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ON THE TAUTOLOGICAL RING OF A JACOBIAN

MODULO RATIONAL EQUIVALENCE

BAOHUA FU AND FABIEN HERBAUT

Abstract. We consider the Chow ring with rational coefficients of the
Jacobian of a curve. Assume D is a divisor in a base point free gr

d of the
curve such that the canonical divisor K is a multiple of the divisor D.
We find relations between tautological cycles. We give applications for
curves having a degree d covering of P1 whose ramification points are
all of order d, and then for hyperelliptic curves.

1. Introduction

1.1. For an abelian variety X of dimension g, we denote by CH(X) =
⊕gp=0CH

p(X) the Chow ring of X with rational coefficients. Let k : X → X
be the morphism x 7→ kx for any k ∈ Z. It turns out that all the pull-backs
k∗ and push-forwards k∗ on the level of Chow rings can be diagonalized
simultaneously, which gives the following decomposition ([B2]):

(1) CHp(X) =

p
⊕

i=p−g

CHp
(i)(X),

where CHp
(i)(X) consists of elements α ∈ CHp(X) such that k∗α = k2p−iα

(which is equivalent to k∗α = k2g−2p+iα) for all k ∈ Z.

1.2. When (X, θ) is a principally polarized abelian variety, we may identify
X with its dual. Let pi : X ×X → X, i = 1, 2 be the two projections and
m : X × X → X the addition map. The Poincaré line bundle on X × X
is represented by the divisor P := p∗1θ + p∗2θ −m

∗θ. The Fourier transform
F : CH(X)→ CH(X) is defined by F(α) = (p2)∗(p

∗
1α · e

P ). The morphism
F turns out to be an automorphism of the Q-vector space CH(X). We refer
to [B1] and [B2] for a detailed study of the fundamental properties of F .

1.3. The particular case of the Jacobian J of a smooth projective curve C
of genus g ≥ 2 has been studied by several authors. For any point x0 ∈ C,
we have a natural map: ι : C → J given by x 7→ OC(x− x0). We denote by
T the smallest subring of CH(J) containing the class [ι(C)] = ι∗[C] which
is closed under the pull-backs k∗ and push-forwards k∗ for all k ∈ Z and
under the Fourier transform F , which will be called the tautological subring
of CH(J). Notice that this ring depends on the choice of the base point
x0 ∈ C.
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Let us consider the decomposition of [ι(C)] given by (1) (note CHg−1
(−1)(J) =

0):

(2) [ι(C)] = C(0) + C(1) + . . . +C(g−1) where C(i) ∈ CH
g−1
(i) (J).

Let θ be a symmetric theta divisor on J . As in [P2], we define

pi = F(C(i−1)) ∈ CH
i
(i−1)(J) for i ≥ 1, qi = F(C(i)·θ) ∈ CH

i
(i)(J) for i ≥ 0.

Let ≃alg be the algebraic equivalence. Note that qi ≃
alg 0 for i ≥ 1.

Beauville proved in [B3] that the ring T / ≃alg is generated (as a subring
under the intersection product) by the classes (pi)i≥1. Recently, Polishchuk
proved in [P2] (Thm 0.2 and Prop. 4.2) that T is generated by the classes
(pi)i<g/2+1 and (qi)i<(g+1)/2.

1.4. The influence on T / ≃alg of the gonality of the curve C has been
firstly studied by Colombo and van Geemen in [CvG]. They proved that if
C admits a g1

d, then pi is algebraically equivalent to zero if i ≥ d. Recently
the second named author computed some relations between the cycles pi in
T / ≃alg for a curve admitting a base point free grd. In [GK], van der Geer
and Kouvidakis gave another proof of the main result in [Her], by using the
Grothendieck-Riemann-Roch theorem. They gave simpler but equivalent
relations as Don Zagier proved it. Note that Polishchuk has found universal
relations in T / ≃alg (cf [P1]) and in T (cf [P2]).

We will denote by A(r, d, g) the Castelnuovo number, which is:

A(r, d, g) =
r−1
∑

i=0

(−1)i

d− 2r + 2

(

i+ g + r − d− 2

i

)(

d− 2r

r − 1− i

)(

d− r + 1− i

r − i

)

.

