
HAL Id: hal-00156215
https://hal.science/hal-00156215

Submitted on 21 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Component-based Software Infrastructure for
Ubiquitous Computing

Areski Flissi, Christophe Gransart, Philippe Merle

To cite this version:
Areski Flissi, Christophe Gransart, Philippe Merle. A Component-based Software Infrastructure for
Ubiquitous Computing. Fourth International Symposium on Parallel and Distributed Computing,
2005, Lille, France. pp.183-190. �hal-00156215�

https://hal.science/hal-00156215
https://hal.archives-ouvertes.fr

A Component-based Software Infrastructure for Ubiquitous Computing

Areski Flissi
LIFL / CNRS

59655 Villeneuve d’Ascq,
France

Areski.Flissi@lifl.fr

Christophe Gransart
INRETS-LEOST

59666 Villeneuve d’Ascq,
France

Christophe.Gransart@inrets.fr

Philippe Merle
INRIA / LIFL

59655 Villeneuve d’Ascq,
France

Philippe.Merle@inria.fr

Abstract

Multiplication of mobile devices and generalized

use of wireless networks imply changes on the design
and execution of distributed software applications
targeting ubiquitous computing. Many strong
requirements have to be addressed: heterogeneity and
limited resources of wireless networks and mobile
devices, networked communications between
distributed applications, dynamic discovery and
automatic deployment on mobile devices. In this paper,
we present a component-based software infrastructure
to design, discover, deploy, and execute ubiquitous
contextual services, i.e. distributed applications
providing services to mobile end-users but only
available from a particular place. These ubiquitous
contextual services are designed as assemblies of
distributed software components. These assemblies are
dynamically discovered according to end-users’
physical location and device capabilities. Then,
appropriate assemblies are automatically deployed on
users’ devices. We have implemented this approach
(the software infrastructure and a ubiquitous
application example) on top of the OMG CORBA
Component Model and the OpenCCM open source
platform.

1. Introduction

With the multiplication of mobile devices and
generalized use of wireless networks, the design,
implementation, deployment, and execution of
distributed software applications must take into
account several problems: end-user’s mobility,
heterogeneity and limited resources of mobile devices
and wireless networks, networked communication,
dynamic discovery and automatic deployment of
distributed software applications. More generally, all
these problems are also encountered in any ubiquitous

computing context where services provided to end-
users must be accessible from anywhere, at anytime,
and by anyone [1]. Currently, there is no well
established approach to design, implement, deploy,
execute, and manage ubiquitous applications [2]. More
specifically, such an approach is required for
ubiquitous contextual services, i.e. services provided to
mobile end-users but only available from a particular
place. For instance, a railway operator could want to
provide a contextual railway station service allowing
mobile end-users to consult from their own device
(smartphone, PDA, laptop) the trains’ schedule of the
railway station. In this context, the key research
challenges are firstly to define the appropriate model to
design such services and secondly to provide the
software infrastructure dedicated to these services and
solving the problems related to ubiquitous computing.

The main contribution of this paper is to propose a
component-based model and a software infrastructure
to design, discover, deploy and execute ubiquitous
contextual services on mobile end-user devices.
However, security issues are not discussed in this
paper.

In our approach, a ubiquitous contextual service is
designed as a set of assemblies (or compositions) of
distributed and interconnected software components.
We distinguish two kinds of assemblies: fixed and
mobile ones. On one hand, a fixed assembly represents
the permanent part of a service: it is deployed on fixed
nodes of the ubiquitous environment at the starting
time of the service and is present as long as the service
is available to end-users. On the other hand, each
mobile assembly represents the part of a service
dedicated to one end-user: it is automatically deployed
on end-user demand and can be automatically
destroyed when the user leaves the contextual wireless
coverage zone (e.g. out of a railway station). Our
components provide interconnection ports in order to
be assembled together. They could be heterogeneous in

terms of hardware and software requirements.
At runtime, our infrastructure allows mobile end-

users to dynamically discover the mobile assemblies of
ubiquitous contextual services according to the end-
users’ physical location and also hardware/software
device capabilities. For this purpose, we propose a
multicast-based discovery protocol that reduces power
consumption and network traffic and a negotiation
protocol to present to end-users only the mobile
assemblies adapted to their device capabilities. Then,
our infrastructure allows end-users to automatically
deploy the mobile assemblies of ubiquitous contextual
services on their own devices. We have designed this
infrastructure as a set of software components
distributed over fixed and mobile computers.

