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1. Introduction

Interpretation of geoelectrical induction data
in seismoactive and volcanic areas often requires
a directed search for characteristic structural de-
tails and quantitative parameters of the deep
structure that could be directly compared to re-
sults of other, generally non-electrical investiga-
tions. Typical questions may be, e.g., correlation
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Václav Červ (1), Michel Menvielle (2)(3) and Josef Pek (1)
(1)  Geophysical Institute, Academy of Sciences of the Czech Republic, Prague 4, Czech Republic

(2) Centre d’Études des Environnements Terrestre et Planétaire, Saint Maur des Fosses Cedex, France
(3) Département des Sciences de la Terre, Université Paris Sud XI, Orsay Cedex, France

Abstract
Global optimization and stochastic approaches to the interpretation of measured data have recently gained par-
ticular attraction as tools for directed search for and/or verification of characteristic structural details and quan-
titative parameters of the deep structure, which is a task often arising when interpreting geoelectrical induction
data in seismoactive and volcanic areas. We present a comparison of three common global optimization and sto-
chastic approaches to the solution of a magnetotelluric inverse problem for thick layer structures, specifically the
controlled random search algorithm, the stochastic sampling by the Monte Carlo method with Markov chains
and its newly suggested approximate, but largely accelerated, version, the neighbourhood algorithm. We test the
algorithms on a notoriously difficult synthetic 5-layer structure with two conductors situated at different depths,
as well as on the experimental COPROD1 data set standardly used to benchmark 1D magnetotelluric inversion
codes. The controlled random search algorithm is a fast and reliable global minimization procedure if a relative-
ly small number of parameters is involved and a search for a single target minimum is the main objective of the
inversion. By repeated runs with different starting test model pools, a sufficiently exhaustive mapping of the pa-
rameter space can be accomplished. The Markov chain Monte Carlo gives the most complete information for the
parameter estimation and their uncertainty assessment by providing samples from the posterior probability dis-
tribution of the model parameters conditioned on the experimental data. Though computationally intensive, this
method shows good performance provided the model parameters are sufficiently decorrelated. For layered mod-
els with mixed resistivities and layer thicknesses, where strong correlations occur and even different model class-
es may conform to the target function, the method often converges poorly and even very long chains do not guar-
antee fair distributions of the model parameters according to their probability densities. The neighbourhood re-
sampling procedure attempts to accelerate the Monte Carlo simulation by approximating the computationally ex-
pensive true target function by a simpler, piecewise constant interpolant on a Voronoi mesh constructed over a
set of pre-generated models. The method performs relatively fast but seems to suggest systematically larger un-
certainties for the model parameters. The results of the stochastic simulations are compared with the standard
linearized solutions both for thick layer models and for smooth Occam solutions.
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of clusters of seismic sources with boundaries of
blocks with a significant conductivity contrast,
detection, spatial mapping and conductivity esti-
mates of magmatic plumes, delineation of
groundwater layers and of deep aquifers, etc.
Due to the inherent ambiguity of the inverse
problem solution with noisy and incomplete da-
ta, those structural features may be missed single
model linearized inversions, or smeared over
large intervals of depths if smoothness of the in-
verse model is emphasized by applying a rough-
ness penalty for regularization.

Stochastic approaches to the interpretation of
measured data have recently gained attention in
geophysical applications (e.g., Mosegaard and
Tarantola, 1995). They are particularly attractive
as tools for estimating the model parameters
from samples from their probability distribu-
tions, for quantifying uncertainties in the esti-
mated model parameters, and for structural hy-
potheses testing. The advantage of the stochastic
simulations is that they aim at performing the
search throughout the parameter space and pick
up the models according to their probabilities
measured by the misfit and priorities for specific
model features. The main difficulty of the sto-
chastic inversions is that they are carried out via
often extremely computer intensive simulations.

Mapping the parameter space has long been
an ambition of global minimization methods in
geophysical inversions (e.g., Senn and Stoffa,
1995). Though these methods primarily aim at
searching for a global minimum of a function,
they always operate on a large population of
models and rely on random factors within their
optimization strategy to reduce the risk of being
trapped at local minima of the target function.
By this mechanism, the optimization procedure
generates a topography map of the target func-
tion along a series of randomly perturbed paths
in the parameter space, with usually dense cov-
erage in the vicinity of the minima. The model
population generated by a global optimization
procedure does not generally follow the true
probability density function of the models. 

