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We study the weak convergence (in the high-frequency limit) of the frequency components associated with Gaussian-subordinated, spherical and isotropic random fields. In particular, we provide conditions for asymptotic Gaussianity and we establish a new connection with random walks on the hypergroup SO (3) (the dual of SO (3)), which mirrors analogous results previously established for fields defined on Abelian groups (see Marinucci and Peccati (2007)). Our work is motivated by applications to cosmological data analysis, and specifically by the probabilistic modelling and the statistical analysis of the Cosmic Microwave Background radiation, which is currently at the frontier of physical research. To obtain our main results, we prove several fine estimates involving convolutions of the so-called Clebsch-Gordan coefficients (which are elements of unitary matrices connecting reducible representations of SO (3)); this allows to intepret most of our asymptotic conditions in terms of coupling of angular momenta in a quantum mechanical system. Part of the proofs are based on recently established criteria for the weak convergence of multiple Wiener-Itô integrals.

Introduction

This paper deals with weak limit theorems involving the high-frequency components (in the sense of the spherical harmonics decomposition) of random fields defined on the unit sphere S 2 . Our results are motivated by a number of mathematical issues arising in connection with the probabilistic and statistical analysis of the Cosmic Microwave Background radiation (see e.g. [START_REF] Dodelson | Modern Cosmology[END_REF]). We start by giving a description of our abstract mathematical framework, along with a sketch of the main results of the paper; the subsequent Section 1.2 focuses on the physical motivations and applications of our research. Here, and for the rest of the paper, all random elements are defined on a suitable probability space (Ω, F, P).

General framework and outline of the main results

We shall consider real-valued random fields { T (x) : x ∈ S 2 } enjoying the following properties: E T (x) = 0 , E T 2 (x) < +∞ and T (gx

) law = T (x), (1) 
for all x ∈ S 2 and all g ∈ SO [START_REF] Baldi | On the characterization of isotropic random fields on homogeneous spaces of compact groups[END_REF], where law = denotes equality in law (in the sense of stochastic processes). A field verifying the last relation in [START_REF] Adler | The Geometry of Random Fields[END_REF] is usually called isotropic or rotationallyinvariant (in law). It is a standard result that the following spectral representation holds in the mean-square sense:

T (x) = ∞ l=0 T l (x) = ∞ l=0 l m=-l a lm Y lm (x) , (2) 
where {Y lm : l ≥ 0, m = -l, ..., l} is the collection of the spherical harmonics, and the {a lm } are the associated (harmonic) Fourier coefficients. For l ≥ 0, we also write C l E |a lm | 2 , and we call the sequence {C l : l ≥ 0} the angular power spectrum of the random field T (note that C l does not depend on m -see e.g. [START_REF] Baldi | Some characterizations of the spherical harmonics coefficients for isotropic random fields[END_REF]). For every l ≥ 0, the field T l provides the projection of T on the subspace of L 2 (S 2 , dx) spanned by the class {Y lm : m = -l, ..., l}. The spherical harmonics form an orthonormal basis of L 2 (S 2 , dx) which can be derived from the restriction to the sphere of harmonic polynomials. In particular, in spherical coordinates x = (θ, ϕ) they can be written explicitly as: Y 00 ≡ 1/ √ 4π and

Y lm (θ, ϕ) = 2l + 1 4π (l -m)! (l + m)! P lm (cos θ)e imϕ , m ≥ 0 , (3) 
Y lm (θ, ϕ) = (-1) m Y l,-m (θ, ϕ), m < 0, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π ,

where, for l ≥ 1 and m = 0, 1, 2, ..., l, P lm (•) denotes the Legendre polynomial of index l, m, i.e.,

P lm (x) = (-1) m (1 -x 2 ) m/2 d m dx m P l (x) , P l (x) = 1 2 l l! d l dx l (x 2 -1) l . (5) 
For a discussion of these and other properties of the spherical harmonics see e.g. [START_REF] Liboff | Introductory Quantum Mechanics[END_REF]Chapter 9], or [START_REF] Varshalovich | Quantum Theory of Angular Momentum[END_REF]Chapter 5]. For l ≥ 0, the real-valued field T l is called the lth frequency component of T .

The expansion (2) can be achieved by many different routes, for instance by a Karhunen-Loéve argument or by means of the stochastic Peter-Weyl theorem, see for instance [START_REF] Adler | The Geometry of Random Fields[END_REF], [START_REF] Baldi | On the characterization of isotropic random fields on homogeneous spaces of compact groups[END_REF], [START_REF] Leonenko | Limit Theorems for Random Fields with Singular Spectrum[END_REF] and [START_REF] Peccati | Decompositions of stochastic processes based on irreducible group representations[END_REF]. The random harmonic coefficients {a lm } appearing in (2) form a triangular array of zero-mean random variables, which are complex-valued for m = 0 and such that Ea lm a l ′ m ′ = δ l ′ l δ m ′ m C l (the bar denotes complex conjugation and δ is Kronecker's symbol; note also that a lm = (-1) m a l-m ). For a Gaussian random field T verifying [START_REF] Adler | The Geometry of Random Fields[END_REF], it is trivial that the set {a lm } is itself a complex-Gaussian array, with independent elements for m ≥ 0. It is a simple but interesting fact that the converse also holds, i.e. that, under an isotropy assumption on T , the independence of the a lm 's for m ≥ 0 implies Gaussianity, see [START_REF] Baldi | Some characterizations of the spherical harmonics coefficients for isotropic random fields[END_REF]. Apart from this result, the behaviour of the array {a lm } and of the projections { T l } for non-Gaussian isotropic fields is so far almost completely unexplored and open for research, although such objects are highly relevant for cosmological applications (see the next subsection). It should be stressed that the coefficients {a lm } depend on the choice of coordinates and are not intrinsic to the field, although their law is. In this sense, it is sometimes physically more sound to focus on the behaviour of the sequence of projections { T l }, which are indeed invariant with respect to the choice of coordinates.

In what follows, we focus on non-Gaussian fields T that are Gaussian-subordinated, and we address the previous topic by studying the asymptotic behaviour of {a lm } and { T l }, as l → +∞. Recall that T is called Gaussian-subordinated whenever T (x) = F (T (x)), where F is a suitable real-valued function, and T is an isotropic spherical (real) Gaussian field. In particular, our purpose is to establish sufficient (and sometimes, also necessary) conditions on F and on the law of T to have that the following two phenomena take place: (I) as l → +∞, for a fixed m and for an appropriate sequence τ 1 (l) (l ≥ |m|), the sequence

τ 1 (l) × a lm = τ 1 (l) S 2
F (T (z)) Y lm (z)dz, l ≥ |m| converges in law to a Gaussian random variable (real-valued for m = 0, and complex-valued for m = 0); (II) for a suitable real-valued sequence τ 2 (l) (l ≥ 0) and for l sufficiently large, the finite-dimensional distributions of the field τ 2 (l) × T l (•) = τ 2 (l) m=-l,...,l a lm Y lm (•) , are close (for instance, in the sense of the Prokhorov distance -see [START_REF] Peccati | Gaussian approximations of multiple integrals[END_REF]) to those of a real spherical Gaussian field. Note that both results (I) and (II) can be interpreted as CLTs in the high-frequency (or high-resolution) sense, since they involve Gaussian approximations and are established by letting the frequency index l diverge to infinity.

Our findings generalize previous results, obtained in [START_REF] Marinucci | High-frequency asymptotics for subordinated stationary fields on an Abelian compact group[END_REF], for fields defined on Abelian compact groups. One of our main tools is a result concerning the Gaussian approximation of multiple Wiener-Itô integrals established in [START_REF] Peccati | Gaussian approximations of multiple integrals[END_REF] (see also [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF], [START_REF] Peccati | Stable convergence of multiple Wiener-Itô integrals[END_REF] and [START_REF] Peccati | Gaussian limits for vector-valued multiple stochastic integrals[END_REF]). These CLTs can be seen as a simplification of the combinatorial method of diagrams and cumulants (see e.g. [START_REF] Surgailis | CLTs for polynomials of linear sequences: Diagram formula with illustrations[END_REF]). These techniques, combined with the use of group representation theory, lead to one of the main contributions of this paper: the derivation of sufficient (or necessary and sufficient) conditions for (I) and (II), expressed in terms of convolutions of Clebsch-Gordan coefficients (see e.g. [START_REF] Varshalovich | Quantum Theory of Angular Momentum[END_REF]Ch. 4]), which are the elements of unitary matrices connecting specific reducible representations of SO (3). Clebsch-Gordan coefficients are widely used in quantum mechanics, and admit a well-known interpretation in terms of probability amplitudes related to the coupling of angular momenta in a quantum mechanical system (see [START_REF] Liboff | Introductory Quantum Mechanics[END_REF], [START_REF] Varshalovich | Quantum Theory of Angular Momentum[END_REF] or Sections 3 and 6 below). We will also show that many of our conditions can be alternatively restated in terms of 'bridges' of random walks on SO (3) (the dual of SO (3)). The definition of such random walks differs from the classic one given in [START_REF] Guivarc'h | Marches Aléatoires sul les Groupes de Lie[END_REF], although the two approaches can be related through the notion of mixed quantum state (see Section 6). Note that an analogous connection with random walks on Z d was pointed out in [START_REF] Marinucci | High-frequency asymptotics for subordinated stationary fields on an Abelian compact group[END_REF].

Cosmological motivations

The Cosmic Microwave Background radiation (hereafter CMB) can be viewed as a relic radiation of the Big Bang, providing maps of the primordial Universe before the formation of any of the current structures (approximately, 3 × 10 5 years after the Big Bang); as such, it is acknowledged as a goldmine of information for fundamental physics. Many satellite experiments involving hundred of physicists throughout the world are devoted to the construction of spherical maps of the CMB radiation, and for pioneering work in this area G. Smoot and J. Mather were awarded the Nobel Prize for Physics in 2006 -see for instance http://map.gsfc.nasa.gov/ for more details.

The crucial point is that most cosmological models imply that the CMB radiation is the realization of a random field { T (x) : x ∈ S 2 }, verifying the three conditions in (1); each x ∈ S 2 corresponds to a direction in which the CMB radiation is measured. The isotropic property can be seen as a consequence of Einstein's cosmological principle, roughly stating that, on sufficiently large distance scales, the Universe looks identical everywhere in space (homogeneity) and appears the same in every direction (isotropy). A central issue in modern cosmology relates therefore to the distribution of the CMB random field T , which is predicted to be (close to) Gaussian by some models for the dynamics at primordial epochs (for instance, by the so-called inflationary scenario), and non-Gaussian by other models, where fluctuations are generated by topological defects arising in phase transitions of a thermodynamical nature -see for instance [START_REF] Dodelson | Modern Cosmology[END_REF]. Many testing procedures have been proposed to tackle this issue; in some form, they all rely asymptotically on the behaviour of the field at the highest frequencies (see for instance [START_REF] Bartolo | Non-Gaussianity from Inflation: Theory and Observations[END_REF], [START_REF] Marinucci | High-resolution asymptotics for the angular bispectrum of spherical random fields[END_REF] and the references therein). This is a sort of unescapable, foundational issue in Cosmology. By definition, the latter is a science based on a single realization, e.g. our Universe or the trace of its primordial structure in the form of the CMB radiation, which is observed at higher and higher resolutions. As such, an asymptotic theory for statistical tests is possible only in the sense of observations at higher and higher frequencies (smaller and smaller scales) becoming available as the experiments become more sophisticated. In particular, any satellite experiment measuring the CMB radiation can reconstruct the spherical harmonic developement appearing in (2) only up to a finite frequency l max , the quantity π/l max representing approximately the angular resolution of the experiment (the pioneering satellite COBE (1993) could reach a frequency l max ≃ 20, WMAP (2003,2006) improved this limit to l max ≃ 600/800, and Planck (to be launched in 2008) is expected to reach l max ≃ 2500/3000). In order for such procedures to yield consistent outcomes, one should therefore figure out what is the limiting behaviour of { T l }, for l >> 0, under different distributional assumptions on T . Some Monte Carlo evidence (see for instance [START_REF] Marinucci | The Empirical process on Gaussian spherical harmonics[END_REF] and the references therein) has suggested that this behaviour may be close to Gaussian even in circumstances where the underlying field T clearly is not. The investigation of this issue is necessary for rigorous inference on CMB data, and in particular for non-Gaussianity tests. The relevance of the asymptotic behaviour of the { T l }, however, goes much beyond the issue of such tests, and relates indeed to the whole statistical analysis of CMB -which is largely dominated by likelihood approaches (see [START_REF] Efstathiou | Myths and truths concerning estimation of power spectra: the case for a hybrid estimator[END_REF]).

We stress by now that the results we provide cover models that are quite relevant for cosmological applications, for instance the so called Sachs-Wolfe model, which represents the standard starting model for the inflationary scenario (see for instance [START_REF] Bartolo | Non-Gaussianity from Inflation: Theory and Observations[END_REF], [START_REF] Dodelson | Modern Cosmology[END_REF]). In its simplest version, this model implies that the CMB is a straightforward quadratic transformation of an underlying Gaussian field, i.e.

T (x) = T (x) + f N L T (x) 2 -ET (x) 2 , x ∈ S 2 , ( 6 
)
where f N L is a nonlinearity parameter depending on constants from particle physics and T is Gaussian and isotropic. As a special case, our results do allow for a complete characterization of the high-frequency behaviour of models such as [START_REF] Dodelson | Modern Cosmology[END_REF], and in this sense they are immediately applicable in the cosmological literature.