As proof of concept, we have implemented our
model and infrastructure on top of the OMG CORBA
Component Model (CCM) [3] and the OpenCCM
platform, a Java-based open source CCM
implementation [4]. To illustrate our model and
infrastructure, we present the design, implementation,
discovering, deployment, and execution of a simple
train service scenario.

The reminder of this paper is organized as follows.
Section 2 presents the train service scenario and
discusses the notion of ubiquitous contextual services
and the challenges that have to be addressed. Section 3
details our distributed component-based model for
designing ubiquitous contextual services. Its principles
are illustrated on the design of the train service. In
Section 4, we present our component-based software
infrastructure dedicated to ubiquitous contextual
services. We especially focus on the problems of
dynamic discovery and automatic deployment of
services. Section 5 details the implementation of our
infrastructure and some experimentation using the
CCM and OpenCCM, and outlines current limitations.
Section 6 presents some related work. Finally, Section
7 concludes this paper and gives some future works.

2. Context

This section presents a scenario of ubiquitous
contextual service, i.e. the train service. According to
this example, a definition of ubiquitous contextual
services is given regarding to the user’s terminal
mobility, and the related challenges are outlined.

2.1. An example of contextual service

As an illustration, let us take the following example.
A commuter with a wireless PDA is arriving into a
railway station. When he/she is inside of the hall,
his/her PDA automatically knows where his/her owner
is and launches services to obtain some information

about the departure platform, train schedule, etc. This
service is composed of two parts: the fixed and mobile
parts. The fixed part is composed of the back office
railway operator information system and several
railway station components. A mobile part is dedicated
to each user, i.e. run on the user’s device, and could be
realized by several user interfaces: with a GUI or with
a text to speech interface.

2.2. A definition of contextual service

Ubiquitous contextual services have a particular
behavior. They are available into a well known place
(e.g. a railway station). When users are outside of this
place (Fig. 1a), the services are not presented and can
not be used. Next, when users enter into the place, the
infrastructure must show them the services which can
be used on their terminals (Fig. 1b). When users
choose a particular service, the mobile part must be
deployed and instantiated on their terminals, so that it
can be used (Fig. 1c). Finally, when users move
outside of the network coverage zone, the services can
not be used. According to the service, the infrastructure
can save the code of the mobile part for another use
later, the users can continue to use it in an offline
mode, or the mobile part is totally removed from the
terminal (Fig. 1d).

Figure 1. The life cycle of ubiquitous

contextual services.

2.3. The challenges

To realize this train service scenario, we must take
into account several issues related to ubiquitous
contextual applications:
− Heterogeneity of devices - End-users can access

services from various devices like a laptop, a PDA
or a smartphone. These devices run different
operating systems (Windows, Linux, WinCE,
PalmOS, Symbian, etc.) and provide various
hardware and software capabilities. Concerning the
wireless link, several technologies are also available
as Wi-Fi (IEEE 802.11a/b/g) or Bluetooth for

short/medium range network, GPRS or UMTS for
national coverage.

− Low resources - Power consumption is a major
problem with mobile devices. Moreover, PDA and
smartphones have less memory and smaller
processor than laptops.

− Distributed applications - The service to get
information about the departure platform is
distributed on several computers. The graphical user
interface is running on the PDA and the process to
extract data from the railway operator information
system is running on fixed computers.
Communication between fixed part and mobile part
is done through the wireless network, and can be
achieved using middleware like CORBA, Web
Services, asynchronous messaging, etc.

− Service discovery - The next problem is how a user
knows that some services are available in a
particular location. Moreover, code of available
services to deploy will be different if the terminal is
a black and white PDA or a color laptop for
instance. To make this choice, the system needs
some information about the user’s terminal.
According to this information, it can present a
subset of services which can potentially run on the
user’s terminal.

− Service deployment - Once the user knows that an
interesting service is available, then the
infrastructure must deploy the code on the user’s
device. Deployment consists of fetching software
components from a repository, downloading them,
instantiating, configuring, and interconnecting
components. In our context, services must be
incrementally deployed: components running on
fixed computers are deployed in a preliminary step,
and then components running on user’s terminal are
deployed on user’s demand. On-demand
deployment avoids us to preinstall on user’s devices
all the mobile parts of each service and to waste the
limited device memory resources.

