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QUASI-INVARIANCE PROPERTIES OF A CLASS OF

SUBORDINATORS

MAX-K. VON RENESSE, MARC YOR, AND LORENZO ZAMBOTTI

Abstract. We study absolute-continuity properties of a class of stochastic processes,
including the gamma and the Dirichlet processes. We prove that the laws of a general
class of non-linear transformations of such processes are locally equivalent to the law of
the original process and we compute explicitly the associated Radon-Nikodym densities.
This work unifies and generalizes to random non-linear transformations several previous
results on quasi-invariance of gamma and Dirichlet processes.

1. Introduction

In this paper we present several absolute-continuity results concerning, among others,
the gamma process and the Dirichlet processes. We recall that the gamma process (γt)t≥0

is a subordinator, i.e. a non-decreasing Lévy process, with gamma marginals, i.e. γ0 = 0
and

P(γt ∈ dx) = pt(x)dx, pt(x) := 1[0,∞)(x)
1

Γ(t)
xt−1 e−x, t > 0, x ∈ R.

Moreover for any T > 0, we define the Dirichlet process over [0, T ] as D
(T )
t := γt/γT ,

t ∈ [0, T ]; we recall that γT is independent of (γt/γT , t ∈ [0, T ]) and that, therefore,

(D
(T )
t , t ∈ [0, T ]) is equal in law to the gamma process conditioned on {γT = 1}. See [11]

for a survey of the main properties of the gamma process.
The gamma process has been the object of intense research activity in recent years, both

from pure and applied perspectives, such as in representation theory of infinite dimensional
groups, in mathematical finance and in mathematical biology (see e.g. [9, 3, 5]). Quasi-
invariance properties of the associated probability measure on path or measure space
with respect to canonical transformations often play a central role. We recall that, given
a measure µ on a space X and a measurable map T : X 7→ X, quasi-invariance of µ
under T means that µ and the image measure T∗µ are equivalent, i.e. mutually absolutely
continuous. A classical example is the Girsanov formula for additive perturbations of
Brownian motion (see, e.g., [7], Chap. VIII).

In this paper we study quasi-invariance properties for a class of subordinators which we
denote by (L) and define below, with respect to a large class of non-linear sample path
transformations. In particular, we unify and extend previous results on the real valued
gamma and Dirichlet processes.

Quasi-invariance properties of Lévy processes have been studied for quite some time,
see e.g. Sato [8, p. 217-218]. In the case of the gamma process, for any measurable function

a : R+ 7→ R+ with a and 1/a bounded, the laws of (
∫ t

0
as dγs, t ≥ 0) and (γt, t ≥ 0) are
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locally equivalent, see [9]. By local equivalence of two real-valued processes (ηt, t ≥ 0) and
(ζt, t ≥ 0), we mean that for all T > 0 the laws of (ηt, t ∈ [0, T ]) and (ζt, t ∈ [0, T ]) are
equivalent.

Here, we show the same property for a much wider class of transformations ξ 7→ K(ξ),
e.g. (ξt)t≥0 7→ (K(t, ξt))t≥0 and (ξt)t≥0 7→ (

∑

s≤tK(s,∆ξs))t≥0, where (ξt)t≥0 is a (L)-

subordinator and K(s, .) is a C1,α-isomorphism of R+ for each s ≥ 0 and α ∈]0, 1[. Using
the mentioned properties of the gamma process, we establish analogous quasi-invariance

results for transformations D(T ) 7→ K(D(T )) of the Dirichlet process, e.g. (D
(T )
t )t∈[0,T ] 7→

(K(t, D
(T )
t ))t∈[0,T ], where K(s, .) is an increasing C1,α-isomorphism of [0, 1] for each s ∈

[0, T ].
In all these cases, we compute the Radon-Nikodym density explicitly and study its mar-

tingale structure. We notice that our approach allows to treat the previously mentioned
results by Vershik-Tsilevich-Yor [9, 10], together with Handa’s [5] and the recent one by
Renesse-Sturm [6] on Dirichlet processes, within a unified framework.

The paper ends with an application to SDEs driven by (L)-subordinators. Finally we
point out that, in the same spirit as in [6], each quasi-invariance property we show yields
easily an integration by parts formula on the path space; such formulae can be used
in order to study an appropriate Dirichlet form and the associated infinite-dimensional
diffusion process. These applications will be developed in a future work.

1.1. The main result. Let (ξt)t≥0 be a subordinator, i.e. an increasing Lévy process with
ξ0 = 0. In this paper we consider subordinators in the class (L), meaning with logarithmic

singularity, i.e. we assume that ξ has zero drift and Lévy measure

ν(dx) = g(x) dx, x > 0,

where g :]0,∞[7→ R+ is measurable and satisfies

(H1) g > 0 and

∫ ∞

1

g(x) dx <∞;

(H2) there exist g0 ≥ 0 and ζ : [0, 1] 7→ R measurable such that

g(x) =
g0

x
+ ζ(x), ∀x ∈ ]0, 1], and

∫ 1

0

|ζ(x)| dx < +∞.

