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Abstract Let G be an abstract Kac-Moody group over a finite field ahdhe
closure of the image o6 in the automorphism group of its positive building.
We show that if the Dynkin diagram associatedXds irreducible and neither of
spherical nor of affine type, then the contraction groupsl@ments inG which
are not topologically periodic are not closed. (In thoseugsthere always exist
elements which are not topologically periodic.)

Mathematics Subject Classification (2000)contraction group topological
Kac-Moody group totally disconnected, locally compact group

1 Introduction

Let g be a continuous automorphism of a topological gr@mvith continuous
inverse. ltscontraction group is the subgroup o6 defined by

U :={x€ G: g"(x) — e asngoes to infinity} .
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Interest in contraction groups has been stimulated by egipdins in the theory

of probability measures and random walks on, and the reprasen theory of,

locally compact groups. For these applications it is imgratrto know whether a

contraction group is closed. We refer the reader to thediirtion in [2] and the

references cited there for information about the applicetiof contraction groups

and known results. Recent articles which treat contragiionps are|]8] and]?].
The article [12] studied the contraction group and its supergroup

R, := {xe G: {g"(x): ne N} is relatively compadt

in the case where the ambient group is locally compact aatlyatisconnected, a
case in which previously little was known. In contrasth the grougp, is always
closed if the ambient groug is totally disconnecteﬂ?, Proposition 3, paitig) (
and {i)]. The groupR; was named th@arabolic group of the automorphism
g in [B] because for any inner automorphism of a semisimpletaigic group
over a local field its parabolic group is the group of ratiopaints of a rational
parabolic subgroup (and every such group is of that forn@ ctirresponding con-
traction group in that case is the group of rational pointthefunipotent radical
of the parabolic subgroup. In this algebraic group contebentifying parabolic
subgroups (in the dynamical sense, introduced above) airdthipotent radicals
with parabolic subgroups (in the algebraic group sense)thadorresponding
contraction groups is a crucial technique used by G. Prasadolve strong ap-
proximation for semisimple groups in positive characteriiL]]. This technique
was later used again by G. Prasad to give a simple proof okTHeorem on
cocompactness of open non-compact subgroups in simpleraigegroups over
local fields ], which can be proved also by appealing to eldoore’s prop-
erty.

In this article we investigate which contraction groupsnofér automorphisms
in complete Kac-Moody groups are closed. Complete Kac-Mapgdups (which
we introduce in Sectiopf] 2) are combinatorial generalizegiof semisimple alge-
braic groups over local fields. In contrast to members ofdltet class of groups,
complete Kac-Moody groups are generically non-lin¢atally disconnected, lo-
cally compact groups. These properties make them perfectéses for the de-
veloping structure theory of totally disconnected, logalbmpact groups which
was established if [1L7], and further advanced ih [18] [19

Our main result is the following theorem, in whose statentie@tcontraction
group of a group elemeigtis understood to be the contraction group of the inner
automorphisng: x +— gxg .

Theorem 1.1 (Main Theorem)Let G be an abstract Kac-Moody group over a
finite field andG be the closure of the image of G in the automorphism group of
its positive building. Then the following are true:

1. The contraction group of any topologically periodic etarhinG is trivial.

2. If the type of G is irreducible and neither spherical nofired, then the con-
traction group of any element that is not topologically pelic in G is not
closed.

Furthermore, the grouf® contains non-topologically periodic elements whenever
G is not of spherical type.
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The second assertion of Theor¢n] 1.1 is in sharp contrasttiaétknown re-
sults about contraction groups of elements in spherical afide Kac-Moody
groups. In particular, all contraction groups of inner atophisms are closed for
semisimple algebraic groups over local fields; this folléssn the representation
of contraction groups as rational points of unipotent raldiand we direct the
reader to part 2 of Propositi.3 for a slightly more gehstatement.

Consequently, all contraction groups of inner automorpkisire closed for
certain affine Kac-Moody groups, namely those that are gatcrm®mpletions of
Chevalley group schemes over the rings of Laurent polynisnoiger finite fields.
For completions of Kac-Moody groups of any spherical typeghme is seen to
be true; see part 1 of Propositipn|6.3.