3. Model for ubiquitous contextual services

This section presents our distributed software
component-based model for designing ubiquitous
contextual services.

3.1. Distributed software component model

In order to address the challenges discussed in
Section 2.3, we have chosen to design ubiquitous
contextual services according to a distributed
component-based approach. More precisely, a service
is composed of a set of assemblies (or compositions) of
distributed and interconnected software components.

As ubiquitous contextual services are deployed and run
on a distributed system composed of several fixed and
mobile computers, we distinguish two kinds of
assemblies: fixed and mobile assemblies. On one hand,
a fixed assembly represents the permanent part of a
service: it is deployed on fixed nodes of the ubiquitous
environment at the starting time of the service and is
present as long as the service is available to end-users.
On the other hand, each mobile assembly represents
the part of a service dedicated to one end-user: it is
automatically deployed on end-user demand and can be
automatically destroyed when the user leaves the
contextual wireless coverage zone (e.g. out of a
railway station). Each component has a set of
configurable attributes and interaction ports that
capture features provided by a component or required
by other components [5]. We reuse the four kinds of
ports defined by the CORBA Component Model: facet,
receptacle, event sink, and event source. A facet and a
receptacle expound an interface, i.e. a set of methods,
respectively implemented or required by the
component. An event sink and an event source
symbolize the fact that a component can respectively
consume or produce a specific kind of event. The
binding between a facet and a receptacle, and between
an event sink and an event source allows to realize
respectively synchronous and asynchronous
interactions between components.

Finally, each component has a base reference
interface offering management and control methods,
i.e. to configure attributes, to connect facets to
receptacles and event sinks to event sources. This
management interface is mainly used during
deployment and reconfiguration of distributed software
component applications.

3.2. The train service component-based design

The different concepts discussed previously are
illustrated, on the train service example, in Figure 2.
The “Train GUI” component is deployed on the user’s
device and interconnected with the “Railway Station”
component to get the trains’ schedule. It has to be
differently implemented according to the type of
terminal (a PDA with a small screen, a laptop or a
smartphone). So, each component is composed of
several implementation codes and of a description of
context dependencies. The latter clearly captures the
adequate running context in terms of hardware and
software resources required to correctly deploy each
implementation.

Mobile assembly

Mobile assembly

Fixed assembly

ComponentComponent

ReferenceReference FacetFacet

ReceptacleReceptacle

Event SourceEvent Source

Event SinkEvent SinkAttributeAttribute

Train
GUI

Railway
Station

Database
Train

Schedule

Database
Train

Schedule

Train
GUI

Synchronous
Invocation

Asynchronous
NotificationAssembly

Figure 2. The train service as a set of
assemblies of software components.

4. Our infrastructure for ubiquitous
computing

This section describes our software infrastructure
dedicated to ubiquitous computing. To design this
infrastructure, we followed the distributed component-
based approach exposed on Section 3.1.

4.1. The dynamic discovery of services

The discovery of services is one of the key points of
ubiquitous contextual computing. The challenge to
address is how a user entering a specific network
coverage zone is informed about existence of available
services. To solve this, we firstly introduce a
component named Service Registry (SR), hosted in a
fixed computer of the ubiquitous environment (e.g. a
server on the railway station). The SR component is in
charge of the following main points: 1) Manage the list
of available services: the SR component offers a way
for service provider administrators to register, update
and remove services from the list, 2) Transmit its
unique identifier: every SR has a unique ID allowing
the differentiation of multiple service providers.
Indeed, ubiquitous environments can co-exist from the
user point of view in some particular cases. Actually,
this happens in our sample scenario if the railway
station is near a museum offering other ubiquitous
contextual services as information on current
exhibitions for instance, 3) Compute the appropriate
mobile assembly and/or component implementations
of services according to the user’s device hardware and
software capabilities, 4) Transmit the list of registered
services: the list sent to a user should reference only
available services that are adapted to its device.

Secondly, we propose to introduce a component
named Service Activator (SA) hosted on mobile
devices. The SA component interacts with the SR one
as follows: 1) Receive SRs IDs: from them, the SA

component will be able to access the list of available
services registered in corresponding SRs, 2) Transmit
the device characteristics: this information is sent by
the SA component to the SR that has been selected by
the user, 3) Receive and display the list of available
contextual services that match to the device
capabilities.