We recall that for all t ≥ 0, λ > 0

E
(

e−λξt

)

= exp (−tΨ(λ)) , Ψ(λ) :=

∫ ∞

0

(

1 − e−λx
)

g(x) dx.

For the general theory of subordinators, see [4]. We denote by Ft := σ(ξs : s ≤ t), t ≥ 0,
the filtration of ξ. We denote the space of càdlàg functions on [0, t] by D([0, t]), endowed
with the Skorohod topology.

Remark 1.1. In the particular case of the gamma process (γt)t≥0, mentioned above, we
have

g(x) =
e−x

x
, x > 0, Ψ(λ) = log(1 + λ), λ ≥ 0.

We consider a measurable function h : R+ × Ω × R+ 7→ R+ such that
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(1) h is P ⊗BR+
-measurable, where P denotes the predictable σ-algebra generated by

ξ;
(2) denoting h(s, a) = h(s, ω, a), there exist finite constants κ > 1 and α ∈]0, 1[, such

that almost surely

|h(s, x) − h(s, y)| ≤ κ|x− y|α, ∀x, y ∈ R+, s ≥ 0, (1.1)

0 < κ−1 ≤ h(s, x) ≤ κ <∞, ∀x ∈ R+, s ≥ 0. (1.2)

Then we set

H(s, x) =

∫ x

0

h(s, y) dy, ∀x ≥ 0, s ≥ 0.

Notice that a.s. H(s, ·) : R+ 7→ R+ is necessarily a C1-diffeomorphism for all s ≥ 0. We
set

∆ξs := ξs − ξs−, s ≥ 0,

and for convenience of notation

h(s, 0) ·
g(H(s, 0))

g(0)
:= 1, ∀ s ≥ 0. (1.3)

We can now state the main result of this paper

Theorem 1.2.

(1) The process

MH
t := exp

(

g0

∫ t

0

log h(s, 0) ds

)

∏

s≤t

[

h(s,∆ξs) ·
g(H(s,∆ξs))

g(∆ξs)

]

, t ≥ 0,

is a (Ft,P)-martingale with E(MH
t ) = 1 and a.s. MH

t > 0. We can uniquely define

a probability measure P
H such that P

H
|Ft

= MH
t · P|Ft

for all t ≥ 0.

(2) Setting

ξH
t :=

∑

s≤t

H(s,∆ξs), t ≥ 0, (1.4)

then ξH is distributed under P
H as ξ under P.

Note that Theorem 1.2 is a local equivalence result for the laws of ξ and ξH , since a.s.
MH

t > 0. The theorem is stated for general subordinators in the class (L) defined above
and for a general random transformation; in section 3 we consider some special cases of
the general result, and in section 4 we consider the case of the Dirichlet process.

1.2. A parallel between the gamma process and Brownian motion. The absolute-
continuity results presented in this paper can be better understood by comparison with
some analogous properties of Brownian motion.

The Girsanov theorem for a Brownian motion (Bt, t ≥ 0) states the following property:
if (as, s ≥ 0) is an adapted and (say) bounded process, then the law of the process

t 7→ Bt +

∫ t

0

as ds, t ≥ 0,
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is locally equivalent to that of (Bt, t ≥ 0), with explicit Radon-Nikodym density. We call
this property quasi-invariance by addition.

As a byproduct case of our Theorem 1.2, the gamma process γ has an analogous prop-
erty of quasi-invariance by multiplication (see also [9]): if (as, s ≥ 0) is a predictable
process such that a and 1/a are bounded, then the law of

t 7→

∫ t

0

as dγs, t ≥ 0,

is locally equivalent to that of (γt, t ≥ 0), and we compute explicitly the Radon-Nikodym
density. In fact, we can prove the same quasi-invariance property for all (L)-subordinators.

The Girsanov theorem for Brownian motion has important applications in the study of
stochastic differential equations (SDEs) driven by a Wiener process; likewise, our Theorem
1.2 allows to give analogous applications to SDEs driven by (L)-subordinators, e.g. to
compute explicitly laws of solutions; see section 5.

2. A generalization of a formula of Tsilevich-Vershik-Yor

Within the framework of subsection 1.1, the law of ξ with ξ0 = 0 is characterized by its
Laplace transform, i.e. for any measurable bounded λ : R+ 7→ R+

E

[

exp

(

−

∫ t

0

λs dξs

)]

= exp

(

−

∫ t

0

Ψ(λs) ds

)

.

In order to prove Theorem 1.2, we shall show that ξH has, under P
H , the same Laplace

transform as ξ under P, namely for all measurable bounded λ : R+ 7→ R+

E
H

[

exp

(

−

∫ t

0

λs dξ
H
s

)]

= exp

(

−

∫ t

0

Ψ(λs) ds

)

.

