

Escaping Complexity

, Can reall, higher-complexity system dynamics be understood at the leve/ of rigouir of Newtonian science?

- The problem of unreduced many-body interaction (unso/ved in Newtonian science)
- The unique possibility for a new progress of filniclamental science (otherwise "ending")
- Universal Science of Complexity

Universal Science of Complexity

Multivalued Dynamics of Unreduced Interaction

Arbitrary many-body interaction process:

$$
\left\{\sum_{k=0}^{N}\left[h_{k}\left(q_{k}\right)+\sum_{l>k}^{N} V_{k l}\left(q_{k}, q_{l}\right)\right]\right\} \Psi(Q)=E \Psi(Q), \quad Q=\left(q_{1}, q_{2}, \ldots, q_{N}\right)
$$

or

$$
\left\{h_{0}(\xi)+\sum_{k=1}^{N}\left[h_{k}\left(q_{k}\right)+V_{0 k}\left(\xi, q_{k}\right)+\sum_{l>k}^{N} V_{k l}\left(q_{k}, q_{l}\right)\right]\right\} \Psi(\xi, Q)=E \Psi(\xi, Q), \quad \xi \equiv q_{0}
$$

The unreduced (nonperturbative) general solution is always probabilistic (phenomenon of dynamic multivaluedness = intrinsic chaoticity):

$$
\rho(\xi, Q)=\sum_{r=1}^{N_{\Re}} \oplus \rho_{r}(\xi, Q)
$$

Dynamically determined probability

$$
\alpha_{r}=\frac{N_{r}}{N_{\Re}}, \quad \sum_{r} \alpha_{r}=1
$$

Unreduced Interaction Dynamics

Arbitrary interaction process in terms of (free) component eigenvalues:

$$
h_{0}(\xi) \psi_{n}(\xi)+\sum_{n^{\prime}} V_{n n^{\prime}}(\xi) \psi_{n^{\prime}}(\xi)=\eta_{n} \psi_{n}(\xi)
$$

where the total system state-function is obtained as

$$
\Psi(\xi, Q)=\sum_{n \equiv\left(n_{1}, n_{2}, \ldots, n_{N}\right)} \psi_{n}\left(q_{0}\right) \varphi_{1 n_{1}}\left(q_{1}\right) \varphi_{2 n_{2}}\left(q_{2}\right) \ldots \varphi_{N n_{N}}\left(q_{N}\right) \equiv \sum_{n} \psi_{n}(\xi) \Phi_{n}(Q)
$$

Usual perturbative (mean-field) approximations:

$$
\left[h_{0}(\xi)+V_{n n}(\xi)+\tilde{V}_{n}(\xi)\right] \psi_{n}(\xi)=\eta_{n} \psi_{n}(\xi), \quad V_{0}(\xi)<\tilde{V}_{n}(\xi)<\sum_{n^{\prime}} V_{n n^{\prime}}(\xi)
$$

Unreduced general solution of the same problem:

$$
\rho(\xi, Q) \equiv|\Psi(\xi, Q)|^{2}=\sum_{r=1}^{N_{\mathcal{F}}} \oplus \rho_{r}(\xi, Q), \quad \rho_{r}(\xi, Q)=\left|\Psi_{r}(\xi, Q)\right|^{2}
$$

where $\left\{\psi_{i}^{\prime}(\xi), \eta_{i}^{\prime}\right\}$ are solutions of the effective potential (EP) equation

$$
h_{0}(\xi) \psi_{0}(\xi)+V_{\text {eff }}(\xi ; \eta) \psi_{0}(\xi)=\eta \psi_{0}(\xi)
$$

$$
V_{\text {eff }}\left(\xi ; \eta_{i}^{r}\right) \psi_{0 i}^{r}(\xi)=V_{00}(\xi) \psi_{0 i}^{r}(\xi)+>\frac{V_{0 n}(\xi) \psi_{n i^{\prime}}^{0}(\xi) \int d \xi^{\prime} \psi_{n i^{\prime}}^{0^{*}}\left(\xi^{\prime}\right) V_{n 0}\left(\xi^{\prime}\right) \psi_{0 i}^{r}\left(\xi^{\prime}\right)}{\Omega_{\xi}} \eta_{n, i^{\prime}}^{r}-\eta_{n i^{\prime}}^{0}-\varepsilon_{n 0}
$$

Elementary length $\Delta x=\lambda=\left|\Delta \eta_{i}^{r}\right|$, time $\Delta t=\Delta x / v_{0}$, action $\Delta \mathscr{A}=V_{\text {eff }} \Delta t$

Unreduced Interaction: Dynamic Multivaluedness (Chaos)

Unreduced Interaction Complexity

UNIVERSAL DEFINITION OF DYNAMIC (INTERACTION) COMPLEXITY:

$$
C=C\left(N_{\Re}\right), \quad \frac{d C}{d N_{\Re}}>0, \quad C(1)=0
$$

where N_{\Re} is the (dynamically derived) system realisation number for example: $\quad C=C_{0} \ln \left(N_{\mathfrak{R}}\right), \quad C=C_{0}\left(N_{\mathfrak{R}}-1\right)$, etc.

