves different occurences of the
same fomula (hence different contexts), these occurences are distinguished by a
superscript:! remark this in the & -rule in Fig. 2.

3.2 A Naive (and Wrong) Attempt

Lazy logic programming relies mainly on a lazy splitting of contexts when con-
sidering the ® rule. The standard ® rule is the following one:

{IA} {A, B}
{A, I A® B} (®)

In a bottom-up proof search, as it is the case in logic programming, applying
this rule requires to know how to split the multiset A, I". A lazy way consists
in delaying this separation. Let us note | the connective ® defined in a lazy
way. Shifting to multisequents, this may be given by sharing the whole multiset
A, I' between the two sequents in the hypothesis (remember that occurences are
shared between sequents if no superscript is present):

{A, I AY{A, I, B}
{A, A | B} 0

We suppose further % still dual to |: (A | B)* = B+ % A'. Following these
guidelines, a system for a lazy Multiplicative Linear Logic (lazy MLL) is given
in Fig. 1. However a counter-example to cut-elimination is easy to find:

{AL A% 1} and {AL|1,A® L}{AL| 1,11 %12} are provable.
But {AL, A% 1}{A+ 1'% 12} is not provable:

false
{A+, A1 }{1}{1?} {1,1%}

At,A [AS AMAS 1N 121, AN{1,10,12) (AL A1 12}
At AL and (ASLAMAL 1,1 1%) but (AL A}{AS 11 1%)
AT AT L (ALLA, LA 1,112 (AL A1} {AT 11 1%}

{At1,AB L} {A+1,1M %1%} {AL ABL}{A+ 11312}

L' A context I" with a supersript supposes the superscript for each formula of the
context.

Structural rules
AL, AMAY . (@ S S (s L ALVA B A}
AL AHA AL S1855 L ALB,A A} ...

Logical rules (in rules (1) and (aziom), the multisequent consists of only one sequent)

A AL (axiom)
7 (M {;i} =
AL, A B} .. AL AT, BY .
. AL, A® B}...) . AL,A| B} .. ()
Cut rule
A AY {4y AL
AT AT (cut)

Fig. 1: Sequent calculus for a bad lazy MLL. i, j € N* in rules.

3.3 The Calculus CMALL

In order to circumvent the previous situation, lazyness is modelled by means of
two specific connectives | and ® besides the two multiplicative connectives % and
® of Linear Logic. The rules of the sequent calculus Concurrent Multiplicative
Additive Linear Logic (CMALL) are given in Fig. 2. The system includes a
cloning structural rule (c), however one may note that proofs of cut elimination,
asynchrony, ... we give in the following are still true without this rule. Examples
of instantiation of the rules are given below to help the reader recover standard
situations.

Ezample 2 (Rule instantiation). (A, B, X,Y, Z are formulas)

{X, Ay, A} {Z B} {XHX, AH{X, B} = {XHX, A B}
(X, Z, A2 B}{Y,Z, A2 B} (xXHXx, A|B} V{XHX AZ B}

(%)

It is easy to prove the following statements (multisequents may be given
two-sided for easiness of reading):

— A® B—A | B is provable:

{A+,A} “ {B*,B} ;u
{A+ AY{B* B}
{At B+ A}{B*,B}
{A+ B+ A}{A+,B+,B}
{A+ B+ A|B}
{A+®B* A|B}

— | is asynchronous (lemma 2) whereas ® is synchronous. Although | does
neither distribute over %, nor the converse. But | does distribute over & :
A|(B&C)H-(A| B)& (A | C) is provable

{A17AL1} {B,BLl} {A27AL2} {C,CLQ}

{a',(ateBH)'} {B,(AT0BM)'} {A%,(atech)?} {C(ATech)?}
{A'(ATeBM)®(AT0CH)'} {B,(ATeBY)®(AT0CH)'} {A%,(AteBh)@(ATeCh)’} {C(ATeBh)e(Atech)?}
{A,(AtoBYHpAtoch)} {B&C,(AtoBYHe(Atocth)}

{A|(B& C),(ATOBH)®(A-0CH)}

{B,BLI} {C,CLQ}
{44} {B,(B*eCh)'} {A4,A+%} {C(BTaCh)%}
{AJAto(BraCct)'}Y {B[AtoBrechH])'} {A4AtoBrechH))?} {CjAto(Brect)?}
{A|B[AtoBeCH)]'} {AlC,[AT OB aC)]’}

{(A|B) & (A|C),A*O(B*®CH)}

— ® #| Remark that {1, 1 ® L} is not provable, but {1, L | L} is provable
(the two L are indexed to distinguish them, however these two denote the
same constant; note also that there is only one occurence of 1 throughout
the proof): it
{13{1}

(1L

{1,L7}{1,1?}

1,1%12

Proposition 1. The system enjoys cut-elimination: if S is a provable multise-
quent, then there exists at least one cut-free proof of S.

