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Abstract— In this paper, we propose a method for identifying
the linear model of a system in the case of multi-experiments. The
method is based on the minimization of output error cost function
of all the input/output data sets simultaneously. The implementa-
tion of the proposed method is based on a local parameterization
of the linear state space model in order to minimize the number of
gradient search iterations. The optimization process is initialized
by an extension of a classical subspace method. We show that, the
estimated linear models provided by the proposed method are
more accurate than that obtained by the actual methods of linear
systems identification. Moreover, we figure out that, the method
can handle the case of short multi-experiments by increasing the
model’s vector of parameters to also include the initial conditions
of the internal states.

Index Terms— Identification; linear systems; subspace meth-
ods; optimization.

I. INTRODUCTION

Consider the linear state space model, which has the fol-

lowing structure

xt = Axt−1 +But

yt = Cxt + vt

(1)

where xt, ut, yt and vt are the internal state of the system,

the input signal, the output signal and the measurement noise.

The identification of the above model is extremely studied in

the literature [3, 4, 7, 2].

On the other hand, the case of short multi-experiments is

infrequently addressed. The raison why this is important is

that the identification of real systems is done by measuring

the output response to various input sequences. The objective

of each sequence is exciting one or more modes of the

system. In real experiments, sometimes we obtain short sets

of input/output data that due to a large time sampling period

or short tracked phenomena. In these cases, we should exploit

all the data sets to obtain the model of the system. Moreover,

in the case of short experiments, the effect of initial conditions

can not be neglected, so we should also estimate them.

The paper is organized as follows, Section 2 gives an overview

of PO-MOESP method, which is a classical subspace method.

In Section 3 an extension of the PO-MOESP method is

described in order to deal with multi-experiments case. The

problem of output-error identification is defined in Section 4.

Some illustrative examples are given in Section 5.

II. OVERVIEW OF PO-MOESP METHOD

The PO-MOESP method is a class of subspace model

identification [6]. Given a linear state space model (1), the

intent of the method is to calculate an estimation of the triple

[A,B,C]. First, the input and output are stocked in Hankel

matrices form

U1,α,N ,











u1 u2 · · · uN−α+1

u2 u3 · · · uN−α+2

...
...

. . .
...

uα uα+1 · · · uN











(2)

where (1, α) are the first subscript refers to the index of

the first data sample and the number of rows in the matrix

respectively. N refers to the index of the last data sample in

the matrix. The number of rows should be chosen to be greater

than the system order n [7]. The output Hankel matrix Y1,α,N

and the noise Hankel matrix V1,α,N are defined analogously.

The following input-output equation is then easily derived

from the system description (1)

Y1,α,N = ΓαX0,N−α + ΦαU1,α,N + V1,α,N (3)

Where Γα is the extended observability matrix of the system,

Φα is a block-triangular matrix

Γα =











C

CA
...

CA(α−1)











Φα =















CB 0 0 · · · 0
CAB CB 0 · · · 0
CAB CAB CB · · · 0

...
. . .

. . .
. . .

...

CA(α−1)B · · · · · · CAB CB















and X0,N−α =
[

x0 x1 · · · xN−α

]

.

PO-MOESP method uses the past input and output data as

an instrumental variable to remove the effects of the noise

term. Consider the following QR factorization
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U1+α,α,N

U1,α,N−α

Y1,α,N−α

Y1+α,α,N









=









R11 0 0 0
R21 R22 0 0
R31 R32 R33 0
R41 R42 R43 R44









QT (4)

where the Rii are lower-triangular matrices and the column-

unitary matrix Q (QTQ = I) is partitioned according to the

dimension of lower-triangular matrices Rii as

Q =
[

Q1 Q2 Q3 Q4

]

If we consider the quantity

[

R42 R43

]

= Y1+α,α,N

[

Q2 Q3

]

= (ΓαXα,N−α+1 + V1+α,α,N )
[

Q2 Q3

]

it is not difficult to see that

lim
N→∞

1

N
V N

1+α,α

[

Q2 Q3

]

= 0 w.p.1

where w.p.1 denotes with probability of one. Consequently,

the effects of noise will vanish, thus Γα is extracted from the

matrix
[

R42 R43

]

using a singular value decomposition (SVD)

as follows

[

R42 R43

]

= UnSnV
T
n + U⊥

n S2V
⊥

n

T
(5)

where the matrix Sn contains the principals singular values

(further than threshold), the dimension of this matrix yields n

(the dimension of the internal state xt). Then the matrix Γα

can be estimated as follow

Γα = UnS
1/2
n (6)

and so we estimate the matrices C and A directly from Γα

C =Γα(1 : p, :)

Γα(1 : (α− 1)p, :)A =Γα(p+ 1 : pα, :)
(7)

where Γα(i : j, :) stands for the submatrix of Γα which

contains the columns from ith to jth columns.