Plan

In Section 2 we provide some background material on isotropic random fields on the sphere. Section 3 is devoted to a discussion on representation theory for the group of rotations SO(3) and the so-called Clebsch-Gordan coefficients, which will play a crucial role in the analysis to follow. In Section 4 we state and prove a general CLT result for the spherical harmonics coefficients and the high-frequency components of a field arising from polynomial transformations of arbitrary order of a subordinating Gaussian process. In Section 5 we provide a more detailed analysis of necessary and sufficient condition for the CLT to hold in the case of quadratic and cubic transformations; we also highlight the connections between our conditions and the theory of random walks on hypergroups. The interplay with random walks on hypergroups is further explored in Section 6, where some comparisons with the existing literature are provided, and some physical interpretations of our conditions in terms of randomly interacting quantum particles are given. In Section 7, we turn our attention to more explicit conditions on the angular power spectrum, and we discuss an exponential/algebraic duality which parallels to some extent some earlier findings in the Abelian case.

Preliminaries on Gaussian and Gaussian-subordinated isotropic fields

As in the Introduction, we denote by S 2 the unit sphere S 2 = x ∈ R 3 : x = 1 . For every rotation g ∈ SO (3) and every x ∈ S 2 , the symbol gx indicates the canonical action of g on x (see [START_REF] Varshalovich | Quantum Theory of Angular Momentum[END_REF]Ch. 1], as well as Section 3 below, for further details). We will systematically write dx for the Lebesgue measure on S 2 , and we denote by L 2 S 2 , dx the class of complex-valued functions on S 2 which are square-integrable with respect to dx. We denote by {Y lm : l ≥ 0, m = -l, ..., l} the basis of L 2 S 2 , dx given by spherical harmonics, as defined via (3) and [START_REF] Bartolo | Non-Gaussianity from Inflation: Theory and Observations[END_REF]. From now on, we shall denote by T = T (x) : x ∈ S 2 a centered, real-valued and Gaussian random field parametrized by S 2 . We also suppose that T is isotropic, that is, for every g ∈ SO (3) one has that T (x) law = T (gx), where the equality holds in the sense of finite dimensional distributions. To simplify the notation, we also assume that ET (x) 2 = 1. Following e.g. [START_REF] Baldi | Some characterizations of the spherical harmonics coefficients for isotropic random fields[END_REF] (but see also [START_REF] Baldi | On the characterization of isotropic random fields on homogeneous spaces of compact groups[END_REF], [START_REF] Peccati | Decompositions of stochastic processes based on irreducible group representations[END_REF] and [START_REF] Pycke | A decomposition for invariant tests of uniformity on the sphere[END_REF]), one deduces from isotropy that T admits the spectral decomposition

T (x) = ∞ l=0 l m=-l a lm;1 Y lm (x) = ∞ l=0 T l (x) , x ∈ S 2 , ( 7 
)
where a lm;1 S 2 T (x) Y lm (x)dx (the role of the subscript "lm; 1" will be clarified in the following discussion), T l (x) l m=-l a lm;1 Y lm (x), and the convergence takes place in L 2 (P) for every fixed x, as well as in L 2 (P ⊗ dx). The next result gives a simple and very useful characterization of the joint law of the complex-valued array {a lm;1 : l ≥ 0, m = -l, ..., l}. For every z ∈ C, the symbols ℜ (z) and ℑ (z) indicate, respectively, the real and the imaginary part of z.

Proposition 1 Let T be the centered, isotropic and Gaussian random field appearing in [START_REF] Efstathiou | Myths and truths concerning estimation of power spectra: the case for a hybrid estimator[END_REF]. Then: (i) for every l ≥ 0 the random variable a l0;1 is real-valued, centered and Gaussian; (ii) for every l ≥ 1, and every m = 1, ..., l, the random variable a lm;1 is complex-valued and such that a lm;1 = (-1) m a l-m;1 , and moreover E(ℜ (a lm;1 ) 2 ) = E(ℑ (a lm;1 ) 2 ) = E(a 2 l0;1 )/2 = C l /2, for some constant C l ∈ [0, +∞) not depending on m, and E(ℜ (a lm;1 ) ℑ (a lm;1 )) = 0;

(iii) for every l ≥ 1 and every m = -l, ..., l, the random coefficient a lm;1 is independent of a l ′ m ′ ;1 for every l ′ ≥ 0 such that l ′ = l and every m ′ = -l ′ , ..., l ′ . By noting C 0 E(a 2 00;1 ), one also has the relation

1 = E T (x) 2 = ∞ l=0 2l + 1 4π C l . ( 9 
)
The reader is referred to [START_REF] Baldi | Some characterizations of the spherical harmonics coefficients for isotropic random fields[END_REF] for a proof of Proposition 1, as well as for several converse statements. Here, we shall only stress that formula ( 9) is a consequence of the well-known relation (see e.g. [START_REF] Varshalovich | Quantum Theory of Angular Momentum[END_REF])

l m=-l Y lm (x)Y lm (y) = 2l + 1 4π P l (cos x, y ), x, y ∈ S 2 , ( 10 
)
where x, y is the angle between x and y. Observe that property [START_REF] Guivarc'h | Marches Aléatoires sul les Groupes de Lie[END_REF] implies that ℜ (a lm;1 ) and ℑ (a lm;1 ) are independent centered Gaussian random variables. Moreover, the combination of (8) and point (iii) in the statement of Proposition 1 yields that E(a lm;1 a l ′ m ′ ;1 ) = 0, ∀ (l, m) = (l ′ , m ′ ). Finally, it is also evident that points (i)-(iii) in the previous statement imply that the law of an isotropic Gaussian field such as T is completely characterized by its angular power spectrum {C l : l ≥ 0}. To avoid trivialities, we will always work under the following assumption: Assumption. The angular power spectrum {C l : l ≥ 0} is such that C l > 0 for every l.

Note that the results of this paper could be extended without difficulties (but at the cost of an heavier notation) to the case of a power spectrum such that C l = 0 for infinitely many l's. In the subsequent sections, we shall obtain high-frequency CLTs for centered isotropic spherical fields that are subordinated to the Gaussian field T defined above.

Definition A (Subordinated fields). Let L 2 0 (R, e -z 2 /2 dz) indicate the class of real-valued functions F (z) on R, which are square-integrable with respect to the measure e -z 2 /2 dz and such that F (z) e -z 2 /2 dz = 0. A (centered) random field T = { T (x) : x ∈ S 2 } is said to be subordinated to the Gaussian field T appearing in (2) if there exists F ∈ L 2 0 (R, e -z 2 /2 dz) such that T (x) = F [T ] (x), ∀x ∈ S 2 , where the symbol F [T ] (x) stands for F (T (x)). Whenever T is subordinated, we will rather use the notation F [T ] (x) instead of T (x), in order to emphasize the role of the function

F . Of course, if F (z) = z, then F [T ] (x) = T (x) = T (x).
It is immediate to check that, since T is isotropic, a subordinated field F [T ] (•) as in Definition A is necessarily isotropic. As a consequence, following again [START_REF] Baldi | Some characterizations of the spherical harmonics coefficients for isotropic random fields[END_REF] or [START_REF] Peccati | Decompositions of stochastic processes based on irreducible group representations[END_REF], one deduces that F [T ] admits the spectral representation

F [T ] (x) = ∞ l=0 l m=-l a lm (F ) Y lm (x) = ∞ l=0 F [T ] l (x) , x ∈ S 2 , ( 11 
)
with convergence in L 2 (P) (for fixed x) and in L 2 Ω × S 2 , P ⊗ dx . Here,

a lm (F ) S 2 F [T ] (y) Y lm (y)dy, and (12) 
F [T ] l (x) l m=-l a lm (F ) Y lm (x) . (13) 
The complex-valued array {a lm (F ) : l ≥ 0, m = -l, ..., l} always enjoys the following properties (a)-(c): (a) for every l ≥ 0, the random variable a l0 (F ) is real-valued, centered and Gaussian; (b) for every l ≥ 1, and every m = 1, ..., l, the random variable a lm (F ) is complex-valued and such that

a lm (F ) = (-1) m a l-m (F ) ; E(ℜ (a lm (F )) ℑ (a lm (F ))) = 0 E(ℜ (a lm (F )) 2 ) = E(ℑ (a lm (F )) 2 ) = E(a l0 (F ) 2 )/2 = C l (F ) /2,
where the finite constant C l (F ) ≥ 0 depends solely on F and l; 

(c) E(a lm (F ) × a l ′ m ′ (F )) = 0, ∀ (l, m) = (l ′ , m ′ ). Note that,
E(F [T ] (x) 2 ) = ∞ l=0 2l+1
4π C l (F ). In the subsequent sections, a crucial role will be played by the class of Hermite polynomials. Recall (see e.g. [11, p. 20]) that the sequence {H q : q ≥ 0} of Hermite polynomials is defined by the differential relation

H q (z) = (-1) q e z 2 2 d q dz q e -z 2 2 , z ∈ R, q ≥ 0; (14) 
it is well-known that the sequence {(q!) -1/2 H q : q ≥ 0} defines an orthonormal basis of the space L 2 (R, (2π) -1/2 e -z 2 /2 dz). When a subordinated field has the form (for q ≥ 2) H q [T ] (x),

x ∈ S 2 (that is, when F = H q in Definition A), we will use the shorthand notation:

T (q) (x) H q [T ] (x) , x ∈ S 2 , ( 15 
)
a lm;q a lm (H q ) , ( 16)

T (q) l (x) H q [T ] l (x) , l ≥ 1, x ∈ S 2 , (17) 
T (q) l (x) V ar T (q) l (x) -1/2 T (q) l (x) , l ≥ 1, x ∈ S 2 , (18) 
C (q) l C l (H q ) = E|a lm;q | 2 , l ≥ 1, m = -l, ..., l. (19) 
To justify our notation ( 15)-( 19), we recall that for every fixed x the random variable H q [T ] (x) = H q (T (x)) is just the qth Wick power of T (x) (see for instance [START_REF] Janson | Gaussian Hilbert Spaces[END_REF]). We conclude the section with an easy Lemma, that will be used in Section 4.

Lemma 2 Let F [T ] (x), x ∈ S 2 , be an (isotropic) subordinated field as in Definition A. Then, for every l ≥ 1 one has the following:

1. The random field x → F [T ] l (x) defined in ( 13) is real-valued and isotropic; 2. For every fixed x ∈ S 2 , F [T ] l (x) law = 2l+1 4π a l0 (F ), where the coefficient a l0 (F ) is defined according to [START_REF] Leonenko | Limit Theorems for Random Fields with Singular Spectrum[END_REF], and consequently

E(F [T ] l (x) 2 ) = 2l+1 4π C l (F );
3. The normalized random field

F [T ] l (x) = (2l + 1) C l (F ) 4π -1/2 F [T ] l (x) (20) 
has a covariance structure given by: for every x, y ∈ S 2 ,

E F [T ] l (x) × F [T ] l (x) = P l (cos x, y ) , (21) 
where P l (•) is the lth Legendre polynomial defined in ( 5) and, as before, x, y is the angle between x and y.

Proof. Point 1. is straightforward. To prove point 2. define (in polar coordinates) x 0 = (0, 0) and use the isotropy property stated at point 1. to write

F [T ] l (x) law = F [T ] l (x 0 ) = l m=-l a lm (F ) Y lm (x 0 ) = 2l + 1 4π a l0 (F ) , since (3) 
implies that Y lm (x 0 ) = (2l + 1) /4πδ 0 m . Finally, to prove relation [START_REF] Peccati | Gaussian approximations of multiple integrals[END_REF] we use [START_REF] Hu | Renormalized self-intersection local time for fractional Brownian motion[END_REF] to deduce that, for every x, y ∈ S 2 ,

E(F [T ] l (x) F [T ] l (y)) = C l (F ) 2l + 1 4π P l (cos x, y ),
thus giving the desired conclusion (recall that P l (1) = 1). For instance, a first consequence of Lemma 2 is that, for every q ≥ 2,

E(T (q) l (x) 2 ) = (2l + 1) C (q) l /4π (22) 
where we used the notation introduced at (15)-( 19), so that

T (q) l (x) = [(2l + 1) C (q) l /4π] -1/2 T (q) l (x).
The main aim of the subsequent sections is to provide an accurate solution to the following problems (P-I)-(P-III).

(P-I) For a fixed q ≥ 2, find conditions on the power spectrum {C l : l ≥ 0} of T , to have that the subordinated process T (q) = T (q) (x) : x ∈ S 2 defined in [START_REF] Marinucci | A Central Limit Theorem and Higher Order Results for the Angular Bispectrum[END_REF] is such that, for every x ∈ S 2 , (2l + 1)

C (q) l /4π × T (q) l (x) law -→ l→+∞ N , ( 23 
)
where N is a centered standard Gaussian random variable. (P-II) Under the conditions found at (P-I), study the asymptotic behaviour, as l → +∞, of the vector

(2l + 1) C (q) l /4π × T (q) l (x 1 ) , ..., T (q) l (x k ) , (24) 
for every x 1 , ..., x k ∈ S 2 . (P-III) Combine (P-I) and (P-II) to study the asymptotic behaviour (in particular, the asymptotic Gaussianity), as l → +∞, of vectors of the type

(2l + 1) C l (F ) /4π × (F [T ] l (x 1 ) , ..., F [T ] l (x k )) , (25) 
for every x 1 , ..., x k ∈ S 2 and every F ∈ L 2 0 R, e -z 2 /2 dz . Note that Problems (P-I)-(P-III) are stated in increasing order of generality. We observe also the following fact: since (21) holds, and since the limit of P l ( x, y ) (l → +∞) does not exist in general, it will not be possible to prove that the vectors in ( 24) and ( 25) converge in law to some Gaussian limit. However, by using the results developed in [START_REF] Peccati | Gaussian approximations of multiple integrals[END_REF], we will be able to establish conditions under which the laws of such vectors are "asymptotically close" to a sequence of kdimensional Gaussian distributions. As already mentioned, to study (P-I)-(P-III) we shall use estimates involving the so-called Clebsch-Gordan coefficients, that are elements of unitary matrices connecting some reducible representations of SO (3). The definition and the analysis of some crucial properties of Clebsch-Gordan coefficients are the object of the next section.