To do that, we shall show that the process

exp

(

−

∫ t

0

λs dξ
H
s +

∫ t

0

Ψ(λs) ds

)

, t ≥ 0,

is a ((Ft),P
H)-martingale, which is equivalent to prove the following

Proposition 2.1. We set for all t ≥ 0

MH,λ
t := exp

(
∫ t

0

(g0 log h(s, 0) + Ψ(λs)) ds

)

·

·
∏

s≤t

[

h(s,∆ξs)
g(H(s,∆ξs))

g(∆ξs)
exp (−λsH(s,∆ξs))

]

.
(2.1)

Then MH,λ is a (Ft,P)-martingale with E(MH,λ
t ) = 1 and a.s. MH,λ

t > 0.

Tsilevich-Vershik-Yor prove in [9] the same result for ξ a gamma process and H(s, x) =
c(s)x, for c : R+ 7→ R+ measurable and deterministic.

We say that a real-valued process (ζt, t ≥ 0) has bounded variation, if a.s. for all T > 0
the real-valued function [0, T ] ∋ t 7→ ζt has bounded variation.

Lemma 2.2. Let F : R+ × Ω × R+ 7→] − 1,∞[ such that
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• F is P ⊗BR+
-measurable, where P denotes the predictable σ-algebra generated by

ξ;
• there exists a finite constant CF such that a.s. for almost every s ≥ 0

F (s, 0) = 0,

∫

ν(dx) E

[
∣

∣

∣
F (s, x)

∣

∣

∣

]

≤ CF <∞. (2.2)

Then

(1) the process

xF
t :=

∑

s≤t

F (s,∆ξs) −

∫ t

0

ds

∫

ν(dx)F (s, x), t ≥ 0

is a martingale with bounded variation;

(2) the process

EF
t := exp

(

−

∫ t

0

ds

∫

ν(dx)F (s, x)

)

∏

s≤t

(

1 + F (s,∆ξs)
)

satisfies

EF
t = 1 +

∫ t

0

EF
s− dx

F
s , t ≥ 0. (2.3)

Moreover (EF
t ) is a martingale with bounded variation which satisfies

E

(
∫ t

0

∣

∣dEF
u

∣

∣

)

≤ 2CF t.

(3) for all t ≥ 0, a.s. EF
t > 0.

Proof. Notice first that xF is well defined, since by (2.2)

E

[

∑

s≤t

|F (s,∆ξs)|

]

=

∫ t

0

ds

∫

ν(dx) E

[
∣

∣

∣
F (s, x)

∣

∣

∣

]

≤ CF t <∞.

Since {(s,∆ξs), s ≥ 0} is a Poisson point process with intensity measure ds ν(dx), it
follows immediately that xF is a local martingale. Furthermore, a.s. the paths of xF have
bounded variation, since

E

(
∫ t

0

∣

∣dxF
s

∣

∣

)

≤ 2CF t, t ≥ 0.

Therefore, (xF
t , t ≥ 0) is a true martingale; indeed, for any t > 0, sups≤t |x

F
s | ≤

∫ t

0

∣

∣dxF
s

∣

∣,
and therefore

E

(

sup
s≤t

|xF
s |

)

≤ 2CF t, t ≥ 0;

by Proposition IV.1.7 of [7] we obtain the claim.
Since EF is the Doléans exponential associated with the martingale xF , i.e. it satisfies

(2.3), it is clear that EF is a local martingale (see chapter 5 of [1]). Moreover, since EF
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is non-negative, then it is a super-martingale and in particular E
(

EF
t

)

≤ E
(

EF
0

)

= 1.
Furthermore,

E

(
∫ t

0

∣

∣dEF
u

∣

∣

)

= E

(
∫ t

0

EF
u−

∣

∣dxF
u

∣

∣

)

≤

∫ t

0

E
(

EF
u

)

2CF du ≤ 2CF t.

The same argument as for xF yields:

E

(

sup
s≤t

∣

∣EF
s

∣

∣

)

≤ 2CF t, t ≥ 0,

and therefore EF is a martingale.
In order to prove that EF

t > 0 a.s., by (2.2) it is enough to show that

log
∏

s≤t

(

1 + F (s,∆ξs)
)

=
∑

s≤t

log
(

1 + F (s,∆ξs)
)

> −∞.