It was explained in [Her] that if A(r, d, g) 6= 0 one can deduce from Colombo
and van Geemen’s Theorem that pi ≃

alg 0 when i ≥ d−2r+2. In particular,
the ring T / ≃alg is generated by (pi)i≤d−2r+1.

1.5. Our aim in this note is to generalize the above results to T . More
precisely we shall prove the following:

Theorem 1. Let C be a smooth projective curve which admits a base point
free grd with D being a class in grd. Let K be the canonical class of C. If K
is a multiple of D in CH1(C)Q and if A(r, d, g) 6= 0, then the tautological
ring is generated by (pi) and (qi) with i ≤ d− 2r + 1.

We present two proofs : the first follows the method in [GK] and uses
an argument in [Her]. The second one follows the methods of [Her]. In
the two proofs we use the operator defined in [P2]. In both approaches, we
encounter the same difficulty which can be overcomed by assuming that K
is a multiple of D. This condition is satisfied for example for curves which
are complete intersections. In this case our result is much sharper than the
aforementioned result of Polishchuk.
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Some applications and refinements of this theorem are given in the last
sections, where we show (see Thm. 3) that if C is a curve admitting a
degree d map C → P1 whose ramification points are all of order d, then
the tautological ring is generated by (pi)i≤d−1 and q1. In the case of a
hyperelliptic curve, we obtain a precise description of T (Prop. 3), which
generalizes a result of Collino ([Co], Thm. 2) on the validness of Poincaré’s
formula under rational equivalence.

2. Preliminary results

According to Cor. 24 in [Ma] or to Thm. 4 in [Her], if pi ≃
alg 0 then

pj ≃
alg 0 for j ≥ i. We generalize this to the case of rational equivalence

in this section, which will be needed in the proof of Theorem 1. Recall the
following operator D introduced in [P2]:

D =
1

2

∑

m,n≥1

(

m+ n

n

)

pm+n−1∂pm∂pn

+
∑

m,n≥1

(

m+ n− 1

n

)

qm+n−1∂qm∂pn −
∑

n≥1

qn−1∂pn .

Let Iq ⊂ Q[p, q] be the ideal generated by the elements (qi)i≥1, so Iq ≃
alg

0. By the expression of D, we have D(Iq) ⊂ Iq.

Proposition 1. Let n be an integer such that 2 ≤ n ≤ g − 1. Suppose that
pn ∈ Iq, then

i) for any m such that n ≤ m ≤ g, pm is contained in the ideal generated
by (qi)1≤i≤m−1 ;

ii) the tautological ring T is generated by (pi)i≤n−1 and (qi)i≤n−1.

Proof. To prove i) we use an induction on m. Assume m ≥ 2 and pm ∈ Iq,
then p2pm ∈ Iq. We apply the operator D, which gives D(p2pm) ∈ Iq. Note

that D(p2pm) =
(m+2

2

)

pm+1 − q1pm − qm−1p2, thus pm+1 ∈ Iq. If we write

pm+1 =
∑

i≥1 qiAi with Ai ∈ T , then Ai = 0 for i ≥ m+1, since qi ∈ CH
i
(i),

pm+1 ∈ CH
m+1
(m) and Ai ∈ ⊕j≥0CH(j).

To prove ii), we just need to prove that for any m such that n ≤ m ≤ g,
the class qm is contained in the ideal generated by (qi)i≤n−1. Assume this
is true for all m < k, we shall prove it for m = k. By i) and the hypothesis

of induction, we have pk =
∑n−1

j=1 qjAj with Aj ∈ T . Now the claim follows

from the following relation in [P2]:

qk = D
(

q1pk
)

+ q1qk−1 =

n−1
∑

j=1

D
(

q1qjAj
)

+ q1qk−1.

�
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3. First proof of the Theorem

We shall follow the method of [GK] coupled with arguments in [Her] to
prove our main theorem.

Let C be a smooth projective curve with a base-point-free linear system
grd, which gives arise to a morphism: γ : C → Pr. Let Y ⊂ C × P̌r be the
subvariety {(p, y)|γ(p) ∈ y}. The projection φ : Y → C is a Pr−1-bundle.
More precisely if we denote by E := γ∗(T ∗Pr), then Y = P(E) as a projective
bundle over C. Recall that we have the following relative Euler sequence:

0→ OY → φ∗(E)⊗Oφ(1)→ TY → φ∗TC → 0.