Thus Theorenf 1.1 and Propositipn]6.3 provide another instahthe strong
dichotomy between Euclidean and arbitrary non-Euclidaatdings with large
automorphism groups which is already evident in result$sag the Simplic-
ity Theorem in [b] and the strong Tits alternative for infenitreducible Coxeter
groups by Margulis-Noskov-Vinberg] [8,]10].

The groups covered by the second part of our Main Theoremopa@dgi-
cally simple ], indeed in many cases algebraically s'en@ﬂ groups, whose
flat rank assumes all positive integral valufs [1], and idda® the first known
groups who have non-closed contraction groups and whosafiktcan be larger
than 2; we refer the reader tE[:[p 1] for the definition of femk. They are thus
‘larger’ but similar to the group of type-preserving isomes of a regular, locally
finite tree, which is a simple, totally disconnected, logalbmpact group of flat
rank 1, whose non-trivial contraction groups are non-ao3éhis follows from
Example 3.13(2) in[]2] and Remafk 3 10.

The Main Theorem will be proved within the wider frameworkgobups with
a locally finite twin root datum. Within this wider framewovke need to impose
the additional assumption that the root groups of the giwent datum are con-
tractive (a condition introduced in Subsectjon 4.2) in oitdebe able to prove the
analogue of the second statement above. In the Kac-Moodythescondition is
automatically fulfilled by a theorem of Caprace and Rémullitases, the geom-
etry of the underlying Coxeter complex will play a crucidiet the proof via the
existence of ‘a fundamental hyperbolic configuration’, Seeoren{ 5]3.

2 Framework

We study complete Kac-Moody groups; these were introducéfii4] under the
name ‘topological Kac-Moody groups’. A complete Kac-Moaoghpup is a geo-
metrically defined completion of an abstract Kac-Moody grouer a finite field.
Every Kac-Moody group is a group-valued functGrsay, on rings, which is de-
fined by a Chevalley-Steinberg type presentation, whose peiameter is an in-
tegral matrix, a ‘generalized Cartan matrix’, which alsdires a Coxeter system
of finite rank; see|E6, Subsection 3.6] ar@ [13, Section ®]dfetails. For each
ring R, the valueG := G(R) of the functorG on R is anabstract Kac-Moody
group over R.

For each fieldRthe Chevalley-Steinberg presentation endows the ab#teaet
Moody groupG(R) with the structure of group with a twin root datum , which
is the context in which our results are stated. A twin rooudais a collection
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((Ug)aeq;, H) of subgroups ofs indexed by the se® of roots of the associated
Coxeter systenfW, S) and satisfying certain axioms which ensure that the group
G acts on a ‘twinned’ pair of buildings of typ@V,S); see [1B, 1.5.1]. See Sub-
section 0.3, respectively 0.4, if] [5] for the list of axionfsadwin root datum and
references to further literature on twin root data and twiitdings.

In order to define thgeometric completionof G(R), assume thais a finite
field. Under this assumption all the groups which constitiséenatural root datum
of G(R) are finite; groups with a twin root datum having this propestji be
calledgroups with a locally finite twin root datum. The Davis-realization of
the buildings defined by a locally finite twin root datum aredbly finite, metric,
CAT(0)-complexes in the sense df [3] all of whose cells have finitaditer;
see [, Section 1.1] for a short explanation following M. Baexposition in [$].
The geometric completionof a groupG with locally finite twin root datum is
the closure of the image @ in the automorphism group of the Davis-realization
of the positive building defined by the given root datumGifs an abstract Kac-
Moody group over a finite field that completion will be calldg:tcorresponding
complete Kac-Moody groupand denoted bis.

The completion of an abstract Kac-Moody group is defined gydtion on
its building and our techniques rely on théT (0)-geometry of the building, in
particular the action of the group ‘at infinity’. However, teathat the topology
and the completion of a group with locally finite twin root dat do_notdepend
on theCAT (0)-structure, only on the combinatorics of the action on thi&lng;
see Lemma 2 ir{]1]. Therefore one should be able to dispertbetivé use of the
Davis-realization below.