Universal dynamic complexity includes intrinsic chaoticity due to the dynamically probabilistic problem solution:

$$
\rho(\xi, Q)=\sum_{r=1}^{N_{\mathfrak{\Re}}} \oplus \rho_{r}(\xi, Q)
$$

with the dynamically determined probability

$$
\alpha_{r}=\frac{N_{r}}{N_{\Re}}, \quad \sum_{r} \alpha_{r}=1
$$

Unreduced Complexity Measures

Two universal, emerging forms of complexity, space and time

$$
\Delta x=\lambda=\left|\Delta_{r} \eta_{i}^{r}\right|, \quad \Delta t=\Delta x / v_{0}
$$

Generalised action \mathcal{A} is the simplest combination of space \& time:

$$
\Delta \mathcal{A}=p \Delta x-E \Delta t
$$

$\mathcal{A}=\int p d x \propto N_{\mathfrak{R}}$ is a universal integral complexity measure Differential complexity measures:

$$
\text { momentum } \quad p=\frac{\partial \mathcal{A}}{\partial x}=\left.\frac{\Delta \mathcal{A}}{\Delta x}\right|_{t=\text { const }}
$$

(spatial rate of realisation emergence)
energy/ mass $E=m v_{0}^{2}=-\frac{\partial \mathcal{A}}{\partial t}=-\left.\frac{\Delta \mathcal{A}}{\Delta t}\right|_{x=\text { const }}$ (temporal rate of realisation emergence)
Dispersion relation: $p=E \frac{v}{c^{2}}=m v, v=\frac{\Delta x}{\Delta t} \rightarrow$ causal relativity

Generalised wavefunction (distribution function)

Total number of unreduced EP eigenvalues:

$$
N_{\max }=N_{\xi}\left(N_{\xi} N_{q}+1\right)=\left(N_{\xi}\right)^{2} N_{q}+N_{\xi} \rightarrow N_{\Re}=N_{\xi} \text { "regular" realisations }
$$ of $N_{\xi} N_{q}$ eigen-solutions each + "incomplete" set of N_{ξ} eigen-solutions = transitional realisation, generalised wavefunction, or distribution function \Downarrow

causal extension of usual quantum-mechanical wavefunction $\Psi(x)$ transiently weak EP, disentangled components, system restructuring

Causally generalised Born probability rule: $\alpha_{r}=\left|\Psi\left(X_{r}\right)\right|^{2}$ -
Generalised Hamilton-Jacobi equation for action-complexity $\mathcal{A}(x)$

$$
+\underset{\downarrow}{+} \text { causal quantisation rule, } \Delta \mathcal{A}=-\mathcal{A}_{0} \Delta \Psi / \Psi
$$

universal Schrödinger equation

$$
\left.\mathcal{A}_{0} \frac{\Delta \Psi}{\Delta t}\right|_{x=\mathrm{const}}=\hat{H}\left(x,\left.\frac{\Delta}{\Delta x}\right|_{t=\mathrm{const}}, t\right) \Psi(x, t)
$$

Universal Regimes of Complex Dynamics

Two limiting regimes of complex dynamics: multivalued self-organisation/SOC and uniform (global) chaos Universal criterion of global (strong) chaos:

$$
\kappa \equiv \frac{\Delta \eta_{i}}{\Delta \eta_{n}}=\frac{\omega_{\xi}}{\omega_{Q}} \simeq 1
$$

or resonance of the main system motions
Criterion of quasi-regularity (self-organisation): $\kappa \ll 1$ (or $\kappa \gg 1$)
As network intensity grows one cannot avoid resonance("jam"): $\kappa \sim 1$ and therefore essential dynamic randomness becomes inevitable

Highly complicated interaction networks cannot be close to regularity Ordinary, unitary dynamic models and approaches are inapplicable

Let's transform the unitary approach defect (system failure) into the unreduced, complex-dynamic operation advantage : superior power and qualities

Dynamically probabilistic firactal

Unreduced general solution of a problem:

$$
\rho(\xi, Q) \equiv|\Psi(\xi, Q)|^{2}=\sum_{r=1}^{N_{\mathfrak{K}}} \oplus \rho_{r}(\xi, Q), \quad \rho_{r}(\xi, Q)=\left|\Psi_{r}(\xi, Q)\right|^{2}
$$