In this paper we aim at demonstrating how
ensembles of models produced by selected glob-
al optimization procedures compare with results
of single model linearized inversions as well as
with results of a probabilistic sampling. As repre-

sentatives of the global minimization procedures,
we have selected the Controlled Random Search
(CRS) method (Price, 1977) and the Neighbor-
hood Algorithm (NA) by Sambridge (1999a),
both being relatively fast global minimizers with
only low demands on a model-conditioned fine-
tuning of the optimization parameters. A fully
stochastic sampling is based on a simple imple-
mentation of the Markov Chain Monte Carlo
(MCMC) procedure adopted from (Grandis 
et al., 1999) and modified for thick layer 1D MT
inversion with both variable resistivities and lay-
er thicknesses. The results are also compared
with the standard Occam smooth inversion (Con-
stable et al., 1987) and layered linearized inver-
sion by Weaver and Agarwal (1993). 

As to the model structures, we restrict our-
selves to 1D layered MT models here that are
better suited if structural details like sharp elec-
trical boundaries, thin sheets or sandwich struc-
tures with a tectonic significance are targets of
the search. Moreover, the easiness of 1D MT
direct solutions allows us to carry out all the
computer intensive tests more completely than
would be possible under the serious limitations
imposed by using 2D or even 3D direct model-
ling codes. Specifically, we test the selected op-
timization procedures on a simple COPROD1
benchmark model and then analyze a synthetic
model with two conductive layers separated by
a non-conductor in detail. The latter example
presents a generally non-elementary problem,
especially as regards the detection and resolu-
tion of the deeper conductor, and is typical of
tectonic settings in many active areas.

2. Global optimization and stochastic
sampling methods

2.1. Controlled Random Search

Controlled Random Search (CRS) is a sim-
ple yet often very efficient optimization algo-
rithm first suggested by Price (1977). It starts
with a sufficiently large pool of randomly gen-
erated models, say pi, i=1, ..., Np with the target
values ϕ( pi), where each vector pi consists of
NS parameters that describe the physical model.
The CRS algorithm then proceeds by employ-



9

Stochastic interpretation of magnetotelluric data, comparison of methods

ing a set of heuristic rules to generate a new test
model from the current pool, say pT = R(p1, ...,
pNP, rand) where ‘rand’ symbolizes a random
factor that diversifies the model population and
reduces the risk of the algorithm being trapped
in the local minima of the target function. If the
new test model pT is better, in terms of the tar-
get misfit, than the currently worst model in the
pool it is used to replace the latter. If, moreover,
ϕ( pT) is less than the currently best model mis-
fit in the pool then many heuristics suggest car-
rying out an additional detailed local search in
the vicinity of this successful point. By repeat-
edly applying the above steps to the model pop-
ulation the model pool develops and moves to-
wards regions with better target values until a
termination criterion is met, defined via a target
threshold, by a minimum of a parameter change
between successive iterations, or by setting a
limit on the number of iterations.

Particular versions of the CRS algorithm
largely differ by the heuristics used for generat-
ing the new test model. The original CRS algo-
rithm by Price (1977) uses a simplex of NS+1
models randomly chosen from the current pool.
The new test model is generated by mirroring
the (NS+1)−st model from the simplex through
the centroid of the first NS models,

.

This CRS version will be further referred to as
CRS1.

A number of other heuristics are discussed
and compared, e.g., in Tvrdík et al. (2002). One
of the approaches showing good performance in
1D MT inversions is a heuristics proposed by
Montaz et al. (1997), referred to as CRS6 in what
follows. It generates the new test model by com-
ponent-by-component fitting parabolas through
the currently best model and two further models
selected randomly from the current pool. The pa-
rameters of the new trial model pT are then given
by the minima of the individual parabolas.

For a given number of model parameters to
be estimated the performance of the CRS algo-
rithms in 1D MT inversions depends primarily
on the size of the pool from which new test
models are generated. The results indicate that
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CRS6 is largely superior to CRS1 as regards the
convergence speed. However, the CRS1 sim-
plex algorithm seems to better explore the pa-
rameter space and shows lower tendency to end
up in secondary local minima. In general, CRS
with repeated runs presents a relatively fast and
reliable global optimization algorithm, which
provides us rapidly with information about the
complete spectrum of the minima of the target
function under study.

2.2. Neighborhood algorithm

Recently, a new global optimization proce-
dure was suggested by Sambridge (1999a) for a
seismic inversion, based on an iterative evolu-
tion of the initial model pool by randomly sam-
pling the target function in the immediate vicin-
ity of the pool models. The vicinity of a model is
defined in a most natural way, as a subregion in
the parameter space that comprises all the near-
est points with regard to this particular model.
Formally, the nearest neighborhood of a pool
model pi, i∈{1, ..., NP} consists of all models p,
which meet the condition ,
j∈{1, ..., NP}, j≠ i . In this way, the whole param-
eter space is divided into a system of convex
Voronoi cells, each of them representing the near-
est neighborhood to a particular pool model.

