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The Flexible Job Shop Scheduling Problem (FJSP) is a generalization of the classical Job Shop 

Problem in which each operation must be processed on a given machine chosen among a finite sub-

set of candidate machines. The aim is to find an allocation for each operation and to define the se-

quence of operations on each machine so that the resulting schedule has a minimal completion 

time. We propose a variant of the climbing discrepancy search approach for solving this problem. 

Experiments have been performed on well-known benchmarks for flexible job shop scheduling. 
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1. Introduction 

The Flexible Job Shop Problem (FJSP) [1,2] is a generalization of the traditional Job Shop sche-

duling Problem (JSP), in which it is desired to process a set J={J1,…,Jn} of n jobs on a set 

M={1,…,m} of m machines in the shortest amount of time. Every job Ji (i=1,…,n) consists of si 

operations i1O , i2O …,
iisO  which must be processed in the given order. Every operation isO  must 

be assigned to a unique machine R, selected among a given subset Mis ⊆ M ( i,
is

s 1

 Mis might be 

nonempty), which must process the operation without interruption during R

ip  units, and a machine 

can process at most one operation at a time. The goal is to choose for each operation a suitable ma-

chine and a starting time so that the maximum completion time Cmax (the makespan) is minimized 

As a generalization of the job shop problem, the FJSP is more complex because of the additional 

need to determine the assignment of operations to machines. So, this problem is known to be 

strongly NP-Hard even if each job has at most three operations and there are two machines [3].  

Most of the literature on the shop scheduling problem concentrates on the classical JSP case. Rela-

tively recently, the FJSP has captured the interests of many researchers. The first paper that ad-

dresses the FJSP was given by Brucker and Schlie [4], which proposes a polynomial algorithm for 

solving the FJSP with two jobs, in which the processing times are identical whatever the machine 

chosen to perform an operation. For solving the general case with more than two jobs, two ap-

proaches have been used: hierarchical approach and integrated approach. The hierarchical ap-

proach is based on the idea of decomposing the original problem in order to reduce its complexity. 

Brandimarte [5] was the first author to use this decomposition for the FJSP. He solved the assign-

ment problem using some existing dispatching rules and then focused on the resulting job shop 

subproblems, which are solved using a tabu search heuristic. Mati et al. [6] proposed a greedy heu-

ristic for simultaneously dealing with the assignment and the sequencing subproblems of the flexi-

ble job shop model. The advantage of Mati’s heuristic is its ability to take into account the assump-

tion of identical machines. Kacem et al. [7] used a genetic algorithm (GA) to solve the FJSP and 

they adapted two approaches to solve jointly the assignment and the JSP. The first one is to ap-



proach by localization. It makes it possible to solve the problem of resource allocation and build an 

ideal assignment mode. The second one is an evolutionary approach controlled by the assignment 

model and applying GA to solve the FJSP.  

In this paper, we propose a new discrepancy-based method called Climbing Depth-bounded Dis-

crepancy Search (CDDS) to solve the FJSP. Note that CDDS has been first developed to solve 

Hybrid Flow Shop problems [8] and has proved its efficiency in this domain. 

The remainder of this paper is organized as follows. Section 2 introduces the principles of different 

discrepancy-based methods, as well as their associated algorithms. Section 3 describes the pro-

posed CDDS method while Section 4 presents its performance on Brandimarte’s benchmarks. Fi-

nally, Section 5 gives some concluding remarks and directions for future work. 

2. Discrepancy-based search methods  

Discrepancy-based methods are tree search methods developed for solving hard combinatorial 

problems. These methods consider a branching scheme based on the concept of discrepancy to ex-

pand the search tree. This can be viewed as an alternative to the branching scheme used in a Chro-

nological Backtracking method. The primal method, Limited Discrepancy Search (LDS), is instan-

tiated to generate several variants, among them, Depth-bounded Discrepancy Search (DDS) and 

Climbing Discrepancy Search (CDS). 