This gives td(TY ) = td(φ∗TC) · td(φ∗(E)⊗Oφ(1)) = (1− 1
2φ

∗K) · td(φ∗(E)⊗
Oφ(1)), where K is a canonical divisor of the curve C.

Let us denote by α̃ : Y → P̌r the second projection, which is a finite
morphism of degree d. Note that c1(φ

∗(E)) = φ∗(γ∗(c1(T
∗Pr))) = −(r +

1)φ∗D, where D is a divisor in the linear system grd. Furthermore the higher
Chern classes of φ∗(E) vanish, as it is the pull-back from a vector bundle
over a curve. This gives that td(φ∗(E)⊗Oφ(1)) is a linear function in φ∗(D)

with coefficients in α̃∗CH(P̌r).
From now on, we will identify Pr with P̌r and make use of the following

self-explaining notations:

Pr
v

←−−−− Pr × J
α

←−−−− Y × J
π

−−−−→ Y
α̃

−−−−→ Pr

p





y

ψ





y

φ





y

J
q

←−−−− C × J
π̃

−−−−→ C

By the precedent discussions, the relative Todd class td(α) = π∗td(α̃) is
of the form (1 − 1

2π
∗φ∗K)(A(x) + B′(x)π∗φ∗(D)) = A(x) + B′(x)π∗φ∗D −

1
2A(x)π∗φ∗K, for some polynomials A,B′ of degrees at most r − 1, where
x = α∗(ξ) and ξ = v∗(h) for a hyperplane h ⊂ Pr.

Let us denote by Π the divisor of the Poincaré line bundle on C × J and
l := ψ∗(Π). Let L be the line bundle on Y × J associated to l. As in [GK],
we apply the Grothendieck-Riemann-Roch formula to Vk := α∗(L

⊗k):

ch(Vk) = α∗(e
kltd(α)) = α∗(e

klA(x) + eklB′(x)π∗φ∗D −
1

2
eklA(x)π∗φ∗K).

The following Lemma can be proved in a similar way as in [GK](Lemma
3.3).

Lemma 1. In CH(Pr × J), we have the following relations for ν ≥ 0:

α∗(l
µ · xν) =

{

q∗(Π
µ)ξν+1 + q∗(Π

µ · π̃∗D)ξν , if µ > 0,

dξν , if µ = 0.
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For any divisor D0 on C, we have

α∗(l
µ · xν · π∗φ∗D0) =

{

q∗(Π
µ · π̃∗D0)ξ

ν+1, if µ > 0,

deg(D0)ξ
ν+1, if µ = 0.

Using these formulae, one can easily obtain

α∗(e
kl · A(x)) = α∗(A(x)) +

∞
∑

µ=1

kµ

µ!
(q∗(Π

µ)ξA(ξ) + q∗(Π
µ · π̃∗D)A(ξ)))

= dA(ξ) + q∗(e
kΠ)ξA(ξ) + q∗(e

kΠ · π̃∗D)A(ξ)− q∗(π̃
∗D)A(ξ)

= q∗(e
kΠ)ξA(ξ) + q∗(e

kΠ · π̃∗D)A(ξ).

In a similar way, one obtains α∗(e
klB′(x) · π∗φ∗D) = q∗(e

kΠ · π̃∗D)ξB′(ξ)
and α∗(e

klA(x) · π∗φ∗K) = q∗(e
kΠ · π̃∗K)ξA(ξ).

Recall that we have fixed a base point x0 ∈ C and considered the natural
map ι : C → J .

Lemma 2. For any k ∈ Z and any cycle D′ ∈ CH(C)Q, we have F(k∗ι∗D
′) =

q∗(e
kΠ · π̃∗D′).

