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Convergence of Harder-Narasimhan polygons

Huayi CHEN*

June 18, 2007

Abstract

We establish in this article convergence results of normalized Harder-Narasimhan
polygons both in geometric and in arithmetic frameworks by introducing the Harder-
Narasimhan filtration indexed by R and the associated Borel probability measure.

1 Introduction

Let X be a projective variety of dimension > 1 over a field k£ and L be an ample line bundle
on X. The Hilbert-Samuel theorem describing the asymptotic behaviour of rk H°(X, L®P)
(D — o0) is an important result in commutative algebra and in algebraic geometry, which is
largely studied since Hilbert’s article [Hil90]. Although numerous variants and generalizations
of this theorem have been developed, many proofs have a common feature — the technic
of unscrewing (“dévissage” in French). Let us recall a variant of Hilbert-Samuel theorem in
relative geometric framework. Suppose that & is a field and C' is a non-singular projective curve
over Spec k. We denote by K = k(C') the field of rational functions on C. Let 7 : X — C be
a projective and flat k-morphism and L be an invertible O x-module which is ample relatively
to m. We denote by d the relative dimension of X over C'. The Riemann-Roch theorem implies

that

c1 d+1 1

Combining with the classical Hilbert-Samuel theorem

deg(m. (L2P)) =

L d
rk(m, (L®P)) = 1k HO (X, LEP) = Cl(TK)Dd +0(D4 ),

we obtain the asymptotic formula

o (LBP)) ()t
Dlgnoo D T d+ D (Lg)? (1)

where the slope p of a non-zero locally free Oc-module of finite type (in other words, non-zero
vector bundle on (') is by definition the quotient of its degree by its rank. For a non-zero vector
bundle E on C, there exists invariant which is much shaper than the slope. Namely, Harder and
Narasimhan have proved in [HN75] that there exists a non-zero subbundle Eq.s whose slope
is maximal among the slopes of non-zero subbundles of F and which contains all non-zero
subbundles of F having the maximal slope. The slope of Eqes is denoted by pimax(E), called
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the mazimal slope of E. We say that E is semistable if and only if £ = Fg4es, or equivalently
W(E) = pimax(E). By induction we obtain a sequence

O=ECEICEC - CE,=FE

of saturated subbundles of E such that (E;/E;—1) = (E/E;_1)des for any 1 < i < n. This
sequence is called the Harder-Narasimhan flag of E. Clearly each sub-quotient E;/F;_
is semistable and we have u(Ey/Eo) > w(Es/Eq1) > -+ > u(E,/FEn_1). The last slope
w(E,/E,_1) is called the minimal slope of E, denoted by pimin(E). Note that the Harder-
Narasimhan flag of E; is just 0 = Ey C Eq C --- C E; and therefore pmin(E;) = p(Ei/Ei—1).
Recall that the Harder-Narasimhan polygon of E is by definition the concave function Py
on the interval [0,rk E] whose graph is the convex hull of points (rk F, deg(F')), where F' runs
over all subbundles of E. Therefore, the function Pp, takes zero value at origin; it is piecewise
linear and its slope on the interval [tk F;_1,tk E;] is u(E;/E;—1). Let Pgr be the function
defined on [0, 1] whose graph is similar to that of Pg, namely Pp(t) = Pg(trk E)/ 1k E, called
the normalized Harder-Narasimhan polygon of E. Notice that Pg(1) = u(E). Therefore (1)

can be reformulated as P ) .
g L
fm Fmeen®) _a@® @)
D=0 D (d+1)er(Lg)?

It is then quite natural to study the convergence at other points in [0, 1]. Here the major diffi-
culty is that, unlike the degree function ]BE(l) rk E, for other points r €]0,rk E[, the function
E — Pg (r)rk E need not be additive with respect to short exact sequences. Therefore the
unscrewing technic doesn’t work.