The optimization by the Neighborhood Algo-
rithm (NA) proceeds by carrying out NP/Nr ran-
dom steps within Nr selected Voronoi cells with
the best target values, generating thus NP new
models in the regions of the minimum misfit in
each algorithm step. The random walks within
the Voronoi cells are carried out by using the
standard Gibbs sampler (Gelman et al., 1995; al-
so see next section) restricted to the selected cell.
Sambridge (1999a) demonstrated both the opti-
mization and numerical efficiency of the NA al-
gorithm which adapts fast according to the shape
of the underlying target functions and relatively
rapidly provides a map of domains around the
target minima. A particular choice of the factor
Nr controls the preference of the algorithm for a
local search or for global exploration.

Numerical tests for a 1D inverse MT prob-
lem indicate that the NA shows quite a similar
performance as the CRS algorithms above. 

p p p pi j− −2 2
#
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2.3. Monte Carlo with Markov Chains

Stochastic sampling methods are used to
generate model samples distributed proportion-
ally to the likelihood of the models. The sample
probability distribution can then be used to nu-
merically approximate Bayesian integrals that
provide single parameter estimates or informa-
tion about their credibility. The Monte Carlo
methods with Markov Chains (MCMC) are al-
gorithms to generate sample ensembles for the
Monte Carlo integration. 

In the Bayesian approach, the inverse prob-
lem solution is represented by a posterior prob-
ability distribution of the model given the data
and prior information on the model (e.g., Gran-
dis et al., 1999)

where Prob(p) is the prior probability distribu-
tion, and the likelihood function Prob(d/p) in
the form given above assumes that the data
items follow a normal distribution law N(dl

obs,
δdl

obs), l = 1, ..., ND. If no specific prior informa-
tion on the model parameters is available, we can
assume, for a layered Earth’s model, that loga-
rithms of both the resistivity and thickness as-
sume constant values within sufficiently broad
limits for each layer. We use this non-informative
prior in all the MCMC simulations presented in
Section 4.

Without going further into detail here (see,
e.g., Gelman et al., 1995; Grandis et al., 1999,
for reference), the idea behind the MCMC is to
create a random walk, or Markov process, that
has Prob(d/p) as its stationary distribution and
then to run the process long enough so that the
resulting sample closely approximates a sample
from Prob(d/p). 

The Gibbs sampler is one of the particular
methods used to construct such a Markov
process. The Markov chain relies on updating the
model parameters in the process of successively
scanning the parameter domain under study. In
each scan, we update one single model param-
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eter, say pk, by drawing a new value from the
one-dimensional conditional probability distri-
bution Prob(pk /d, p1, ..., pk−1, pk+1, ..., pNS), i.e.
with all parameters except the k-th one fixed at
their current values. One MCMC step is com-
pleted after all NS model coordinates have been
updated. In this way, an ergodic Markov chain
is designed with an invariant probability law
identical with Prop(p/d). The posterior margin-
al probability distributions for the parameters as
well as various Bayesian integrals are then esti-
mated from the successive simulated values of
this Markov chain.

2.4. Resampling with the neighborhood
algorithm (NAR)

MCMC is a computer intensive method
since a series of direct problem solutions is re-
quired for each parameter scan within the Gibbs
sampler. If an ensemble of direct solutions al-
ready exists from computations carried out pre-
viously, an effective resampling procedure can
be applied to this model ensemble as suggested
by Sambridge (1999b). The models generated,
e.g., by previous global optimization runs are
used to approximate the misfit function by the
neighborhood algorithm, i.e. by a piecewise
constant function in a Voronoi mesh with cells
centered at the models available. Then, the
MCMC sampling is carried out for that surro-
gate target function in exactly the same way as
the full MCMC simulation above, but without
any additional direct problem solution required.
Clearly, the success of this approach highly de-
pends on how good a support the underlying
model ensemble gives to the true misfit func-
tion, which is a delicate question in multidi-
mensional parameter spaces, and might be also
a problem-dependent issue.

3. Test data sets

We selected two specific data sets to analyze
the performance of the stochastic optimization
procedures in situations often encountered in
various interpretations of electromagnetic in-
duction data. The first Data Set (DSI) is synthet-
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ic and is derived from a model with a shallow
conductor over a deeper conductive target. This
general setting occurs in a variety of practical
situations, especially if a layer of conductive
sediments screens deeper layers containing flu-
ids, but also in large-scale settings like those of
an electric asthenosphere screened by a conduc-
tive lower crust. It is generally known that the
deep conductor is difficult to resolve unless its
conductance is considerably higher than that of
the shallower screening layer.