Thanks to this component-based architecture, the
challenge of contextual services discovery can be
reformulated as follows: how a SR is discovered by the
SA components? Different scenarios at this stage exist,
depending on which component – the SA or the SR - is
initiating the service discovery. Using a protocol based
on multicast, the first case, i.e. the services search is
initiated by user, implies the user’s device being in a
“transmit” mode (TX), which means start a
periodically sending of search requests. The second
case, i.e. the user’s device is in a “receive” mode (RX),
implies that the SR is in charge of the periodical
sending of requests through the network. This case is
more interesting if we take into account several
aspects, and particularly energy aspect, as showed in
some IEEE 802.11 wireless cards specifications
summarized in Table 1. Devices’ wireless card power
consumption is reduced by an average of 30 percents in
the RX mode. We propose then to implement this
mode in our software infrastructure. What’s more,
having one emitter (the service provider server) and
several receivers (the users’ devices) that are waiting
for requests generates less network traffic than the
opposite. This has to be pointed out in the context of
ubiquitous applications as the number of devices
involved can be potentially important. At last, the RX
mode allows a transparent discovery of the SR from
users’ point of view and updates are automatically and
immediately notified to devices.

Table 1. Power consumption of some IEEE
802.11x wireless cards

 TX RX RX/TX
Compaq WL110 [6] 280 mA 180 mA 65 %
Buffalo AirStation G54 [7] 550 mA 350 mA 64 %
Dlink DWL-AG660 [8] 500 mA 379 mA 75 %

Once the SR is discovered, the SA is able to send a

request to get the list of contextual services that are
adapted to the device. To realize that, we define a
“negotiation” protocol between the SA (i.e. the user’s
device) and SR (i.e. the service provider server)
components, as illustrated in Figure 3. After the SR
discovery (1), hardware and software characteristics of
device are sent by the SA to the SR (2). This one
computes then appropriate assemblies according to this
information.

(3) Compute and send
available services list

(2) Send characteristics

(1) Transmit ID

Service
Registry

User Device
Service Provider
Server

Service
Activator

Figure 3. The service discovery and the

negotiation protocol.

Indeed, many component implementation binaries of
the mobile part of a service are possible. For instance,
many implementations of the GUI for the train service
are available: GUI for white and black or color screens,
text to speech interfaces, etc. Moreover, different
component assemblies can be proposed, not just in
terms of component implementation choices but also in
terms of application architectures. To illustrate this
point, we can imagine that the user is a non-French
speaker arriving in a French railway station, so that, if
exists, a Translator component realizing the French-
to-user’s language translation has to be expressed in
the alternate configuration. Finally, the SR sends the
list of contextual services that are adapted to the user’s
terminal (3).

4.2. Automatic deployment on-demand

Once services are discovered and one of them
selected by user, the infrastructure must deploy the
mobile assembly of the service on the user’s device. In
the context of component-based applications,
deployment consists of several steps: downloading
component binaries from a (remote) repository to
devices, instantiation of these components (e.g. the
GUI showing the railway information) on the user’s
device, configuration of their business properties (e.g.
the GUI title), and interconnection with the
components that belong to the fixed part of the service
(e.g. the component that processing data to send and
the railway station information system). For this
purpose, we introduce in our architecture a third
component called Service Deployer (SD). As for the
SA component, it must be previously deployed and
instantiated on users’ devices. Figure 4 completes the
architecture of our software infrastructure for
ubiquitous computing and details steps from the
service demand by user (4) to deployment of the
mobile part of the service (5, 6a and 6b).

Service
Activator

(4) Select a service

Repository of
assemblies

(5) Download mobile assembly

GUIGUI TrainsTrains

(6a) Instantiate component

(6b) Interconnect and
configure components

Service
Deployer

Figure 4. On-demand service deployment.

The components of the service that are running on

fixed computers have been deployed and instantiated in
a preliminary step according to the same deployment
process. Assemblies downloaded on devices only
contain mobile components which must be instantiated
on user’s terminal and, if necessary, interconnected to
the previously instantiated steady components. The
repository of assemblies mentioned in Figure 4 can be
located on the service provider server or on a remote
HTTP or FTP server (or anything else). Once all these
deployment steps achieved, end-user can use features
provided by the contextual service, that is, in our case,
accessing the trains’ schedule.