The proof of cut-elimination (see annex) relies mainly on a reconstruction
of proofs in case the two last rules concern the cut formulas, and on the three
following lemmas that allow the commutation of rules. The standard definition
of the height of a proof is generalized: the height of the proof of a multisequent
is the maximum of the heights of each partial proof.

Lemma 1 (Separability). Let S and T be disjoint multisequents (i.e. there is
no occurence of formulas shared by S and T), the multisequent ST is provable
iff S is provable and T is provable.

Lemma 2 (Asynchrony). The connectives B, & ,| are asynchronous: let R
be an inference rule of one of these connectives (denoted o below), let S be a
provable sequent of proof

T
..{AoB, T}...

RonAoB

...{A';;B','f}...

then there exists a proof of the same height of S with R as the last rule.

Structural rules

Ay AL AHAY .. S S

T iaHar @ T AnA Ay @ 55 *)
Logical rules (in rules (1) and (aziom), the multisequent consists of only one sequent)
A AL (axiom)
7 {;j} L
{FMT} (M no rule for 0
L ALVAY.. {4, B} AL,A B} ...
A LAsB.® Tnaspr.
L ALAY.. {4, B} o ALANTI, B
AL AGBHA Ao By @ A W

Sl{Fi17A} 82{Fi27B}

A AY L AL, B} .. (&)
. {l,,A®B}... (@1)...{Fi,A@B}M (©2) S{I;, A& B}
Cut rule) o AL}
iy {F“AJ}‘” (Cut)

Fig. 2: Sequent calculus for CMALL

Lemma 3 (Synchrony of the cut rule). The cut rule is synchronous, i.e. let
a proof of S be of the form in the left hand side (R is a rule), then one can build
a proof of the same height of S of the form in the right hand side:

U[A] R UlA] VAL
WAl V[AL] cut & R o
S S

4 Shared and Unshared Modalities

Modalities may be added to the system in the spirit of exponentials in Soft
Linear Logic [10]. They are written as upperscripts on formulas: A® and A“.
The sharing .* modality (resp. the unsharing .*) is reminiscent of the why-not ?
(resp. the of-course !). Rules are completed with the ones given below:

AT A L ALLAY.
AL, A%) ...{F;,Au}...(')

Proposition 2. Cut-elimination for CMALL with modalities is valid.

Ezample 3. (Rule instantiation)

{X"AH{Y" AH{X? BH{Y* B} | {X,A}{Y,A} N
{X,A°}{Y,A°}{X,B°}{Y,B*} %) {X®,A"}{Y*, A"} (9

The sharing modality enjoys the following property: A—oA*® | A% is provable

ALI Al ax ALZ A2 a
(At A°){at 4%y
AL,AS‘AS

The previous example shows that a unique resource A may be used for two
different actions: let us suppose a system has one resource A, and a set of pro-
cesses each needing one resource A, may we run them together 7 The answer is
yes if two conditions are satisfied: (i) each process accepts to share its needed
resource with others, (ii) the processes run concurrently. We formalize each pro-
cess P; as A © R; where A © B = At | B (R; is the formula modelling
the result of P;): this answers condition (i). Concurrence between processes is
denoted as P; ®...® P,. We have then the following provable and non-provable
two-sided sequents (1 <14 < n):

APk R;

APiO...0P,FRi®...0R,

The fact that the third sequent is not provable is obvious (even if each process
is modelled A—oR; !). We just give the proofs for the two others (we set n = 2
in the second proof for sake of clarity).

ax

At A
%)

— aXx
Ri\R; At A®
At A*®R} R,

ax ax
{ALI,AI} {AL2,A2} i ~ ~
fAtt A A A% {R{ R} {R{ ,R1}
{AL As1y{At A2y) {R{,R1®R:}{RE,R1OR2} .
{AL A R} ,R1OR2}{AL A*2}{Ry ,R1OR2}
{A+ A} {Ry ,R1OR2}{ A+, A2} {AL RS ,R1OR2}
{A+ AR} ,Ri1OR2}{AL ,A%2 RiOR2}{ A Ry ,R1OR2}
{A+ A RiOR2}{ R} ,R1IOR2}{AL A2 RIOR2}{AL Ry ,R1OR2}
{AL A% RiOR2}{A Ry, RIOR2}{A+,A°% RiOR2}{AL Ry ,R1OR2}
{A+ A RiOR2}{A R ,RIOR2}{A*,A°|Ry ,R1OR:}
{A* A®|R{ \R1OR2}{A* ,A°|Ry ,R1ORs}
AL (A°|RT)|(A°|Ry), R1O Ry

5

Conclusion

An original logic calculus (with variants) is presented that is a conservative ex-
tension of Linear Logic, at the theoretical level, and at the language level. The
motivation beneath this work concerns lazy evaluation, true concurrency and
interferences in proof search. We show that cut elimination is false if one con-
siders a naive approach. The calculus CMALL adds two new connectives to deal
with multisequent structures. It has the cut-elimination property. Extensions are
proposed that give first results concerning our objectives.