$\left\{\psi_{n i}^{0}(\xi), \eta_{n i}^{0}\right\}$ are solutions to a truncated problem:

$$
\left[h_{0}(\xi)+V_{n n}(\xi)\right] \psi_{n}(\xi)+\sum_{n^{\prime} \neq n} V_{n n^{\prime}}(\xi) \psi_{n^{\prime}}(\xi)=\eta_{n} \psi_{n}(\xi)
$$

treated by the same generalised EP method:

$$
\left[h_{0}(\xi)+V_{\mathrm{eff}}^{n}\left(\xi ; \eta_{n}\right)\right] \psi_{n}(\xi)=\eta_{n} \psi_{n}(\xi)
$$

Dynamically probabilistic fractal

Unreduced EP of the second level

$$
V_{\mathrm{eff}}^{n}\left(\xi ; \eta_{n}\right) \psi_{n}(\xi)=V_{n n}(\xi) \psi_{n}(\xi)+\sum \frac{V_{n n^{\prime}}(\xi) \psi_{n i}^{0 n}(\xi) \int_{\Omega_{\xi}} d \xi^{\prime} \psi_{n^{0}{ }^{0,}}\left(\xi^{\prime}\right) V_{n^{\prime} n}\left(\xi^{\prime}\right) \psi_{n}\left(\xi^{\prime}\right)}{\eta_{n}-\eta_{n^{\prime} i}^{0 n}+\varepsilon_{n 0}-\varepsilon_{n^{\prime} 0}}
$$

describes second-level splitting into incompatible realisations
The unreduced general solution is the dynamically probabilistic fractal:
$\rho(\xi, Q)=\sum_{r, r^{\prime}, r^{\prime \prime} \ldots}^{N_{\mathcal{K}}} \oplus \rho_{r r^{\prime} r^{\prime \prime} \ldots}(\xi, Q), \rho_{\exp }(\xi, Q)=\sum_{r, r^{\prime}, r^{\prime \prime} \ldots}^{N_{\Re}} \alpha_{r r^{\prime} r^{\prime \prime} \ldots} \rho_{r r^{\prime} r^{\prime \prime} \ldots}(\xi, Q)$
with dynamic entanglement (ξ, Q) and dynamic probabilities.

$$
\alpha_{r r^{\prime} r^{\prime \prime} \ldots}=\frac{N_{r r^{\prime} r^{\prime \prime} \ldots}}{N_{\Re}}, \quad \sum_{r r^{\prime} r^{\prime \prime} \ldots} \alpha_{r r^{\prime} r^{\prime \prime} \ldots}=1
$$

Complex-Dynamic Interaction Network Properties

Huge efficiency growth of dynamically chaotic (multivalued) networks:
Chaotic network efficiency is determined by the number of all combinations of links
$N!\simeq \sqrt{2 \pi N}(N / e)^{N} \sim N^{N} \propto C$ (unreduced dynamic complexity) where the number of links N is very large itself
Unitary (regular) dynamic efficiency grows only as $N^{\beta}(\beta \sim 1)$.
The huge advantage in efficiency expresses intrinsic creativity/adaptability of the unreduced complex dynamics obtained at the expense of its chaoticity リ
INTELLIGENCE, CONSCIOUSNESS, AUTONOMIC COMMUNICATION
Particular aspects and applications
(1) Knowledge-based structure of intelligent communication networks
(2) Holistic, two-layer dynamics of advanced intelligent network ("superbrain") Complex-dynamic meaning of true intelligence/consciousness (physics/0409140)
(3) Intelligent network and its users automatically become more intelligent Intrinsically suited to complex-dynamic problem solution \rightarrow revolution of complexity
(4) Universal symmetry/development of complexity: unified guiding principle Transformation of dynamic information ("interaction potential") into dynamic entropy

Evolution as complexity development

UNIVERSAL MEANING AND CRITERION OF PROGRESS

- System evolution as a result of the symmetry of complexity: qualitative, irreversible, dynamically discrete (quantized) change (event): transformation of dynamic information, \boldsymbol{I}, into dynamic entropy, \boldsymbol{S}, while the sum, total complexity, $C=\boldsymbol{I}+\boldsymbol{S}$, remains unchanged:

$$
\Delta C=0, \quad \Delta S=-\Delta I=-\Delta \mathcal{A}>0,
$$

where the extended, nonlinear action $\mathcal{A}=\boldsymbol{I}$ is a unified measure of complexity-information, $|\Delta \mathcal{A}| \sim\left|\boldsymbol{V}_{\text {eff }}\right| \Delta t \rightarrow$ time arrow $(\boldsymbol{E}, \boldsymbol{L}>\boldsymbol{0})$