A primer on Clebsch-Gordan coefficients

In this subsection, we need to review some basic representation theory results for SO(3), the group of rotations in R 3 . We refer the reader to standard textbooks (for instance, [START_REF] Varshalovich | Quantum Theory of Angular Momentum[END_REF] and [START_REF] Vilenkin | Representation of Lie Groups and Special Functions[END_REF]) for further details, as well as for any unexplained notion or definition. It should be stressed that most of our arguments below could be extended to general compact groups with known representations; however, throughout the following we shall stick to the group of rotations SO(3), mainly for the sake of notational simplicity.

We recall first that each element g ∈ SO(3) can be parametrized by the set (α, β, γ) of so-called Euler angles, where 0 ≤ α < 2π, 0 ≤ β ≤ π and 0 ≤ γ < 2π. In these coordinates, a complete set of irreducible matrix representations for SO(3) is provided by the so-called Wigner's D matrices D l (α, β, γ), of dimensions (2l + 1) × (2l + 1) for l = 0, 1, 2, ... -see [START_REF] Varshalovich | Quantum Theory of Angular Momentum[END_REF]Ch. 4] for an analytic expression. Here, we simply point out that the elements of D l (α, β, γ) are related to the spherical harmonics by the relationship

D l m0 (α, β, γ) = (-1) m 4π 2l + 1 Y l-m (β, α) = 4π 2l + 1 Y * lm (β, α) , (26) 
from which it is not difficult to show how the usual spectral representation for random fields on the spheres (for instance (2) and ( 7)) is really just the stochastic Peter-Weyl Theorem on S 2 = SO(3)/SO(2). The reader is referred e.g. to [START_REF] Vilenkin | Representation of Lie Groups and Special Functions[END_REF] and [START_REF] Varadarajan | An Introduction to Harmonic Analysis on Semisimple Lie Groups, Corrected reprint of the 1989 original[END_REF] for further discussions on the Peter-Weyl Theorem, and to [START_REF] Baldi | Some characterizations of the spherical harmonics coefficients for isotropic random fields[END_REF], [START_REF] Baldi | On the characterization of isotropic random fields on homogeneous spaces of compact groups[END_REF] and [START_REF] Peccati | Decompositions of stochastic processes based on irreducible group representations[END_REF] for several related probabilistic results. It follows from standard representation theory that we can exploit the family {D l } l=0,1,,2,... to build alternative (reducible) representations, either by taking the tensor product family

{D l 1 ⊗ D l 2 } l 1 ,l 2 , or by considering direct sums {⊕ l 2 +l 1 l=|l 2 -l 1 | D l } l 1 ,l 2 ; these representations have dimensions (2l 1 + 1)(2l 2 + 1) × (2l 1 + 1)(2l 2 + 1
) and are unitarily equivalent, whence there exists a unitary matrix C l 1 l 2 such that

D l 1 ⊗ D l 2 = C l 1 l 2 ⊕ l 2 +l 1 l=|l 2 -l 1 | D l C * l 1 l 2 . ( 27 
)
Here,

C l 1 l 2 is a {(2l 1 + 1)(2l 2 + 1) × (2l 1 + 1)(2l 2 + 1)} block matrix with blocks C l l 1 (m 1 )l 2 of dimensions (2l 2 + 1) × (2l + 1), m 1 = -l 1 , ..., l 1 .
The elements of such a block are indexed by m 2 (over rows) and m (over columns). More precisely,

C l 1 l 2 = C l• l 1 (m 1 )l 2 • m 1 =-l 1 ,...,l 1 ;l=|l 2 -l 1 |,...,l 2 +l 1 C l. l 1 (m 1 )l 2 . = C lm l 1 m 1 l 2 m 2 m 2 =-l 2 ,.
..,l 2 ;m=-l,...,l .

The Clebsch-Gordan coefficients for SO(3) are then defined as

{C lm l 1 m 1 l 2 m 2
}, that is, as the elements of the unitary matrices C l 1 l 2 (note that such matrices are real-valued, and so are the

C lm l 1 m 1 l 2 m 2 )
. These coefficients were introduced in Mathematics in the XIX century, as motivated by the analysis of invariants in Algebraic Geometry; in the 20th century, they have gained an enormous importance in the quantum theory of angular momentum, where C lm l 1 m 1 l 2 m 2 represents the probability amplitude that two quantum particles with total angular momentum l 1 and l 2 and momentum projections on the z-axis m 1 and m 2 are coupled to form a system with total angular momentum l and projection m (see e.g. [START_REF] Liboff | Introductory Quantum Mechanics[END_REF]). Their use in the analysis of isotropic random fields is much more recent, see for instance [START_REF] Hu | The Angular trispectrum of the CMB[END_REF] and the references therein. Explicit expressions for the Clebsch-Gordan coefficients of SO(3) are known, but they are in general hardly manageable (see e.g. [START_REF] Varshalovich | Quantum Theory of Angular Momentum[END_REF]Section 8.2]). However, these expressions become somewhat neater when m 1 = m 2 = m 3 = 0, in which case one has the relations: C l 3 0 l 1 0l 2 0 = 0, when l 1 + l 2 + l 3 is odd, and, for l 1 + l 2 + l 3 even,

C l 3 0 l 1 0l 2 0 = (-1) l 1 +l 2 -l 3 2 √ 2l 3 + 1 [(l 1 + l 2 + l 3 )/2]! [(l 1 + l 2 -l 3 )/2]! [(l 1 -l 2 + l 3 )/2]! [(-l 1 + l 2 + l 3 )/2]! × (l 1 + l 2 -l 3 )!(l 1 -l 2 + l 3 )!(-l 1 + l 2 + l 3 )! (l 1 + l 2 + l 3 + 1)! 1/2
.

The Clebsch-Gordan coefficients enjoy also a nice set of symmetry and orthogonality properties which will play a crucial role in our results to follow (see [START_REF] Marinucci | High-resolution asymptotics for the angular bispectrum of spherical random fields[END_REF] and [START_REF] Marinucci | A Central Limit Theorem and Higher Order Results for the Angular Bispectrum[END_REF] for an account of such properties). Note in particular that the Clebsch-Gordan coefficients are different from zero only if m 1 + m 2 = m and |l 2l 1 | ≤ l ≤ l 1 + l 2 (the triangle conditions). Also, from unitary equivalence we deduce that

m 1 ,m 2 C lm l 1 m 1 l 2 m 2 C l ′ m ′ l 1 m 1 l 2 m 2 = δ l ′ l δ m ′ m and l,m C lm l 1 m 1 l 2 m 2 C lm l 1 m ′ 1 l 2 m ′ 2 = δ m ′ 1 m 1 δ m ′ 2 m 2 . ( 28 
)
Remark on Notation. Depending on the notational convenience, we write sometimes sums of Clebsch-Gordan coefficients without specifying the range of the indices l and/or m. In such cases, the range of the sums is conventionally taken to be the set of indices where the Clebsch-Gordan coefficients are different from zero. For instance, in [START_REF] Varshalovich | Quantum Theory of Angular Momentum[END_REF] one should read:

m 1 ,m 2 = m 1 =-l 1 ,...,l 1 m 2 =-l 2 ,.
..,l 2 and l,m = +∞ l=0 m=-l,...,l . Similar conventions are adopted (without further notice) throughout the paper. We recall also that the Clebsch-Gordan coefficients are equivalent, up to a normalization factor, to the Wigner's 3j coefficients, which are used in related works such as [START_REF] Marinucci | A Central Limit Theorem and Higher Order Results for the Angular Bispectrum[END_REF].

The Clebsch-Gordan coefficients play a crucial role in the evaluation of integrals involving products of spherical harmonics. In particular, the so-called Gaunt integral gives

S 2 Y l 1 m 1 (x)Y l 2 m 2 (x)Y lm (x)dx = (2l 1 +1)(2l 2 +1) 4π (2l + 1) C lm l 1 m 1 l 2 m 2 C l0 l 1 0l 2 0 . (29) 
Relation ( 29) can be established using ( 26), [START_REF] Varadarajan | An Introduction to Harmonic Analysis on Semisimple Lie Groups, Corrected reprint of the 1989 original[END_REF] 

Y l 1 m 1 (x) • • • Y lrmr (x) dx, (30) 
and call the quantity G {l 1 , m 1 ; ...; l r , m r } a generalized Gaunt integral. Then, iterating the previous argument, for q ≥ 3 it can be shown that (by using for instance [28, Expression

5.6.2.12])

G {l 1 , m 1 ; ...; l q , m q ; l, -m}

(31) = L 1 ...L q-2 M 1 ...M q-2 q-3 i=1 2l i+2 + 1 4π C L i+1 0 L i 0l i+2 0 C L i+1 M i+1 L i M i l i+2 m i+2 × (2l 1 + 1)(2l 2 + 1) 4π(2l + 1) C L 1 0 l 1 0l 2 0 C L 1 M 1 l 1 m 1 l 2 m 2 2l q + 1 4π C l0 L q-2 0lq0 C lm L q-2 M q-2 lqmq ,
where, for q = 3, we have used the convention Π 0 i=1 ≡ 0. Note that expressions such as (31) imply that the generalized Gaunt integrals of the type (30) are indeed real-valued. To simplify the expression (31), let us introduce the coefficients

C λ 1 ,λ 2 ,...,λ p-1 ;µ l 1 ,m 1 ;...;lpmp λ 1 µ 1 =-λ 1 ... λ p-2 µ p-2 =-λ p-2 C λ 1 ,µ 1 l 1 ,m 1 ,l 2 ,m 2 C λ 2 ,µ 2 λ 1 ,µ 1 ;l 3 ,m 3 • • • C λ p-1 ,µ λ p-2 ,µ p-2 ;lp,mp .
These coefficients are themselves the elements of unitary matrices connecting tensor product and direct sum representations of SO(3), and thus it follows easily that the following orthonormality conditions hold

m 1 ,...mp C λ 1 ,λ 2 ,...,λ p-1 ;µ l 1 ,m 1 ;...;lpmp 2 = λ 1 ... λ p-1 λ p-1 µ=-λ p-1 C λ 1 ,λ 2 ,...,λ p-1 ;µ l 1 ,m 1 ;...;lpmp 2 = 1 ; (32) 
it is important to note that due to the conditions m 1 + m 2 = m 3 the sums may actually vanish, for instance C λ 1 ,λ 2 ,...,λ p-1 ;0 l 1 ,0;...;lp0

= C λ 1 ,0 l 1 ,0,l 2 ,0 C λ 2 ,0 λ 1 ,0;l 3 ,0 • • • C λ p-1 ,0 λ p-2 ,0;lp,0 . ( 33 
)
We have also that G {l 1 , m 1 ; ...; l q , m q ; l, -m}

= 4π 2l + 1 q i=1 2l i + 1 4π L 1 ...L q-2 C L 1 ,L 2 ,...,L q-2 ,l;0 l 1 ,0;...;lq0 C L 1 ,L 2 ,...,L q-2 ,l;m l 1 ,m 1 ;...;lqmq . Remark. The coefficients C λ 1 ,λ 2 ,...,λ p-1 ;µ l 1 ,m 1 ;...;lpmp (34) 
defined above admit a physical interpretation in terms of coupling of angular momenta in a quantum mechanical system. Consider indeed a system composed of p particles, say α 1 , ..., α p , such that α i has total angular momentum equal to l i , and projection on the z-axis given by m i . Then, the coefficient C λ 1 ,λ 2 ,...,λ p-1 ;µ l 1 ,m 1 ;...;lpmp is exactly the probability amplitude of the intersection of the following p -1 events E 1 ,..., E p-1 : E 1 = {α 1 and α 2 couple to form a particle η 1 with total angular momentum λ 1 }, E 2 = {η 1 couples with α 3 to form a particle η 2 with total angular momentum λ 2 },..., E i = {η i-1 couples with α i+1 to form a particle η i with total angular momentum λ 2 },..., E p-1 = {η p-2 couples with α p to form a particle with total angular momentum λ p-1 and projection µ on the z-axis}.

In the sequel, we shall also need the so-called Wigner 6j (or Racah) coefficients, which are related to the Clebsch-Gordan by the identity (see ([28, Eq. 9.1.1.8]))

l 1 l 2 l 3 l 4 l 5 l 6 = K(l 1 , ...,l 6 ) m 1 m 3 m 4 m 6 C l 3 m 3 l 1 m 1 l 2 m 2 C l 5 m 5 l 1 m 1 l 6 m 6 C l 5 m 5 l 3 m 3 l 4 m 4 C l 6 m 6 l 2 m 2 l 4 m 4 . ( 35 
)
where K (l 1 , ..., l 6 ) = [(2l 3 + 1)(2l 6 + 1)] -1/2 (-1) l 1 +l 2 +l 4 +l 5 (note that the previous sum does not involve m 2 and m 5 , because of the general relation: C γt 3 αt 1 βt 2 = 0, whenever t 3 = t 1 +t 2 ). Although the Wigner's 6j coefficients play themselves a very important role in Quantum Mechanics and Representation Theory, for brevity's sake we avoid a full discussion on their properties; the interested reader can consult ([28, Ch.9]) or ([29, pp. 529-542]).

High-frequency CLTs: conditions in terms of Gaunt integrals

The aim of this section is to obtain conditions for high-frequency CLTs in terms of Gaunt integrals of the type (31). We start by focussing on Hermite polynomials, and then we deal with general subordinated fields.

Hermite subordination

We focus on the spherical field T (q) (q ≥ 2) defined in [START_REF] Marinucci | A Central Limit Theorem and Higher Order Results for the Angular Bispectrum[END_REF], which is obtained by composing the Gaussian field T in (2) with the qth Hermite polynomial H q (or, equivalently, by taking the qth Wick power of the random variable T (x) for every x). Our first purpose is to characterize the asymptotic Gaussianity (when l → +∞) of the spherical harmonic coefficients {a lm;q } defined in [START_REF] Marinucci | The Empirical process on Gaussian spherical harmonics[END_REF].