In order to find B, we consider the least-squares solution to

the overdetermined system of equations

(

Un
⊥

)T
[

R31 R32 R41

]

=
(

Un
⊥

)T

Φα

[

R21 R22 R11

]

(8)

which provides a consistent estimate of Φα, from which B is

easily calculated.

III. DEALING WITH MULTIPLE DATA SETS

It is clear that the model representation (3) holds for an

arbitrary non-zero initial conditions. For that, non-zero initial

conditions have no effect at all on the calculations of the triple

[A,B,C]. As a result, dealing with multiple data sets does

not introduce an additional problem. Therefore we adapt PO-

MOESP to deal with multiple data sets as follows. Consider

the following data sets

{

ui
t, y

i
t

}Ni

t=1
and i = 1, 2, · · · ,K (9)

where each data set corresponds to one experiment. For each

input/output data set, we obtain the following data equation

Y i
1,α,Ni

= ΓαX
i
1,Ni−α+1 + ΦαU

i
1,α,Ni

+ V i
1,α,Ni

(10)

Then the data equations can easily be combined as follows

[Y1,α,N1
· · ·Y1,α,NK

] = Γα

[

X1
1,N1−α+1 · · ·XK

1,NK−α+1

]

+

Φα

[

U1
1,α,N1

· · ·UK
1,α,NK

]

+
[

V 1
1,α,N1

· · ·V K
1,α,NK

]

(11)

The structure of this equation is similar to that of the original

data equation (3), for that we still can use the main body of

PO-MOSEP algorithm by computing QR factorization of the

following matrix









U1
1+α,α,N1

|U2
1+α,α,N2

| · · · |UK
1+α,α,NK

U1
1,α,N1−α|U2

1,α,N2−α| · · · |UK
1,α,NK−α

Y 1
1,α,N1−α|Y 2

1,α,N2−α| · · · |Y K
1,α,NK−α

Y 1
1+α,α,N1

|Y 2
1+α,α,N2

| · · · |Y K
1+α,α,NK









=









R11 0 0 0
R21 R22 0 0
R31 R32 R33 0
R41 R42 R43 R44









QT

(12)

Using a logic analogous to the case of single experiment, we

consider the following SVD

[

R42 R43

]

= UnSnVT
n + U⊥

n S2V⊥

n

T
(13)

where the matrix Sn contains the principals singular values

(further than threshold). Then the matrix Γα can be estimated

as follows

Γα = UnS1/2
n (14)

The matrices C, A and B can be estimated by using

Equations (7) and (8).

The initial conditions (xi
0) where i = 1, 2, · · · ,K can be

estimated for a data set
{

ui
t, y

i
t

}

from the following equation











yi
1

yi
2
...

yi
α











= Γαx
i
0 + Φα











ui
1

ui
2
...

ui
α











(15)

As Γα is a full rank matrix, the above equation provides an

estimation of xi
0 by using the pseudo-inverse of Γα.

IV. OUTPUT-ERROR IDENTIFICATION

As it is well known that the model obtained by the above

approach is not optimal, because the input signals are short

and as well the effects of noise on the observed output

signals. Therefore, the optimization of the obtained model

is a necessary step to obtain a reliable model. The model’s

parameters obtained with the PO-MOESP technique will just

be used as an initial guess of the parameters to be optimized.

If we consider that, we have K experiments, then the vector

of parameters of the linear model is the following
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θ =























vec(A)
vec(B)
vec(C)
x1

0

x2
0
...

xK
0























(16)

The optimization problem which consider all the data sets

simultaneously can be formulated as follow

JK(θ) =
1

K

K
∑

j=1

1

Nj

Nj
∑

k=1

∥

∥

∥y
j
k − ŷ

j
k(θ)

∥

∥

∥

2

2
=

1

K
EK(θ)TEK(θ)

(17)

where

EK(θ) =
[

E1
N1

(θ)T E2
N2

(θ)T · · ·EK
NK

(θ)T
]T

(18)

and

Ei
Ni

(θ) =
1√
Ni

[

ei(1)T ei(2)T · · · ei(Ni)
T
]T

(19)

is the error vector in which ei(k) = yi
k − ŷi

k(θ).
Assume that we have the sets {ui

t, y
i
t : t = 1, 2, · · · ,

Ni and i = 1, 2, · · · ,K}. The estimated output ŷ
j
t (θ̂) of the

data set number j is given by the following model

x̂
j
t = A(θ̂)x̂j

t−1 +B(θ̂)uj
t

ŷ
j
t (θ̂) = C(θ̂)x̂j

t

(20)

The minimization of (17) can be calculated by using the

recursive gradient search method as follows

θl+1 = θl − (ψT
K(θl)ψK(θl) + λlI)−1ψT

K(θl)EK(θl) (21)

where

ψK(θ) =











ψ1
N1

(θ)
ψ2

N2
(θ)

...