- Generalised Hamilton-Jacobi and Schrödinger equations:

$$
\left.\frac{\Delta \mathcal{A}}{\Delta t}\right|_{x=\text { const }}+H\left(x,\left.\frac{\Delta \mathcal{A}}{\Delta x}\right|_{t=\text { const }}, t\right)=0, \hat{H}\left(x,\left.\frac{\Delta}{\Delta x}\right|_{t=\text { const }}\right) \Psi(x)=E \Psi(x)
$$

- The universal meaning and purpose of any system evolution, progress, and existence: complexity development as a result of the symmetry of complexity \rightarrow teleological, purposeful dynamics

Progress by complexity steps

DYNAMICALLY DISCRETE COMPLEXITY DEVELOPMENT

"progress" vs "decline"

dynamic entropy change, ΔS, Hamiltonian (energy), $\Delta S / \Delta t=H, E$

period of
progress
\square period of decline

For both "progress" and "decline":

$$
H=\partial S / \partial t>0
$$

Progressive development (creation):

$$
W=\partial H / \partial t=\partial^{2} S / \partial t^{2}>0
$$

Decline (decay, clegradation):

$$
W=\partial H / \partial t=\partial^{2} S / \partial t^{2}<0
$$

Max progress results ("nappiness"):

$$
\partial H / \partial t=\partial^{2} S / \partial t^{2}=0, \partial^{2} H / \partial t^{2}<0
$$

Max clecay results ("ennui"):
$\partial H / \partial t=\partial^{2} S / \partial t^{2}=0, \partial^{2} H / \partial t^{2}>0$
Transition max ("moment of truth"):

$$
\partial^{2} H / \partial \mu^{2}=0, \partial^{3} H \partial \beta<0
$$

Decline crisis ("moment of sin"):

$$
\partial^{2} H \partial L^{2}=0, \partial^{3} H \partial \not \partial>0
$$

Unified mathematics of complexity

DYNAMIC FRACTAL: UNREDUCED PROBLEM SOLUTION

- Non-uniqueness of any real problem solution: universal dynamic multivaluedness
- Explicit dynamic emergence, origin of events and time: $A \neq A$ for any real A
- Fractally structured dynamic entanglement: rigorous expression of material quality
- No "exact solutions": meaning of randomness, nonintegrability, noncomputability, etc.
- Dynamic discreteness (causal quantisation), nonunitarity, dynamic origin of space

Science Progress Diagram

NEW MATHEMATICS OF COMPLEXITY

Unitary science: only one from many real system realisations Universal Science of Complexity (USciCom): all system realisations

http://arXiv.org/abs/physics/9806002

Unreduced complexity features

UNIVERSAL CONCEPT AND SCIENCE OF COMPLEXITY

- Unreduced complexity >> usual imitations of complexity Fundamental difference of unreduced complexity (dynamic multivaluedness) from any dynamically single-valued (unitary) imitations of complexity
- Usual science = zero-dimensional projection of reality

The whole usual, unitary science, including scholar "science of complexity" ("chaos", "self-organisation", "nonlinear dynamics", etc.), is the simplest possible, zero-dimensional, point-like projection of real, multivalued world dynamics

- Unreduced complexity $=$ natural completion of usual science

Universal science of complexity (unreduced interaction problem solution) is the explicit, causally complete extension of the unitary science (from one system realisation to their complete set)

- Problem-solving power of the universal science of complexity Unreduced complexity (dynamically multivalued solution) solves stagnating problems of unitary science (quantum physics, particles, field theory, gravity, cosmology, solid state, biology, etc.) and completes it up to the humanities (consciousness, ethics, aesthetics, development, etc.)
- Complex system creation by unreduced complexity understanding Only the unreduced dynamic complexity is suitable for real-world applications involving new system design (like autonomic communication networks, intelligent software, AI, machine consciousness)

Sustainable knowledge

- Today's knowledge development is not sustainable:
quickly growing problems of intensity, content, efficiency, creativity (e.g. usual ecological problems) \rightarrow we need always more
- Illusion of regularity:
regular, "industrial" operation mode inevitably leads to degradation at a high intensity stage (the case of usual developed industry)
- Illusion of power:
power cannot increase quality by itself: increasing power capacities need another, qualitatively different dynamics \rightarrow complexity
- Only complex-dynamic creation can be sustainable:
- system freedom to change its own structure (true autonomy)
- efficient management of creation result (intelligence)
- complex-dynamic (chaotic) control \rightarrow genuine security and progress
- permanent, natural user-machine-network complexity coevolution
- Today's bifurcation of knowledge/civilisation development:

Complexity Transition = Sustainability Transition = Creative Ecology