Since F (s,∆ξs) = ∆xF
s = xF

s − xF
s− > −1, and xF has a.s. bounded variation, then

there is a.s. only a finite number of s ∈ [0, t] such that ∆xF
s < −1/2 and therefore a.s.

infs≤t ∆x
F
s =: Ct > −1. It follows that

∑

s≤t

log
(

1 + ∆xF
s

)

≥ −
1

Ct + 1

∑

s≤t

∣

∣∆xF
s

∣

∣ = −
1

Ct + 1

∫ t

0

∣

∣dxF
u

∣

∣ > −∞, a.s. �

The main steps in the proofs of Proposition 2.1 and Theorem 1.2 are the estimate (2.5)
and the identity (2.6) below, which allow to apply Lemma 2.2 to

F (s, 0) := 0, F (s, x) := h(s, x) ·
g(H(s, x))

g(x)
· e−λsH(s,x) − 1, x > 0. (2.4)

Lemma 2.3. Let φ : R+ 7→ R+ a C1 function such that φ(0) = 0,

0 < κ−1 ≤ φ′(x) ≤ κ <∞, |φ′(x) − φ′(y)| ≤ κ|x− y|α, ∀x, y ∈ R+,

where κ > 0 and α ∈]0, 1[. We set for all a ≥ 0

Fa,φ : (0,∞) 7→ R, Fa,φ := φ′ ·
g(φ)

g
· e−aφ − 1.

There exists a finite constant C = C(κ, α, a) such that
∫ ∞

0

∣

∣

∣
Fa,φ(x)

∣

∣

∣
g(x) dx ≤ C, (2.5)

and
∫ ∞

0

Fa,φ(x) g(x) dx = −Ψ(a) − g0 log φ′(0). (2.6)

Proof. Notice that φ : R+ 7→ R+ is a diffeomorphism. First we have
∫ ∞

κ−1

∣

∣

∣
Fa,φ

∣

∣

∣
g dx ≤

∫ ∞

κ−1

φ′ g(φ) dx+

∫ ∞

κ−1

g dx

=

∫ ∞

φ(κ−1)

g(y) dy+

∫ ∞

κ−1

g dx ≤ 2

∫ ∞

κ−2

g(x) dx <∞.
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Now
∫ κ−1

0

∣

∣

∣
Fa,φ

∣

∣

∣
g dx =

∫ κ−1

0

∣

∣

∣
φ′ g(φ) e−aφ − g

∣

∣

∣
dx

≤

∫ κ−1

0

φ′ g(φ)
(

1 − e−aφ
)

dx+

∫ κ−1

0

φ′

∣

∣

∣

∣

g(φ) −
g0

φ

∣

∣

∣

∣

dx+

∫ 1

0

g0

∣

∣

∣

∣

φ′(x)

φ(x)
−

1

x

∣

∣

∣

∣

dx

+

∫ κ−1

0

∣

∣

∣

g0

x
− g(x)

∣

∣

∣
dx+

∫ κ−1

0

g(x) (1 − e−ax) dx =: I0 + I1 + I2 + I3 + I4.

First we estimate I2.

I2 =

∫ 1

0

g0

∣

∣

∣

∣

φ′(x)

φ(x)
−

1

x

∣

∣

∣

∣

dx = g0

∫ 1

0

∣

∣

∣

∣

φ(x) − xφ′(x)

xφ(x)

∣

∣

∣

∣

dx

≤

∫ 1

0

g0

κ−1x2

∣

∣

∣

∣

∫ x

0

[φ′(y) − φ′(x)] dy

∣

∣

∣

∣

dx ≤ g0 κ
2

∫ 1

0

1

x2

∫ x

0

yαdy dx ≤
g0 κ

2

α(1 + α)
.

Recall now that g(x) = g0

x
+ ζ(x) by (H2) above. Then I3 and I4 can be estimated by

I3 =

∫ κ−1

0

∣

∣

∣

g0

x
− g(x)

∣

∣

∣
dx ≤

∫ 1

0

|ζ | dx,

and

I4 =

∫ κ−1

0

g(x) (1 − e−ax) dx ≤

∫ 1

0

g0 ax dx+

∫ 1

0

|ζ | dx ≤ ag0 +

∫ 1

0

|ζ | dx.

Then I0 and I1 can be estimated similarly by changing variable

I1 =

∫ κ−1

0

φ′

∣

∣

∣

∣

g(φ) −
g0

φ

∣

∣

∣

∣

dx =

∫ φ(κ−1)

0

∣

∣

∣
g(x) −

g0

x

∣

∣

∣
dx ≤

∫ 1

0

|ζ | dx,

and

I0 =

∫ κ−1

0

φ′ g(φ)
(

1 − e−aφ
)

dx =

∫ φ(κ−1)

0

g(x) (1 − e−ax) dx ≤ ag0 +

∫ 1

0

|ζ | dx,

since φ(κ−1) ≤ 1. Therefore, we have obtained
∫ ∞

0

∣

∣

∣
Fa,φ

∣

∣

∣
g dx ≤ 2ag0 +

g0 κ
2

α(1 + α)
+ 2

∫ ∞

κ−1

g(y) dy + 4

∫ 1

0

|ζ(x)| dx,

and (2.5) is proven.
We turn now to the proof of (2.6). By (2.5) and dominated convergence

∫ ∞

0

Fa,φ g dx = lim
εց0

∫ ∞

ε

Fa,φ g dx.

