
HAL Id: hal-00156244
https://hal.science/hal-00156244

Submitted on 20 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Theorems on Efficient Argument Reductions
Ren Cang Li, Sylvie Boldo, Marc Daumas

To cite this version:
Ren Cang Li, Sylvie Boldo, Marc Daumas. Theorems on Efficient Argument Reductions. 16th
IEEE Symposium on Computer Arithmetic, 2003, Santiago de Compostela, Spain. pp.129-136,
�10.1109/ARITH.2003.1207670�. �hal-00156244�

https://hal.science/hal-00156244
https://hal.archives-ouvertes.fr

Theorems on Efficient Argument Reductions

Ren-Cang Li∗

Department of Mathematics
University of Kentucky
Lexington, KY 40506

Email: rcli@ms.uky.edu

Sylvie Boldo, Marc Daumas
Laboratoire de l’Informatique du Parallélisme

UMR 5668 CNRS - ENS de Lyon - INRIA
Email: Sylvie.Boldo@ens-lyon.fr

Marc.Daumas@ens-lyon.fr

Abstract

A commonly used argument reduction technique in el-
ementary function computations begins with two positive
floating point numbers α and γ that approximate (usually
irrational but not necessarily) numbers 1/C and C, e.g.,
C = 2π for trigonometric functions and ln 2 for ex. Given
an argument to the function of interest it extracts z as de-
fined by xα = z + ς with z = k2−N and |ς| ≤ 2−N−1,
where k,N are integers and N ≥ 0 is preselected, and then
computes u = x − zγ. Usually zγ takes more bits than the
working precision provides for storing its significand, and
thus exact x− zγ may not be represented exactly by a float-
ing point number of the same precision. This will cause per-
formance penalty when the working precision is the highest
available on the underlying hardware and thus consider-
able extra work is needed to get all the bits of x− zγ right.
This paper presents theorems that show under mild condi-
tions that can be easily met on today’s computer hardware
and still allow α ≈ 1/C and γ ≈ C to almost the full work-
ing precision, x− zγ is a floating point number of the same
precision. An algorithmic procedure based on the theorems
is obtained. The results will enhance performance, in par-
ticular on machines that has hardware support for fused-
multiply-add (fma) instruction(s).

1 Introduction

Table-based methods to compute elementary functions
rely on efficient argument reduction techniques. The idea is
to reduce an argument x to u that falls into a tiny interval to
allow efficient polynomial approximations (see [5, 10, 11,
12, 13, 15, 17, 18, 19, 20] and references therein).

∗This work was supported in part by the National Science Foundation
under Grant No. ACI-9721388 and by the National Science Foundation
CAREER award under Grant No. CCR-9875201. Part of this work was
done while this author was on leave at Hewlett-Packard Company.

By default in this paper, all floating point numbers
(FPNs), unless otherwise explicitly stated, are binary and
of the same type and with p bits in the significand, hidden
bits (if any) included, and thus the machine roundoff is

εm = 2−p.

Also we shall assume the default rounding mode is round-
to-nearest or to even in the case of a tie [1, 6, 14] unless oth-
erwise explicitly stated differently. The underlying machine
hardware conforms to the IEEE floating point standard [1].

A commonly used argument reduction technique begins
with two positive FPNs α and γ that approximate (usually
irrational but not necessarily) numbers 1/C and C > 0, and
thus αγ ≈ 1. Examples include C = π/2 or π or 2π for
trigonometric functions sinx and cos x, and C = ln 2 for
exponential function ex. Let x be a given argument, a FPN
of course. The argument reduction starts by extracting z as
defined by

x· 1
C

≈ xα = z+ς = k2−N ς , (1.1)

where k is an integer, and |ς| ≤ 2−N−1, where N ≥ 0 is an
integer. Then it computes a reduced argument

u = x − zγ. (1.2)

For IEEE single precision elementary functions, this u is of-
ten good enough, provided α ≈ 1/C and γ ≈ C are IEEE
double precision approximations carefully chosen and IEEE
double precision arithmetic is used. But sometimes better
approximations to C than γ may be necessary for accuracy
considerations, e.g., when creating IEEE double precision
elementary functions on any of today’s RISC (Reduced In-
struction Set Computers) machines. If this is the case, often
another FPN γL, roughly containing the next p bits in the
significand of C so that the unevaluated γ+γL ≈ C to about
2p bits in the significand, is made available to overwrite the
u in (1.2) by

u − zγL (1.3)

Proceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH'03)
1063-6889/03 $17.00 (C) 2003 IEEE

Whether the u by (1.2) or this updated one is accurate
enough for computing the elementary function in question
is subject to further error analysis on function-by-function
basis. But this is out of the scope of this paper.