Proof. We have a Cartesian diagram:

C × J
ι′

−−−−→ J × J

π̃





y

p1





y

C
ι

−−−−→ J

Let q′ : J × J → J be the second projection and P the Poincaré divisor
on J × J . We have F(k∗ι∗D

′) = q′∗(p
∗
1k∗ι∗D

′ · eP ) = q′∗(k
′
∗p

∗
1ι∗D

′ · eP ) =
q′∗k

′
∗(p

∗
1ι∗D

′ ·ekP ) = q′∗(ι
′
∗π̃

∗D′ ·ekΠ) = q∗(e
kΠ ·π̃∗D′). Here k′ : J×J → J×J

is given by (x, y) 7→ (kx, y). �

Finally we obtain the following:

ch(Vk) = F(k∗ι∗[C])ξA(ξ) + F(k∗ι∗D)(A(ξ) + ξB′(ξ))−
1

2
F(k∗ι∗K)ξA(ξ).

Note that modulo algebraic equivalence, this gives exactly the formula in
Prop. 3.1 in [GK]. From now on, we assume furthermore that K = 1

sD in

CH1(C)Q for some s ∈ Q. Let B(ξ) = sA(ξ) + sξB′(ξ) − 1
2ξA(ξ), then we

get a simpler formula for ch(Vk) as follows:

ch(Vk) = F(k∗ι∗[C])ξA(ξ) + F(k∗ι∗K)B(ξ).

Recall that F(k∗ι∗[C]) =
∑g

i=1 k
i+1pi andF(k∗ι∗K) = (2g−2)+2

∑g
i=1 k

iqi.

Let us write ξA(ξ) =
∑r−1

i=0 aiξ
i+1 and B(ξ) =

∑r
i=0 biξ

i, then a direct cal-
culus shows:

chj(Vk) = 2skjqj +

j−1
∑

i=1

(kj−i+1ai−1pj−i + 2kj−ibiqj−i)ξ
i + (2g − 2)bjξ

j.
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To simplify the notations, we will put chj(Vk) =
∑j

m=0Am(j)ξm, where
Am(j) is of codimension j −m.

Note that modulo Iq, the expressions of Am(j) are the same as those in
[GK]. By the proof of Prop. 3.6 and that of the main Theorem in [GK] we
obtain the following generalization of the main result in [GK]:

Theorem 2. If C admits a base point free grd with D ∈ grd and K is
a multiple of D in CH1(C)Q, then

∑

α1+···+αr=M−2r+1(α1 + 1)! · · · (αr +
1)!pα1+1 · · · pαr+1 is contained in Iq for all M ≥ d.

When r ≥ 2, we recall the Castelnuovo number:

A(r, d, g) =
r−1
∑

i=0

(−1)i

d− 2r + 2

(

i+ g + r − d− 2

i

)(

d− 2r

r − 1− i

)(

d− r + 1− i

r − i

)

.

Consider the case M = d in the precedent theorem. Then the argument
in section 6.2 [Her] shows that pd−2r+2 is contained in Iq (here we note that
Cor. 0.3 in [P1], which is used in Section 6.2 [Her], holds in fact in T modulo
Iq instead of T / ≃alg). This concludes the proof of the Theorem 1 by Prop.
1.

Remark : i) The condition in the theorem on the relationship between K
and D can be weakened to that F(ι∗D)− deg(D)[J ] is contained in Iq.
ii) This method also gives a way to compute the terms in Iq, which in turn
gives relations in the tautological subring T .

Examples : Let C ⊂ Pr be a smooth curve which is a complete inter-
section of hypersurfaces of degrees (d1, . . . , dr−1). One shows easily that
KC = OPr(

∑

di − r − 1)|C which is a multiple of D := C ∩ H ∈ grd with
d =

∏

di and H is a hyperplane in Pr. If d1, . . . , dr−1 are sufficiently big,
thenA(r, d, g) > 0 and Theorem 1 applies. We note that in this case d−2r+1

is much smaller than g
2 + 1 because g = (

∑

di−(r+1))d
2 + 1, thus this result is

sharper than that in [P2].

4. Another proof of the Theorem

In this section we give the sketch of a proof of Theorem 1 based upon the
method described in [Her]. Although this approach is different, we encounter
the same difficulties as above, i.e we need a relation between D and K to
proceed.