Theorem 3 Fix q ≥ 2.
1. For every l ≥ 1, the positive constant C (q) l in [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF] (which does not depend on m) equals the quantity

q! l 1 ,m 1 ••• lq,mq C l 1 C l 2 • • • C lq |G {l 1 , m 1 ; ...; l q , m q ; l, -m}| 2 (36) = q! ∞ l 1 ,...,lq=0 C l 1 •••C lq 4π 2l + 1 q i=1 2l i + 1 4π L 1 ...L q-2 C L 1 ,L 2 ,...,L q-2 ,l;0 l 1 ,0;...;lq0 2 ( 37 
)
for every m = -l, ..., l, where the (generalized) Gaunt integral G {•} is defined via (30). 2. Fix m = 0. As l → +∞, the following two conditions (A) and (B) are equivalent: (A)

( C (q) l ) -1/2 × a lm;q law → N + iN ′ , (38) 
where N, N ′ ∼ N (0, 1/2) are independent; (B) for every p = q-1 2 + 1, ..., q -1, if q -1 is even, and every p = q/2, ..., q -1 if q -1 is odd

( C (q) l ) -2 n 1 ,j 1 • • • n 2(q-p) ,j 2(q-p) C j 1 • • • C j 2(q-p) l 1 ,m 1 • • • lp,mp C l 1 • • • C lp ×G{l 1 ,
m 1 ; ...; l p , m p ; j 1 , n 1 ; ...; j q-p , n q-p ; l, -m} × (39)

×G l 1 , m 1 ; ...; l p , m p ; j q-p+1 , n q-p+1 ; ...; j 2(q-p) , n 2(q-p) ; l, -m 2 → 0

3. Let N be a centered Gaussian random variable with unitary variance. As l → +∞, the CLT ( C

(q) l ) -1/2 × a l0;q law → N (40) 
takes place if, and only if, the asymptotic condition (39) holds for m = 0 and for every p = q-1 2 + 1, ..., q -1, if q -1 is even, and every p = q/2, ..., q -1 if q -1 is odd.

Proof. Consider a standard Brownian motion W = {W t : t ∈ [0, 1]}, and denote by

L 2 C ([0, 1]) = L 2
C ([0, 1] , dλ) the class of complex-valued and square integrable functions on [0, 1], with respect to the Lebesgue measure dλ. Now select a complex-valued family {g lm :

l ≥ 0, -l ≤ m ≤ l} ⊆ L 2
C ([0, 1]) with the following five properties: (1) g l0 is real for every l ≥ 0, (2)

g lm = (-1) m g l-m , (3) g lm g l ′ m ′ dλ = 0, ∀ (l, m) = (l ′ , m ′ ), (4) ℜ (g lm ) ℑ (g lm ) dλ = 0, (5) ℜ (g lm ) 2 dλ = ℑ (g lm ) 2 dλ = g 2 l0 dλ/2 = C l /2
, where {C l : l ≥ 0} is the power spectrum of the Gaussian field T . According to Proposition 1, the following identity in law holds:

{a lm;1 : l ≥ 0, -l ≤ m ≤ l} law = {I 1 (g lm ) : l ≥ 0, -l ≤ m ≤ l} , where I 1 (g lm ) = 1 0 g lm dW = 1 0 ℜ(g lm )dW + i 1 0 ℑ(g lm )dW is the usual (complex-valued)
Wiener-Itô integral of g lm with respect to W . From this last relation, it also follows that, in the sense of stochastic processes, T (x)

law = I 1 ∞ l=0 l m=-l g lm Y lm (x) (note that the function z → l,m g lm (z)Y lm (x)
is real-valued for every fixed x ∈ S 2 and with norm equal to 1). Now define L 2 s,C ([0, 1] q ) to be the class of complex-valued and symmetric functions on [0, 1] q , that are square-integrable with respect to Lebesgue measure. For every f ∈ L 2 s,C ([0, 1] q ), we define I q (f ) = I q (ℜ(f ))+iI q (ℑ(f )) to be the multiple Wiener-Itô integral, of order q, of f with respect to the Brownian motion W (see e.g. [18, Ch. 1], or [START_REF] Janson | Gaussian Hilbert Spaces[END_REF]). From the previous discussion it follows that, for every q ≥ 2,

T (q) (x) = H q (T (x)) law = I q   ∞ l=0 l m=-l g lm Y lm (x) ⊗q   , (41) 
where the equality in law holds in the sense of finite dimensional distributions and, for every

f ∈ L 2 C ([0, 1]
), we use the notation f ⊗q (a 1 , ..., a q ) = f (a 1 ) × • • • × f (a q ) . Note that, to obtain the last equality in (41), we used the well-known relation (see e.g. [START_REF] Janson | Gaussian Hilbert Spaces[END_REF]): for every real-valued

f ∈ L 2 R ([0, 1]) such that f L 2 R ([0,1]) = 1, it holds that H q [I 1 (f )] = I q (f ⊗q ). Now set h (q) l,m = (-1) m l 1 ,m 1 • • • lq,mq g l 1 m 1 • • • g lqmq G{l 1
, m 1 ; ...; l q , m q ; l, -m}, so that

a lm;q law = S 2 I q   ∞ l=0 l m=-l g lm Y lm (x) ⊗q   Y lm (x)dx = I q h (q) l,m (42) 
so that (36) follows immediately from the well-known isometry relation:

E I q h (q) l,m 2 = q! h (q) l,m 2 
L 2 ([0,1] q )
(to obtain (42) we interchanged stochastic and deterministic integration, by means of a standard stochastic Fubini argument). To prove that (37) is equal to (36), observe first that (32) yields that

l 1 m 1 =-l 1 • • • lq mq =-lq C L 1 ,L 2 ,...,L q-2 ,l;m l 1 ,m 1 ;...;lqmq C L ′ 1 ,L ′ 2 ,...,L ′ q-2 ,l;m l 1 ,m 1 ;...;lqmq = δ L ′ 1 L 1 ...δ L ′ q-2 L q-2
(the RHS of the previous expression does not depend on m). Then, use (34) to deduce that 

l 1 m 1 =-l 1 • • • lq mq=-lq G {l 1 , m 1 ; ...; l q , m q ; l, -m} 2 = 4π 2l + 1 q i=1 2l i + 1 4π L 1 ...L q-2 C L 1 ,L 2 ,...,
( C (q) l ) -2 h (q) l,m ⊗ p h (q) l,m 2 
L 2 ([0,1] 2(q-p) )
→ 0, for every p = 1, ..., q -1, where the complex-valued (and not necessarily symmetric) function

h (q) l,m ⊗ p h (q)
l,m (which is an element of L 2 ([0, 1] 2(q-p) )) is defined as the contraction

h (q) l,m ⊗ p h (q) 
l,m a 1 , ..., a 2(q-p)

l,m (x p , a 1 , ..., a q-p ) h

l,m x p , a q-p+1 , ..., a 2(q-p) dx p , for every (a 1 , ..., a 2(q-p) ) ∈ [0, 1] 2(q-p) , where dx p is the Lebesgue measure on [0, 1] p . Since, trivially, h

(q) l,m ⊗ p h (q) l,m 2 = h (q) l,m ⊗ q-p h (q) l,m
2 (we stress that, in the last equality, the first norm is taken in L 2 ([0, 1] 2(q-p) ), whereas the second is in L 2 ([0, 1] 2p ) ), one deduces that it is sufficient to check that the norm of h

(q) l,m ⊗ p h (q)
l,m is asymptotically negligeable for every p = q-1 2 +1, ..., q -1, if q -1 is even, and every p = q/2, ..., q -1 if q -1 is odd. It follows that the result is proved once it is shown that, for every p in such range, the norm h

(q) l,m ⊗ p h (q) l,m
2 equals the multiple sum appearing in (39). To see this, use (43) to deduce that (recall that Gaunt integrals are real-valued)

h (q) l,m ⊗ p h (q) l,m a 1 , ..., a 2(q-p) = n 1 ,j 1 • • • n 2(q-p) ,j 2(q-p) g j 1 n 1 • • • g j q-p n q-p g j q-p+1 n q-p+1 • • • g j 2(q-p) n 2(q-p) l 1 ,m 1 • • • lp,mp C l 1 • • • C lp G {l 1 , m 1 ;
...; l p , m p ; j 1 , n 1 ; ...; j q-p , n q-p ; l, -m} G l 1 , m 1 ; ...; l p , m p ; j q-p+1 , n q-p+1 ; ...; j 2(q-p) , n 2(q-p) ; l, -m , and the result is obtained by using the orthogonality properties of the g jn 's. Point 3 in the statement is proved in exactly the same way, by first observing that a l0;q is a real-valued random variable, and then by applying Theorem 1 in [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF].

Remark. One has the relation E T (q) (x) 2 = q! E T (x) 2 q . This equality can be proved in two ways: (i) by exploiting the representation of T (q) (x) as a multiple Wiener-Itô integral, or (ii) by using the equality E T (q) (x

) 2 = l 2l+1 4π C (q)
l , and the by expanding C

(q) l according to Theorem 3, so that one can apply the orthogonality relations (32). Now recall that, according to part 2 of Lemma 2, T (q) l (x) law = 2l+1 4π a l0;q , so that relation [START_REF] Peccati | Decompositions of stochastic processes based on irreducible group representations[END_REF] holds. This gives immediately a first (exhaustive) solution to Problem (P-I), as stated in Section 2.

Corollary 4 For every q ≥ 2 the following conditions are equivalent:

1. The CLT (23) holds for every x ∈ S 2 ; 2. The asymptotic relation (39) takes place for m = 0 and for every p = q-1 2 + 1, ..., q -1, if q -1 is even, and every p = q/2, ..., q -1 if q -1 is odd.

To deal with Problem (P-II) of Section 2, we recall the notation T (q) l (indicating the lth normalized frequency component of T (q) ) introduced in [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF]. We also introduce (for every l ≥ 1) the normalized lth frequency component of the Gaussian field T , which is defined as

T l (x) = T l (x) V ar(T l (x)) 1/2 = T l (x) ( 2l+1 4π C l ) 1/2 , x ∈ S 2 . ( 44 
)
According to Lemma 2 (in the special case F (z) = z), T l is a real-valued, isotropic, centered and Gaussian field. Moreover, one has that E[T l (x) T l (y)] = E[T (q) l (x) T (q) l (y)] = P l ( x, y ), for every q ≥ 2 and every l ≥ 1. The next result -which gives an exhaustive solution to Problem (P-II) -states that, whenever Condition 1 (or, equivalently, Condition 2) in the statement of Corollary 4 is verified (and without any additional assumption), the "distance" between the finite dimensional distributions of the normalized field T (q) l and those of T l converge to zero. For every k ≥ 1, we denote by P(R k ) the class of all probability measures on R k . We say that a metric γ (•, •) metrizes the weak convergence on P(R k ) whenever the following double implication holds for every Q ∈ P(R k ) and every {Q l : l ≥ 1} ⊂ P(R k ) (as l → +∞): γ (Q l , Q) → 0 if, and only if, Q l converges weakly to Q. The quantity γ(P, Q) is sometimes called the γ-distance between P and Q.

Theorem 5 Let q ≥ 2 be fixed, and suppose that Condition 1 (or 2) of Corollary 4 is satisfied.

1. For every k ≥ 1, every x 1 , ..., x k ∈ S 2 and every compact subset

M ⊂ R k , sup (λ 1 ,...,λ k )∈M E e i k j=1 λ j T (q) l (x j ) -E e i k j=1 λ j T l (x j ) -→ l→+∞ 0. ( 45 
)
2. Fix x 1 , ..., x k and denote by L T (q) l ; x 1 , ..., x k and L T l ; x 1 , ..., x k (l ≥ 1), respectively, the law of T (q) l (x 1 ) , ..., T (q) l (x k ) and the law of T l (x 1 ) , ..., T l (x k ) . For every metric γ (•, •) on P(R k ) such that γ (•, •) metrizes the weak convergence, it holds that

lim l→+∞ γ L T (q) l ; x 1 , ..., x k , L T l ; x 1 , ..., x k = 0.
Proof. The crucial point is that the spherical field x → T (q) l (x) lives in the qth Wiener chaos associated with the Gaussian space generated by T . By using this fact, and by arguing as in the proof of Theorem 3, one can show that the vector (T (q) l (x 1 ) , ..., T (q) l (x k )) is indeed equal in law to a vector of multiple Wiener-Itô integrals, of order q, with respect to a Brownian motion. Since each element of this vector converges in law to a standard Gaussian random variable, one can directly apply Theorem 1 and Proposition 2 in [START_REF] Peccati | Gaussian approximations of multiple integrals[END_REF] to achieve the desired conclusion (see also [START_REF] Peccati | Gaussian approximations of multiple integrals[END_REF]Proposition 5]).

General subordination

We now give a solution to Problem (P-III), as stated at the end of Section 2, where F is a general real-valued function belonging to the class L 2 0 R, e -x 2 /2 dx . The function F admits a unique representation of the form

F (z) = ∞ q=1 c q (F ) q! H q (z) , z ∈ R, (46) 
where the Hermite polynomials H q are given by ( 14) and the real coefficients c q (F ), q = 1, 2..., are such that

Σ q c q (F ) 2 q! < +∞ . ( 47 
)
As a consequence, for every l ≥ 0, the frequency component F [T ] l (x) defined in (13) admits the expansion

F [T ] l (x) = ∞ q=1 c q (F ) q! T (q) l (x) , x ∈ S 2 , ( 48 
)
where the series converges in L 2 (P) for every fixed x. Formula (48) combined with Lemma 2 yields also that

E(F [T ] l (x) F [T ] l (y)) = 2l + 1 4π P l (cos x, y ) ∞ q=1 c q (F ) q! 2 C (q) l ,
where C

(q) l is given by ( 19) or, equivalently, by (37). The next result characterizes the asymptotic Gaussianity of F -subordinated spherical random fields. Recall the definition of F [T ] l given in [START_REF] Peccati | On the convergence of multiple random integrals[END_REF]. The proof is standard, and therefore omitted (it can be obtained e.g. along the lines of [START_REF] Hu | Renormalized self-intersection local time for fractional Brownian motion[END_REF]Th. 4]).