On machines that have hardware support for the fused-
multiply-add (fma) instructions, such as machines with
HP/Intel Itanium Microprocessors [11] and IBM PowerPC
Microprocessors. The computation of z can be done effi-
ciently as

{xα + σ}fma − σ,

where σ is a pre-chosen constant1. Given the trend of get-
ting fma as a callable function (inlinable by compilers at
certain optimization level) to the language standards such
as the C99 standard [2] and the new FORTRAN standard
currently under development, this technique is available to
users who program only in high level languages.

Notice that if k is an � bit integer, it takes up to p+ � bits
to store the significand of zγ. It is conceivable that some
bits of x and zγ will cancel each other, but it is not clear
how many of them will and under what condition(s), and
consequently if accuracy calls for x − zγ to be calculated
exactly (or to more than p bits in the significand), how do
we get these bits efficiently? This question is especially
critical if the working precision is the highest available on
the underlying computing platform. In this paper, we will
show with mild conditions that can be easily met, x − zγ
can be represented exactly by a FPN, and thus it can be
computed by an instruction of the fma type without error.
While this does not exclude the possibility of any further
updating as in (1.3) if deemed necessary, it does eliminate
any expensive procedure2 to compute correctly all the bits
of x− zγ had we not known that it were a FPN. Our results
will enhance performance, in particular on machines that
have hardware support for fma instructions.

The phenomena of x − zγ being a FPN was mentioned
in [5], but no further detail was provided there.

Throughout this paper, all FPNs in question are normal-
ized. This is not as restrictive an assumption as it seems.
Because those α and γ from elementary function computa-
tions are far from subnormal FPNs, and when x is subnor-

1This idea appeared in Markstein [11, Chap. 10] who told the first
author that he got it from Clemens Roothaan.

2Without knowing x − zγ is a FPN, a typical procedure to compute it
exactly may look like this piece of code:

aH = z ⊗ γ;

v = x � aH; aL = {zγ − aH}fma;

uH = v � aL;

b = v � uH;

uL = b � aL;

This is at least five times as slow as by {x− zγ}fma had we known that it
were a FPN. Here we assume that there must be some cancellations in the
leading bits of x and aH and thus |v| ≥ |aL|. The return value is uH + uL

unevaluated, and uH + uL = x − zγ exactly.

mal, it is so tiny that no argument reduction is ever needed.
Even if subnormal x is, say, passed to {xα + σ}fma − σ,
z will be computed to 0 and thus u = x − zγ = x as we
would like it to.

The rest of this paper is organized as follows. Section 2
presents a theorem on the number of cancelled bits of two
close FPNs that will be used repeatedly in the next section.
The theorem, which is of interest in its own right, is an ex-
tension of the well-known theorem due to Sterbenz [16].
Our main result is given in Section 3. In Section 4, we an-
alyze how to satisfy the conditions of the theorem in Sec-
tion 3. Combining the results of Sections 3 and 4, Section 5
presents an algorithm for α and γ, given C and p(≥ 3),
and its applications to C = ln 2 for the exponential func-
tion exp(x) and C = 2π for the trigonometric functions.
Section 6 concludes the work of this paper.

Notation. Throughout, ⊕,�,⊗,� denote the floating
point addition, substraction, multiplication, and division,
respectively. {X}fma denotes the result by an instruc-
tion of the fused-multiply-add type, i.e., the exact X af-
ter only one rounding, where X is one of ±a ± bc and
±a ∓ bc. “:=” defines the left-hand side to be the right-
hand side. 	a
 is the biggest integer that is no greater than
a. round to nearest(a) is the FPN obtained from round-
ing a in the round-to-nearest mode, and round up(a) is
the smallest FPN that is no smaller than a, and ulp(b) :=
2m−p+1 is the unit in the last place of a FPN b = ±2m ×
1.b1b2 · · · bp−1.

2 Exact Subtraction Theorems

Throughout this section a and b are assumed nonnega-
tive. But minor modifications can make all results valid for
non-positive a and b, too.

A well-known property [4, 6, 16] of the floating point
subtraction is the following.

Theorem 2.1 (Sterbenz) Let a and b be two FPNs. If
b/2 ≤ a ≤ 2b, then a � b = a − b, i.e., a � b is exact.

We now extend this theorem to

Theorem 2.2 Let a and b be two FPNs with p + � bits in
the significand, where integer � ≥ 0. If

b/2 ≤ (1 + 2−�)−1b ≤ a ≤ (1 + 2−�)b ≤ 2b, (2.1)

then a− b is a (default) FPN, i.e., a− b can be represented
exactly by a FPN with p bits in the significand.

Remark 2.1 Like Theorem 2.1 of Sterbenz, Theorem 2.2
can be shown to hold for radix other than 2. An
automatic machine proof in Coq for this is available
from the second author upon request or by visiting

Proceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH'03)
1063-6889/03 $17.00 (C) 2003 IEEE

http://www.ens-lyon.fr/∼sboldo/coq/FArgReduct.html. The
interested reader is referred to [3, 7] for more detail about
Coq and machine proving.