The original idea of this article is to use Borel probability measures on R to study Harder-
Narasimhan polygons. In Figure 1, the left graph presents the first order derivative of the

Figure 1: Derivative of the polygon and the corresponding distribution function
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normalized Harder-Narasimhan polygon of E, where y;, = p(E;/F;—1) for 1 < ¢ < n and



t; = tkE;/tkE for 0 < ¢ < n. It is a step function on [0,1]. The right graph presents

a decreasing step function on R valued in [0, 1] whose quasi-inverse corresponds to the left

graph. Furthermore, this function is the difference between the constant function 1 and a

probability distribution function and therefore corresponds to a Borel probability measure
n

Vg = Z(tZ —t;—1)d,,, where J, is the Dirac measure at the point z. If we place suitably the
i=1

subbundles in the Harder-Narasimhan flag of E on the right graph, we obtain a decreasing

R-filtration of the vector bundle F, which induces naturally by restricting to the generic fiber

a decreasing R-filtration FHN of the vector space Ex, called the Harder-Narasimhan filtration

of Ex. As we shall show later, the filtration FHN can be calculated explicitly from the vector

bundle E, namely
FiNEx = Y Fk.

0#£FCE
Homin (F)>T

From this filtration, one can recover easily the probability measure

1 HN . HN
VE = - Fr ze]:R (rk(]—‘r Ex) — E£%1+ rk(]:TJFEEK))(ST.

Furthermore, the function presented in the right graph is just 7 + rk(FINE). By passing to
quasi-inverse (turning over the graph), we retrieve the first order derivative of the normalized
Harder-Narasimhan polygon. This procedure is quite general and it works for an arbitrary
(suitably) filtered finite dimensional vector space, where the word “suitably” means that the
filtration is separated, exhaustive and left continuous, which we shall explain later in this
article. Actually, we have natural mappings

(suitably) filtered finite Borel probability measures polygones
{dimensional vector s aces} on R which are linear com- {on [0,1] }’
p binations of Dirac measures ’
1% — vy L Py

the last mapping being a bijection. If a probability measure v corresponds to the polygon P,
then we can verify that, for any real number € > 0, the probability measure corresponding to
eP is the direct image T.v of v by the dilation mapping = — ez.

Let us go back to the convergence of polygons. To verify that a sequence of polygons
converges uniformly, it suffice to prove that the corresponding sequence of measures converges
vaguely to a probability measure. We state the main theorem of this article.

Theorem 1.1 Let f : Z>o — Rx>¢ be a function such that hIJIrl f(n)/n = 0 and B =
- - n—-+0o0
@nZO By, be an integral graded K -algebra of finite type over K. Suppose that
i) for sufficiently large integer n, the vector space B, # 0,

it) for any positive integer n, B, is equipped with an R-filtration F which is separated, ex-
haustive and left continuous, such that B is an f-quasi-filtered graded K -algebra,

iii) sup (supp uBn) = O(n).

For any integer n > 0, denote by v, = T1vp,. Then the supports of v, are uniformly bounded
and the sequence of measures (Vn)n>1 converges vaguely to a Borel probability measure on R.
Therefore, the sequence of polygons (%PBH) converges uniformly to a concave function on [0, 1].



1
To apply the above theorem to the convergence of (BP”*( L®D)) , we point out that the
D>1

graded algebra @ -, H*(X K, LZP), equipped with Harder-Narasimhan filtrations, verifies
the conditions in Theorem 1.1 for a suitable constant function f. The verification of this
fact is easy. However, the proof of the theorem requires quite subtle technical arguments on
almost super-additive sequences and on combinatorics of monomials, which will be presented
in Section 3 and in Section 5 respectively. The idea is to prove that the sequence of measures
(Un)n>1 is “vaguely super-additive”, and then apply a variant of Fekete’s lemma to conclude
the vague convergence.
We are now able to state our geometric convergence theorem.

1
Theorem 1.2 With the notations above, the sequence of polygons (BPW*(L®D)) converges
D>1

uniformly to a concave function on [0, 1].

The analogue of the formula (1) in Arakelov geometry was firstly proved by Gillet and
Soulé [GS92], using their arithmetic Riemann-Roch theorem. Since then, this subject has been
rediscussed by many authors such as Abbes and Bouche [AB95], Zhang [Zha95], Rumely, Lau
and Varley [RLV00] and Randriambololona [Ran06].