2.1 Limited Discrepancy Search 

The objective of LDS proposed by Harvey in [9] is to provide a tree search method for supervising 

the application of some ordering heuristics (variable and value ordering). It starts from initial vari-

able instantiations suggested by a given heuristic and successively explores branches with increas-

ing discrepancies from it, i.e., by changing the instantiation of some variables. Basically, this num-

ber of changes corresponds to the number of discrepancies from the initial instantiation. The me-

thod stops when a solution is found (if such a solution does exist) or when an inconsistency is de-

tected (the tree is entirely expanded). 

The concept of discrepancy was first introduced for binary variables. In this case, exploring the 

branch corresponding to the best Boolean value (according a value ordering) involves no discre-

pancy while exploring the remaining branch implies just one discrepancy. It was then adapted to 

suit to non-binary variables in two ways (Figure 1). The first one considers that choosing the first 

ranked value (rank 1) leads to 0 discrepancy while choosing all other ranked values implies 1 dis-

crepancy. In the second way, choosing value with rank r implies r–1 discrepancies. In our work, 

we chose to adopt the first way for the discrepancy-counting. 
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Figure 1. Counting discrepancies 

 

Dealing with a problem defined over N binary variables, an LDS strategy can be described as 

shown in Algorithm 1. In such a primal implementation, the main drawback of LDS is to be highly 

redundant: during the search for solutions with k discrepancies, solutions with 0 to k–1 discrepan-

cies are revisited. To avoid this, Improved LDS method (ILDS) was proposed in [10]. Another 

improvement of LDS consists in applying discrepancy first at the top of the tree to correct early 

mistakes in the instantiation heuristic; this yields the Depth-bounded Discrepancy Search method 

(DDS) proposed in [11]. In the DDS algorithm, a given depth limits the generation of leaves with k 

discrepancies. 



All these methods (LDS, ILDS, DDS) lead to a feasible solution, if it exists, and are closely con-

nected to an efficient instantiation heuristic. These methods can be improved by adding local con-

straint propagation such as Forward Checking [12]. After each instantiation, Forward Checking 

suppresses inconsistent values in the domain of not yet instantiated variables involved in a con-

straint with the assigned variable. 

 
k  0 -- k is the number of discrepancies 

kmax  N -- N is the number of variables 

Sol  Initial_solution()   -- Sol is the reference solution 
while No_Solution() and (k < kmax) do 

 k  k+1  
 -- Generate leaves at discrepancy k from Sol 

 -- Stop when a solution is found 

 Sol’  Compute_Leaves(Sol, k) 

 Sol  Sol’ 

end while 

Algorithm 1. Limited Discrepancy Search 

 

2.2 Climbing Discrepancy Search 

CDS is a local search method that adapts the concept of discrepancy to find a good solution for 

combinatorial optimization problems [13]. It starts from an initial solution suggested by a given 

heuristic. Hence nodes with discrepancy equal to 1 are first explored then those having a discre-

pancy equal to 2, and so on. When a leaf with an improved value of the objective function is 

found, the reference solution is updated, the number of discrepancies is reset to 0, and the process 

for exploring the neighborhood is again restarted (see Algorithm 2). 
 

k  0  -- k is the number of discrepancies 

kmax  N  -- N is the number of variables 

Sol  Initial_Solution() -- Sol is the reference solution 

while (k < kmax) do 

 k  k+1  

 -- Generate leaves at discrepancy k from Sol 

 Sol’  Compute_Leaves(Sol, k) 

 if Better(Sol’, Sol) then 

  -- Update the current solution 

  Sol  Sol’ 

  k  0 

 end if 

end while 

Algorithm 2. Climbing Discrepancy Search 

 

The aim of CDS strategy is not only to find a feasible solution, but rather a high-quality solution in 

terms of criterion value. As mentioned by their authors, the CDS method is close to the Variable 

Neighborhood Search (VNS) [14]. VNS starts with an initial solution and iteratively explores 

neighborhoods more and more distant from this solution. The exploration of each neighborhood 

terminates by returning the best solution it contains. If this solution improves the current one, it 

becomes the reference solution and the process is restarted. The interest of CDS is that the prin-

ciple of discrepancy defines neighborhoods as branches in a search tree. Thus, a gradual increase 

of the allowed discrepancies builds variable-size neighborhoods. The use of a discrepancy-based 

procedure therefore leads to structure the local search method and then to restrict redundancies. 