Theorem 6 Suppose that the following relations hold 1. For every q ≥ 1, lim l→+∞

2l+1 4π cq(F ) q! 2 C (q) l /E(F [T ] l (x) 2 ) → σ 2 q ∈ [0, +∞); 2. m≥1 {c q (F ) /q!} 2 σ 2 q σ 2 (F ) < +∞;
3. For every q ≥ 2, the asymptotic relation (39) takes place for m = 0 and for every p = q-1 2 + 1, ..., q -1, if q -1 is even, and every p = q/2, ..., q -1 if q -1 is odd;

4. lim p→+∞ lim l (2l + 1) ∞ q=p+1 cq(F ) q! 2 C (q) l = 0.
Then, for every k ≥ 1, every x 1 , ..., x k ∈ S 2 and every compact

M ⊂ R k , sup (λ 1 ,...,λ k )∈M E e i k j=1 λ j F [T ] l (x j ) -E e iσ 2 (F ) 1/2 k j=1 λ j T l (x j ) → l→+∞ 0,
where we used the notation (44). In particular, the last asymptotic relation implies that, for every γ(•, •) metrizing the weak convergence on P(R k ), the γ-distance between

(F [T ] l (x 1 ) , ..., F [T ] l (x k ))
and σ 2 (F ) 1/2 (T l (x 1 ) , ..., T l (x k )) converges to zero as l → +∞.

Remark. A sufficient condition, ensuring that points 1 and 3 in the statement of Theorem 6 are verified, is the following: there exist constants ρ (q) > 0 such that (a) (2l + 1) C (q) l ≤ ρ (q) for every q ≥ 1 and every l, and (b) ∞ q=1 cq(F ) q! 2 ρ (q) < +∞.

Explicit sufficient conditions: convolutions and random walks

In this section, we further explicit the conditions for the CLTs proved in Section 4 for the (Hermite) frequency components T

l , l ≥ 0. In particular, we shall establish sufficient conditions that are more directly linked to primitive assumptions on the behaviour of the angular power spectrum {C l : l ≥ 0}. The results of Section 5.2 and Section 5.3 cover, respectively, the case q = 2 and q = 3. Section 5.4 contains some partial findings for the case of a general q, as well as several conjectures. These results will be used in Section 7 to deduce explicit conditions on the rate of decay of the angular power spectrum {C l : l ≥ 0}.

Our analysis is inspired by the following result, which is a particular case of the statements contained in [17, Section 3], concerning fields on Abelian groups. Consider indeed a centered real-valued Gaussian field V = {V (θ) : θ ∈ T} defined on the torus T = [0, 2π) (that we regard as an Abelian compact group with group operation given by xy = (x + y) mod(2π)). We suppose that the law of V is isotropic, i.e. that V (θ) law = V (xθ) (in the sense of stochastic processes) for every x ∈ T, and also EV (θ) 2 = 1. We denote by V (θ) = l∈Z a l e ilθ the Fourier decomposition of V , and we write Γ

V l = E |a l | 2 (note that Γ V l = Γ V -l
). Fix q ≥ 2, and consider the Hermite-subordinated field H q [V ] (θ) = H q (V (θ)), where q is the qth Hermite polynomial. The Fourier decomposition of

H q [V ] is H q [V ] (θ) = l∈Z a (q)
l e ilθ . We write N, N ′ to indicate a pair of independent centered Gaussian random variables with common variance equal to 1/2: in [START_REF] Marinucci | High-frequency asymptotics for subordinated stationary fields on an Abelian compact group[END_REF] it is proved that to have the high-frequency CLT

a (q) l V ar a (q) l 1/2 = T H q [V ] (θ) e -ilθ dθ V ar a (q) l 1/2 law → l→∞ N + iN ′ (49)
it is necessary and sufficient that, for every p = 1, ..., q -1,

lim l→+∞ sup j∈Z P [U p = j | U q = l] = 0, ( 50 
)
where {U n : n ≥ 0} is the random walk on Z whose law is given by U 0 = 0 and

P [U n+1 = j | U n = k] = Γ V j-k .
Note that the law of the random variable U n has trivially the form of a convolution of the coefficients Γ V l (see also the discussion below). The correspondence between (49) and the "random walk bridge" (50) has been used in [START_REF] Marinucci | High-frequency asymptotics for subordinated stationary fields on an Abelian compact group[END_REF] to establish explicit conditions on the power spectrum {Γ V l } to have that (49) holds.

In what follows, we shall unveil (and apply) an analogous connection between the CLTs proved in Section 4 and some specific convolutions and random walks on SO (3).

Convolutions on SO (3)

In the light of Part 3 of Theorem 3 and by Corollary 4, we will focus on the sequence {a l0;q : l ≥ 0} (see ( 16)), whose behaviour as l → +∞ yields an asymptotic characterization of the fields T (q) l (•) defined in [START_REF] Marinucci | High-frequency asymptotics for subordinated stationary fields on an Abelian compact group[END_REF]. A crucial point is the simple fact that the numerator of (39), for m = 0, can be developed as a multiple sum involving products of four generalized Gaunt integrals, so that, by (31), the asymptotic expressions appearing in Theorem 3 can be studied by means of the properties of linear combinations of products of Clebsch-Gordan coefficients. As anticipated, a very efficient tool for our analysis will be the use of convolutions on N, that we endow with an hypergroup structure isomorphic to SO (3), i.e. the dual of SO (3). This will be the object of the subsequent discussion.

From now on, and for the rest of the section, we shall fix a sequence {C l : l ≥ 0}, representing the angular power spectrum of an isotropic centered, normalized Gaussian field T over S 2 , as in Section 2. Whenever convenient we shall write

Γ q-1,L q-1 Γ lq (C l0 L q-1 0lq0 ) 2 = l 1 ...lq Γ l 1 ...Γ lq L 1 ...L q-2 (C L 1 ...L q-2 l;0 l 1 0...lq0 ) 2 . ( 54 
)
We stress that the equalities in formulae ( 53) and (54) are consequences of (33). It will be also convenient to define a *-convolution of order p ≥ 2 as:

Γ * p,l;l 1 = l 2 • • • lp Γ l 2 • • • Γ lp L 1 ...L p-2 C L 1 0 l 1 0l 2 0 C L 2 0 L 1 0l 3 0 ...C l0 L p-2 0lp0 2 = l 2 • • • lp Γ l 2 • • • Γ lp L 1 ...L p-2 C L 1 ...l;0 l 1 0l 2 0...lp0 2 . ( 55 
)
Note that the number of sums following the equalities in formula (55) is p -1: however, we choose to keep the symbol p to denote *-convolutions, since it is consistent with the probabilistic representations given in formulae ( 59) and (60) below. The above *-convolution has the following property: for every p = 2, ..., q l 1 Γ q+1-p,l 1 Γ * p,l;l 1 = Γ q,l , and, in particular,

l 1 Γ l 1 Γ * q,l;l 1 = Γ q,l .
The *-convolution of order 2 can be written more explicitly as

Γ * 2,l;l 1 = l 2 Γ l 2 (C l0 l 1 0l 2 0 ) 2 . ( 56 
)
Remarks. ( 1) (Probabilistic interpretation of the convolutions) Write first Γ * l Γ l (plainly, in our framework Γ * = 4π, but the following discussion applies to coefficients {Γ l } such that Γ * > 0 is arbitrary) so that l -→ Γ l /Γ * defines a probability on N. The second orthonormality relation in [START_REF] Varshalovich | Quantum Theory of Angular Momentum[END_REF] implies that, for fixed l 1 , l 2 , the application l -→ (C l0 l 1 0l 2 0 ) 2 is a probability on N. Now define the law of a (homogeneous) Markov chain {Z n : n ≥ 1} as follows:

P {Z 1 = l} = Γ l /Γ * (57) 
P {Z n+1 = l | Z n = L} = l 0 Γ l 0 Γ * C l0 l 0 0L0 2 . ( 58 
)
It is clear that P {Z q = l} = Γ q,l / (Γ * ) q , and also, for p ≥ 2,

Γ * p,l:l 1 (Γ * ) p-1 = P {Z p = l | Z 1 = l 1 } (59) Γ * p,l:l 1 Γ q+1-p,l 1 (Γ * ) q = P {(Z q = l) ∩ (Z q+1-p = l 1 )} (q > p -1). ( 60 
)
The following quantity will be crucial in the subsequent sections:

Γ * q+1-p,l;λ Γ p,λ L Γ p,L Γ * q+1-p,l;L = Γ * q+1-p,l;λ Γ p,λ Γ q,l = P {Z p = λ | Z q = l} (q > p); (61) 
observe that the last relation in (61) derives from

Γ * q+1-p,l;λ / (Γ * ) q-p = P{ (Z q+1-p = l) | (Z 1 = λ)} = P {(Z q = λ) | (Z p = l)} ,
where the last equality is a consequence of the homogeneity of Z. Note also that we can identify each natural number l ≥ 0 with an irreducible representation of SO (3). It follows that the formal addition l 1 + l 2 l l(C l0 l 1 0l 2 0 ) 2 may be used to endow SO (3) with an hypergroup structure. In this sense, we can interpret the chain {Z n : n ≥ 1} as a random walk on the hypergroup SO (3), in a spirit similar to [START_REF] Guivarc'h | Marches Aléatoires sul les Groupes de Lie[END_REF]. In Section 6, we will discuss a physical interpretation of these convolutions and establish a precise connection between the objects introduced in this section and the notion of convolution appearing in [START_REF] Guivarc'h | Marches Aléatoires sul les Groupes de Lie[END_REF].

(2) (A comparison with the Abelian case) In [START_REF] Marinucci | High-frequency asymptotics for subordinated stationary fields on an Abelian compact group[END_REF], where we dealt with similar problems in the case of homogenous spaces of Abelian groups, we used extensively convolutions over Z. This kind of convolutions, that we note A Γ q,l (q ≥ 2, l ∈ Z) are obtained as in ( 52)-( 56), by taking sums over Z (instead than over N) and by replacing the Clebsch-Gordan symbols (C l0 l 1 0l 2 0 ) 2 with the indicator 1 l 1 +l 2 =l . Note that these indicator functions do indeed provide the Clebsch-Gordan coefficients associated with the irreducible representations of the 1-dimensional torus T = [0, 2π), regarded as a compact Abelian group with group operation xy = (x + y) (mod(2π)) (this is equivalent to the trivial relation e il 1 x e il 2 x = l 1 l 1 +l 2 =l e ilx = e i(l 1 +l 2 )x ). Note also that in the Abelian case one has A Γ * p,l;l 1 = A Γ p,l-l 1 . Also, if Γ l = Γ V l , where {Γ V l } is the power spectrum of the Gaussian field V on T appearing in (49), one has that A Γ V q,l = P [U q = l], where {U n } is the random walk given in (50).

The case q = 2

In this subsection, we provide a sufficient condition on the spectrum {C l : l ≥ 0} (or, equivalently, on {Γ l : l ≥ 0}, as defined in (51)) to have the CLT (40) in the quadratic case q = 2. This condition is stated in Proposition 8, and is obtained via some preliminary (technical) computations and lemmas.

According to Part 3 of Theorem 3, to deal with (40) we shall find sufficient conditions to have that (39) takes place for m = 0, q = 2 and p = 1. From (37) we deduce