We will note Cn for the n-th symmetric product of C. Suppose that C
carries G a base point free grd which contains D = o1 + . . .+ od. Theorem 3
in [Her] gives the class G in CH(Cd) in terms of the classes of the diagonals
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δi1,...,ir = {i1x1 + . . . + irxr|(x1, . . . , xr) ∈ C
r} :

[G] =
∑

1≤i1≤...≤ir
1≤j1<...<js≤d

(

r
∏

u=1

(−1)iu−1

iu

)

[ δi1,...,ir + oj1 + . . . + ojs ],

where s = d−
∑r

j=1 ij.
Consider the morphism ud : Cd → J which maps D onto the class

of the divisor D − dx0. It contracts G onto a point in the Jacobian, so
ud∗[G] = 0. Moreover, ud∗[δi1,...,ir + o1 + . . . + od−

∑

ia ] is a multiple of
(i1 ∗ C) ∗ . . . ∗ (ir ∗ C) ∗ [o1 + . . . + od−

∑

ia − (d −
∑

ia)x0]. Then we use
the same arguments as in the begining of section 5 in [Her], this is the
decomposition (2), the relations i∗C(a) = ia+2C(a) and the projection onto

CH(J)g−r(s) for s ≥ 0. We get :

(3)
∑

0≤a1,...,ar,t
a1+...+ar+t=s

C(a1) ∗ . . . ∗ C(ar) ∗ β(d, a1, . . . , ar)(t) = 0 where

β(d, a1, . . . , ar) =
d

∑

i1=1

. . .
d

∑

ir=1

(−1)i1+...+ir i1
a1+1 . . . ir

ar+1αd−i1−...−ir ,

and where

αu =
∑

1≤k1<k2<...<ku≤d

[ok1 + . . .+ oku
− u x0].

We do not know if the cycles αu are in T in general. As in the previous
section, we only know how to obtain relations in T when D is a multiple of
K, which we will suppose from now on. In this case α1 is a multiple of ι∗K
and thus belongs to T . Then we use an induction and the relations

(i+1)αi+1 = αi∗(α1)−αi−1∗(2∗α1)+· · ·+(−1)i−1α1∗(i∗α1)+(−1)i(i+1)∗α1

to prove that αu ∈ T for 0 ≤ u ≤ d. Now let us apply F to (3) and deduce
relations modulo Iq. As the elements F(αu) are Fourier transforms of 0-
cycles, they belong to

⊕

s≥0(T ∩ CH(J)s(s)) = Q[q0, q1, . . . , qg] and we have

F(αu) = F(αu)(0) (mod Iq). Then, F(β(d, a1, . . . , ar)(t)) ∈ Iq if t > 0. As

F(αu)(0) =
∑

1≤k1<...<ku≤d

[J ] =

(

d

u

)

[J ],

we obtain the relations
∑

0≤a1,...,ar
a1+...+ar=s

γ(d, a1, . . . , ar) pa1+1 . . . par+1 = 0 ( mod Iq) where

γ(d, a1, . . . , ar) =
d

∑

i1=1

. . .
d

∑

ir=1

(−1)i1+...+ir

(

d

i1 + . . . + ir

)

i1
a1+1 . . . ir

ar+1 .
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Now according to the appendix of Don Zagier in [GK] these relations are
the same as those in Theorem 2. Then using Prop 1, a similar argument as
that in the precedent section concludes the proof.

5. Curves admitting a pure ramification

We begin with the following easy result.

Proposition 2. Let C be a smooth projective curve of genus g and x ∈ C
a point such that KC = (2g − 2)x in CH1(C)Q. Then the tautological ring
T on J is generated over Q by the classes (pn)n<g/2+1 and q1.

Proof. Let [c] be the image of the canonical divisor of C in J and write
[c] = [o] + c1 + · · · + cg the decomposition after (1). By the proof of Prop.

4.3 in [Pol], we have F([c]) = exp(2q1), which gives F(ck) = (2q1)
k/k! =

F(c1)
k/k!. As a consequence, we obtain a Poincaré-type formula: ck =

c∗k
1

k! .
Now suppose that there exists a point x ∈ C such that KC = (2g − 2)x

in CH1(C)Q. Then ι∗K = 2(g− 1)[x−x0], which gives that (2g− 2)∗ι∗K =
2(g − 1)[c]. Let η = ι∗K/2 + [0] and ηn the component of η in CHg

(n).

By the formula on page 4 of [P2], we have qn = F(ηn). The precedent
discussions give that ck = 2(2g − 2)k−1ηk. This gives 2(2g − 2)k−1qk =
F(ck) = F(c∗k1 )/k! = F(c1)

k/k! = (2k/k!)qk1 , which gives

qk =
qk1

k!(g − 1)k−1
.