The particular data generating model used
here was adopted from (Grandis et al., 1999).
Model for DSI is shown in fig. 1a-d, marked by
a gray-white contrast in all sub-panels, and its
parameters are given in the figure caption. Con-
ductances of the layers, S=h/ρ, are 2.4, 16, 20
and 25, in Siemens, from the top to the bottom,
and indicate that there is only little chance to re-
solve the deep thin conductor situated at the

depth of 2 km. It is clear from fig. 1a-d that for
5% of Gaussian noise added to the synthetic
MT data no common linearized inversion gives
any indication that a deeper conductor exists
beneath the shallow conductive layer. They all
rather extend the intermediate third layer to
greater depths and smear the deep thin conduc-
tor over a depth range of more than 2 km into
the high-resistivity basement.

The second Data Set (DSII) is the experi-
mental COPROD1 set introduced and analyzed
in detail by Jones and Hutton (1979a,b), later
used for demonstrating the performance of the
Occam 1D inverse approach by Constable et al.
(1987), and commonly employed as a bench-
mark data set for performance tests of 1D in-
verse techniques in magnetotellurics. The CO-
PROD1 data represent a set of 15 pairs of log
apparent resistivity and MT phase data items
within the period range of 20 to 2000 s and

Fig. 1a-d. Results of four different linearized inversion routines applied to the synthetic data set DSI. The da-
ta generating model is marked by a gray-white contrast in all sub-panels, and its layer parameters are: layer 1 –
h1=0.6 km, ρ1=250 Ωm; layer 2 – h2=0.4 km, ρ2=25 Ωm; layer 3 – h3=2 km, ρ3=10 Ωm; layer 4 – h4=0.25 km,
ρ4=10 Ωm; basement 5 – ρ5=1000 Ωm. MT data were generated from this model for 41log-regularly spaced pe-
riods within the range from 10−3 to 10 s, and the synthetic impedances were further contamined with Gaussian
noise with the standard deviation of 5% of the maximum impedance element for each period. Inverse results in
the sub-panels correspond to: a) Occam inversion with roughness penalty (Constable et al., 1987); b) Occam in-
version with total variation penalty (Portniaguine and Zhdanov, 1999); c) Occam inversion with gradient support
penalty (Portniaguine and Zhdanov, 1999); d) inversion for a minimum number of layers according to Weaver
and Agarwal (1993). In the boxes below the panels the respective regularization weights (reg), misfit (RMS2) val-
ues, and other routine-specific parameters are given.

ba c d
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correspond to a relatively simple structure with
one pronounced conductive layer at a lower
crustal/upper mantle depth. Nonetheless, the
data set is by far not elementary, especially ow-
ing to the data error structure that does not seem
to follow any simple noise model.

4. Search in the parameter space: model
simulations for the test data sets

4.1. Synthetic data set 

In the subsequent numerical tests we con-
centrate on the comparison of the performance
of the selected global and stochastic optimiza-
tion procedures for parameter estimation and
uncertainty quantification in simple but practi-
cally relevant magnetotelluric settings. Avail-
ability of relatively simple and reliable lin-
earized inverse procedures for 1D MT problems
makes it possible to assess the extra informa-
tion we can infer from sampling the whole pa-
rameter space as compared to searching direct-
ly for one specific inverse solution. 

A first series of numerical experiments aimed
at comparing the selected methods applied to the
synthetic data set DSI. The underlying model for
DSI is a 5 layer structure with a deep thin con-
ductor that is clearly hard to detect in the surface
MT data. We experimented successively with
models consisting of 3 to 6 layers, including the
basement, to test the outputs of the individual op-
timization procedures. We intentionally used
very broad a priori limits for all layer parame-
ters, specifically 10−3≤hi≤10 km, 1≤ρi≤104 Ωm,
i=1, ..., number of layers to test the convergence
as well as the degree of risk of the individual
methods to end up in false minima.