C (2) l = 2    ∞ l 1 ,l 2 =0 (2l 1 + 1)(2l 2 + 1) 4π(2l + 1) C l 1 C l 2 (C l0 l 1 0l 2 0 ) 2    2 . ( 62 
)
On the other hand, the multiple sums appearing in the numerator of (39) become (q = 2, p = 1)

j 1 ,n 1 ,j 2 ,n 2 C j 1 C j 2 l 1 ,m 1 C l 1 G{l 1 , m 1 ; j 1 , n 1 ; l, -m}G{l 1 , m 1 ; j 2 , n 2 ; l, -m} 2 = 1 [4π(2l + 1)] 2 j 1 ,n 1 ,j 2 ,n 2 Γ j 1 Γ j 2 l 1 ,m 1 Γ l 1 C lm l 1 m 1 j 1 n 1 C l0 l 1 0j 1 0 C lm l 1 m 1 j 2 n 2 C l0 l 1 0j 2 0 2 = 1 [4π(2l + 1)] 2 j 1 ,n 1 ,j 2 Γ j 1 Γ j 2 l 1 ,m 1 Γ l 1 C lm l 1 m 1 j 1 n 1 C l0 l 1 0j 1 0 C lm l 1 m 1 j 2 n 2 C l0 l 1 0j 2 0 2 = 1 [4π(2l + 1)] 2 j 1 j 2 l 1 l 2 Γ j 1 Γ j 2 Γ l 1 Γ l 2 C l0 l 1 0j 1 0 C l0 l 1 0j 2 0 C l0 l 2 0j 1 0 C l0 l 2 0j 2 0 × n 1 n 2 m 1 m 2 C lm l 1 m 1 j 1 n 1 C lm l 1 m 1 j 2 n 2 C lm l 2 m 2 j 1 n 1 C lm l 2 m 2 j 2 n 2 . (63) 
Now, from [START_REF] Varshalovich | Quantum Theory of Angular Momentum[END_REF]Eq. 8.7.4.20] we deduce that

n 1 n 2 m 1 m 2 C lm l 1 m 1 j 1 n 1 C lm l 1 m 1 j 2 n 2 C lm l 2 m 2 j 1 n 1 C lm l 2 m 2 j 2 n 2 = (-1) β sσ (2s + 1)(2l + 1)(C lm lmsσ ) 2 l 1 j 1 l l s l 2 l 1 j 2 l l s l 2 = s (2s + 1)(2l + 1)(C lm lms0 ) 2 l 1 j 1 l l s l 2 l 1 j 2 l l s l 2 ,
where β = l 1 + j 1 + l 2 + j 2 , and we used the Wigner 6j symbols, as defined in (35). The last equality follows because the quantity l 1 + j 1 +l 2 + j 2 +2l must be necessarily even, and therefore β must be even as well. It should be noted that the role of the pairs (j 1 , n 1 ) and (l 1 , m 1 ) is perfectly symmetric, so we obtain also

n 1 n 2 m 1 m 2 C lm l 1 m 1 j 1 n 1 C lm l 1 m 1 j 2 n 2 C lm l 2 m 2 j 1 n 1 C lm l 2 m 2 j 2 n 2 = s (2s + 1)(2l + 1)(C lm lms0 ) 2 j 1 l 1 l l s j 2 j 1 l 2 l l s j 2 , whence s (2s + 1)(2l + 1)(C lm lms0 ) 2 j 1 l 1 l l s j 2 j 1 l 2 l l s j 2 (64) 
≡ s (2s + 1)(2l + 1)(C lm lms0 ) 2 l 1 j 1 l l s l 2 l 1 j 2 l l s l 2 . ( 65 
)
Lemma 7 For all integers l, l 1 , l 2 , j 1 , j 2 it holds that, for some positive constant c,

s (2s + 1)(2l + 1)(C l0 l0s0 ) 2 l 1 j 1 l l s l 2 l 1 j 2 l l s l 2 ≤ c max 1 5 √ 2l 1 + 1 ∧ 1 5 √ 2l 2 + 1 , 1 5 √ 2j 1 + 1 ∧ 1 5 √ 2j 2 + 1 .
Proof. Assume without loss of generality j 1 , j 2 > l 1 otherwise we focus on (65) rather than (64). For α ∈ (0, 1), we have that

s (2s + 1)(2l + 1)(C l0 l0s0 ) 2 l 1 j 1 l l s l 2 l 1 j 2 l l s l 2 ≤ s≤l α 1 (2s + 1)(2l + 1)(C l0 l0s0 ) 2 l 1 j 1 l l s l 2 l 1 j 2 l l s l 2 + s>l α 1 (2s + 1)(2l + 1)(C l0 l0s0 ) 2 l 1 j 1 l l s l 2 l 1 j 2 l l s l 2 ≤ Cl 2α 1 (2l + 1) max s≤l α 1 l 1 j 1 l l s l 2 l 1 j 2 l l s l 2 + max s>l α 1 (C l0 l0s0 ) 2 s (2s + 1)(2l + 1) l 1 j 1 l l s l 2 l 1 j 2 l l s l 2 ≤ Cl 2α 1 (2l + 1) 1 (2l + 1)(2l 1 + 1) + C l α/2 1 2l + 1 √ j 1 j 2 = O(l 2α-1 1 + l -α/2 1 ) = O( 1 5 √ l 1 ),
where the last equality has been obtained by setting α = 2/5. The second last step follows because j 1 , j 2 ≥ l 1 , l 2 implies j 1 , j 2 > l/2, in view of the triangle inequalities l 1 + j 1 , l 1 + j 2 > l; also, we used the inequality max

s>l α 1 (C l0 l0s0 ) 2 ≤ l -α/2 1
, see Lemma 8 below. The bound with l 2 can be obtained by exploiting the symmetries of the 6j coefficients; in particular, we recall that (see ([28, Eq. 9.4.2.2]))

l 1 j 1 l l s l 2 ≡ l j 1 l 2 l 1 s l ≡ l 2 j 1 l l s l 1 .
Remark. The bound provided in Lemma ( 7) is sufficient for our purposes below and we did not investigate its efficiency in detail. We remark, however, by setting j 1 = j 2 = 0, we have explicitly (see [START_REF] Varshalovich | Quantum Theory of Angular Momentum[END_REF]Eq. 8.5.1.2])

n 1 n 2 m 1 m 2 C lm l 1 m 1 j 1 n 1 C lm l 1 m 1 j 2 n 2 C lm l 2 m 2 j 1 n 1 C lm l 2 m 2 j 2 n 2 = m 1 m 2 C lm l 1 m 1 00 C lm l 1 m 1 00 C lm l 2 m 2 00 C lm l 2 m 2 00 ≡ 1 . Lemma 8 As l 1 → +∞, C l0 l0l 1 0 = O( 1 4 √ l 1
).

Proof. Unless the triangle condition 2l ≥ l 1 is satisfied, the Clebsch-Gordan coefficient is identically zero and the bound is trivial. Now recall that

C l0 l0l 1 0 = √ 2l + 1 [(2l + l 1 )/2]! [l 1 /2]! [(2l -l 1 )/2]! [l 1 /2]! l 1 !(2l -l 1 )!l 1 ! (2l + l 1 + 1)! 1/2 .
For sequences {a l } and {b l }, write a l ≈ b l when both a l = O(b l ) and b l = O(a l ) hold true. From Stirling's formula

C l0 l0l 1 0 ≈ √ 2l + 1 [(2l + l 1 )/2] (2l+l 1 )/2+1/2 [l 1 /2] l 1 +1 [(2l -l 1 + 1)/2] (2l-l 1 )/2+1/2 l 2l 1 +1 1 (2l -l 1 ) (2l-l 1 )+1/2 (2l + l 1 + 1) 2l+l 1 +3/2 1/2 = √ 2l + 1(2l + l 1 ) (2l+l 1 )/2+1/2 l l 1 +1 1 (2l -l 1 + 1) (2l-l 1 )/2+1/2 l 2l 1 +1 1 (2l -l 1 ) (2l-l 1 )+1/2 (2l + l 1 + 1) 2l+l 1 +3/2 1/2 = √ 2l + 1 l 1/2 1 (2l-l 1 +1) 1/4 1 (2l+l 1 +1) 1/4 ≤ 4 √ 2l + 1 l 1/2 1 (2l-l 1 +1) 1/4 = O( 1 4 √ l 1 )
We can finally state a sufficient condition for the CLT (40) in the case q = 2.

Proposition 9 For q = 2, a sufficient condition for the CLT (40) is the following asymptotic relation

lim l→+∞ sup l 1 l 1 Γ l 1 Γ l 2 C l0 l 1 0l 2 0 2 l 1 ,l 2 Γ l 1 Γ l 2 (C l0 l 1 0l 2 0 ) 2 = lim l→+∞ sup l 1 P {Z 1 = l 1 | Z 2 = l 2 } = 0, (66) 
where the {Γ l } are given by (51) and {Z l } is the Markov chain defined in formulae (57) and (58).

Proof. In the sequel, we shall use repeatedly the trivial inequality

n j=0 c j a j ∧ b j = j:a j ≤b j c j a j + j:a j >b j c j b j ≤ n j=0 c j a j + n j=0 c j b j , (67) 
which holds for arbitrary n and real vectors {a j }, {b j } and {c j }. In view of Lemma 7, by using a generalized Cauchy-Schwartz inequality, (67) and symmetry considerations, we obtain that the expression (63) is such that

(63) ≤ 1 [4π(2l + 1)] 2 j 1 ,j 2 l 1 ,l 2 Γ j 1 Γ j 2 Γ l 1 Γ l 2 C l0 l 1 0j 1 0 C l0 l 1 0j 2 0 C l0 l 2 0j 1 0 C l0 l 2 0j 2 0 ≤ 2 [4π(2l + 1)] 2 j 1 ,j 2 l 1 ,l 2 Γ j 1 Γ j 2 Γ l 1 Γ l 2 C l0 l 1 0j 1 0 C l0 l 1 0j 2 0 C l0 l 2 0j 1 0 C l0 l 2 0j 2 0 1 5 √ j 1 ≤ 1 8[π(2l + 1)] 2 l 1 j 1 Γ l 1 Γ j 1 5 j 2 1 C l0 l 1 0j 1 0 2 l 1 j 2 Γ l 1 Γ j 2 C l0 l 1 0j 2 0 2 × l 2 j 1 Γ l 2 Γ j 1 C l0 l 2 0j 1 0 2 l 2 j 2 Γ l 2 Γ j 2 C l0 l 2 0j 2 0 2 .
The last expression is less than

l 1 l 2 Γ l 1 Γ l 2 C l0 l 1 0l 2 0 2 8[π(2l + 1)] 2 l 1 j 1 Γ l 1 Γ j 1 5 j 2 1 C l0 l 1 0j 1 0 2 l 1 j 2 Γ l 1 Γ j 2 C l0 l 1 0j 2 0 2 . (68) 
Now 2 . Now fix ε > 0. Under (66) we have that, for any fixed and positive number l

l 1 j 1 Γ l 1 Γ j 1 5 j 2 1 C l0 l 1 0j 1 0 2 ≤ j * max j 1 ≤j *   l 1 ≥0 Γ l 1 Γ j 1 C l0 l 1 0j 1 0 2   + 1 5 (j * ) 2 l 1 ,j 1 ≥0 Γ l 1 Γ j 1 C l0 l 1 0j 1 0 2 . It follows that (63) (62) ≤ (68) ∞ l 1 ,l 2 =0 Γ l 1 Γ l 2 (C l0 l 1 0l 2 0 ) 2 2 = l 1 j 1 Γ l 1 Γ j 1 5 √ j 2 1 C l0 l 1 0j 1 0 2 ∞ l 1 ,l 2 =0 Γ l 1 Γ l 2 (C l0 l 1 0l 2 0 ) 2 ≤ 2 j * max j 1 ≤j * l 1 ≥1 Γ l 1 Γ j 1 C l0 l 1 0j 1 0 2 ∞ l 1 ,l 2 =0 Γ l 1 Γ l 2 (C l0 l 1 0l 2 0 ) 2 + 1 5 (j * )
* 1 > 1/ε, lim l→∞     j * max j 1 ≤j * l 1 ≥1 Γ l 1 Γ j 1 C l0 l 1 0j 1 0 2 ∞ l 1 ,l 2 =1 Γ l 1 Γ l 2 (C l0 l 1 0l 2 0 ) 2 + 1 5 (j * ) 2     ≤ j * lim l→∞ sup l 1 ∞ l 2 =1 Γ l 1 Γ l 2 C l0 l 1 0l 2 0 2 ∞ l 1 ,l 2 =1 Γ l 1 Γ l 2 (C l0 l 1 0l 2 0 ) 2 + 5 √ ε 2 = 5 √ ε 2 .
Because ε is arbitrary, the proof is concluded.

Remark. Note that, using (54) and (56), condition (66) becomes

lim l→∞ sup λ Γ λ Γ * 2,l;λ l 1 Γ l 1 Γ 2,l;l 1 = 0 . ( 69 
)
Note also that if, in the convolutions (54), one replaces each squared Clebsch-Gordan coefficient

C l0 l 1 0l 2 0
2 by the indicator 1 l 1 +l 2 =l and extends the sums over Z, one obtains the relation

lim l→∞ sup l 1 Γ l 1 Γ l-l 1 l 1 Γ l 1 Γ l-l 1 = 0. (70) 
In particular, when {Γ l } = {Γ V l } (the power spectrum of the field V on T given in (49)) it is not difficult to show that formula (70) gives exactly the asymptotic (necessary and sufficient) condition (50).

The case q = 3

Our results for q = 3 closely mirrors the conditions we derived in the previous subsection.

Proposition 10 A sufficient condition for the CLT (40) when q = 3 is

lim l→∞ sup L 1 l 1 l 2 j 1 Γ l 1 Γ l 2 Γ j 1 C L 1 l0 l 1 0l 2 0j 1 0 2 L 1 l 1 ,l 2 ,l 3 Γ l 1 Γ l 2 Γ l 3 C L 1 l0 l 1 0l 2 0l 3 0 2 = 0, and (71) 
lim l→∞ sup j 1 l 1 l 2 L 1 Γ l 1 Γ l 2 Γ j 1 C L 1 l0 l 1 0l 2 0j 1 0 2 L 1 l 1 ,l 2 ,l 3 Γ l 1 Γ l 2 Γ l 3 C L 1 l0 l 1 0l 2 0l 3 0 2 = 0 . ( 72 
)
Remark. In the light of (54)-( 56) and of the definition of the random walk Z given in (57) and (58), it is not difficult to see that (71) can be rewritten as

lim l→∞ sup λ Γ 2,λ j 1 Γ j 1 C l0 λj 1 0 2 Γ 3,l = lim l→∞ sup λ Γ 2,λ Γ * 2,l;λ L 1 Γ 2,L 1 Γ * 1,l;L 1 (73) = lim l→∞ sup λ P [Z 2 = λ | Z 3 = l] = 0.
Likewise, one obtains that (72) is equivalent to

lim l→∞ sup j 1 Γ j 1 Γ * 3,l;j 1 L 1 l 1 ,l 2 ,l 3 Γ l 1 Γ l 2 Γ l 3 C L 1 l0 l 1 0l 2 0l 3 0 2 (74) = lim l→∞ sup j 1 P [Z 1 = j 1 | Z 3 = l] = 0 .
It should be noted that the two conditions ( 73) and ( 74) can be written compactly as

lim l→∞ max q=1,2 sup j 1 Γ q,j 1 Γ * 3-q,l;j 1 L 1 l 1 ,l 2 ,l 3 Γ l 1 Γ l 2 Γ l 3 C L 1 l0 l 1 0l 2 0l 3 0 2 = 0 . ( 75 
)
Relation (75) parallels once again analogous conditions established for stationary fields on a torus -see [START_REF] Marinucci | High-frequency asymptotics for subordinated stationary fields on an Abelian compact group[END_REF].