For all ε > 0 we have
∫ ∞

ε

φ′ g(φ) e−aφ dx =
[

y = φ(x)
]

=

∫ ∞

φ(ε)

g(y) e−ay dy.
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Then we want to compute the limit as εց 0 of
∫ ∞

ε

Fa,φ g dx =

∫ ∞

φ(ε)

g(x) e−ax dx−

∫ ∞

ε

g(x) dx

=

∫ ∞

φ(ε)

g(x)
(

e−ax − 1
)

dx+

∫ 1

φ(ε)

g(x) dx−

∫ 1

ε

g(x) dx.

Clearly, by assumptions (H1)-(H2) and by dominated convergence

lim
εց0

∫ ∞

φ(ε)

g(x)
(

e−ax − 1
)

dx =

∫ ∞

0

g(x)
(

e−ax − 1
)

dx = −Ψ(a).

Now, by assumption (H2)

lim
εց0

[
∫ 1

φ(ε)

g(x) dx−

∫ 1

ε

g(x) dx

]

= g0 lim
εց0

[
∫ 1

φ(ε)

1

x
dx−

∫ 1

ε

1

x
dx

]

= g0 lim
εց0

log
ε

φ(ε)
= −g0 log φ′(0).

Then we have obtained (2.6). �

Proof of Proposition 2.1. It is enough to apply the results of Lemma 2.2 and Lemma 2.3
to φ(x) := H(s, x), a = λs and F defined in (2.4). Positivity of MH,λ

t follows from point
(3) of Lemma 2.2. �

Proof of Theorem 1.2. Notice that MH = MH,λ for λ ≡ 0. By Proposition 2.1, MH is
a martingale with expectation 1. Then, for any bounded measurable λ : R+ 7→ R+, by
Proposition 2.1 we obtain

E

(

exp

(

−

∫ t

0

λs dξ
H
s

)

MH
t

)

= exp

(

−

∫ t

0

Ψ(λs) ds

)

, t ≥ 0.

The desired result now follows by uniqueness of the Laplace transform. �

3. Quasi-invariance properties of (L)-subordinators

In this section we point out two special cases of Theorem 1.2. We consider a measurable
function k : R+ × R+ 7→ R+ which satisfies, for some finite constants κ ≥ 1 and α ∈]0, 1[

|k(s, x) − k(s, y)| ≤ κ|x− y|α, ∀ s, x, y ∈ R+,

0 < κ−1 ≤ k(s, x) ≤ κ <∞, ∀ s, x ∈ R+,

and we set

K(s, x) :=

∫ x

0

k(s, y) dy, ∀x, s ≥ 0,

Notice that K(s, ·) : R+ 7→ R+ is necessarily bijective for all s ≥ 0.
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3.1. Quasi-invariance of ξ under composition with a diffeomorphism. Setting

H(s, x) := K(s, ξs− + x) −K(s, ξs−), h(s, x) := k(s, ξs− + x), s, x ≥ 0,

we find that

ξH
t =

∑

s≤t

H(s,∆ξs) = K(t, ξt), t ≥ 0.

Moreover (1.1) and (1.2) are satisfied and Theorem 1.2 becomes

Corollary 3.1. The process

GK
t := exp

(

g0

∫ t

0

log k(s, ξs) ds

)

∏

s≤t

[

k(s, ξs) ·
g(K(s, ξs) −K(s, ξs−))

g(∆ξs)

]

, t ≥ 0,

is a non-negative (Ft)-martingale with E(GK
t ) = 1 and a.s. GK

t > 0. Then we can define a

probability measure P
K such that P

K
|Ft

= GK
t ·P|Ft

for all t ≥ 0. Under P
K , (K(t, ξt), t ≥ 0)

is distributed as (ξt, t ≥ 0) under P.

This result can be interpreted by saying that the law of (ξt) is quasi-invariant under
(deterministic) non-linear transformations (ξt, t ≥ 0) 7→ (K(t, ξt), t ≥ 0).

3.2. Quasi-invariance of ξ under transformations of jumps. Setting

H(s, x) := K(s, x), h(s, x) := k(s, x), s, x ≥ 0,

we find that (1.1) and (1.2) are satisfied and Theorem 1.2 becomes

Corollary 3.2. The process

NK
t := exp

(

g0

∫ t

0

log k(s, 0) ds

)

∏

s≤t

[

k(s,∆ξs) ·
g(K(s,∆ξs))

g(∆ξs)

]

, t ≥ 0,

is a non-negative (Ft)-martingale with E(NK
t ) = 1 and a.s. NK

t > 0. Then we can define

a probability measure P
K such that P

K
|Ft

= NK
t · P|Ft

for all t ≥ 0. Under P
K, the process

ξK
t =

∑

s≤t

K(s,∆ξs), t ≥ 0,

is distributed as ξ under P.

This result can be interpreted by saying that the law of (ξt) is quasi-invariant under
(deterministic) non-linear transformation of the jumps of ξ: (∆ξt, t ≥ 0) 7→ (K(t,∆ξt), t ≥
0).