With 3-layer test models the best attainable
RMS2 misfit was 1.88 and none of the methods
could fit the data satisfactorily. Both the CRS6
(pool of 100 models, 5000 iterations, 200 runs,
accepted all models with RMS 2≤4) and MCMC
(50000 steps, burn-in 10000, thinning 100) could
recover the resistivity of the first layer and that of
the basement with high accuracy, but they were
not able to satisfactorily simulate the fine resistiv-
ity structure in the intermediate part of the model
section by one single layer. The second layer

does, however, provide the true integral conduc-
tance of the three original conductive layers with
good accuracy, within less than 5% of the true
value. Both methods compensate for the insuffi-
cient resistivity contrast between the first and sec-
ond layer by systematically decreasing the depth
to the conductor by about 100 m as compared to
the true model. Figure 2 indicates the mean val-
ues of the individual parameters are displayed,
and ranges comprising 50 and 90% of all the pa-
rameter values provided by the simulation tech-
niques. Though not so comprehensive as com-
plete parameter histograms, these plots qualita-
tively provide a good idea about both the correct-
ness of the recovered parameters, their uncertain-
ty and skewness of the underlying histograms.

After having increased the number of layers
to four, the fit to the data improved substantial-
ly. Parameters of the CRS6 and MCMC proce-
dures were the same as those specified for the
case of 3 layers above; from the CRS outputs
only models with RMS2≤1 were accepted now
for constructing the histograms.

In the 4-layer case, both the CRS6 and
MCMC recover the top layer resistivity almost
exactly, while the thickness of the first layer is
systematically greater by about 50 m than the
true value and is scattered over about 40 m for
the MCMC estimate, if the interval between the
25 and 75% quartiles of the parameter samples
is used to measure the uncertainty. As the CRS6
was always terminated after a fixed number of
5000 iterations, repeated values of h1 during the
final stage of the iteration process lead to over-
optimistic estimates of the parameter uncertain-
ties, specifically 20 m for h1, as compared to the
probabilistic MCMC sampling. Contrary, the
parameters of the second layer, i.e. the shallow
conductor, are recovered only with large uncer-
tainty, especially as regards its thickness. Nev-
ertheless, both methods produce relatively
sharp estimates of the conductance of this lay-
er, within 1.5 S, which are by about 4 S lower
than the true value of S2=16 S. The deficit of the
conductance in the second layer is compensat-
ed by increased conductance of the layer be-
neath, which tries to account for the summary
effect of the third layer in the true model as well
as for that of the deep thin conductor situated
on the top of the basement.
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As the MCMC sampling is an extremely
time-consuming procedure, even for a simple 4-
layer MT model, we also tested the relatively fast
neighborhood resampling algorithm (NAR) by
Sambridge (1999b) on the present data set DSI.
We applied this procedure to a complete set of
models generated by the CRS6 algorithm in 20
successive runs with different initial pools, 100
models each, and with 5000 iteration steps in
each run, which makes altogether about 100000
to 150000 individual models distributed all over
the parameter space, but with most of them con-
centrated in close neighborhoods of the main
minima of the target function. We performed
20000 iterations of the NAR to produce a resam-
pled set of models for further stochastic infer-
ence. We can see from fig. 2 that the NAR re-
sampling gives results similar to those of the
MCMC, but with clearly more diffuse statistical
ranges for those model parameters that have

been recovered sharply by the MCMC sampling
above. Comparison of true target misfits with
those obtained by the NA interpolation in the
Voronoi mesh during the NAR runs shows that
the NA interpolation may extend the domain of
the target minimum widely. As a consequence,
models with large misfits may be accepted more
frequently into the resampled chain than it would
be appropriate to their true likelihood. 

For the 4-layer MT model tested here, the
difference between the MCMC and NAR out-
puts can be illustrated by stacked model sam-
ples shown in fig. 3 (top row of panels). Here,
the gray scale is used to visualize the relative
number of models from the sample ensemble
which pass through the individual cells in the
log ρ−logz plane. The plots show limits for the
resistivity indicated by the sample models as a
function of depth. The fuzziness of the NAR re-
sults could be partly reduced by using a more

Fig. 2. Mean values (vertical bars) and ranges comprising 50 and 90% of all parameter values (black and gray
zones, respectively) provided by various global optimization and stochastic sampling runs applied to the DSI da-
ta set with 5% of Gaussian noise. The vertical bars in the top row indicate the true values of the parameters of
the synthetic model. For specific routine parameters see the text. For the 4 and 5-layer models, the row labeled
LIN shows parameter estimates (long bars) and variances (short bars) obtained for classical linearized inverse
solutions. The classical parameter variances for the 5-layer model from a truncated SVD analysis (only the sev-
en largest from altogether nine singular values were used to compute the parameter variance-covariance matrix)
are shown by full lines, and those obtained with addition of the nul space of the solution are indicated by dotted
lines. Black rectangles show the restrictions to the parameter acceptability range for the non-linear model (mod-
els with RMS less than one here).
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accurate, but also greatly more time-consum-
ing, interpolation scheme employing a standard
inverse distance power procedure (with the
power of 4 here). Unfortunately, other experi-
ments indicate that this improvement is not sys-
tematic and the performance of the NAR with
various interpolants depends highly on the di-
mension of the problem and the particular dis-
tribution of the interpolated models throughout
the model space.