Nevertheless, the role of the SD component is not
limited to the on-demand deployment process. In fact,
this component is in charge of the entire life cycle of
the service. In the context of ubiquitous computing,
users arrive and go outside of ubiquitous environments.
In support of this view, just let us imagine the
following scenario. The user has taken a train which
has started. When user will come in the railway station
again, as he/she remembers that the train service exists,
he/she would like to use it immediately. That means
not having to select one of the displayed SR, next
waiting for the device characteristics transmission,
choosing the appropriate service and so on. Thus, the
idea is to keep in cache mobile assemblies of services
user is likely to reuse. The SD component is in charge
of this aspect. The management of service versions is
done thanks a unique identifier attached to each mobile
service assembly.

5. Implementation

We have implemented our infrastructure with the
OMG CORBA Component Model (CCM) and on top of
our OpenCCM platform. Firstly, this section briefly
describes the motivations for these two implementation
choices. Next, we detail the CORBA components for
both our infrastructure and the train service. Finally,
current limitations of our implementation are outlined.

5.1. The OMG CORBA Component Model

We have chosen the OMG CORBA Component
Model because it is the only vendor neutral open
standard for Distributed Component Computing
supporting various heterogeneous programming
languages, operating systems, networks and CORBA
products seamlessly [3]. This model is appropriate to
create ubiquitous, distributed, server-side scalable,
component-based, language-neutral, transactional,
multi-user and secure applications. The CCM defines a
framework to support the whole life cycle of software
development process: design, implementation,
packaging, assembling, deployment, and execution.
CORBA components provide the required concepts
(reference interface, interaction ports and business
attributes) to implement our component-based model
for ubiquitous contextual services. At runtime,
components are hosted by containers which
transparently manage the system aspects like
component life cycle, networked communication,
transaction, security, and persistence. Finally, the CCM
defines a XML-based packaging and assembling
facility coupled to an automatic distributed deployment
process.

We have chosen to use the OpenCCM platform, our
open source Java-based CCM implementation [4],
because it implements all the CCM features required
by our infrastructure for ubiquitous contextual services,
especially packaging, assembling, and automatic
deployment facilities. Moreover, using OpenCCM
allows us to experiment our infrastructure in truly
heterogeneous environments as OpenCCM supports
various operating systems like Linux, Solaris,
Windows NT/2000/XP, Windows CE and Linux
Familiar for PDA, and most of available Java-based
CORBA products, i.e. JacORB, OpenORB, ORBacus
or Borland Enterprise Server.

5.2. Software infrastructure implementation

First of all, we defined two CORBA components to
respectively model the SR and the SA. However, we
added a third CORBA component named Multicast to
implement the interactions between the SA and the SR
during the service discovery phase (Figure 5).

This generic Multicast component implements a
“send/receive” multicast request function and is
instantiated on each node (i.e. on all devices and
servers). SA and SR components are both bound to it
(but not the same instance) as follows. On one side, the
Multicast component is bound to the SR’s facet that
provides the list of available ubiquitous services and
which IOR (and the associated SR ID) is sent by

multicast. On the other side, the SA component is
bound, thanks to a receptacle, to the Multicast’s facet
that provides the list of discovered SRs (i.e. the SR IDs
received). Using of multicast requests is well suited for
the implementation of the discovery protocol in the
context of a ubiquitous environment. Indeed, SA and
SR components are not directly connected (from a
CCM point of view), which was the original goal as
the user/device is not assumed to know about its
environment before discovering it!

SA

SD
OpenCCM DCI

Fixed

Mobile

Multi
Cast SR

Multi
Cast

MCAST

Figure 5. The CORBA components assembly

for service discovery and deployment.

The code below (written in the OMG CCM Interface

Description Language) defines the main interfaces and
operations provided by our infrastructure components,
and interaction ports between these components.