3.3. Quasi-invariance properties of the gamma process. We now write the results
of Corollaries 3.1 and 3.2 in the special case of the gamma process (γt). Here

g(x) =
e−x

x
, x > 0, g0 = 1, Ψ(λ) = log(1 + λ).
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Corollary 3.3. We set for all t ≥ 0

Y K
t := exp

(

γt −K(t, γt) +

∫ t

0

log k(s, γs) ds

)

∏

s≤t

[

k(s, γs) · ∆γs

K(s, γs) −K(s, γs−)

]

. (3.1)

Then (Y K
t ) is a martingale with E(Y K

t ) = 1 and a.s. Y K
t > 0. Hence, we can define a

probability measure P
K such that P

K
|Ft

= Y K
t ·P|Ft

for all t ≥ 0. Under P
K, (K(t, γt), t ≥ 0)

is distributed as (γt, t ≥ 0) under P.

Corollary 3.4. The process

ZK
t := exp

(

γt −
∑

s≤t

K(s,∆γs) +

∫ t

0

log k(s, 0) ds

)

∏

s≤t

[

k(s,∆γs) ·
∆γs

K(s,∆γs)

]

,

t ≥ 0, is a non-negative (Ft)-martingale with E(ZK
t ) = 1 and a.s. ZK

t > 0. Then we can

define a probability measure P
K such that P

K
|Ft

= ZK
t · P|Ft

for all t ≥ 0. Under P
K, the

process

γK
t =

∑

s≤t

K(s,∆γs), t ≥ 0,

is distributed as (γt, t ≥ 0) under P.

4. Quasi-invariance properties of the Dirichlet Process

We fix T > 0 and we denote by (D
(T )
t : t ∈ [0, T ]) the Dirichlet process over the time

interval [0, T ], i.e. D
(T )
t := γt/γT where (γt) is a gamma process. Since T is fixed we omit

the superscript (T ).
We consider a measurable function k : [0, T ] × [0, 1] 7→ [0, 1] which satisfies, for some

finite constants κ ≥ 1 and α ∈]0, 1[

|k(s, x) − k(s, y)| ≤ κ|x− y|α, ∀x, y ∈ [0, 1], s ∈ [0, T ],

0 < κ−1 ≤ k(s, x) ≤ κ <∞, ∀x ∈ [0, 1], s ∈ [0, T ],

and we set

K(s, x) :=

∫ x

0

k(s, y) dy, ∀x ∈ [0, 1], s ∈ [0, 1].

4.1. Quasi-invariance of D under composition with a diffeomorphism. We want
to give a martingale proof of a relation originally obtained by von Renesse-Sturm in [6].
In this subsection we suppose that k also satisfies

∫ 1

0

k(s, y) dy = 1, ∀ s ∈ [0, T ],

so that
K(s, 0) = 0, K(s, 1) = 1, ∀ s ∈ [0, 1].

Notice that K(s, ·) : [0, 1] 7→ [0, 1] is necessarily bijective for all s ∈ [0, T ]. We set for
t < T

LK,T
t :=

(

1 −K(t, Dt)

1 −Dt

)T−t−1

exp

(
∫ t

0

log k(s,Ds) ds

)

∏

s≤t

[

k(s,Ds) · ∆Ds

K(s,Ds) −K(s,Ds−)

]

,
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LK,T
T :=

1

k(T, 1)
exp

(
∫ T

0

log k(s,Ds) ds

)

∏

s≤T

[

k(s,Ds) · ∆Ds

K(s,Ds) −K(s,Ds−)

]

.

Theorem 4.1.

(1) (LK,T
t , t ∈ [0, T ]) is a martingale with respect to the natural filtration of D, such

that E(LK,T
t ) = 1 and a.s. LK,T

t > 0, for all t ∈ [0, T ].

(2) Under P
K,T := LK,T

T · P the process (K(s,Ds), s ∈ [0, T ]) has the same law as

(Ds, s ∈ [0, T ]) under P.

This theorem gives quasi-invariance of the law of D under non-linear transformations
(Ds, s ∈ [0, T ]) 7→ (K(s,Ds), s ∈ [0, T ]).

Proof of Theorem 4.1. Let first t < T . By the Markov property, for all bounded Borel
Φ : D([0, t]) 7→ R+

E (Φ(Ds, s ≤ t)) = E

(

Φ(γs, s ≤ t) 1(γt<1)
pT−t(1 − γt)

pT (1)

)

= E
(

Φ(γs, s ≤ t) 1(γt<1) (1 − γt)
T−t−1 eγt

) Γ(T )

Γ(T − t)
.

Consider the following extension of K to [0, T ] × R+, that we still call K

K(s, x) := K(s, x) 1(x≤1) + k(s, 1)(x− 1) 1(x>1), x ≥ 0, s ∈ [0, T ].