We summarize the basic topological properties of automsnplgroups of
locally finite complexes in the following proposition.

Proposition 2.1 Let X be a connected, locally finite cell complex. Then the-com
pact-open topology oAut(X) is a locally compact, totally disconnected (hence
Hausdorff) group topology. This topology has a countablsifiahence iso-
compact and metrizable. Stabilizers and fixators of finitecemplexes of X in
Aut(X) are compact, open subgroupsAdt(X) and the collection of all fixators
of finite subcomplexes form a neighborhood basis of theiigéntAut (X). These
statements are also true for closed subgroup&wf(X).

Any closed subgroupG say, ofAut(X), which admits a finite subcomplex
whoseG-translates cover X, is compactly generated and coconipait (X).

Complete Kac-Moody groups hence have all the propertiesritbesi above,
including compact generation and co-compactness in thadtomorphism group
of its building even though we will not use the latter two pedjes in this paper.

3 Geometric reformulation of topological group concepts

In what follows, we reformulate topological group conceiptgeometric terms,
that is in terms of the action on the building. We begin witreametric reformu-
lation of relative compactness.

A closed subgroufs of the automorphism group of a connected, locally finite,
metric complexX carries two natural structures of bornological group.
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The first bornological group structure @is the natural bornology induced
by its topological group structure, and consists of theemtibn of allrelatively
compactsubsets of the grou@.

The second bornological group structure®is the bornology induced by the
natural bornology on the metric spaXe in which subsets oK are bounded if
and only if they have finite diameter; this bornology on theugrG consists of
the collection of subsetdl of G which have the property that for every bounded
subseB of X the setM.Bis also bounded. One can verify that the latter condition
on the subse¥ of G is equivalent to the condition that for some, and hence any,
pointx of X the setM.x is bounded. We will call the sets in the second bornology
on the groupG boundedsets.

We now verify that these two bornologies coincide. For stg¥eW of the
metric spac& define  Transg(Y,W) :={g € G: g.Y C W}. Note that

1%} else

Transg({y}, {w}) = {

Hence, wheneveG is a closed subgroup of the automorphism group of a con-
nected, locally finite compleX andy, w are points o, the seffransg({y}, {w})
will be compact and open.

Lemma 3.1 (geometric reformulation of ‘relatively compact) Let X be a con-
nected, locally finite, metric complex, and assume @t a closed subgroup of
Aut(X) equipped with the compact-open topology. Then a subseiofelatively
compact if and only if it is bounded.

Proof We will use the criterion that a subddtof G is bounded if and only if, for
some chosen vertex,say, the sei.x is bounded.

Assume first thaM is a bounded subset @&. This means thaM.x is a
bounded, hence finite set of vertices. We conclude that

MC {J Transg({x}, {¥}),

yeM.x

which shows thaM is a relatively compact subset Gt _
Conversely, assume thist is a relatively compact subset Gt We have

M C | Transg({x}, {y}).

yeX

and, sinceM is relatively compact, there is a finite subB€M, x) of X such that

M C U Transg({x}, {y}) =: T(M,X).
yeF(M,x)

We conclude that1.x C T(M,x).xC F(M,x) which shows thaM is bounded. O
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3.1 Geometric reformulation of topological propertiessuinetries

Under the additional condition that the compéxarries aCAT (0)-structure, we
use the previous result to reformulate the topological d@rdon a group element
to be (topologically) periodic in dynamical terms.

Lemma 3.2 (weak geometric reformulation of ‘topologicallyperiodic’) Let X
be a connected, locally finite, metrlcAT (0)-complex. EquipAut(X) with the
compact-open topology and let g be an elemetefX). Then g is topologically
periodic if and only if g has a fixed point.