Proof of Proposition 10. In view of Part 3 of Theorem 3, we shall focus on the asymptotic negligeability of the ratio appearing in (39), in the case where q = 3 and p = 2. As before, the denominator of (39) is proportional to

   l 1 ,l 2 ,l 3 C l 1 C l 2 C l 3 1 2l + 1 3 i=1 (2l i + 1) L 1 C L 1 0 l 1 0l 2 0 C l0 L 1 0l 3 0 2    2 (76) = 1 (2l + 1) 2    ∞ l 1 ,l 2 ,l 3 Γ l 1 Γ l 2 Γ l 3 L 1 C L 1 l0 l 1 0l 2 0l 3 0 2    2 .
On the other hand, the numerator is proportional to

1 (2l + 1) 2 j 1 ,j 2 n 1 ,n 2 Γ j 1 Γ j 2 × l 1 ,l 2 ,m 1 ,m 2 Γ l 1 Γ l 2 L 1 C L 1 l0 l 1 0l 2 0j 1 0 C L 1 lm l 1 m 1 l 2 m 2 j 1 n 1 L 2 C L 2 l0 l 1 0l 2 0j 2 0 C L 2 lm l 1 m 1 l 2 m 2 j 2 n 2 2 = 1 (2l + 1) 2 j 1 ,j 2 n 1 ,n 2 Γ j 1 Γ j 2 × l 1 ,l 2 ,m 1 ,m 2 Γ l 1 Γ l 2 L 1 C L 1 l0 l 1 0l 2 0j 1 0 M 1 C L 1 M 1 l 1 m 1 l 2 m 2 C lm L 1 M 1 j 1 n 1 L 2 C L 2 l0 l 1 0l 2 0j 2 0 M 2 C L 2 M 2 l 1 m 1 l 2 m 2 C lm L 2 M 2 j 2 n 2 2 (77) 
This last expression equals in turn

= 1 (2l + 1) 2 j 1 ,j 2 n 1 ,n 2 Γ j 1 Γ j 2 × l 1 ,l 2 Γ l 1 Γ l 2 L 1 C L 1 l0 l 1 0l 2 0j 1 0 M 1 C lm L 1 M 1 j 1 n 1 L 2 C L 2 l0 l 1 0l 2 0j 2 0 M 2 C lm L 2 M 2 j 2 n 2 δ L 2 L 1 δ M 2 M 1 2 = 1 (2l + 1) 2 j 1 ,j 2 n 1 ,n 21 Γ j 1 Γ j 2 × l 1 ,l 2 =0 Γ l 1 Γ l 2 L 1 C L 1 l0 l 1 0l 2 0j 1 0 C L 1 l0 l 1 0l 2 0j 2 0 M 1 C lm L 1 M 1 j 1 n 1 C lm L 1 M 1 j 2 n 2 2 = 1 (2l + 1) 2 j 1 ,j 2 n 1 ,n 21 Γ j 1 Γ j 2 × l 1 ,l 2 Γ l 1 Γ l 2 L 1 C L 1 l0 l 1 0l 2 0j 1 0 M 1 C lm L 1 M 1 j 1 n 1 L 2 C L 2 l0 l 1 0l 2 0j 2 0 M 2 C lm L 2 M 2 j 2 n 2 δ L 2 L 1 δ M 2 M 1 2
and we can use the same argument as for q = 2. More precisely, one can write

l 1 ,l 2 =1 Γ l 1 Γ l 2 L 1 C L 1 l0 l 1 0l 2 0j 1 0 C L 1 l0 l 1 0l 2 0j 2 0 M 1 C lm L 1 M 1 j 1 n 1 C lm L 1 M 1 j 2 n 2 2 = l 1 ...l 4 Γ l 1 ...Γ l 4 L 1 L 2 C L 1 l0 l 1 0l 2 0j 1 0 C L 1 l0 l 1 0l 2 0j 2 0 C L 2 l0 l 3 0l 4 0j 1 0 C L 2 l0 l 3 0l 4 0j 2 0 M 1 M 2 C lm L 1 M 1 j 1 n 1 C lm L 1 M 1 j 2 n 2 C lm L 2 M 2 j 1 n 1 C lm L 2 M 2 j 2 n 2 = l 1 ...l 4 Γ l 1 ...Γ l 4 L 1 L 2 C L 1 l0 l 1 0l 2 0j 1 0 C L 1 l0 l 1 0l 2 0j 2 0 C L 2 l0 l 3 0l 4 0j 1 0 C L 2 l0 l 3 0l 4 0j 2 0 (-1) ζ sσ (2s+1)(2l+1)(C l0 l0sσ ) 2 L 1 j 1 l l s L 2 L 1 j 2 l l s L 2 (78) 
where ζ = L 1 + j 1 + L 2 + j 2 , and (78) equals

= l 1 ...l 4 Γ l 1 ...Γ l 4 L 1 L 2 C L 1 l0 l 1 0l 2 0j 1 0 C L 1 l0 l 1 0l 2 0j 2 0 C L 2 l0 l 3 0l 4 0j 1 0 C L 2 l0 l 3 0l 4 0j 2 0 (-1) 2l s (2s+1)(2l+1)(C lm lms0 ) 2 L 1 j 1 l l s L 2 L 1 j 2 l l s L 2 .
From [START_REF] Efstathiou | Myths and truths concerning estimation of power spectra: the case for a hybrid estimator[END_REF] we now obtain that the last expression is bounded by

l 1 ...l 4 Γ l 1 ...Γ l 4 L 1 L 2 C L 1 l0 l 1 0l 2 0j 1 0 C L 1 l0 l 1 0l 2 0j 2 0 C L 2 l0 l 3 0l 4 0j 1 0 C L 2 l0 l 3 0l 4 0j 2 0 1 5 √ L 1 + l 1 ...l 4 Γ l 1 ...Γ l 4 L 1 L 2 C L 1 l0 l 1 0l 2 0j 1 0 C L 1 l0 l 1 0l 2 0j 2 0 C L 2 l0 l 3 0l 4 0j 1 0 C L 2 l0 l 3 0l 4 0j 2 0 1 5 √ j 1 ,
whence all the terms are bounded by

j 1 j 2 l 1 ...l 4 L 1 L 2 Γ j 1 Γ j 2 Γ l 1 ...Γ l 4 C L 1 0 l 1 0l 2 0 C l0 L 1 0j 1 0 C L 1 0 l 1 0l 2 0 × (79) × C l0 L 1 0j 2 0 C L 2 0 l 3 0l 4 0 C l0 L 2 0j 1 0 C L 2 0 l 3 0l 4 0 C l0 L 2 0j 2 0 1 5 √ L 1 + j 1 j 2 l 1 ...l 4 L 1 L 2 Γ j 1 Γ j 2 Γ l 1 ...Γ l 4 C L 1 0 l 1 0l 2 0 C l0 L 1 0j 1 0 C L 1 0 l 1 0l 2 0 × (80) × C l0 L 1 0j 2 0 C L 2 0 l 3 0l 4 0 C l0 L 2 0j 1 0 C L 2 0 l 3 0l 4 0 C l0 L 2 0j 2 0 1 5 √ j 1 .
Also,

j 1 j 2 l 1 ...l 4 Γ j 1 Γ j 2 Γ l 1 ...Γ l 4 L 1 L 2 C L 1 l0 l 1 0l 2 0j 1 0 C L 1 l0 l 1 0l 2 0j 2 0 C L 2 l0 l 3 0l 4 0j 1 0 C L 2 l0 l 3 0l 4 0j 2 0 5 √ L 1 = j 1 j 2 l 1 ...l 4 Γ j 1 Γ j 2 Γ l 1 ...Γ l 4 L 1 ...L 4 C L 1 l0 l 1 0l 2 0j 1 0 C L 3 l0 l 1 0l 2 0j 2 0 C L 2 l0 l 3 0l 4 0j 1 0 C L 4 l0 l 3 0l 4 0j 2 0 5 √ L 1 δ L 3 L 1 δ L 4 L 2 ≤ l 1 l 2 j 1 L 1 Γ l 1 Γ l 2 Γ j 1 C L 1 l0 l 1 0l 2 0j 1 0 2 L 2/5 1 l 1 l 2 j 2 L 1 Γ l 1 Γ l 2 Γ j 2 C L 1 l0 l 1 0l 2 0j 2 0 2 × l 3 l 4 j 1 L 2 Γ l 3 Γ l 4 Γ j 1 C L 2 l0 l 3 0l 4 0j 1 0 2 l 3 l 4 j 2 L 2 Γ l 3 Γ l 4 Γ j 2 C L 2 l0 l 3 0l 4 0j 2 0 2 ≤ l 1 l 2 j 1 L 1 Γ l 1 Γ l 2 Γ j 1 C L 1 l0 l 1 0l 2 0j 1 0 2 L 2/5 1    l 1 l 2 j 2 L 1 Γ l 1 Γ l 2 Γ j 2 C L 1 l0 l 1 0l 2 0j 2 0 2    3/2 . ( 81 
)
To sum up, we have obtained

(79) (76) ≤ 1 (2l+1) 2 × (81) 1 (2l+1) 2 6 l 1 ,l 2 ,l 3 Γ l 1 Γ l 2 Γ l 3 L 1 C L 1 l0 l 1 0l 2 0l 3 0 2 2 ≤    l 1 l 2 j 1 L 1 Γ l 1 Γ l 2 Γ j 1 C L 1 l0 l 1 0l 2 0j 1 0 2 /L 2/5 1 6 l 1 ,l 2 ,l 3 Γ l 1 Γ l 2 Γ l 3 L 1 C L 1 l0 l 1 0l 2 0l 3 0 2    1/2 , (82) 
By an identical argument we obtain also

(80) (76) ≤    l 1 l 2 j 1 L 1 Γ l 1 Γ l 2 Γ j 1 C L 1 l0 l 1 0l 2 0j 1 0 2 /j 2/5 1 6 l 1 ,l 2 ,l 3 Γ l 1 Γ l 2 Γ l 3 L 1 C L 1 l0 l 1 0l 2 0l 3 0 2    1/2 . ( 83 
)
Now we can adopt exactly the same line of reasoning as in the proof of Proposition 9, so that by trivial manipulations we deduce that (71) and (72) are indeed sufficient to have that the RHS of ( 82) and (83) converges to zero as l → +∞.

5.4

The case of a general q: results and conjectures

The following proposition gives a general version of the results proved in Sections 5.2 and 5.3. The proof (omitted) is rather long, and can be obtained along the lines of those of Proposition 9 and Proposition 10.

Proposition 11 Fix q ≥ 4. Then, a sufficient condition to have the asymptotic relation (39) in the case p = q -1 is the following;

lim l→∞ sup λ Γ q-1,λ Γ * 2,l;λ L Γ q-1,L Γ * 1,l;L + sup λ Γ * q,l;λ Γ λ L Γ q-1,L Γ * 1,l;L = lim l→∞ sup λ Γ q-1,λ Γ * 2,l;λ Γ q,l + sup λ Γ * q,l;λ Γ λ Γ q,l = 0. ( 84 
)
Remarks.

(1) As in the proofs of Proposition 9 and Proposition 10, a crucial technique in proving Proposition 11 consists in the simplification of sums of the type

m 1 m 2 m 3 M 1 ...M 4 C L 1 M 1 l 1 m 1 l 2 m 2 C L 2 M 2 L 1 M 1 l 3 m 3 C lm L 2 M 2 j 1 n 1 C L 3 M 3 l 1 m 1 l 2 m 2 C L 4 M 4 L 3 M 3 l 3 m 3 C lm2 L 4 M 4 j 2 n 2 , (85) 
by means of the general relation

m 1 m 2 C L 1 M 1 l 1 m 1 l 2 m 2 C L 3 M 3 l 1 m 1 l 2 m 2 = δ L 3 L 1 δ M 3 M 1 . (86) 
This basically means that, if in (85) each Clebsch-Gordan coefficient is represented as the vertex of a connected graph, then it is possible to "reduce" such graph by cutting edges corresponding to 2-loops -see [START_REF] Marinucci | High-resolution asymptotics for the angular bispectrum of spherical random fields[END_REF] for a more detailed discussion on these graphical methods.

(2) Note that, since q ≥ 4 and according to Part C of Theorem 3, condition (39) is only necessary to have the CLT (40), so that (84) cannot be used to deduce the asymptotic Gaussianity of the frequency components of Hermite-subordinated fields of the type H q [T ]. Some conjectures concerning the case q ≥ 4, p = q -1 are presented at the end of the section.

(3) Observe that, in terms of the random walk {Z n } defined in (57)-(58),

Γ q-1,λ Γ * 2,l;λ Γ q,l = P {Z q-1 = λ | Z q = l} and Γ * q,l;λ Γ λ Γ q,l = P {Z 1 = λ | Z q = l} .
As mentioned before, the relation (39) (which implies (40)), in the general case where q ≥ 4 and p = q -1, is still being investigated, as it requires a hard analysis of higher order Clebsch-Gordan coefficients by means of graphical techniques (see for instance [START_REF] Varshalovich | Quantum Theory of Angular Momentum[END_REF]Ch. 11]). At this stage, it is however natural to propose the following conjecture. Recall that we focus on the CLT (40) because of the equality in law T (q) l (x) = 2l+1 4π a l0;q , and Corollary 4. Conjecture A (Weak ) A sufficient condition for the CLT (40) is

lim l→∞ max 1≤p≤q-1 sup λ Γ p,λ Γ * q+1-p,l;λ L Γ p,L q-2 Γ * q+1-p,l;L (87) = lim l→∞ max 1≤p≤q-1 sup λ P {Z p = λ | Z q = l} = 0 .
It is worth emphasizing how condition (87) is the exact analogous of the necessary and sufficient condition (50), established in [START_REF] Marinucci | High-frequency asymptotics for subordinated stationary fields on an Abelian compact group[END_REF] for the high-frequency CLT on the torus T = [0, 2π). This remarkable circumstance may suggest the following (much more general and, for the time being, quite imprecise) extension.