ψK
NK

(θ)











(22)

and

ψi
Ni

(θ) ,
∂Ei

Ni
(θ)

∂θT
(23)

is the jacobian of the error vector Ei
Ni

.

A. Local parameterization

In point of fact, it is well known that, the state-space

representation of linear systems is not unique. As a

consequence the minimization of JK(θ) does not have a

unique solution. Indeed, the optimal solution can be made

unique by choosing a suitable parameterization. Ribarits et al

[5] have proposed for the linear systems, in the case of single

experiment and without considering the initial condition, a

local parameterization of the state space model, in which

the directions that do not change the cost function of output

error are identified and projected out at each iteration, for

that only the active parameters are updated. Analogously to

previous method, we will develop a local parameterization of

the linear systems in the case of multi-experiments case.

Let T ∈ R
n×n be a nonsingular matrix. Consider that the

state xi
t of the data set number i is subjected to the following

transformation

zi
t = (T )

−1
xi

t , i = 1, 2, · · · ,K (24)

Then the novel system’s vector of parameters is θ̄ is given as

follows
Ā =

(

T i
)−1

AT i

B̄ =
(

T i
)−1

B

C̄ = CT i

zi
0 =

(

T i
)−1

xi
0

(25)

From Eq. 25, we obtain that the subset of equivalent models

is parameterized by the transformation matrix T . This subset

defines a manifold. In order to identify the tangent plane of

the manifold, we linearize the relation (25) around the identity

matrix T = In. Considering a small perturbation T = In +
∆T , by using the approximation (In + ∆T )

−1 ≃ In − ∆T
and neglecting all second-order terms, we obtain

Ā = A− ∆TA+A∆T
B̄ = B − ∆TB
C̄ = C + C∆T
zi
0 = xi

0 − ∆Txi
0

(26)

If we consider the following model’s vectors of parameters

θ =























vec(A)
vec(B)
vec(C)
x1

0

x2
0
...

xK
0























and θ̄ =























vec(Ā)
vec(B̄)
vec(C̄)
z1
0

z2
0
...

zK
0























(27)

Then we obtain

θ̄ = θ +























vec (−∆TA+A∆T )
vec (−∆TB)
vec (C∆T )
vec

(

−∆Tx1
0

)

vec
(

−∆Tx2
0

)

...

vec
(

−∆TxK
0

)























(28)

Using the property vec(ABC) =
(

CT ⊗A
)

vec(B),
we obtain the relation between θ and θ̄

θ̄ = θ +Mθvec(∆T ) (29)

where

Mθ =





















−AT ⊗ In + In ⊗A

−BT ⊗ In
In ⊗ C

−x1
0
T ⊗ In
...

−xK
0

T ⊗ In





















(30)
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The equation (29) shows that the tangent space of the

manifold of all systems similar to (A,B,C, x1
0, · · · , xK

0 ) is

equal to the column space of the matrix Mθ (30). Since the

left null space of the matrix Mθ is orthogonal complement to

the column space, the directions in which the value of the cost

function of output error changes are those related to the left

null space of Mθ.

Note that, the left null space of Mθ can be efficiently obtained

by singular Value Decomposition (SVD). Let the SVD of Mθ

be given by

Mθ =
[

U1 U2

]

[

Σ1 0
0 0

] [

V T
1

(

V T
1

)⊥

]

(31)

then the null space of M (θ) is U2. In order to exploit this

property, the update rule should be modified such that we

project out the directions in which the cost function does not

change. The new update rule becomes

θi= θi−1 − U2

(

UT
2 ψ

T
KψKU2 + λiI

)−1
UT

2 ψ
T
KEK

(32)

where U2 and ψK depend on θi−1. Note that, since U2 depends

on the past parameter θi−1 the SVD (31) must be computed

at each iteration.

B. Computing the iterative parameter update

In order to compute the update rule (32), the following

quantities EK(θ) and ψK(θ) must be computed. For that,

we simulate the systems (20) that corresponds to θk−1.