3. The proposed approach  

3.1 Problem variables and constraints 

To solve the FJSP under study, we have to select an operation, to allocate a resource for the se-

lected operation, and to set its start time. To reduce the makespan, we only consider two kinds of 

variables: operation selection and resource allocation. (The start time of each operation will be set 



at the earliest possible value). The values of these two types of variables are ordered following a 

given instantiation heuristic presented below. 

We denote by X the operation selection variables vector and by A the resource allocation variables 

vector. Thus, Xi corresponds to the i
th
 operation in the sequence and Ai is its affectation value 

( Ni ,...,1 , with N the number of all operations). The domain of variable Xi is { 11O , 

12O ,…,
11sO , 21O ,…, n1O ,…,

nnsO } which corresponds to the choice of the operation to be sche-

duled. The values taken by the Xi variables have to be all different. The Ai domains are {1,…,m}. 

Moreover, we consider precedence constraints between two consecutive operations of the same job 

and precedence constraints that can join each operation with other jobs operations.  

3.2 Discrepancy for flexible job shop problems 

Because of the existence of two types of variables, we consider here two types of discrepancies: 

discrepancy on operation selection variables and discrepancy on resource allocation variables. In-

deed, our goal is to improve the makespan of our solutions, and since resources are not identical, 

discrepancy on allocation variables can improve it. Also, the sequence of jobs to be scheduled may 

have an impact on the total completion time. 

Therefore, achieving a discrepancy consists in: 

 

- Selecting another operation to be scheduled than the operation given by a value ordering 

heuristic. Operation selection variables are N-ary variables. The number of discrepancy is 

computed as follows: the first value given by the heuristic corresponds to 0 discrepancy, 

all the other values correspond to 1 discrepancy. Let consider 3 operations and let consider 

that the first selected operation is O1, O2 the second, and O3 the third one (this order is giv-

en by a value ordering heuristic). Selecting another operation than O1 in the first position 

(X1) consists in making a discrepancy in this level, and so on (see Figure 2). 
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Figure 2. Discrepancies only on the three first operation selection variables.  

 

- Assigning the operation to another resource than the resource suggested by a value order-

ing heuristic. The number of discrepancy is computed as follows: the first value given by 

the heuristic corresponds to 0 discrepancy, all the other values correspond to 1 discrepan-

cy. In this case, let consider that O1 can be processed by one machine among the set {R2, 

R1, R3 (this order is given by a value ordering heuristic)}, O2 by {R1, R4}, and O3 by only 

R1. Selecting another machine than R2 for the first operation (O1) consists in making a dis-

crepancy in this level, and so on (see Figure 3). 
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Figure 3. Discrepancies only on the three first resource allocation variables.  

 

To obtain solutions of k+1 discrepancies directly from a set of solutions with k discrepancies 

(without revisiting solutions with 0,…, k-1 discrepancies), we consider for each solution the last 

instantiated variable having the k
th
 discrepancy value and we just have to choose a remaining vari-

able for the k+1
th
 discrepancy value. 

3.3 Instantiation heuristics and propagation 

The exploration strategy first consider operation selection variable to choose an operation, second-

ly consider resource allocation variable to assign the selected operation to a resource. 

We have two types of value ordering heuristics: the first one ranks operations whilst the second 

one ranks resources. 
 

Type 1: Operation selection. Several priority lists have been used. We first give the priority to the 

operation with the earliest start time (EST) and, in case of equality, we consider three alternative 

rules:  

- SPT (Smallest Processing Time) rule. It orders the operations in the queue in the ascend-

ing order of processing times. When a machine is free, the next operation with the shortest 

time in the queue will be removed for processing. 

- EDD (Earliest Due Date) rule. It gives the priority to the operation which belongs to the 

job with the earliest due date.  

- CJ (Critical Job) rule. It gives the priority to the operation belonging to the job with the 

longest total duration. 
 