For comparison with a classical single-mod-
el inverse solution, we also present in fig. 2 
results of a posteriori linearized uncertainty
analysis based on the Singular Value Decompo-
sition (SVD) of the sensitivity matrix for the 4-
layered model obtained earlier by the inversion
algorithm by Weaver and Agarwal (1993) (see
fig. 1a-d for the model structure). The structure
of the singular vectors corresponding to the four

largest singular values of the sensitivity matrix
for this model weighted by data variances indi-
cates that the most significant parameters in the
model are h1, S3=h3/ρ3, ρ1, and S2=h2/ρ2, while
the two smallest singular values suggest the re-
sistivity of the basement, ρ4, and the resistance
of the second layer, T2= h2ρ2, to be the least sig-
nificant parameters. This ranking is also clearly
manifested in fig. 2 by the individual parame-
ters’ error bars, computed as square roots of the
diagonal elements of the parameter covariance
matrix (Menke, 1989). These error bounds ap-
proximately demarcate the range of models that
are equivalent, as to their fit to the experimental
data, with the original model analyzed. Though
the classical variances are qualitatively in ac-
cord with the parameter uncertainties suggested
by the stochastic simulations, their magnitudes
are known to be underestimated (Menke, 1989).

Fig. 3. Gray-shade plots of stacked models produced by CRS, MCMC and NAR runs applied to DSI data set
with 5% of Gaussian noise. Top row of panels show the results for a 4-layer model approximation, bottom pan-
els are for inversion with 5-layer models. The degree of gray color indicates the relative number of models that
pass through 0.1×0.1 sized cells in the logρ−logz plane.
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Obtaining more realistic error bounds within
the classical analysis would require more so-
phisticated approaches to the estimates of the
parameter limits to be applied, as those suggest-
ed, e.g., by Pous et al. (1985) for linear or by
Meju and Hutton (1992) for non-linear prob-
lems, or simply performing a random search for
acceptable models in a certain vicinity of the
original inverse solution.

For test models with 5 or more layers, the
inverse problem becomes ill-posed and most of
the inverse methods suffer in some way from
parameter indefiniteness or inter-dependence.
Often, the physical sense of the parameters gets
lost in multi-layered models since characteristic
conductive/resistive features of the real struc-
ture cannot be attributed to the model parame-
ters in an unambiguous way. In particular, the
histograms of the model parameters are diffi-
cult to interpret in terms of marginal distribu-
tions since they can, in fact, mix together true
parameters of more than one physical domain. 

The bottom panels in figs. 2 and 3 show
results of the global and stochastic sampling for
5-layer test models. Except for the resistivities
of the first and last layer, which are well con-
strained by the data, all the other parameter his-
tograms are diffuse and, on a more detailed
scale, even multimodal. The concentrated his-
tograms resulting from the NAR algorithm with
the inverse distance power (power 4) inter-
polant rather suggest that the method stayed
trapped in a vicinity of one specific minimum
dictated by the particular distribution of the
CRS set of models.

The stacked model plots in fig. 3 provide a
clearer visual representation of the model sam-
ples with respect to the resistivity-depth sec-
tion. They show very similar conductivity pat-
terns for the shallow part of the structure down
to the bottom of the first conductor for both the
4 and 5-layer models. The third layer is recov-
ered sharply but already shows a typical high-
resistivity ‘shadow’ in the 5-layer case, which is
an artifact due to a low sensitivity of the MT
field to resistive domains beneath the first, shal-
low conductor. As regards the manifestation of
the deep thin conductor at the depth of 3 km,
less than 10% of the models in both the CRS
and MCMC patterns indicate a layer of in-

creased conductivity between 2 and 3.5 km.
The standard NAR algorithm gives a largely
diffuse image of the resistivity structure which
indicates that the underlying set of CRS models
(from 20 runs of CRS6, with the pool of 100
models and 5000 iteration steps) does not cov-
er the parameter space properly. This situation
did not change for better even when the support
models were generated by the NA minimization
algorithm instead of CRS.

Due to a massive inter-dependence of the pa-
rameters in multilayer cases, standard MCMC
Gibbs sampler mixes poorly and requires very
long chains, of the order of hundreds of thou-
sands of samples, to walk throughout the param-
eter space with sufficient density. Nevertheless
the resistivity pattern in fig. 3 remains quite sta-
ble after a few tens of thousands of the MCMC
steps, though its detailed probabilistic interpreta-
tion may be questionable for chains so short. 