Let us consider the process (Y K
t ) as defined in (3.1). Notice that K(t, ·) is strictly increas-

ing, so that K(t, γt) < 1 iff γt < 1. Then, for all bounded Borel Φ : D([0, t]) 7→ R+, t < T ,
by Corollary 3.3

E

(

Φ(K(·, D·))L
K,T
t

)

=
Γ(T )

Γ(T − t)
E

(

1(γt<1) (1 −K(t, γt))
T−t−1 Φ(K(·, γ·)) e

K(t,γt) Y K
t

)

=
Γ(T )

Γ(T − t)
E

(

1(γt<1) (1 − γt)
T−t−1 Φ(γ·) e

γt

)

= E (Φ(D·)) ,

and this concludes the proof for t < T .
We consider now the case t = T . For all bounded Borel Φ : D([0, T ]) 7→ R+ and

ϕ : R+ 7→ R+, by Corollary 3.3

E
(

Φ(K(s, γs), s ∈ [0, T ]) ϕ(K(T, γT )) Y K
T

)

= E (Φ(γs, s ∈ [0, T ]) ϕ(γT )) . (4.1)

We set for all x > 0

Y K,x
T := exp

(

x−K(T, x) +

∫ T

0

log k(s, xDs) ds

)

∏

s≤T

[

k(s, xDs) · x∆Ds

K(s, xDs) −K(s, xDs−)

]

.

In the right hand side of (4.1) we condition on the value of γT , obtaining

E (Φ(γ·)ϕ(γT )) =

∫ ∞

0

pT (y) E (Φ(yD·))ϕ(y) dy.

In the left hand side of (4.1), conditioning on the value of γT , we obtain

E
(

Φ(K(·, γ·)) ϕ(K(T, γT )) Y K
T

)

=

∫ ∞

0

pT (x) E

(

Φ(K(·, xD·)) Y
K,x
T

)

ϕ(K(T, x)) dx.
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In order to compare this expression with the one above for the right hand side, we use
the change of variable x = K(T, y). To this aim, we denote by C : R+ 7→ R+ the inverse
of K(T, ·), i.e. we suppose that K(T, C(x)) = x for all x ≥ 0. Then we have

E
(

Φ(K(·, γ·)) ϕ(K(T, γT )) Y K
T

)

=

∫ ∞

0

pT (x) E

(

Φ(K(·, xD·)) Y
K,x
T

)

ϕ(K(T, x)) dx

=

∫ ∞

0

pT (C(y)) E

(

Φ(K(·, C(y)D·)) Y
K,C(y)
T

)

ϕ(y)C ′(y) dy.

Since this is true for any bounded measurable ϕ : R+ 7→ R+, we obtain for all y > 0

pT (C(y))C ′(y)

pT (y)
E

(

Φ(K(·, C(y)D·)) Y
K,C(y)
T

)

= E (Φ(yD·)) .

For y = 1, since K(T, 1) = 1 = C(1), we obtain the desired result

E

(

Φ(K(·, D·)) L
K,T
T

)

= E (Φ(D·)) . �

Remark 4.2. Von Renesse-Sturm prove the second result of Theorem 4.1 in [6]. The
proof there hinges on explicit computations related to the finite-dimensional distributions
of D.

4.2. Quasi-invariance of D under transformation of the jumps. Again, we consider

the Dirichlet process (D
(T )
t , t ∈ [0, T ]), and we drop the superscript (T ), since T is fixed.

We set

∆Ds := Ds −Ds−, DK
t :=

∑

s≤tK(s,∆Ds)
∑

s≤T K(s,∆Ds)
, t ∈ [0, T ].

Theorem 4.3. The laws of (DK
t , t ∈ [0, T ]) and (Dt, t ∈ [0, T ]) are equivalent.

In the proof of Theorem 4.3 we also compute explicitly the Radon-Nikodym density. Handa
[5] considers the particular case K(s, x) = c(s) x, where c : [0, T ] 7→ R+ is measurable.

Proof. We set

γK
t :=

∑

s≤t

K(s,∆γs), t ≥ 0.

Since (Dt, t ∈ [0, T ]) is a gamma bridge, then the law of (DK
t , t ∈ [0, T ]) coincides with

the law of (γK
t /γ

K
T , t ∈ [0, T ]) under the conditioning {γT = 1}.

We define J : [0, T ] × R+ 7→ R, such that, for all s ∈ [0, T ], J(s,K(s, x)) = x for all
x ≥ 0. In other words, J(s, ·) is the inverse of K(s, ·). In particular, notice that

(

γK
)J

= γ.

By Corollary 3.4, for all Φ : D([0, T ]) 7→ R bounded and Borel

E

(

Φ

(

γK
s

γK
T

, s ≤ T

)

ϕ(γT )ZK
T

)

= E

(

Φ

(

γs

γT

, s ≤ T

)

ϕ(γJ
T )

)

. (4.2)

Notice that

γJ
T =

∑

s≤T

J(s,∆γs) =
∑

s≤T

J (s, γT · ∆Ds) = ψD(γT ),
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where Dt := γt/γT , t ∈ [0, T ], is independent of γT and

ψD(x) :=
∑

s≤T

J (s, x · ∆Ds) , x ≥ 0.