// Interfaces provided or required by components.
interface Receive {
 IORList get_list_IOR(…);
 void stop(); };
interface Services {
 void add(…);

 void update(…);
 void remove(…);
 IOR get_IOR(); };

interface Deployer {
 void deploy(…);
 void undeploy(…); };

// SA, SR, SD and Multicast components
component ServiceActivator {
 uses Receive receive;
 uses Deployer deployer; };
component ServiceRegistry {
 provides Services services;
};
component ServiceDeployer {
 provides Deployer deployer;
 uses ::DCI::DCIDeployment dci;
};
component Multicast {
 uses Services services;
 provides Receive receive;};

As far as the deployment is concerned, a CORBA
component implements the denoted SD. It provides a
facet, used by the SA component’s receptacle, which
offers operations for deploying the services. More
precisely, the SD component is connected to our
OpenCCM Distributed Component Infrastructure
(DCI). The DCI infrastructure is also designed as a set
of CORBA components to manage the deployment
phases of CCM applications [9]. DCI components

provide facets offering deployment operations as
install an assembly by downloading it from a
repository to the device, instantiate and tear down it.
Also, the SD implements the cache management of
assemblies, as explained in section 4.2.

To experiment our infrastructure, we have also
implemented the train service using two CORBA
components. Figure 6 illustrates on a PDA this service
at work, i.e. after the dynamic service discovery and its
deployment. The SA component (1) is represented by a
GUI displaying, firstly the list of SRs that have been
“detected” (left column of the SA GUI), secondly the
list of available services registered on each SR selected
by user (right column). The client part of the service is
represented by a GUI showing the trains’ schedule (2).

1- Discovering and deploying the service

2- Using the service

1

2

Figure 6. An example of what the user is

finally seeing on his/her device.

Both infrastructure and service have been tested

using a Dell Lattitude laptop with Windows XP and
the JRE 1.3.1 (as the fixed server), a set of Compaq
iPAQ PDA with Windows CE and the IBM J9 JVM (as
mobile devices), and a 802.11 wireless network. The
ORB used is the free JacORB product [10]. The fact
that our experiences are based on the OpenCCM
platform (which is written in Java) implies component
implementations to be written in Java. Nevertheless, as
CCM supports platform heterogeneity, it is obviously
possible to use component binaries written in other
languages (e.g. C++) for both infrastructure
components and service components. These binaries
must be deployed on appropriate containers (e.g. a C++
container provided by the CIAO [11], MicoCCM [12],
or Qedo [13] platforms for instance) instead of the
OpenCCM one.

5.3. Limitations

Some limitations of the CCM implementation of our

infrastructure should be emphasized:
Deployment - The big size of assembly archives may
cause some download time problems during the
installation step of the deployment. This is due to the
limited throughput of current wireless networks, and
the way containers are generated in OpenCCM.

Dynamic generation of container classes at execution
time could address this problem by reducing size (then
downloading time) of assembly archives.
Multicast - The multicast protocol had to be
implemented using a specific hand-written component
(Multicast). This component would be useless if
multicast communications between CORBA
components were directly supported by the CCM.
Thread - Our infrastructure components (but also
many ubiquitous services) use threads to deal with
parallel activities. Management of these threads is done
explicitly in the code of component business
implementations. This point can be avoided if
component containers are able to manage this system
aspect transparently.

6. Related works

A key element in ubiquitous and contextual services
is the service discovery function. The OMG/ISO
trader [14] and the RM-ODP [15] trader mediate
advertisement and discovery of services. The
implementation of our service registry could use such
technologies. JINI [16] from Sun Microsystems offers
several ways to discover services. The Multicast
Request Protocol permits to user’s terminal to send a
multicast request to a lookup service. The response is
sent via a TCP unicast message. The opposite solution,
named Multicast Announcement Protocol, is used by
lookup services to announce their presence to any
interested parties that may be listening and "in range"
of the multicast scope of the lookup service. Some
other protocols like UpnP, Salutation, SLP, etc., exist
and globally offer the same functionalities. A
comparison of these protocols can be found in [17].

Concerning the global infrastructure to design
ubiquitous services, the Appear Provisioning Server
[18] from AppearNetworks is an infrastructure
dedicated to service discovery and deployment. This
allows deployment of wireless infrastructure in which
applications and documents are available on users’
terminal on dedicated places. Applications are
developed independently of the infrastructure.

Concerning CORBA based related work, the Smart
Deployment Infrastructure (SDI) [19] is based on an
OMG trader service to discover available services.
However, they don’t explain how a terminal discovers
the trader service in a particular location. The work in
[20] is based on the Satin model. They developed
component assemblies with safety properties. This
work is complementary to our work.