References

10.

Girard, J.Y.: Linear logic. Theoretical Computer Science 50 (1987) 1-102
Andreoli, J.M.: Logic programming with focusing proofs in linear logic. Journal
of Logic and Computation 2(3) (1992) 297-347

Laurent, O.: Syntax vs. semantics: a polarized approach. Theoretical Computer
Science 343(1-2) (October 2005) 177206

Girard, J.Y.: Locus solum. Mathematical Structures in Computer Science 11
(2001) 301-506

Curien, P.L., Faggian, C.: L-nets, strategies and proof-nets. In Ong, C.H.L., ed.:
CSL. Volume 3634 of Lecture Notes in Computer Science., Springer (2005) 167-183
Giamberardino, P.D., Faggian, C.: Jump from parallel to sequential proofs: Mul-
tiplicatives. In Esik, Z., ed.: CSL. Volume 4207 of Lecture Notes in Computer
Science., Springer (2006) 319-333

O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. Bulletin of Symbolic
Logic 5(2) (1999) 215-244

Guglielmi, A.: A system of interaction and structure. ACM Transactions on
Computational Logic 8(1) (2007)

Cervesato, 1., Hodas, J.S., Pfenning, F.: Efficient resource management for linear
logic proof search. In Dyckhoff, R., Herre, H., Schroeder-Heister, P., eds.: ELP.
Volume 1050 of Lecture Notes in Computer Science., Springer (1996) 67-81
Lafont, Y.: Soft linear logic and polynomial time. Theoretical Computer Science
318(1-2) (2004) 163-180

6 Annex: Sequent Calculus

We only give sketches of the proofs.

Lemma 4 (Separability). Let S and T be disjoint multisequents (i.e. there
are no occurences of formulae appearing in S and in T), the multisequent ST is
provable iff S is provable and T is provable.

Proof. The structural rule of separation (s) gives one direction. The other direc-
tion results from the following remark: principal sequents give linked sequents
in the conclusion, except for the rule of separation (s). Hence rules apply inde-
pendently on S and 7.

Lemma 5 (Asynchrony). The connectives %, & ,| are asynchronous: let R be
an inference rule of one of these connectives (noted o below), let S be a provable

sequent of proof
T

T{AB.IT.. R on AoB

T {AeB.IT..
then there exists a proof of S with R as the last rule.

Proof. Tt suffices to prove that a rule may be shifted upward if the before last
rule concerns an asynchronous connective. This is proved by induction on the
height of the proof.

rule (w): From (A and B range over i and ig in the following proof):
{AB.[}{AB.T;)}...
{ARB.IH{ABB [y} ..
{ARBI,J{ABB. L1y HARB Ii }oo

then one can define the following proof:
..{A,B,[\}{A,B, Ty }...
{ABIH{AB I HAB).
{ABB, [, }{ABB, [, }{ABB, I}, }..

rule (d): From:
AL A,BY{A}...
{1, ARBI{A; ...
. A{I,ABB}{A,,A%BB}...

One can build (twice rule d):

A, ABY A}
AL, AB}{A;,A}...
A{I:,A,B}{A;,A,B}...
..{I,,ARB}{A;,A%B}...

10

rule (®): From (A ranges over iz and i3, X and Y range over i; and i3):

A XY HX,Y, Ty , AY{A,Tig } ..
AT XBY HXBY, Tiy,AH{A, Ty } ... ¥ a,.B}...

1 igs

{F'Ll XWY}{XWYF7,2,A®B}{A®B,F13}{A]A@B}

One can build:

AL XY HX YTy AYA LY. . {A;B}...
{Fll ,X,Y}{XY,FlZ,AQB}{AQB,F.LS}{A]A@B}

i1 igs

rule (|): From (X and Y range over ¢ and j, A and B range over j and k):

AL X Y T, X, Y, AT, X,Y,B}{ D), A} {®y,B}...
AALXBY I, XRY, AT, XBY,B}{&y,A}{Pk,B}...
AALXBY I, XBY,A|B}{P,A|B}...

One can build:
AALX YT, XY, A}, X, Y, BY{®r, A} By, B}...
AL X, Y{T;,X,Y,A|B}{®,A|B}...
AALXBY T, XBY,A|B}{®r,A|B}...