Proof By Lemma[3.]Lg is topologically periodic if and only if the group generated
by gis bounded. Since a bounded group of automorphisms of a ebeqAT (0)-
space has a fixed point, topologically periodic elementg fiixed points.
Conversely, ifg fixes the pointx say, theng, and the group it generates, is
contained in the compact sétit(X)x. Henceg is topologically periodic. a

One can even detect the property of being topologicallygaiéciin a purely
geometric way: isometries @fAT (0)-spaces which do not have fixed points are
either parabolic or hyperbolic. If, in the previous lemma,wpose the additional
condition that the compleX should have finitely many isometry classes of cells,
thenX is known to have no parabolic isometries and we obtain tHeviahg neat
characterization.

Lemma 3.3 (strong geometric reformulation of ‘topologicaly periodic’) Let

X be a connected, locally finite, metAT (0)-complex with finitely many isom-
etry classes of cells. Equiput(X) with the compact-open topology and let g be
an element oAut(X). Then the following properties are equivalent:

1. gis topologically periodic;

2. g has a fixed point;

3. gis not hyperbolic.

Proof The assumption that the compl&xhas finitely many isometry classes of
cells implies that no isometry of is parabolic by a theorem of Bridsdﬂ [3,11.6.6
Exercise (2) p. 231]. This shows that the second and thitdrsiant of the lemma
are equivalent. The first and the second statement are ¢eptivey Lemmd 3]2,
which concludes the proof. ad

In the case of interest to us, we can add a further charaatinizof ‘topolog-

ically periodic’ to those given above and we include it fongaeteness although
we will not need to use it. The scale referred to in the statgrizedefined as
in [L7] and [18].
Lemma 3.4 (scale characterization of ‘topologically peridic’) If G is the ge-
ometric completion of a group with locally finite twin roottdan (or the full au-
tomorphism group of its building) the following statemeams also equivalent to
the statements (1)—(3) of Leming 3.3:

4. the scale valueggg) is equal tol;
5. the scale valuegg ) is equal tol;

Furthermore, §(g) = sg(g 1) forallgin G.
Proof This statement follows form Corollary 10 and Corollary SE}}.[ a
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3.2 Geometric reformulation of the topological definitidraccontraction group

It follows from Lemmg 34 and Proposition 3.24 [ [2] that iretgeometric com-
pletion of a group with locally finite twin root datum contteam groups of topo-
logically periodic elements are bounded while the contoaagroups of elements
which are not topologically periodic are unbounded. Inipatar this observation
applies to topological Kac-Moody groups.
The following lemma explains why in this paper we focus ontcaction

groups of non-topologically periodic elements. Note that nielax notation and
denote the contraction group of inner conjugation wjthy Ug.

Lemma 3.5 (contraction group of a topologically periodic eément) Suppose
that g is a topologically periodic element of a locally cormpgroup. Then the
contraction group | is trivial and hence closed.

Proof This is a special case of Lemma 3.5[ih [2] where gandd = e. ad

Membership in contraction groups can be detected by examihie growth
of fixed point sets while going to infinity. The precise formtibn is as follows.

Lemma 3.6 (geometric reformulation of ‘membership in a contaction group’)
Let X be a connected, locally finite, met@AT (0)-complex. EquipAut(X) with
the compact-open topology. Suppose that h is an hypertsainetry of X and let
—¢& be its repelling fixed point at infinity. Let R — X be a geodesic line with
[(00) =—&.

Then an isometry g of X is inddf and only if for each r> 0 there is a real
number g, r) such that all points in X within distance r of the rajp(g,r), «))
are fixed by g.

Proof The assumptioh() = —& implies that we may assume without loss of
generality that is an axis oh.

Suppose now thag is an isometry ofX and letr(g,n) be the radius of the
ball aroundP(g,n) := h~".1(0) that is fixed byg, with the convention that(g, n)
equals—o if g does not fix the poinP(g, n). By the definition of the contraction
groupUy and the topology out(X) the elemeng is contained ifJy, if and only
if r(g,n) goes to infinity as goes to infinity.

Sinceg is an isometry and is an axis ofh, the pointsP(g,n) for nin N
are equally spaced alonigR). Therefore we may reformulate the condition for
membership itJ,, given at the end of the last paragraph as in the statemeng of th
lemma. O

The results in Lemn{a3.5, Lemnja]3.3 and Len]mé 3.6 imply thieviahg
dichotomy for contraction groups.