Proof of Theorem 2.2: (1 + 2−�)−1b ≤ a ≤ (1 + 2−�)b
implies that a = 0 ⇔ b = 0. Without loss of generality we
may assume a, b > 0. Write

a = 2ma1.a1 · · · ap+�−1, b = 2mb1.b1 · · · bp+�−1,

where ai, bi ∈ {0, 1}. We claim that |ma − mb| ≤ 1; Oth-
erwise if ma − mb ≥ 2, then

a

b
= 2ma−mb

1.a1 · · · ap+�−1

1.b1 · · · bp+�−1
> 22 1

2
= 2,

a contradiction; Similarly if ma − mb ≤ −2, we have
b/a > 2, a contradiction as well. Also without loss
of generality (scale by 2−max{ma,mb}), we may assume
max{ma,mb} = 0, and thus a − b takes this form

a − b = ±d0.d1d2 · · · dp+�

and dp+� = 0 if ma = mb = 0.

• If b ≤ a, then b ≤ a ≤ (1 + 2−�)b which implies
0 ≤ a − b ≤ 2−�b. Now if also ma = mb = 0,
then d0 = d1 = · · · = d�−1 = 0 = dp+�, and thus
a − b = 2−�d�.d�+1 · · · dp+�−1, representable exactly
by the default FPN system; On the other hand if ma =
0 > mb = −1, then d0 = d1 = · · · = d� = 0, and
thus a − b = 2−(�+1)d�+1.d�+2 · · · dp+�, also exactly
representable.

• If b > a, then b > a ≥ (1 + 2−�)−1b which implies
0 < b− a ≤ 2−�a. The rest of the proof is the same as
for the case b ≤ a.

This completes the proof.
Equivalently, (2.1) can be restated as

1
1 + 2−�

≤ a

b
≤ 1 + 2−� (2.2)

unless a = b = 0.

3 Main Result

We now present the conditions under which x−zγ can be
represented exactly by a FPN, and thus it can be computed
by {x − zγ}fma without error. As in Section 1, α ≈ 1/C
and γ ≈ C > 0. For the rest of this paper set

δ := αγ − 1, (3.1)

and suppose

the last q consecutive significant bits of γ are zeros. (3.2)

q is allowed to be zero in which case the last significant bit
of γ is 1. Let z be as defined by (1.1) with the conditions on
z and ς given there. Assume for the moment that k = 0 and
thus z = 0. We have

x

zγ
=

xα

zαγ

=
z + ς

zαγ

=
(
1 +

ς

z

) 1
1 + δ

.

Noticing that |ς/z| ≤ 1/(2k), we get(
1 − 1

2k

)
1

1 + δ
≤ x

zγ
≤

(
1 +

1
2k

)
1

1 + δ
. (3.3)

Theorem 3.1 x − zγ is a FPN if the following conditions
are met:

−1/4 ≤ δ ≤ 1/2, (3.4)

γ ≤ round up(1/α), (3.5)

2�log2 |k|�+1 ≤

(2q−1)+(2+2q)δ+
√

∆−
−2δ , if δ < 0,

2q−1−2δ+
√

∆+

2δ , if δ > 0.

(3.6)

where ∆− and ∆+ are defined by

∆− := (2q − 2)2δ2 + 2[(2q)2 − 3 · 2q − 2]δ + (2q − 1)2,
(3.7)

∆+ := 4δ2 + 4δ + (2q − 1)2. (3.8)

One implication of this theorem is that the fma makes ex-
plicitly storing the extra bits in zγ and then subtracting it
carefully from x unnecessary.

Remark 3.1 Conditions (3.4) — (3.6) essentially restrict
the selection of α and γ, as approximations to 1/C and C. It
is easy for (3.4) to hold, and the range of feasible k is tied up
with δ. Therefore the major hurdle is to satisfy (3.5), while
making α ≈ 1/C and γ ≈ C as accurately as possible.
Section 4 will presents a detailed analysis in this regard.

Remark 3.2 Notice that for k > 0

k = 2log2 k ≤ 2�log2 k�+1 ≤ 2log2 k+1 = 2k.

Thus (3.6) holds if

|k| ≤

(2q−1)+(2+2q)δ+
√

∆−
−4δ , if δ < 0,

2q−1−2δ+
√

∆+

4δ , if δ > 0.

(3.9)

(3.6) and (3.9) leave a bound on |k| undefined if δ = 0 for
which case, there is no constraint on k. The case δ = 0
happens only when both α and γ are powers of two, a case
that is not very interesting for elementary function compu-
tations.

Proceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH'03)
1063-6889/03 $17.00 (C) 2003 IEEE

Remark 3.3 Let us examine asymptotically in δ how big
the bound by (3.9) can be because δ is very tiny in the inter-
esting cases. To do so, what we essentially need is to expand√

∆− and
√

∆+ at δ = 0. Both ∆− and ∆+ are quadratic
in δ with the constant terms vanish at q = 0. Therefore the
expansions should be done depending on whether q = 0 or
not. We have

• When q = 0,

|k| ≤
{

1√−2δ
− 3

4 + O(
√−δ), if δ < 0,

1
2
√

δ
− 1

2 + O(
√

δ), if δ > 0.
(3.10)

• When q ≥ 1,

|k| ≤

2q−1
−2δ − [2q]2−2q−2

2(2q−1) + O(δ), if δ < 0,

2q−1
2δ − 2q−2

2(2q−1) + O(δ), if δ > 0.

(3.11)

If δ = O(εm) = O(2−p), these bounds say that |k| can
grow as big as of O(2p/2) if q = 0, and of O(2p) if q ≥ 1.
Later in Algorithm 5.1 and Remark 5.1 of Section 5, we
shall show that with a slight modification to the last signifi-
cant bit of γ such that γ ≈ C with error less than 1.5 ulp, q
can be made q ≥ 1.

Proof of Theorem 3.1: No proof is needed if k = 0 and
thus z = 0. Assume that |k| ≥ 1. Then x and k have the
same sign, and

|k|2−N−2−N−1 ≤ |xα| = |k2−N +ς| ≤ |k|2−N +2−N−1.

From now on we consider the case x > 0 only, and the other
case x < 0 can be handled in a similar way.

Suppose k = 1. Then zγ is a FPN, and

2−N−1 ≤ xα ≤ 3 · 2−N−1

which implies

2−N−1/α ≤ x ≤ 3 · 2−N−1/α.

Let xmin be the smallest FPN such that xmin ≥ 2−N−1/α,
i.e.,

xmin = 2−N−1round up(1/α).

Thus γ ≤ 2N+1xmin by (3.5). Now z = 2−N , and thus

x

zγ
≥ xmin

zγ
=

xmin

2−Nγ
≥ 1

2
.

On the other hand,

x

zγ
≤ 3 · 2−N−1/α

2−Nγ
=

3
2

1
1 + δ

≤ 2,

if δ ≥ −1/4 which holds by (3.4). Thus x − zγ is a FPN
by Theorem 2.1.

Suppose k ≥ 2. Inequality (3.3) yields

3
4

1
1 + δ

≤ x

zγ
≤ 5

4
1

1 + δ
.

Therefore

1
2
≤ x

zγ
≤ 2 if −3/8 ≤ δ ≤ 1/2 (3.12)

which is guaranteed by (3.4). Let

� := 	log2 k
 + 1

which is the number of bits to store k exactly. Then

2�−1 ≤ k < 2� − 1.

Now if k = 2�−1, then zγ is a FPN. So x − zγ is a FPN
by (3.12) and Theorem 2.1. Notice that zγ is a FPN with at
most p − q + � significant bits. If q ≥ �, zγ is also a FPN
(in the default format). By (3.12) and Theorem 2.1, x − zγ
is a FPN. Assume now that q < � and k ≥ 2�−1 + 1. Then
(3.3) implies(

1 − 1
2� + 2

)
1

1 + δ
≤ x

zγ
≤

(
1 +

1
2� + 2

)
1

1 + δ
.

We claim that under the condition of the theorem(
1 +

1
2� + 2

)
1

1 + δ
≤ 1 +

2q

2�
, (3.13)

(
1 − 1

2� + 2

)
1

1 + δ
≥

(
1 +

2q

2�

)−1

. (3.14)

Therefore we have(
1 + 2−�+q

)−1
(zγ) ≤ x ≤ (

1 + 2−�+q
)
(zγ).

Since zγ is a FPN with no more than p − q + � bits in the
significand, by Theorem 2.2, x−zγ is a FPN (in the default
format), as expected.

We have to prove (3.13) and (3.14).
Inequality (3.13) is equivalent to

− [
2�

]2
δ − [(2q − 1) + (2 + 2q)δ]2� − 2 · 2q(1 + δ) ≤ 0.

(3.15)
This inequality holds if δ ≥ 0. Assume δ < 0, and notice
that ∆− is the resultant of the quadratic polynomial in 2� on
the left-hand side of (3.15)

∆− = [(2q − 1) + (2 + 2q)δ]2 − 4 × δ × 2 · 2q(1 + δ).

∆− ≥ 0 for all q ≥ 0 and all δ < 0. This can be checked
directly for q = 0 and q = 1 for which ∆− is δ2 − 8δ and

Proceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH'03)
1063-6889/03 $17.00 (C) 2003 IEEE

1 − 8δ respectively. For q ≥ 2, ∆− as a polynomial in δ
never vanishes because its resultant

4[(2q)2 − 32q − 2]2 − 4 × (2q − 2)2 × (2q − 1)2

= 32 · 2q(3 − 2q) < 0.