Other rules: Other cases are immediate.

rule (w): From:
AT, A}y, BH sy, AY{ Ty B} ..
- AT:,A|BY{Lyy,A|B}... .
AT, AlBH{Lig A|BH T, A| B}

One can build (twice rule w):

ALy AY{Iy BTy AY{Tsy B} ..
AT AT B og AH{Tig AN Lig B
AT AT, BY{Tig A}{Tig B i . A} Tig B - |
AT ABY{Tig AIB}{Iig AlB} ..

rule (d): From:
A A XYy, AH{ g, BH T3, AY{T3,B}..
- {A,X}{Ty,A|B} T, A|BY...
{A Xy A|B.X I, A[B}...

One can build (twice rule d):

- AAX iy A iy, B I, AT, B}
AA X {Tig A X og BT AN BY .
AAXH Ty, A X H Ty, B, X H{ i, AT, B}
" {A XM I ABXHILA|B}..

0>

11

rule (%): From:

...{Ai,X,Y}{Fj,X,Y,A}{Fj,X,Y,B}{ék,A}{¢k,B}...
A{ALX Y {I;,X,Y,A|BH®r,A|B}...
{ALXBY (I}, XBY,A|B}{®r,A|B}...

One can build:

AALX Y M, X, Y, AT}, X,Y,B}{Pr,A}{®x,B}...
AALXBY I, XRY, A}, XBY,B}{&y,A}{Pk,B}...
{ALXRY I}, XBY,A|B}{r,A|B}...

rule (®): From:

AL A, BY{A;,A,X}{A;,B,X}...
AL, AIB}Y{A;,A|B,X}... | PR Y Y
AL, A|BYA;,A|B,&y, XY }...

One can build:

AT A1, BY{ A A, X}{A; B X} B,V).,
AL AT, BYA;,A,8,, XQY }HA; Bk, XRY }...
{F17A|B}{A]A‘B,¢k,X®Y}

rule (]): From:

AL XTI YA, X, A A, X, B} A;,Y,AY{A;,Y,B} &1, A}{Dk,B}...
AL XTI, Y A, X, A|BYA;,Y,A| B} &1, A|B}...
AL X|YHA; X|Y,AB}{®,A|B}...

One can build:

AL XTI YA, X, A A;, X, B} A;,Y,AY{A;,Y,B}{®r, A} {Dk,B}...
AL X|YHA; X|Y,AHA; X|Y,B}H{®r, A} {D4,B}...
AL X|YHA; X|Y,AB}{®,A|B}...

rule (®): From:

A4, X H{Tiy, X, AY{ Ty, X, BY{ By, A} { P, B} ...
AT, X H{Tsy X, A|B}{ P, A|B}... A Y}
Al , XOY Iy, XOY,A|BHA,;, XOY }{&x,A|B}...

One can build:

AT X H Doy X, Ay, X, BH{Pr, APy, B}... ..{A;,Y}...
AL, XOY HA; XOY HTiy , XOY,AH{ Ty, XOY,BH{ &y, APy, B} ...
AL, XOY HA;, XOY I, ,XOY,A|B}{®,A|B}...

27

case other | Other cases are treated as usual.

12

Lemma 6 (Synchrony of the cut rule). The cut rule is synchronous, i.e. let
a proof of S be of the following form (R is a rule):

Ul4]
wilAl T viat]
f cut
one can build a proof of S of the form:
U] viat]
o
S

Moreover, the height of the partial proof ending with the cut rule in the second
case is less than in the first case.

Proof. By proving permutation properties as for proving synchrony of ®.

Proposition 3. The system enjoys cut-elimination: if S is a provable multi-
sequent, then there exists at least one cut-free proof of S.

Proof. By induction on the height of the proof. The synchrony of cut allows us to
check only the last rule applied on each branch. Furthermore, as the connectives
%, | and & are asynchronous, we are allowed to consider that only dual rules
are applied as last rules.

case Axiom | Obvious.

case 1/L1 | This case is obvious as the proof looks like:

AL}
Loy * miut
AT}
pom
A{ABB Y. AT} {BNA)
{A®B B }... L {At@BL A}
PR 5,05 cut
One can build:
W AAB,®LY... {AL D}
{B.®.Ii}... cut o Bt.A,)
ADu. 5, A5 cut
-
AP BB} ~AAN LY LB A
.{A|B,®}... | AATeBY AT OB A

cut
APk, i H{ P, A T

13

One can build:

ALY L {AP B, P} ot
AL P B, Pi). et (Bt.AY
{@kﬂ,}{ékA]}

cut

case .°/.*| From:

AL AN A AL (A
AT ATHIL A AT (AT ey
AT AT, A3, @)

u

cut

One can infer: ‘ y
AT AT A A L {ADY

X m cut
{FZ]A]}{FZJ ,Aj/ @k}

AT A HT, A% By}

14