Lemma 3.7 (dichotomy for contraction groups)If X is a connected, locally
finite, metricCAT(0)-complex with finitely many isometry classes of cells then
we have the following dichotomy for contraction groups agsed to isometries

of X.

— Either the isometry is elliptic and its contraction grouptisvial,

— or the isometry is hyperbolic and its contraction group is get of isometries
whose fixed point set grows without bounds when one appreatshepelling
fixed point at infinity as described in Lemind 3.6.
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3.3 Geometric reformulation of the topological definitidragparabolic group

Using the compatibility result between the natural borgas in Lemml we
can also prove a geometric characterization for membeisipprabolic groups.
We again relax notation and denote the parabolic group efriconjugation witty
by Py.

Lemma 3.8 (geometric reformulation of ‘membership in a paraolic group’)
Let X be a connected, locally finite, metfidT (0)-complex. Suppose that h is a
hyperbolic isometry of X and leté be its repelling fixed point at infinity. Then
R, is the stabilizer of-€.

Proof Suppose first thag) is an element of,. Let o be a point ofX. By our
assumption oy and by Lemmd 31 there is a constatg, o) such that

d(h"gh™".0,0) =d(g.(h™".0),(h™".0)) < M(g,0) foralln€ N.

But the point—¢ is the limit of the sequendéh".0)ncy and thus by the definition
of points at infinity ofX we infer thatg fixes —¢&.

Conversely, assume thgtfixes the point—¢&. The above argument can be
reversed and then shows tligis contained irf,. ad

There is a dichotomy for parabolic groups that is analogoubke dichotomy
for contraction groups obtained in Lemina|3.7; the stateriseas follows.

Lemma 3.9 (dichotomy for parabolic groups)If X is a connected, locally finite,
metric CAT (0)-complex with finitely many isometry classes of cells thehave
the following dichotomy for parabolic groups associatedstmetries of X.

— Either the isometry is elliptic and its parabolic group istambient group,
— or the isometry is hyperbolic and its parabolic group is thebslizer of its
repelling fixed point at infinity.

Proof Applying Lemma 3.5 in[[2] in the case of parabolic groups witk- g
andd = e one sees that parabolic groups defined by topologicallyogiriele-
ments are equal to the ambient group; this settles the fisstipitity listed above.
By Lemma an isometry that is not elliptic must be hypdrbhahd then the
parabolic group has the claimed form by Lemjmé 3.8. 0

We conclude this section with the following remark.

Remark 3.10SupposeG is a topological groupg € Aut(G) andH is ag-stable
subgroup ofG. Then the contraction group @fin H is the intersection of the
contraction group of in Gwith H; an analogous statementis true for the parabolic
groups ofg within H andG. Thus the geometric characterizations of contraction
groups and parabolics given in Lemnjag 3.6 rjd 3.8 and thetdicties described

in Lemma[3.f anfi 39 also hold for subgroupsiat (X) for the specified spaces
X.



Contraction groups in complete Kac-Moody groups 9

4 Outline of the proof of the Main Theorem

We know from Lemmd 3|5 that contraction groups of topolofjjcgeriodic ele-
ments are trivial and hence closed. This proves statemdridr dain Theorem.

Under the additional condition on the type of the Weyl groipeq in state-
ment 2, we will show that for any non-topologically periogiementh say, ofG
the groupUp NU,-1 contains &G-conjugate of a root group from the natural root
datum forG.

4.1 The criterion implying non-closed contraction groups

Theorem 3.32 in|]2] gives 12 equivalent conditions for a caction group in a
metric totally disconnected, locally compact group to besel. By the equiv-
alence of conditions (1) and (4) from Theorem 3.32[jn [2] tiheug Uy, is not
closed if and only if the group, NU,,-1 is not trivial, hence the property whose
verification we announced in the previous paragraph confitadtement 2 of our
Main Theorem. The proof of this strengthening of statemeat Zheorem[1J1
proceeds in three steps.

1. Firstly, we show that any geodesic linesay, can be moved to a line= g.|
with image in the standard apartment by a suitable elegefithe completed
groupG. In what follows we will be interested only in the case whére line
| is an axis of a hyperbolic isomethyc G.