7. Conclusion

Ubiquitous and context aware applications are one
of the new challenges in distributed computing area.
Until now, there is no well established approach from
the design step to the execution step to build such
applications. To address this challenge, we have
presented in this paper a distributed component-based
software approach to build both ubiquitous context
aware applications and the dedicated software
infrastructure that addresses service discovery and
automatic deployment on demand on mobile devices.
We have implemented and tested this infrastructure on
top of the OMG’s CORBA Component Model and the
OpenCCM platform. We have also designed,
prototyped and tested the train service scenario on a
heterogeneous infrastructure composed of a laptop, a
set of PDA and a wireless network.

Our future works will go in two directions. Firstly,
according to the current limitations listed in Section
5.3, we will enhance the OpenCCM platform in several
directions: dynamic container generation to reduce the
size of assembly archives and improve downloading
time on slow wireless networks, integration of
multicast communications in the CCM model, and
adding a threading service inside CCM containers.
Secondly, we will experiment more examples of
ubiquitous applications in order to propose a model-
driven approach for building both services and
infrastructure for this domain, independently of
underlying technological platforms.

8. References

[1] M. Weiser, “The computer for the 21st century”,

Scientific American, 3(265):94-014, 1991.
[2] C. Endres, A. Butz, “A Survey of Software

Infrastructures and Frameworks for Ubiquitous
Computing”, Mobile Information Systems Journal, 1(1),
Jan-Mar 2005.

[3] Object Management Group, CORBA Components
Specification, version 3.0. OMG TC Document
formal/2002-06-65. OMG, Boston, 2002.

[4] The OpenCCM Team, The OpenCCM Project,
ObjectWeb Consortium, 2002.
http://openccm.objectweb.org

[5] C. Szyperski, Component Software: Beyond Object-
Oriented Programming (Second Edition). Component
Software Series, Addison-Wesley and ACM Press,
2002.

[6] Compaq, WL 110 Wireless Card User Manual, 2001.
[7] Buffalo Tech, WLI-CB-G54A User Manual, 2002.
[8] D-link; DWL-AG660 User Manual, 2004.
[9] A. Hoffmann, T. Ritter, J. Reznik, M. Born, B.

Neubauer, F. Stoinski, H. Boehme, B. Folliot, M. Vadet,
U. Lang, P. Merle, C. Contreras, Specification of the
Deployment and Configuration, IST COACH Document
Deliverable #2.4, 2003.
http://www.ist-coach.org

[10] The JacORB Team, JacORB 2.1 Programming Guide.
May 2004. http://www.jacorb.org

[11] N. Wang, D. Schmidt, and D. Levine, “Optimizing the
CORBA Component Model for High-Performance and
Real-Time Applications”. In Work-in-Progress session
at the IFIP/ACM Middleware 2000 Conference,
Pallisades, New York, April 2000.
http://www.cs.wustl.edu/~schmidt/CIAO.html

[12] Frank Pilhofer, The MICO CORBA Component Project.
2000. http://www.fpx.de/MicoCCM/

[13] T. Ritter, M. Born, T. Unterschütz, T. Weis, “A QoS
Metamodel and its Realization in a CORBA Component
Infrastructure”, In Proceedings of the 36th Hawaii
International Conference on System Sciences, Software
Technology Track, Distributed Object and Component-
based Software Systems Minitrack, HICSS, Honolulu,
Jan. 2003. http://qedo.berlios.de/

[14] Object Management Group, Trading Object Service
Specification, version 1.0. OMG TC Document
formal/2000-06-27. OMG, Boston, 2000.

[15] P. Leydekkers, Multimedia Services in Open Distributed
Telecommunications Environments. PhD Thesis CTIT,
1997.

[16] Edwards, W. K. Core Jini Introduction. Prentice Hall
PTR, 1999.

[17] R. E. McGrath, M. D. Mickunas, R. H. Campbell,
Semantic Discovery for Ubiquitous Computing,
http://citeseer.ist.psu.edu/485904.html

[18] AppearNetworks, The Appear Provisioning Server.
http://www.appearnetworks.com.

[19] C. Taconet, E. Putrycz, G. Bernard, “Context Aware
Deployment for Mobile Users”, In Proceedings of the
Computer Software and Applications Conference
(COMPSAC 2003), pages 74-81, 2003.

[20] A. Occello, A.M. Dery-Pinna, "Sûreté de
fonctionnement d’applications nomades construites par
assemblage de composants", In Proceedings of
UbiMob’05, pages 73-80, Grenoble, France, 2005.