Type 2: Assignment of operations to machines. The operation of the job chosen by the heuristic of 

Type 1 is assigned to the machine such that the operation completes as soon as possible; hence, 

following an Earliest Completion Time (ECT) rule. This latter rule is dynamic, that is, the machine 

with the highest priority depends on the machines previously loaded. 
 

After each instantiation of Type 2, we use a Forward Checking constraint propagation mechanism 

to update the finishing time of the selected operation as well as the starting time of the successor 

operation. We also maintain the availability date of the chosen resource. 

3.4 Proposed discrepancy-based method 

In our problem, the initial leaf (with 0 discrepancy) is a solution since we do not constrain the ma-

kespan value. Nevertheless, we may use the discrepancy principle to expand the tree search for 

visiting the neighborhood of this initial solution. The only way to stop this exploration is to set a 

limit for the CPU time or to reach a given lower bound on the makespan. To limit the search tree, 

one can use the DDS method that considers in priority variables at the top of the tree (job selection 

at the initial stages).  

To improve the search, we have to consider the CDS method that goes from an initial solution to a 

better one, and so on. The idea of applying discrepancies only at the top of the search tree can be 

also joined with CDS algorithm to limit the tree search expansion. So, we have developed a new 

strategy called Climbing Depth-bounded Discrepancy Search (CDDS) [8]. With this new method, 



one can restrict neighborhoods to be visited by only using discrepancies on variables at the top of 

the tree (see Algorithm 3). 
 

k 0  -- k is the number of discrepancy 

kmax  N  -- N is the number of variables 

Sol  Initial_Solution() -- Sol is the reference solution 

while (k < kmax) do 

 k  k +1  

 -- Generate leaves at discrepancy k from Sol 

 -- and at d-depth value from the top of the tree with 1 < d < N  

 Sol’ Compute_Leaves(Sol, d, k) 

 if Better(Sol’, Sol) then 

  -- Update the current solution 

  Sol  Sol’ 

  k  0 

 end if 

end while 

Algorithm 3. Climbing Depth-bounded Discrepancy Search 

 

The next section is devoted to the evaluation of this algorithm for flexible job shop scheduling. 

4. Computational experiments 

4.1 Test beds 

We have compared our proposed CDDS method for solving a set of 10 benchmarks instances pre-

senting by Brandimarte in [5]. In [1], all the problems have been solved using a Tabu Search (TS) 

method.  

We propose to solve problems under study by the use of three different strategies for applying dis-

crepancies: 

S1- Considering discrepancy only on operation selection variables. 

S2- Considering discrepancy only on resource allocation variables. 

S3- Join the two kinds of discrepancies. Here we consider the best solution given by S1 as a 

reference solution to S2. 

In our study, we propose to compare these three strategies in terms of solutions quality. Also, we 

report a comparison between the three heuristics (SPT, CJ and EDD). 

Next, we have tested our proposed CDDS method for solving another class of instances presented 

in [16]. In this class of instances resources are identical. Hence, doing a discrepancy on resource 

allocation variables does not have any interest. We therefore propose to solve those problems us-

ing strategy S1 only. This class of instances contains three sub-classes: the first one, noted Edata, 

which few number of operations that can be assigned to different machines. The second one, noted 

Rdata, which most operations can be assigned to a few number of different machines, and the last 

one, noted Vdata, which each operation can be assigned to many different machines. 

We have set a maximum CPU time limit to 600 s. If no optimal solution was found within 600 s, 

then the search is stopped and the best solution of CDDS is output as the final schedule. The depth 

of discrepancy in our methods varies between 3 and 8 from the top of the tree. We have carried out 

our tests on a Pentium IV 3.07 GHz with 1 Go RAM. The CDDS algorithm has been coded using 

C language and run under Windows XP Professional.  