This combining with the fact that ∆− > 0 at δ = 0 implies
that ∆− > 0 always. It can now be seen that (3.15) is
guaranteed by (3.6).

Inequality (3.14) is equivalent to

− [
2�

]2
δ + [(2q − 1) − 2δ]2� + 2q ≥ 0. (3.16)

This inequality holds if δ ≤ 0. Assume δ > 0, and notice
that ∆+ is the resultant of the quadratic polynomial in 2� on
the left-hand side of (3.16)

∆+ = [(2q − 1) − 2δ]2 − 4 × (−δ) × 2q.

∆+ ≥ 0 for all q ≥ 0 and all δ > 0. It can now be seen that
(3.16) is guaranteed by (3.6).

The proof is now completed.

4 Analysis of Constraints Between α and γ

In using Theorem 3.1 to come up with α and γ for ar-
gument reductions, we essentially need to consider making
α and γ to satisfy (3.5) and, if necessary, forcing the last
bit of γ to be 0 because for modest p, |δ| is easily made
to be much less than 1/4 and because the constraints on k
are results of the two. In fact, it is easy to make δ as tiny
as εm. For functions like exponentials, k cannot be much
bigger before overflow or underflow takes over and thus the
range imposed on k by Theorem 3.1 is sufficient, even for
q = 0; While for others, the range imposed on k by Theo-
rem 3.1 for q ≥ 1 is also sufficient for reasons as follows. It
is conceivable that (1.1) simulates extracting in exact arith-
metic the certain number of leading significant bits of x/C,
while (1.2) simulates x − zC. However xα if represented
exactly has up to 2p significant bits with only about p lead-
ing bits trustworthy as an approximation to x/C because in
general α ≈ 1/C with relative error about εm. Therefore in
order for (1.1) and (1.2) to mimic what they are intended,
the number of extracted bits in z in (1.1) should be made no
bigger than p, or equivalently |k| ≤ 2p−1 = 2−1ε−1

m .
In what follows, we shall concentrate on how to make

α ≈ 1/C and γ ≈ C

as accurate as possible while not violating the assumptions
of Theorem3.1. Naturally best possible α and γ are

α = round to nearest(1/C) and γ = round to nearest(C),
(4.1)

but that cannot always be done as will be shown by Exam-
ple 4.1 below. Our best choice is to make γ approximates its
target as accurately as possible while α approximates 1/γ
in the best way, i.e.,

α = 1 � γ. (4.2)

Lemma 4.1 Let a > 0 be a FPN. Then

round up
(

1
1 � a

)
≥ a.

Proof: Without loss of generality, we scale a such that 1 ≤
a < 2. Write 1� a = 1/a + η with |η| ≤ 2−p−1. No proof
is needed if a = 1. For 1 < a < 2, it suffices to show that

1
1 � a

> a − 2−p+1. (4.3)

If η ≤ 0, then 1 � a ≤ 1/a, and thus (4.3) holds. Assume
η > 0. We have

1
1 � a

=
a

1 + aη
= a[1 − (aη) + (aη)2 − · · ·]
= a − a[(aη) − (aη)2 + · · ·].

Notice that (aη) − (aη)2 + · · · is an alternating series and
thus it is bounded strictly by its first term, i.e.,

0 < a[(aη)− (aη)2 + · · ·] < a(aη) < 4× 2−p−1 = 2−p+1

which yields (4.3).
A related result but only for those a which can be scaled

by a power of two to fall between 1 and
√

2

1 � (1 � a) = a

is due to W. Kahan [9, Exercise 27 of §4.22 and its solution].

Theorem 4.1 (3.5) holds if αγ ≤ 1 which is true if

either α = round down(1/γ) or γ = round down(1/α).
(4.4)

Proof: αγ ≤ 1 implies γ ≤ 1/α and thus (3.5). Note that
(4.4) implies α ≤ (1/γ)(1 − ε) for some 0 ≤ ε ≤ 2εm, and
thus αγ ≤ 1.

Theorem 4.2 (3.5) holds if (4.1) such that either α ≤ 1/C
or γ ≤ C or C can be scaled by a power of two to fall in
[1,

√
2).

The restriction that the scaled C to fall in [1,
√

2) is quite
unpleasant but necessary as the following example shows.
It is invoked in the later proof when both α ≤ 1/C and
γ ≤ C are violated.

Proceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH'03)
1063-6889/03 $17.00 (C) 2003 IEEE

Example 4.1 C = 2π for which it can be verified that with
(4.1), (3.4) and (3.5) hold for 3 ≤ p ≤ 197 but (3.5) fails
for p = 198.