2. Secondly, we use the assumption on the type of the Weypgmshow that for
any geodesic lin€ in the standard apartment there is a triple of rqots3, y)
in “fundamental hyperbolic configuration” with respect tdy this we mean
thata, 3 andy are pairwise non-opposite pairwise disjoint roots, sueih e
two ends of” are contained in the respective interiorsooéndg.

3. Thirdly and finally, we use that every split or almost splitc-Moody group
has (uniformly) contractive root groups, a notion introeldién Subsectio@.Z
below, to arrive at the announced conclusion. More pregisieé geometric
criterion for membership in contraction groups is used tasthat whenever
K is a hyperbolic isometry i3, the linel’ is an axis oft’ contained in the
standard apartment and the fundamental hyperbolic coafigar(a, 3,y) is
chosen as mentioned in the previous item, then the root ddoyjs contained
in the groupUy NU, 1.

In terms of the originally chosen hyperbolic isomelrand the elemery of
G found in step 1 above, the conclusion arrived at after steptBatg—*U_,g C
UnNUp-1.

For our proof to work, we do not need to assume that our origjraup G
is the abstract Kac-Moody group over a finite field. Step 1 wkasthe group
is a completion of a group with a locally finite twin root datuStep 2 uses a
property of the corresponding Coxeter complex and Step 8w groups with
a locally finite twin root datum whose root groups are contva¢ca notion which
we introduce now.
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4.2 Contractive root groups

As explained above, the following condition will play a ceaitole in the proof of
our Main Theorem. In the formulation of that condition, wendee the boundary
wall of the half-apartment defined by a ranty da, as is customary.

Definition 4.1 Let G be a group with twin root daturfUy )gco. We say thaG
hascontractive root groups if and only if for all o in @ we have: Ifx is a point
in the half-apartment defined lay, then the radius of the ball arouxdwvhich is
fixed pointwise byJ, goes to infinity as the distance wto da goes to infinity.

The natural system of root groups of any split or almost gfdit-Moody
group satisfies a stronger, uniform version of the condibbrtontractive root
groups, which we introduce now. This latter condition wakeckcondition (FPRS)
in [F], where it was shown in Proposition 4 that any split amaét split Kac-
Moody group satisfies it.

Definition 4.2 LetG be a group with twin root datufy ) g . We say thaG has
uniformly contractive root groups if and only if for each poink in the standard
apartment of the positive building defined by the given raiuch and all rootsr
in @ whose corresponding half-apartment contairthe radius of the ball which
is fixed pointwise byJ, goes to infinity as the distance 8tr to x goes to infinity.

Remark 4.3By Lemma[3.p, for a group3 say, with twin root datun{Uy ) ac o,
which has contractive root groups, for any r@othe root grougJ, is contained
in the contraction group of any elemanof G whose repelling point at infinity is
defined by a geodesic ray contained in the interior of the-&adfrtment defined
by a. The latter condition will be instrumental in showing ourimeheorem.

Abramenko and Muhlherr constructed an example of a grouip twin root
datum that does not have uniformly contractive root grotjmsvever, in that ex-
ample the effect of fixed point sets staying bounded is obthby going towards
infinity along a non-periodic path of chambers. Therefdris,mot possible to find
an automorphism of the building that translates in the timacf that path.

In discussions between the authors and Bernhard Muhlleaskerted that
a bound on the nilpotency degree of subgroups of the group twiih root da-
tum would imply that fixed point sets always grow without bdsralong periodic
paths.

Remark 4.41t would be interesting to define and investigate quantiéatersions

of the notions of contractive and uniformly contractive trgwoups for groups
with locally finite twin root datum. These quantitative vierss would specify the
growth of the radius of the ball fixed by a root group as a fuorctif the distance of
the center of that ball from the boundary hyperplane. Weestighat this growth

might be linear in all situations if and only if all contraati groups of elements in
the geometric completion of a group with locally finite twoot datum are closed.