Conjecture B (Strong) Let T be an isotropic Gaussian field defined on the homogeneous space of a compact group G, and set T (q) = H q (T ) (q ≥ 2). Then, the high-frequency components of T (q) are asymptotically Gaussian if, and only if, it holds a condition of the type

lim l→l 0 max 1≤p≤q-1 sup λ∈ G Γ * p,λ Γ q+1-p,l;λ L∈ G Γ * p,L Γ q+1-p,l;L = 0 , ( 88 
)
where G is the dual of G, l 0 is some point at the boundary of G, and the convolutions Γ and Γ * are defined (analogously to (52)-( 55)) on the power spectrum of T , by means of the appropriate Clebsch-Gordan coefficients of the group.

We leave the two Conjectures A and B as open issues for future research.

Remark. (On "no privileged path" conditions) In terms of Z, condition (87) can be further interpreted as follows: for every l, define a "bridge" of length q, by conditioning Z to equal l at time q. Then, (87) is verified if, and only if, the probability that the bridge hits λ at time q converges to zero, uniformly on λ, as l → +∞. It is also evident that, when (87) is verified for every p = 1, ..., q -1, one also has that lim l→+∞ sup λ 1 ,...,λ q-1 ∈N

P [Z 1 = λ 1 , ..., Z m-1 = λ q-1 | Z q = l] = 0, (89) 
meaning that, asymptotically, the law of Z does not charge any "privileged path" of length q leading to l. The interpretation of condition (89) in terms of bridges can be reinforced by putting by convention Z 0 = 0, so that the probability in (89) is that of the particular path 0 → λ 1 → ... → λ q-1 → l, associated with a random bridge linking 0 and l.

6 Further physical interpretation of the convolutions and connection with other random walks on hypergroups

Convolutions as mixed states

We recall that, in quantum mechanics, it is customary to consider two possible initial states for a particle, i.e. those provided by the so-called pure states, where the state of a particle is given, and those provided by the so-called mixed states, where the state of the particle is given by a mixture (in the usual probabilistic sense) over different quantum states. We refer the reader to [START_REF] Liboff | Introductory Quantum Mechanics[END_REF] for an introduction to these ideas. From this standpoint, the quantity Γ q,l defined in (54) is the probability associated to a mixed state, where the mixing is performed over all possible values of the total angular momentum. To illustrate this point, we use the standard bra-ket notation |l0 to indicate the state of a particle having total angular momentum equal to l and projection 0 on the z-axis. By using this formalism, the quantity Γ q,l can be obtained as follows:

(i) consider a system of q particles α 1 , ..., α q such that each α j is in the mixed state Ξ according to which a particle is in the state |k0 with probability Γ k /Γ * (k ≥ 0);

(ii) obtain Γ q,l as the probability that the elements of this system are coupled pairwise to form a particle in the state |l0 . Now denote by A p,|λ0 the event that the first p particles α 1 , ..., α p have coupled pairwise to generate the state |λ0 . Then, one also has that Γ p+1,λ Γ * q-p,l;λ Γ q,l = Pr {the q particles generate |l0 | A p,|λ0 }.

In particular, relation (90) yields a further physical interpretation of the "no privileged path condition" discussed in (89).

Other convolutions and random walks on group duals

Random walks on hypergroups, and specifically on group duals, have been actively studied in the seventies -see [START_REF] Guivarc'h | Marches Aléatoires sul les Groupes de Lie[END_REF]Ch. 6]. Our aim in the sequel is to compare our definitions with those provided in this earlier literature, mainly by discussing the alternative physical meanings of the associated notion of convolution. We recall from Section 3 that, starting from the Wigner's D-matrices representation of SO(3), we obtain the unitary equivalent reducible representations {D l 1 (g)⊗D l 2 (g)} and {⊕ l 2 +l 1 l=|l 2 -l 1 | D l (g)}. Now note χ l (g) the character of D l (g); for all g ∈ SO(3), we have immediately

χ l 1 (g)χ l 2 (g) = l 2 +l 1 l=|l 2 -l 1 | χ l (g) .
In [8, p. 222], an alternative class of Clebsch-Gordan coefficients {C l l 1 l 2 |G : l 1 , l 2 , l ≥ 0} is defined by means of the identity

1 2l 1 + 1 χ l 1 (g) 1 2l 2 + 1 χ l 2 (g) = l C l l 1 l 2 |G 1 2l + 1 χ l (g)
which leads to C l l 1 l 2 |G = 2l + 1 (2l 1 + 1)(2l 2 + 1) {l 1 l 2 l} , where we use the same notation as in [START_REF] Varshalovich | Quantum Theory of Angular Momentum[END_REF] and in many other physical textbooks, i.e. we take {l 1 l 2 l} to represent the indicator function of the event |l 2l 1 | ≤ l ≤ l 2 + l 1 . Of course

C l l 1 l 2 |G = l 2 +l 1 l=|l 2 -l 1 | 2l + 1 (2l 1 + 1)(2l 2 + 1) ≡ 1 . ( 91 
)
and, for p ≥ 2, Γ * p,l;l 1 =

l 2 • • • lp Γ l 2 • • • Γ lp L 1 ...L p-2 C L 1 l 1 l 2 |G C L 2 L 1 l 3 |G ...C l L p-2 lp|G . ( 94 
)
As shown in [START_REF] Guivarc'h | Marches Aléatoires sul les Groupes de Lie[END_REF], the objects appearing in (92)-( 94) can be used to define the law of a random walk Z = { Z n : n ≥ 1} on N (regarded as an hypergroup isomorphic to SO (3)), exactly as we did in (57)-(58). In particular, since Γ * = Γ l = 1, one has that Γ * p,l:l 1 = P{ Z p = l | Z 1 = l 1 }. Also, the convolutions (92)-(94) (and therefore the random walk Z) enjoy a physical interpretation which is interesting to compare with our previous result. To see this, assume we have two mixed states Ξ l 1 and Ξ l 2 : in state Ξ l 1 , the particle has total angular momentum l 1 and its projection on the axis z takes values m 1 = -l 1 , ..., l 1 with uniform (classical) probability (2l 1 + 1) -1 ; analogous conditions are imposed for Ξ l 2 . Let us now compute the probability Pr {l | Ξ l 1 , Ξ l 2 } that the system will couple to form a particle with total angular momentum l and arbitrary projection on z. Start by observing that the probability that a particle in the state |l 1 m 1 will couple with another particle in the state |l 2 m 2 to yield the state |lm is exactly given by {C lm l 1 m 1 l 2 m 2 } 2 . Hence, with straightforward notation, It follows from (95) that the quantity Γ q,l can be obtained as follows:

Pr {l | Ξ l 1 , Ξ l 2 } =
(i) consider a system of q particles α 1 , ..., α q such that each α j is in the mixed state Ξ according to which a particle is in the state |ku , u = -k, ..., k, with probability (2k + 1) -1 Γ k /Γ * (k ≥ 0);

(ii) obtain Γ q,l as the probability that the elements of this system are coupled pairwise to form a particle in the state |lm , any m = -l, ..., l.

To sum up, both convolutions Γ and Γ can be interpreted in terms of random interacting quantum particles: Γ-type convolutions are obtained from particles in mixed states where the mixing is performed over pure states of the form |k0 ; on the other hand, Γ-type convolutions are associated with mixed state particles where mixing is over pure states of the type {|ku : u = -k, ..., k}, uniformly in u for every fixed k.

Application: algebraic/exponential dualities

In this section we discuss explicit conditions on the angular power spectrum {C l : l ≥ 0} of the Gaussian field T introduced in Section 2, ensuring that the CLT (40) may hold. Our results

Regularly varying functions

For q = 2, we show below that the CLT fails for all sequences C l such that: (a) C l is quasi monotonic, i.e. C l+1 ≤ C l (1 + K/l), and (b) C l is such that lim inf l→∞ C l /C l/2 > 0. In particular, a necessary condition for the CLT (40) to hold is that C l /C l/2 → 0. This is exactly the same necessary condition as was derived by [START_REF] Marinucci | High-frequency asymptotics for subordinated stationary fields on an Abelian compact group[END_REF] in the Abelian case. For the general case q ≥ 2, we expect the CLT fails for all regularly varying angular power spectra, i.e. for all C l such that lim inf ℓ→∞ C l /C αl > 0 for all α > 0. Note that we are thus covering all polynomial forms for C -1 l . Since (66) only provides a sufficient condition for the CLT, we need to analyze directly the more primitive condition (39) for m = 0 (however, the case m = 0 entails just a more complicated notation). We consider first an upper bound for the square root of the denominator of (39), which is given by C

(2) l . We have

C (2) l = j 1 ,j 2 C j 1 C j 2 (2j 1 + 1)(2j 2 + 1) 4π(2l + 1) C l0 j 1 0j 2 0 2 ≤ 2 j 1 ,j 2 C j 1 C j 2 (2j 1 + 1)(2j 2 + 1) 4π(2l + 1) C l0 j 1 0j 2 0 2 = 1 2π j 1 C j 1 (2j 1 + 1) ∞ j 2 =j 1 C j 2 C j 2 0 j 1 0l0 2 ≤ 1 2π j 1 C j 1 (2j 1 + 1) sup j 2 ≥j 1 ,j 1 +j 2 >l C j 2 ∞ j 2 =0 C j 2 0 j 1 0l0 2 ≤ KC l/2 .
where we have used the relation 2j 2 +1 2l+1 (C l0 j 1 0j 2 0 ) 2 = (C j 2 0 j 1 0l0 ) 2 , as well as sup j 2 ≥j 1 ,j 1 +j 2 >l C j 2 ≤ KC l/2 , and

l 2 +l 1 l=|l 2 -l 1 | C l0 l 1 0l 2 0 2 ≡ 1 .
For the numerator of (39) one has that it is greater than

j 1 ,j 2 C j 1 C j 2 (2j 1 +1)(2j 2 +1) (4π(2l+1)) 2 l 1 C l 1 (2l 1 +1)C l0 l 1 0j 1 0 C l0 l 1 0j 1 0 C l0 l 1 0j 2 0 C l0 l 1 0j 2 0 2 ≥ j 1 ,j 2 C j 1 C j 2 (2j 1 + 1)(2j 2 + 1) (4π(2l + 1)) 2 5C 2 C l0 20j 1 0 C l0 20j 2 0 2 2 ≥ C 2 l 1 (4π) 2 5C 2 C l0 20l0 2 2 ≥ KC 2 l .
The left-hand side of condition (39) is then bounded below by lim l→∞ K 1 C 2 l /(K 2 C 2 l/2 ) = 0, so that the CLT (40) cannot hold.

m 1 m 2 = m 1 m 2

 22 Pr {l | |l 1 m 1 , |l 2 m 2 } Pr {m 1 , m 2 } Pr {l | |l 1 m 1 , |l 2 m 2

Γ l (2l + 1)C l , l ≥ 0, (51) so that, for l ≥ 1 and up to the constant 1/4π, the parameter Γ l represents the variance of the projection of the Gaussian field T in (2) on the frequency l: indeed, according to Lemma 2, V ar(T l ) = Γ l /4π. Also, we define the following convolutions of the coefficients Γ l (in the following expressions, the sums over indices l i , L i ... range implicitly from 0 to +∞):Γ 2,l = l 1 ,l 2 Γ l 1 Γ l 2 (C l0 l 1 0l 2 0 ) 2 ,(52)Γ 3,l = L 1 ,l 3 Γ 2,L 1 Γ l 3 (C l0 L 1 0l 3 0 ) 2 = l 1 ,l 2 ,l 3 Γ l 1 Γ l 2 Γ l 3 L 1 (C L 1 l;0 l 1 0l 2 0l 3 0 ) 2 , ...(53)Γ q,l = L 1 ,lq

As observed in[START_REF] Guivarc'h | Marches Aléatoires sul les Groupes de Lie[END_REF], relation (91) can be used to endow SO (3) with an hypergroup structure, via the formal addition l 1 + l 2 l lC l l 1 l 2 |G . Now let {Γ l : l ≥ 0} be a collection of positive coefficients such that l Γ l = 1. The convolutions and *-convolutions of the {Γ l } that are naturally associated with the above formal addition are given byΓ 2,l = l 1 ,l 2 Γ l 1 Γ l 2 C l l 1 l 2 |G , Γ 3,l = L 1 ,l 3 Γ 2,L 1 Γ l 3 C l L 1 l 3 |G , ...(92)Γ q,l = L 1 ,lq Γ q-1,L q-1 Γ lq C l L q-1 lq|G , (93)

show that, if the power spectrum decreases exponentially, then a high-frequency CLT holds, whereas the opposite implication holds if the spectrum decreases as a negative power. This duality mirrors analogous conditions previously established in the Abelian case -see [START_REF] Marinucci | High-frequency asymptotics for subordinated stationary fields on an Abelian compact group[END_REF]. For simplicity, we stick to the case q = 2. Note that the results below allow to deal with the asymptotic (high-frequency) behaviour of the Sachs-Wolfe model (6).

The Exponential case

To prove that, in this case, (40) is verified for q = 2, we will prove that (66) holds (recall the definition of Γ l given in (51)). For the denominator of the previous expression we obtain the lower bound

and in view of [START_REF] Varshalovich | Quantum Theory of Angular Momentum[END_REF], equation 8.5.2.33, and Stirling's formula (97) ≈ exp(-l)l 2(α+1)

On the other hand, recall that by the triangle conditions (Section 3) {C l0 l 1 0l 2 0 } 2 ≡ 0 unless

It is then immediate to see that that (66) is satisfied.