The stacked model resistivity image shows
stable structural features also for increasing
number of layers in the test models, though es-
pecially the high-resistivity artifacts become
more pronounced in runs with many layers. 

The classical SVD analysis of the 5-layer
linearized inverse solution allows similar con-
clusions to be made as regards the parameter
uncertainty. Contrary to the 4-layer model stud-
ied earlier, the SVD spectrum for the 5-layer
model indicates that at least two singular vec-
tors form the nul space of the inverse solution,
specifically those corresponding to the resist-
ances of the second and fourth layers, T2= h2ρ2

and T4= h4 ρ4. Then the linearized variances for
the parameters involved in these combinations
are not bounded within the range of the physi-
cal acceptability of the models. Figure 2 shows
parameters of one particular classical 5-layer
inverse solution along with their linearized vari-
ances for the case of a truncated SVD spectrum,
with only seven largest singular values from
nine left for the computation of the parameter
covariance matrix, as well as for the case of the
full SVD spectrum. In the latter case, the pro-
jection of the nul space solutions onto the space
of the physical parameters gives very large, or
almost infinite, error bounds for the poorly re-
solvable parameters. The predicted linearized
parameter variances have to be further verified,
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and properly reduced, by an extra procedure so
that they do not exceed the region of acceptable
models for the underlying non-linear problem. 

One additional difficulty of the uncertainty
analysis based on a linearized inverse single-
model solution is that the SVD spectra may dif-
fer not negligibly for different inverse models
due to the non-linearity of the underlying direct
problem, especially if the experimental data are
sufficiently noisy, suggesting thus sufficiently
different nul spaces for different inverse mod-
els. In the stochastic sampling procedures, this
equivalency across various classes of models
may substantially deteriorate the convergence
properties, but for long enough chains all the
model classes should be visited and properly
sampled in the course of the stochastic walk.

4.2. Experimental COPROD1 data set

We carried out a similar series of numerical
simulations also for the experimental data set
DSII (COPROD1) with the standard data errors
adopted from Constable et al. (1987). This data
set is specific especially due to its error struc-
ture. We show in fig. 4 a projection of all the
RMS2 misfit values obtained from twenty
CRS6 runs (3 layer test models, pool size 100,
3000 iterations) as a function of the resistivity
of the first layer. The figure clearly shows a bi-
modal character of the misfit, with a deep min-
imum at ρ1 close to 170 Ωm, but with RMS2>1
and with another broad, but very flat zone,
ρ1>300 Ωm, with misfits RMS2<1. The former
target minimum attracts most of the solutions of
both the CRS and MCMC runs, and especially
for MCMC with 3-layer models does not allow
the chain to leave its ‘gravity’ in reasonable
time even in case that the chain has been start-
ed from the minimum of the target function,
provided by the CRS. In this case, the CRS map
of the target minima provides valuable informa-
tion for constraining the parameters for the
MCMC simulation.

Figure 5 summarizes the results of CRS,
MCMC and NAR simulations with 4-layer mod-
els for the DSII data set in the form of stacked 
log ρ−logz gray-shade plots. Similarly as in the
synthetic case, very broad a priori parameter

ranges were chosen to simulate minimum prior
knowledge of the parameter limits. Specifically,
we have set the layer thicknesses to be between
3 and 300 km and the resistivities between 1 and
105 Ωm, except for the first layer with ρ1>180
Ωm to avoid the ‘target trap’ described above.

The resistivity patterns from the CRS6 (200
runs, pool size 100, 3000 iterations) and MCMC
(50000 steps, burn-in 10000, thinning 100) runs
show very similar structures, though the CRS
pattern is sharper due to excessive accumulation
of the solutions close to the target minima. The
models seem to prefer very high resistivity val-
ues of the top layer, but constraining this param-
eter does not change the deeper resistivity pat-
tern noticeably. Similarly as in the synthetic
case above, the NAR resampling algorithm
smears the resistivity patterns over a broader
range of values. In the case studied here, no dra-
matic improvement was achieved if the inverse
distance power interpolant was used within the

Fig. 4. Projection of all RMS2 misfits versus the re-
sistivity of the top layer obtained in the course of 20
CRS6 runs applied to the COPROD1 (DSII) data set
with 3-layer test models. Along the axes, the corre-
sponding histograms of the RMS2 and ρ1 values are
shown.
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NAR algorithm instead of the Voronoi tessella-
tion. Figure 5 also presents the fit of the 4-lay-
er model data from the above simulation runs 
to the experimental apparent resistivities and
phases. 