5 Proof of the Main Theorem

We will prove the following generalization of our Main Theon.
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Theorem 5.1 (strong version of the Main Theorem)Let G be a group with a
locally finite twin root datum ané the closure of the image of G in the automor-
phism group of its positive building. Then the following aree:

1. The contraction group of any topologically periodic etminG is trivial.

2. If the root groups of G are contractive and the type of G ieducible and
neither spherical nor affine then the contraction group of afement that is
not topologically periodic irG is not closed.

Furthermore every element of infinite order in the Weyl grotifs lifts to a non-
topologically periodic element @; in particular, if the Weyl group of G is not of
spherical type, then the group contains non-topologically periodic elements.

The proof of this theorem will be obtained from several seraksults as out-
lined in Subsectiofi 4.1 above. By Leming 3.5, we only needdeepstatement 2
and the existence statement for non-topologically peciettments.

The first step towards the proof of statement 2 of ThesSpIdvided by
the following proposition.

Proposition 5.2 (geodesic lines can be moved to the standaaghartment) Let

G a group with locally finite twin root datum. Denote Bythe geometric com-

pletion of G defined by the given root datum, by X the Davisization of the

corresponding positive building and lythe corresponding standard apartment.
If | is a geodesic line in X, then there is an element @isuch that d (R) is

contained inA| and intersects the fundamental chamber.

Proof Since the groufs acts transitively on chambers, there is an elergeint G
such thaty'.I (R) intersects the fundamental chamlogre A. We therefore may,
and will, assume thd{R) intersectxy from the outset.

Whenevel leavesA, necessarily at a wall, use elements of the correspond-
ing root groupU, which fixescy to ‘fold | into A’ . This needs to be done at
increasing distance fromy alongl ‘on both sides’, leading to an infinite product
of elements from root groups. The sequence consisting gbahtal products of
that infinite product is contained in the stabilizeragf which is a compact set.
Hence that sequence has a convergent subsequence, whidsithat the infinite
product defined above is convergent, with ligisay. By constructiong attains
the purpose of the element of the same name in the stateméra pfoposition
and we are done. O

The second step in the proof of statment 2 of Theoferh 5.1 snef the
following strengthening of Theorem 14 i} [5].

Theorem 5.3 (a “fundamental hyperbolic configuration” exigs w.r.t. any line)
Let A be a Coxeter complex, whose type is irreducible and neitbleerical nor
affine. Suppose that R — |A| is a geodesic line. Then there is a triple of roots
(a,B,y) which are pairwise disjoint and pairwise non-opposite stiwit for suit-
ably chosen real numbers a and b the rafjsH «, a]) and I([b, »[) are contained

in the interior of the half-apartments defined &syand 8 respectively.

Proof The linel (R) must cut some wall af, H say. One of the two roots whose
boundary isH contains the ray(] — «,a)) for sufficiently smalla; we name that
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root a. Since the Coxeter complex is not of spherical type, thesmather wall
H’ which cutsl, but notH. Call 8 the root whose boundary id’ and which
contains the ray([b, «[) for sufficiently largeb. The existence of a rogtas in the
statement is then assured by Theorem 14]in [5], which complée proof. O

The third and final step in the proof of statment 2 of Theofethi§.an im-
mediate consequence of our assumption that root groupsoateactive and the
geometric criterion for membership in contraction groups.

Lemma 5.4 (non-triviality of intersection of opposite contaction groups) Let

G be a group which contains the root groups of a group with twot datum all of
whose root groups are contractive. Assume that® is not topologically periodic
and let | be an axis of h. If is a root whose position relative to | is as described
in the previous lemma, thenl) C U,NU,-1. Hence, | is not closed.

Proof Since the root group)_y is contractive, Lemmé 3.6 ensures that it is con-
tained in any contraction grougy with the property that the repelling fixed point
of k at infinity is defined by a ray that is contained in the inteérthe half-
apartment defined by y. Bothh andh~? satisfy this condition ok, hencel_, C
UnNU,-1 as claimed. Sincl_y, is not trivial, we infer from Theorem 3.32 i [2]
thatUy, is not closed. O

The following lemma provides the final statement of Theofefreiid thereby
concludes the proof of that theorem.