Notice that ψD : R+ 7→ R+ is C1 and by dominated convergence

ψ′
D(x) =

∑

s≤T

∆Ds · J (s, x · ∆Ds) ≥ κ−1 > 0, ∀ x ≥ 0,

since ∆Ds ≥ 0 and
∑

s≤T ∆Ds = 1. Also by dominated convergence, ψ′
D is continuous.

Therefore ψD : R+ 7→ R+ is invertible, with C1 inverse ζD := ψ−1
D . In the sequel, We may

write ζK
D for ζD, in order to stress that it also depends on K. Then, for all ϕ : R+ 7→ R

bounded and Borel, we obtain by (4.2)

E

(

Φ

(

γK
s

γK
T

, s ≤ T

)

ϕ(γT )ZK
T

)

= E (Φ (Ds, s ≤ T ) ϕ(ψD(γT )))

= E

(

Φ (Ds, s ≤ T )

∫ ∞

0

pT (y)ϕ(ψD(y)) dy

)

=
[

x = ψD(y)
]

=

∫ ∞

0

ϕ(x) E

(

Φ (Ds, s ≤ T ) pT (ζD(x)) ζ ′D(x)
)

dx. (4.3)

Now, setting for all t ∈ [0, T ]

DK,x
t :=

∑

s≤tK(s, x · ∆Ds)
∑

s≤T K(s, x · ∆Ds)
,

UK,x
T := exp

(

x−
∑

s≤T

K(s, x∆Ds) +

∫ T

0

log k(s, 0) ds

)

∏

s≤T

[

k(s, x∆Ds) · x∆Ds

K(s, x∆Ds)

]

,

then we have

E

(

Φ

(

γK
s

γK
T

, s ≤ T

)

ϕ(γT )ZK
T

)

=

∫ ∞

0

ϕ(x) E

(

Φ
(

DK,x
s , s ≤ T

)

· UK,x
T

)

pT (x) dx. (4.4)

Since DK,1 = DK , setting

UK
T := UK,1

T = exp

(

1 −
∑

s≤T

K(s,∆Ds) +

∫ T

0

log k(s, 0) ds

)

∏

s≤T

[

k(s,∆Ds) · ∆Ds

K(s,∆Ds)

]

,

we obtain by (4.3) and (4.4) for x = 1

E
(

Φ
(

DK
s , s ≤ T

)

· UK
T

)

= E

(

Φ (Ds, s ≤ T )
pT (ζK

D (1))

pT (1)
(ζK

D )′(1)

)

. �



14 MAX-K. VON RENESSE, MARC YOR, AND LORENZO ZAMBOTTI

5. Stochastic differential equations driven by (L)-subordinators

In this section we give an application to stochastic differential equations driven by a
(L)-subordinator ξ. See [2] for a survey of SDEs driven by Lévy processes.

We consider the SDE

dXt = m(t, Xt−) dξt, X0 = 0, (5.1)

where

(1) m : R+ × R+ 7→ (0,+∞) is measurable;
(2) m and 1/m are bounded
(3) R+ ∋ a 7→ m(s, a) is Lipschitz, uniformly in s ≥ 0.

Then we have

Theorem 5.1. There exists a pathwise-unique solution of (5.1) and the law of (X, ξ)
under P coincides with the law of (ξ, ξH) under P

H , where

H(s, x) :=
x

m(s, ξs−)
, s ≥ 0, x ≥ 0. (5.2)

Proof. Let T > 0 and denote by I([0, T ]) the set of all bounded increasing functions
ω : [0, T ] 7→ R+. We define the map ΛT : I([0, T ]) 7→ I([0, T ])

ΛT (ω)(t) :=

∫ t

0

m(s, ωs−) dξs, t ∈ [0, T ].

For L large enough, ΛT is a contraction in I([0, T ]) with respect to the metric

dL(ω, ω′) := sup
t∈[0,T ]

e−Lt |ωt − ω′
t|,

and the solution of (5.1) on the time interval [0, T ] is the unique fixed point X of ΛT .
Moreover, there exists a measurable map WT : I([0, T ]) 7→ I([0, T ]), such that X =
WT (ξ|[0,T ]).

Let us define H as in (5.2), and set ξH as in (1.4)

ξH
t :=

∑

s≤t

H(s,∆ξs) =

∫ t

0

1

m(s, ξs−)
dξs

Note that

dξH
t =

1

m(t, ξt−)
dξt =⇒ dξt = m(t, ξt−) dξH

t .

Then, ξ|[0,T ] = WT (ξH
|[0,T ]) for any T > 0. On the other hand, by Theorem 1.2, ξH under

P
H has the same law as ξ under P, and this concludes the proof. �
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