Proof of Theorem 4.2: Without loss of generality, we may
scale C by a power of 2 such that 1 ≤ C < 2. No proof is
needed if C = 1. Assume 1 < C < 2. Then

α = 1/C + δ1, γ = C + δ2

and |δ1| ≤ 2−p−1, |δ2| ≤ 2−p. First if δ1 ≤ 0, then

α ≤ 1/C ⇒ C ≤ 1/α,

and thus

γ = round to nearest(C)
≤ round up(C)
≤ round up(1/α),

as expected. Next if δ2 ≤ 0, then

γ ≤ C ⇒ 1/C ≤ 1/γ

⇒ α ≤ 1 � γ

⇒ 1
α

≥ 1
1 � γ

,

and thus by Lemma 4.1

round up
(

1
α

)
≥ round up

(
1

1 � γ

)
≥ γ.

It is remained to prove the claim for the case δ1 > 0 and
δ2 > 0. This is the situation where we need C <

√
2.

Notice that γ = C + δ2 > C > 1. Let γ′ be the biggest
FPN that is smaller than γ, i.e., γ′ = γ − 2−p+1. δ2 > 0
implies that C is above or at the middle point between γ′

and γ as show below.

γ′ γ
�

C

It suffices to prove 1/α > γ′ for (3.5) to hold. Notice

1
α

=
C

1 + Cδ1
= C[1 − (Cδ1) + (Cδ1)2 − · · ·]
= C − C[(Cδ1) − (Cδ1)2 + · · ·].

C <
√

2 implies

0 < C[(Cδ1)− (Cδ1)2 + · · ·] < C2δ1 < 2×2−p−1 = 2−p

and consequently

1
α

> C − 2−p ≥ γ′,

as expected.

Theorem 4.3 (3.5) holds if (4.2).

Proof: It is a consequence of Theorem 4.2 by taking C = γ,
and thus γ ≤ C holds, and α and γ are defined as in (4.1).

5 An Algorithm for α and γ

Thanks to the results of Sections 3 and 4, we suggest the
following algorithm for picking α ≈ 1/C and γ ≈ C for
all p that is not too small, say p ≥ 3. (This is to make (3.4)
always satisfied.)

Algorithm 5.1 Given C, the following steps produce α and
γ such that x − zγ is a FPN.

1. Compute α and γ as in (4.1);

2. Verify (3.5). This is automatically satisfied if we know
beforehand that C can be scaled by a power of two to
fall in [1,

√
2). Otherwise either verify directly (3.5),

or check if one of the following conditions is satisfied:

αγ ≤ 1, or α ≤ 1/C, or γ ≤ C

according to Theorems 4.1 and 4.2.

3. Compute an upper bound on all applicable k as given
by (3.9). If, however, the bound by (3.9) is too small for
the computation of the elementary function in question
(This may happen when q = 0), we can either add 1
ulp to or subtract 1 ulp from γ, and then take

α = 1 � γ

as in (4.2). Doing so makes (3.5) automatically satis-
fied by Theorem 4.3.

Remark 5.1 In the 3rd step of Algorithm 5.1, adding 1 ulp
or subtracting 1 ulp, if done carefully, can make q ≥ 2. In
fact, this can be accomplished by adding 1 ulp if the last
two bits of γ are 112 or subtracting 1 ulp if the last two bits
of γ are 012.

Next we shall present two examples: C = ln 2 from the
computation of exp(x), and C = 2π from the computa-
tion of radian trigonometric functions. When it comes to
write a library of the elementary mathematical functions,
we often use the floating point arithmetic of the highest pre-
cision available on any given hardware. This means to use
the IEEE double precision arithmetic on the existing RISC
machines, and Intel double-extended precision arithmetic
(64 bits in the significand) on machines equipped with In-
tel processors. Therefore the parameters α and γ are either
of IEEE double precision or of Intel double-extended pre-
cision. In what follows, however, we do give IEEE single
precision α and γ just to show the applicability of our theo-
rems and algorithm.

Example 5.1 Consider the computation of exp(x) based
on [11]

exp(x) = 2x log2 e = 2x/ ln 2,

Proceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH'03)
1063-6889/03 $17.00 (C) 2003 IEEE

where e = exp(1) the natural number. Here C = ln 2.
Because 2 ln 2 ≈ 1.386, C can be scaled by a power of two
to fall in [1,