By Prop. 4.2 of [Pol], we obtain the claim. �

Remark : Similar argument can be applied to more general cases. For
example, if K = (g − 1)(x + y) for some points x, y ∈ C. Then we have
ι∗K = (g− 1)([x−x0]+ [y−x0]) = [x+ y− 2x0] ∗ (−1)∗ι∗K. Apply (g− 1)∗
to both sides, we obtain (g − 1)∗(2η − 2[o]) = [c] ∗ (1− g)∗(2η − 2[o]). This
gives that

[o] +
∑

i=1

(g − 1)i−1ηi = ([o] +
∑

i=1

ci) ∗ ([o] +
∑

i=1

(−1)i(g − 1)i−1ηi).

The first non-trivial relation is 2(g − 1)2η3 = c3 − η1 ∗ c2 + (g − 1)η2 ∗ c1.
Applying the Fourier transformation, we obtain: 2(g − 1)2q3 = −2/3q31 +
2(g − 1)q2q1. Similarly we obtain expressions of q5, q7 · · · . This gives that
the tautological ring is generated by (pn)n<g/2+1, q1 and (q2k)2k<g/2+1.

We say that a curve C admits a pure ramification of degree d if there
exists a degree d map C → P1 whose ramification points are all of order d.
In this case, if we take x to be a ramification point, then by the Hurwitz’s
formula, we have K = (2g − 2)x in CH1(C)Q. Combining with Theorem 1,
we obtain
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Theorem 3. Let C be a smooth projective curve of genus g which admits
a pure ramification of degree d, then the tautological ring T on its Jacobian
is generated by the classes (pi)i≤d−1 and q1.

For example, let fd(x, y) be a homogeneous polynomial of degree d such
that the plane curve C : (zd + fd(x, y) = 0) is smooth. The map C → P1

given by [x : y : z] 7→ [x : y] gives a pure ramification of C, thus Theorem 3
applies.

6. The case of a hyperellitpic curve

When C is a hyperelliptic curve, we can obtain a more precise description
of T as follows:

Proposition 3. Let C be a hyperelliptic curve of genus g and a the smallest
integer such that qa1 = 0, then we have

T =
Q[p1, q1]

(pg+1
1 , q1p

g
1, . . . , q

a−1
1 pg−a+2

1 , qa1)
.

Note that according to the proof of Proposition 2 the integer a is the
dimension of T ∩ CHg(J).

Proof. By the precedent Theorem, T is generated by p1 and q1. We present
another direct proof of this as follows. We will use Proposition 1 and prove
that p2 ∈ Iq. Note µ for the hyperelliptic involution, and D for the divisor
2x0− (p+µ(p)) for any p ∈ C. Then −C is the translated of C by D in the
Jacobian. In terms of cycles we get (−1)∗[C] = [D] ∗ [C]. Let us consider
x1 a ramification point of C and β the class of the divisor x1 − x0. We get
D = (−2)∗β. But we also have ι∗K = 2(g−1)β. Recall that ι∗K = 2(η−[0])
and apply F to get :
(4)

(−1)∗(p1+p2+. . .+pg) =
1

g − 1
(−2)∗((g−1)[J ]+q1+q2+. . . )∗(p1+p2+. . .+pg).

The relation we obtain in CH2
(1)(J) is p2 = 1

g−1p1q1, so p2 ∈ Iq.

We claim that for any integers (m,n) such that m < a and m+n < g+1,
we have qm1 p

n
1 6= 0. In fact, otherwise we can use an induction and the

following formula

D(qm1 p
n
1 ) = n(m+ n− g − 1)qm1 p

n−1
1

to deduce that qm1 = 0, which is a contradiction. �

Remark : The relation p2 = 1
g−1p1q1 is coherent with the relation p2 = p1q1

given as an exemple of Prop 4.2 in [P2] for (hyperelliptic) curves of genus

2. Note that equation (4) also gives the relations pa =
∑a−1

i=1
(−2)i−1

g−1 pa−iqi

when a is even, and
∑a−1

i=1
(−2)i

g−1 pa−iqi = 0 when a is odd.

If we choose the base point x0 to be one of the ramification points, then
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q1 = 0 and T = Q[p1]

(pg+1

1
)
, so in this case, Poincaré’s formula holds modulo

rational equivalence, which has been firstly proved in [Co] (Theorem 2).
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647-651.

[B3] A. Beauville, Algebraic cycles on Jacobian varieties, Compos. Math. 140 (2004), no.
no.3, 683-688.
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