4.2. Computational results 

In Table 1, for all considered problems, we present the best makespan values obtained by CDDS 

method among the different value ordering heuristics (SPT, CJ and EDD) and among the different 

strategies, and the TS algorithm of [1]. We also, present the CPU time of the best obtained makes-

pan values. CDDS returns the best known solutions, denoted by an asterisk (*), for 60% of the ten 

instances. If all instances are considered, the average deviation of CDDS algorithm from the best 

known solutions is 1.4%. Table 1 gives, also, a comparison between the three strategies (S1, S2, 



and S3) for discrepancies. We consider the best makespan values obtained by each strategy among 

the different value ordering heuristics (SPT, CJ, and EDD). The third strategy (S3) always gives 

better solutions in a fixed running time. This result is not surprising since the latter strategy com-

bines the two types of discrepancies. 
 

problems JobMach LB UB S1 S2 S3 CDDS 
Av_CDDS 

(CPU) 
TS 

Av_TS 
(CPU) 

mk01 106 36 42 42 43 40* 40* 0.5 40 0.01 

mk02 106 24 32 28 30 26* 26* 12.7 26 0.73 

mk03 158 204 211 204* 204* 204* 204* 0 204 0.01 

mk04 158 48 81 69 68 60* 60* 136 60 0.08 

mk05 154 168 186 181 183 175 175 9.6 173 0.96 

mk06 1015 33 86 67 70 60 60 152 58 3.26 

mk07 205 133 157 148 160 144* 144* 132 144 8.91 

mk08 2010 523 523 526 531 523* 523* 20 523 0.02 

mk09 2010 299 369 331 344 308 308 89 307 0.15 

mk10 2015 165 296 229 240 216 216 7.03 198 7.69 

 
Table 1.Results on Brandimarte’s data. 

 

Table 2 shows computational results over two instance classes. The first column reports the data 

set, the second column the number of instances for each class, the third column the average num-

ber of alternative machines per operation. The next three columns respectively report the deviation 

percentage of the best solution obtained by TS [1], by CDDS, and by the best known genetic algo-

rithm (GA) solving these problems [19], with respect to the best known lower bound. The table 

shows that our algorithm is stronger with a higher degree of flexibility (Hurink VData). Further-

more, the results show that our algorithm outperforms the best genetic algorithm (still remaining 

less efficient than TS. 
 

Data set num alt TS (%) CDDS (%) GA (%) 

Brandimarte 10 2.59 15.4 17.3 17.5 

Hurink Edata 43 1.15 2.2 5.3 6.0 

Hurink Rdata 43 2 1.2 2.5 4.4 

Hurink Vdata 43 4.31 0.1 0.6 2.0 

Table 2.Deviation percentage over the best known lower bound 

 

Table 3 presents a comparison between rules (SPT, CJ, and EDD) performances. We consider the 

best makespan values obtained by each ordering heuristic. The third rule (EDD) always gives bet-

ter solutions in a fixed running time. 
 

 %Deviation from LBs 

heuristics SPT CJ EDD 
Brandimarte 28.2 26.2 17.9 

Hurink Edata 16.7 13.9 13.6 

Hurink Rdata 13.7 6.9 5.7 

Hurink Vdata 3.3 1.2 1.1 

 

Table 3. Performances of search heuristics 

5. Conclusion 

In this paper a Climbing Depth-bounded Discrepancy Search (CDDS) method is presented to solve 

a Flexible Job Shop Scheduling Problem with the objective of minimizing makespan. Our CDDS 

approach is based on ordering heuristics and involves two types of discrepancies: operation selec-



tion and resource allocation. The test problems are benchmarks used in the literature. Our results 

are not better compared with those obtained using a Tabu Search, but in terms of makespan, we 

can consider that the CDDS method provides promising results, especially if we consider Hurink’s 

instances. Results show that our algorithm is more efficient with a higher degree of flexibility (Hu-

rink VData). Furthermore, the results show that our algorithm outperforms the best genetic algo-

rithm but it remains less efficient than TS for the two instance classes. The percentage deviations 

from these latter results are presented.  

Developments can still be done to improve the solution’s quality of CDDS algorithm. Moreover, 

other variants of CDDS algorithm may be envisaged for instance by including efficient lower 

bounds for the FJSP, as well as heuristics for backjumping on promising choice points (see [15]). 

Other types of problems can be also considered like problems presented in [17,18], which present 

different properties in terms of total and partial flexibility. Experiments on these latter problems 

are still in progress. 
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