√
2). Thus (3.5) holds with (4.1). For exp(x),

k2−N is extracted to serve two purposes: the exponent M
of exp(x) and a table lookup index m

k2−N = M + m2−N

where M and m are integers, where 0 ≤ m ≤ 2N −1. Then

exp(x) ≈ 2M × 2m2−N × exp(t),

where t = x − zγ (or t ≈ x − z ln 2 if some γL is used so
that unevaluated γ + γL ≈ ln 2 to about 2p bits). Typically
2m2−N

is obtained through table lookup. In order not to use
too big a table, N may be chosen, say, no bigger than 10. On
the other hand, 2M quickly overflows or underflows as |M |
gets bigger, e.g., for IEEE double precision, it overflows if
M ≥ 1023 and underflows to zero if M < −1022−53. For
this reason, interesting |k| is no bigger than about 211+N .
Therefore the constraints imposed on k by Theorem 3.1 for
q = 0 or q ≥ 1 are acceptable. In what follows, a string
with the subscript 16 denotes a hexadecimal number, and
that without the subscript is a decimal number of the usual
radix 10.
a) IEEE single precision:

α = 2−3 × B.8AA3B16,

γ = 2−4 × B.1721816,

δ ≈ −1.06 × 10−08,

|k| ≤ 13AD5D9416.

Here q = 3.
b) IEEE double precision:

α = 20 × 1.71547652B82FE16,

γ = 2−1 × 1.62E42FEFA39EF16,

δ ≈ −4.76 × 10−17,

|k| ≤ 61C6EC216.

Here q = 0. Thus the largest possible |k| is about ε
−1/2
m . If

we add 1 ulp to γ and take α = 1 � γ as suggested by Step
3) of Algorithm 5.1, it will make q = 4. Doing so, we get

α = 20 × 1.71547652B82FD16,

γ = 2−1 × 1.62E42FEFA39F016,

δ ≈ −4.13 × 10−17,

|k| ≤ 2851984E2E9004816.

c) Intel double-extended precision: (64 bits in the signifi-
cand)

α = 2−3 × B.8AA3B295C17F0BC16,

γ = 2−4 × B.17217F7D1CF79AC16,

δ ≈ 3.57 × 10−20,

|k| ≤ 2464972759AF9B33416.

Example 5.2 Consider the computation of sin(x) and
cos(x). They are two of the most difficult elementary func-
tions to compute. Here C = 2π which is their period.
Therefore only the fractional part of x/(2π) is interesting.
But getting enough correct fractional bits of x/(2π) can be
tricky and costly for x of huge magnitude or extremely close
to an integral multiple of π/2. Presumably arguments x
as such are rare in any given application. In order not to
slow down the speed for most common arguments, often a
fast reduction just as outlined at the beginning of this pa-
per is performed and then some quick checking is done to
see if a more careful reduction procedure is needed and if
that is the case, the code is branched to perform a careful
argument reduction which is rare and slow. The interested
reader is referred to [8, 11, 12, 13] and references therein for
more detail. In this paper, however, we are only interested
in speeding up the fast reduction part.
a) IEEE single precision:

α = 2−6 × A.2F98316,

γ = 2−1 × C.90FDB16,

δ ≈ −1.25 × 10−08,

|k| ≤ 18B016.

Here q = 0. Subtracting 1 ulp from γ and taking α = 1� γ
yield q = 2 and

α = 2−6 × A.2F98216,

γ = 2−1 × C.90FDC16,

δ ≈ −3.03 × 10−08,

|k| ≤ 2F4A06216.

b) IEEE double precision:

α = 2−3 × 1.45F306DC9C88316,

γ = 22 × 1.921FB54442D1816,

δ ≈ 2.28 × 10−17,

|k| ≤ 22066D471BD6D2D16.

Here q = 3.
c) Intel double-extended precision:

α = 2−6 × A.2F9836E4E44152A16,

γ = 2−1 × C.90FDAA22168C23516,

δ ≈ 1.72 × 10−20,

|k| ≤ E2ED443116.

Here q = 0. Subtracting 1 ulp from γ and taking α = 1� γ
yield q = 2 and

α = 2−6 × A.2F9836E4E44152B16,

γ = 2−1 × C.90FDAA22168C23416,

δ ≈ 3.34 × 10−20,

|k| ≤ 26FA94EFA25DF217716.

Proceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH'03)
1063-6889/03 $17.00 (C) 2003 IEEE

6 Conclusions

We have presented theorems that prove the correctness
and effectiveness of the commonly used argument reduc-
tion technique in elementary function computations, espe-
cially on machines that have hardware support for fused-
multiply-add instructions. The conditions of these theorems
are easily met as our analysis indicates. While we showed
it is not always possible to use the best possible parameters
as defined by (4.1) under all circumstances, an almost best
possible selection as in (4.2) can be used at all times. On
case-by-case basis, however, it is possible to use (4.1) by
verifying individually the conditions in our main theorem
in Section 3 while none of the theorems of Section 4 apply,
e.g., C = 2π and 3 ≤ p ≤ 197. Based on our results in
Sections 3 and 4, a 3-step algorithm is presented to derive
argument reduction parameters α and γ.