5. Discussion and conclusions

We applied three common methods of glob-
al and stochastic optimization, specifically the
CRS, MCMC and NA/NAR, to simple 1D mag-

Fig. 5. Left column: gray-shade plots of stacked models obtained from CRS, MCMC and NAR runs applied to
the COPROD1 (DSII) data set with 4-layer test models. The dashed line indicates a preferred 4-layer solution
by Jones and Hutton (1979b) who minimized the misfit function without considering the confidence weights.
The full line shows a 4-layer solution from the inverse procedure by Weaver and Agarwal (1993) applied to the
data supplemented with error bars according to Constable et al. (1987). Central and right columns: data fit for
the apparent resistivities and phases, respectively, for models generated by the CRS, MCMC and NAR runs. The
experimental COPROD1 resistivities and phases are shown by white circles with error bars according to Con-
stable et al. (1987), the black dots are solutions for the model by Jones and Hutton (1979b).
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netotelluric models to test their performance in
problems that target at searching for and at ver-
ifying distinct structural features in geoelectri-
cal sections, such as boundaries with a large
conductivity contrast or conductors screened by
shallow conductive structures. Similar structur-
al elements are often typical of tectonically ac-
tive areas, and their detection, as well as estima-
tion of their geometrical and electrical parame-
ters, along with a proper specification of the un-
certainty of these estimates, are indispensable
prerequisites for carrying out any analysis of
possible correlations between electrical struc-
tural factors and non-electrical indicators of the
tectonic activity.

CRS and NA are relatively simple, in terms
of the tuning complexity, but effective global
optimization algorithms that are suitable both
for providing a quick inspection of the target
function topography and for searching for the
inverse problem solution. Performing repeated
runs of these algorithms with different random-
ly generated initial model populations gives not
only a good idea of the character and multi-
modality of the underlying target function, but
also draws an image of the parameter bounds
(uncertainties), though not in quite fair propor-
tions with regard to the likelihood of the mod-
els. The parameter distributions provided by the
CRS or NA are affected by the tuning condi-
tions of the minimization procedure and may
be, e.g., excessively peaked if the procedure is
terminated after a fixed (and large enough)
number of iteration steps, or diffuse and shifted
if the optimization is stopped after a certain
portion of models in the pool, or all of them,
reach a predefined misfit threshold.

Stochastic sampling techniques aim at pro-
viding unbiased model samples distributed ac-
cording to the likelihood of the models. For lay-
ered MT models with very broad a priori limits
for the model parameters, the MCMC Gibbs
sampler procedure shows a good convergence
provided the underlying test models are not large-
ly underdetermined. In the opposite case, the
Markov chain may mix poorly unless closer and
more realistic parameter bounds are specified, es-
pecially for the layer thicknesses. With broad pa-
rameter ranges, MCMC shows frequent irregular
transitions between fine modes of the target func-

tion and does not provide stable parameter mar-
ginal distributions unless a very large number of
MCMC steps is carried out. It can, however, pro-
vide relatively quickly a stable approximate im-
age of the resistivity versus depth distribution via
stacking the models from the chain.

Resampling model ensembles produced by
relatively fast global optimization procedures,
such as CRS or NA, is another way to estimating
the model parameters and their true uncertainty.
The NAR resampling based on approximating
the misfit function by constants in an ensamble-
related Voronoi mesh gives results similar to
those of MCMC if sufficiently narrow bounds
for the MT model parameters can be specified a
priori. For broad parameter limits and highly un-
derdetermined models, NAR tends to produce
more diffuse posterior distributions for the pa-
rameters as compared to MCMC. One of the
likely reasons for this behavior may be that mod-
els produced by a fast converging CRS proce-
dure do not provide sufficient support for the NA
interpolation throughout the parameter space. As
a consequence, the high probability region may
expand via the NA interpolation far beyond its
true limits. In some cases, using a more accurate
interpolation technique (e.g., inverse distance
power interpolant here) could improve the re-
sults, but it cannot be generalized.

As compared to standard single-model lin-
earized inversions, the global and stochastic in-
verse methods provide additional information,
especially as regards the possible ranges of mod-
el parameters and uncertainty of the parameter
estimates conditioned on the observed data,
though for the price of higher, and sometimes
enormous computation times. They are of partic-
ular interest in situations like, e.g., directed
search for specific structural features, inversion
with various kind of prior information, or in
jointly solving a problem of parameter estima-
tion and model selection (Malinverno, 2002).
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