Lemma 5.5 (existence of non-topologically periodic elemés) Let G be a group
with a locally finite twin root datum ané the closure of the image of G in the
automorphism group of its positive building. Then everyraet of infinite order
in the Weyl group of G lifts to a non-topologically periodiement ofG; in par-
ticular, if the Weyl group of G is not of spherical type, thée groupG contains
non-topologically periodic elements.

Proof Since a Coxeter group is torsion if and only if it is of sphatitype, the
second claim follows from the first. In what follows, we wih@w that the lift of
an elementv in the Weyl group is topologically periodic if and onlyif has finite
order.

By Lemm, an elemem,say, ofG is topologically periodic if and only
if its action on the buildingX, has a fixed point. If that elementis obtained as
an inverse image of an elementsay, of the Weyl group, it belongs to the stabi-
lizer of the standard apartmeht Since the Davis-realizatigr\| of the standard
apartment is a complete, convex subspace of the comphei€0)-spaceX, using
the nearest-point projection froxd onto |A|, we see that the action of on X
has a fixed point if and only if its restricted action i has a fixed point. The
latter condition is equivalent to the condition that theunat action ofw on |A|
has a fixed point. Since this happens if and onhy iias finite order, our claim is
proved. O

6 The case of a disconnected Dynkin diagram

The following two results may be used to reduce the determinaf contraction
groups for elements in arbitrary complete Kac-Moody gragpbe determination
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of the contraction groups in the factors defined by the ircédula components.
Their proofs are left to the reader.

Lemma 6.1 (product decomposition for root data with disconmected diagram)
Let G be a group with a locally finite twin root datum such tha type of G is the
product of irreducible factors whose restricted root datfide groups @ . .. G,.
Denote by Hthe quotient of a group H by its center. Then

GGy x - xG, and G~Gix---xGp.
as abstract, respectively topological, groups. a

Lemma 6.2 (contraction groups of elements in Eroductsuetél, ...,Gp be lo-
cally compact groups an@s,...,d1) € G1 X ... x Gp. Then

O

We conjecture that the contraction groups for elements inraptete Kac-
Moody group of spherical or affine type are always closed pBttng evidence
for that conjecture is provided by the following propositio

Proposition 6.3 (contraction groups for spherical and know affine types)Let
G be a totally disconnected, locally compact group. If

1. eitherG is the geometric completion of an abstract Kac-Moody gofigpher-
ical type over a finite field,
2. orG is atopological subgroup of the general linear group ovdoeal field,

then all contraction groups of elements@are closed.

Proof To show statemelﬂ 1, observe that an abstract Kac-Moodygrbspher-
ical type over a finite field is a finite group. The associatemhgiete groupG,
is then finite too and hence is a discrete group, becausepitdoigy is Hausdorff.
Contraction groups in a discrete group are trivial, andlibfes that all contraction
groups of all elements i@ are closed ifG is of spherical type.

As noted in Remark 3.].0, we obtain the contraction group oélamenth
with respect to a (topological) subgroug,by intersecting the contraction group
relative to the ambient group witH.

Thus to establish statemefjt 2 it is enough to treat the dpeas of the
general linear group over a local fielkl,say. Using the same observation again
and noting that GL(k) can be realized as a closed subgroup of,Slk) via
g +— diag(g,detg) 1), it suffices to prove statemefjt 2 in the special case of the
group Sla(k), wherek is a local field. But contraction groups of elements in
SLn(k) have been shown to lierational points of unipotent radicals lefparabolic
subgroups in[[12, Lemma 2] as explained in Example 3.13(ifj]iras such they
are Zariski-closed and hence closed in the Hausdorff-tapoinduced by the field
k. This proves statemeﬂt 2 for the group,8t), and, by the previous reductions,
in all cases. a

There are complete Kac-Moody groups of affine type for whiés inknown
whether the criterion listed under itefh 2 of Propositjor] 628 be applied. For
example, the complete Kac-Moody groups defined by the gknedaCartan-

matrices< _21 rg) with integralm < —4 are of that kind.
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