While Theorem 3.1 as of now is sufficient in the sense
that effective parameters for efficient argument reductions
can be obtained without any difficulty, it would be interest-
ing to know if some of the conditions of Theorem 3.1 are
necessary, i.e., x − zγ is not a FPN if one or more of the
conditions fails. But we could not either prove it or find a
counterexample at this point. We shall work on this in the
future.

Finally we comment that the results in this paper are ex-
tensible to floating point number systems with radix other
than 2 (see Remark 2.1). But we omit details here.

Acknowledgment

The authors are indebted to referees’ constructive sug-
gestions which improve the presentation considerably. One
of the referees read the early draft so carefully that he com-
piled a long list of inappropriate English used, along with
many valuable technical comments. They are especially
grateful for his/her diligent readership.

Part of this work was done while the first author was on
leave at Hewlett-Packard Company. He is grateful for help
received from Jim Thomas, John Okada, and Peter Mark-
stein of HP Itanium floating point and elementary math li-
brary team at Cupertino, California. Working with these
people has been a pleasure.

References

[1] American National Standards Institute and Institute of Elec-
trical and Electronic Engineers. IEEE standard for binary
floating-point arithmetic. ANSI/IEEE Standard, Std 754-
1985, New York, 1985.

[2] ANSI/ISO/IEC 9899:1999. Programming Languages – C.
1999.

[3] M. Daumas, L. Rideau, and L. Théry. A generic library of
floating-point numbers and its application to exact comput-
ing. In 14th International Conference on Theorem Proving
in Higher Order Logics, pages 169–184, Edinburgh, Scot-
land, 2001.

[4] D. Goldberg. What every computer scientist should know
about floating-point arithmetic. ACM Computing Surveys,
23(1):5–47, Mar. 1991.

[5] J. Harrison, T. Kubaska, S. Story, and P. T. P. Tang. The com-
putation of transcendental functions on the IA-64 architec-
ture. Intel Technology Journal, (Q4):1–7, November 1999.

[6] N. J. Higham. Accuracy and Stability of Numerical Algo-
rithms. SIAM, Philadephia, 1996.

[7] G. Huet, G. Kahn, and C. Paulin-Mohring. The Coq
proof assistant: a tutorial: version 7.2. Technical Report
256, Institut National de Recherche en Informatique et
en Automatique, Le Chesnay, France, 2002. Available at
ftp://ftp.inria.fr/INRIA/publication/publi-pdf/RT/

RT-0256.pdf.
[8] W. Kahan. Minimizing q*m-n. At the begin-

ning of the file ”nearpi.c”, available electronically at
http://http.cs.berkeley.edu/∼wkahan/testpi, 1983.

[9] D. Knuth. The Art of Computer Programming, volume 2.
Addison Wesley, Reading, MA, 1981.

[10] R.-C. Li. Always Chebyshev interpolation in elementary
function computations. submitted for publication, June
2001.

[11] P. Markstein. IA-64 and Elementary Functions: Speed and
Precision. Prentice Hall, New Jersey, 2000.

[12] J.-M. Muller. Elementary Functions: Algorithms and Imple-
mentation. Birkhåuser, Boston•Basel•Berlin, 1997.

[13] K. C. Ng. Argument reduction for huge arguments: Good
to the last bit. Technical report, SunPro, 1992. available
electronically at http://www.validgh.com/.

[14] M. L. Overton. Numerical Computing with IEEE Floating
Point Arithmetic. SIAM, Philadelphia, 2001.

[15] M. J. D. Powell. On the maximum errors of polynomial
approximations defined by interpolation and by least squares
criteria. The Computer Journal, 9(4):404 – 407, February
1967.

[16] P. H. Sterbenz. Floating-Point Computation. Prentice-Hall
series in automatic computation. Prentice-Hall, Englewood
Cliffs, NJ, USA, 1974.

[17] P. T. P. Tang. Table-driven implementation of the exponen-
tial function in IEEE floating-point arithmetic. ACM Trans-
actions on Mathematical Software, 15(2):144–157, June
1989.

[18] P. T. P. Tang. Table-driven implementation of the logarithm
function in IEEE floating-point arithmetic. ACM Transac-
tions on Mathematical Software, 16(4):378–400, Dec. 1990.

[19] P. T. P. Tang. Table lookup algorithms for elementary func-
tions and their error analysis. In P. Kornerup and D. W.
Matula, editors, Proceedings of the 10th IEEE Symposium
on Computer Arithmetic, pages 232–236, Grenoble, France,
June 1991. IEEE Computer Society Press, Los Alamitos,
CA.

[20] P. T. P. Tang. Table-driven implementation of the expm1
function in IEEE floating-point arithmetic. ACM Transac-
tions on Mathematical Software, 18(2):211–222, June 1992.

Proceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH'03)
1063-6889/03 $17.00 (C) 2003 IEEE