Note that this simulation brings out the state x̂i
t and ŷi

t for

i = 1, 2, · · · ,K. In order to simulate ψK(θi−1), we should

compute the derivative of
{

ŷi
t : i = 1, 2, · · · ,K

}

with respect

to θk−1. Let us define

ζ
i,j
t =

∂x̂i
t

∂θj
(33)

where θj is the jth element of the vector θ. The computation

of
∂ŷi

t

∂θ =
[

∂ŷi
t

∂θ1

· · · ∂ŷi
t

∂θq

]

, where q is the number of

parameters in θ, can be made using the following model

ζ
i,j
t =Aζi,j

t−1 +
∂A

∂θj
x̂i

t−1 +
∂B

∂θj
ut

∂ŷi
t

∂θj
=Cζi,j

t +
∂C

∂θj
x̂i

t

(34)

Note that, as the initial condition is included into the vector

of parameters then ζ
i,j
0 =

∂x̂i
0

∂θj
6= 0.

V. ILLUSTRATIVE EXAMPLES

In this section, we compare the results of the proposed

method with the actual methods for identifying linear systems.

First, we compare the results obtained by a classic subspace

method (N4SID) [4]. Second, we study the effects of the

number of data sets on the obtained results. For the two cases,

we consider the linear system (1), which corresponds to the

following matrices

A =

















0.5 0 0 0 0 0
0 −0.1 0 0 0 0
0 0 0.8 0 0 0
0 0 0 0.8 −0.4 0
0 0 0 0.8 0.6 0
0 0 0 0 0 −0.7

















B =

















−0.4 1.2
−1.7 −0.1
0.2 0.3
0.3 0.2
−1.1 −0.2
1.2 0.7

















C =

[

−0.6 −0.1 1.1 −0.1 0.3 0.7
2.2 0.1 0.1 −0.8 −1.3 1.6

]

(35)

The input signals are two dimensional uniform white noise

with zero mean. The measurement noise is a Gaussian white

noise.

A. Comparison with N4SID method

We have simulated the system 20 times with random initial

conditions xi
0, and the length of each of them is equal to 40

samples. In order to compare the performance of the proposed

method and the actual methods, as it is well known that

the eigenvalues of the matrix A are invariant, we calculate

the eigenvalues of the obtained matrix Â, and we compare

them with those of A. The results obtained by N4SID from

MATLAB system identification toolbox [1] for each data set

are given in Figure 1, the results obtained by considering all

the data sets without optimization are given in Figure 2, and

the optimized results in Figure 3.

From Figures 1, 2 and 3, we conclude that

1) The N4SID method is not able to identify the linear

model of system by treating the data sets separately.

2) The extension of PO-MOESP method gives a good

initial estimation of the linear model, but it is not

accurate.

3) Using the proposed optimization algorithm improves the

accuracy of the estimated linear model.

B. The effects of the number of data sets

We consider a data sets of small length, which is equals to

30 samples. Note that, the method N4SID does not work in this

case and gives an error message. This because the data length

is small. assume that, we have simulated the linear system 3,

5, 10, and 15 times with random initial conditions, and the

measurement noise is scaled such that SNR = 15 dB. The

eigenvalues of the obtained matrix Â by considering all the

data sets and minimizing the output error function are given

in Figure 4, 5, 6, and 7.

It is clear that, the accuracy of the estimated model increases

with increasing the number of data sets.
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N4SID method

Fig. 1. The eigenvalues of matrix A (plus mark) and those of Â obtained
by N4SID method for each data set (circle mark) are superimposed.

VI. CONCLUSIONS

In this paper, we have proposed a method to deal with

the identification of linear multivariable systems in the case

of multi-experiments. The results have pointed out that when

the classical methods of subspace methods fail, the proposed

method found the model of the linear system accurately. In the

literature of system identification theory, the problem of deal-

ing with multi-experiments is infrequently treated. However,

we believe that this problem should be given more attention

because it is the case in practice.
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Fig. 2. The eigenvalues of matrix A (plus mark) and those of Â obtained by
the extension of PO-MOESP method to deal with multi-experiments (circle
mark) are superimposed.
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Fig. 5. The eigenvalues of matrix A (plus mark) and those of Â obtained by
the minimization of output error function (circle mark), the number of data
sets is equal to 5.
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Fig. 6. The eigenvalues of matrix A (plus mark) and those of Â obtained by
the minimization of output error function (circle mark), the number of data
sets is equal to 10.
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Fig. 7. The eigenvalues of matrix A (plus mark) and those of Â obtained by
the minimization of output error function (circle mark), the number of data
sets is equal to 15.