Let K be a number field and O be its algebraic integer ring. We denote by ., the
set of all embedding of K in C. If 2 is a projective arithmetic variety (i.e. scheme of
finite type, projective and flat) over Spec O, we call Hermitian vector bundle on Z any pair
E = (&,(]| - llo)oes.. ), where & is a locally free Og--module of finit type, and || - ||, is a
continuous Hermitian metric on &,(C) such that the collection (|| - ||o)oex., is invariant under
the action of the complex conjugation. We call Hermitian line bundle on £ any Hermitian
vector bundle .Z on 2 such that .Z is of rank one. Notice that a Hermitian vector bundle on
Spec Ok is nothing but the pair E = (F, (|| - ||o)ses.. ), where E is a projective Og-module
of finite type, and || - ||» is a Hermitian metric on E, := E Qo » C such that the collection
(Il )oes.. is invariant by the complex conjugation. If E is a Hermitian vector bundle of rank
r on Spec Ok, we define its (normalized) Arakelov degree to be

—_— 1 1
E)i= o (log #(E D - S ).
deg, (E) K : Q] og#(E/(Oks1+ -+ Oks,)) 2 2 og det((si, 5;),)
where (s1,-+-,8-) € E" is an arbitrary element in E” which defines a base of Ex over K

(see [Bos96], [Bos01], [CL02], [Bos04] and [BKO07] for details). This is an analogue in Arakelov
geometry of the classical notion of degree of a vector bundle on a smooth projective curve.
Recall that the slope of a non-zero Hermitian vector bundle F on Spec O is by definition

the quotient fi(E) := d/eTgn (E)/ rk(E). We denote by [imax(E) the maximal value of slopes of
non-zero Hermitian subbundle of E, and by [imin(F) the minimal value of slopes of non-zero
Hermitian quotient bundle of E. Stuhler [Stu76] and Grayson [Gra76] have proved that there

exists a non-zero Hermitian subbundle Eges of E such that [i(Eges) = fimax(F) and that Eges
contains all Hermitian subbundle of E having the maximal slope. We obtain therefore a flag

0=ECECEC - CE,=E
of E such that E;/E;_1 = (E/FE;_1)des for any integer 1 < i < n, and that
fimax(E) = i(E1/Eo) > [i(B2/Ev) > -+ > i(En/Ep—1) = fimin(E).

The Harder-Narasimhan polygon of E is by definition the concave function ]SE defined on
[0,k E] whose graph is the convex hull of points of the form (rk F, deg,, (F')), where F runs over



all non-zero sub-Ok-modules of E equipped with induced metrics. The normalized Harder-
Narasimhan polygon of E is the concave function Py defined on [0,1] such that Py(t) =

]Sf(t tk E)/tk E. Notice that we have Pg(1) = ji(E). The measure theory approach in ge-
ometric case works without any modification in arithmetic case. Namely, to any non-zero
Hermitian vector bundle E on Spec O, we associate a decreasing filtration FHN of Fg, called
the Harder-Narasimhan filtration, such that

FNEx = > Fk.
0#FCE
fimin (F)2>r

This filtration induces a Borel probability measure v on R such that v5([r, +oc[) = tk(F/'™NEk)/ 1k E.
Finally the normalized Harder-Narasimhan polygon Py is uniquely determined by v4.
Using Theorem 1.1, we obtain the following arithmetic convergence theorem.

Theorem 1.3 Let 7 : 2 — Spec O be a projective arithmetic variety and £ be a Hermitian
line bundle on &~ such that the graded algebra @Dzo HO(%K,XIQ?D) s of finite type over K,

and that HO(%K,ZED) # 0 for D > 0. Then the sequence of polygons (%P7r (§®D))D21

converges uniformly to a concave function on [0, 1].

Contrary to the geometric case, the verification of the fact that the algebra @~ H°( 2k, XI‘?D)
equipped with Harder-Narasimhan filtrations is an f-quasi-filtered graded algebra for a func-
tion f of logarithmic increasing speed at infinity is subtle, which depends on the author’s
recent work [Che07b] on an upper bound of the maximal slope of the tensor product of several
Hermitian vector bundles.

The article is organized as follows. In the second section, we introduce the notion of R-
filtrations of a vector space over a field and its various properties. We also explain how to
associate to each filtered vector space of finite rank a Borel measure on R, which is a proba-
bility measure if the vector space is non-zero. The third section is devoted to a generalization
of Fekete’s lemma on sub-additive sequences, which is useful in sequel. We present the main
object of this article — quasi-filtered graded algebras in the fourth section. Then in the fifth
section we establish the vague convergence of measures associated to a quasi-filtered symmetric
algebra. In the sixth section we explain how to construct the polygon associated to a Borel
probability measure which is a linear combination of Dirac measures. We show that the vague
convergence of probability measures implies the uniform convergence of associated polygons.
Combining the results obtained in previous sections, we establish in the seventh section the
uniform convergence of polygons associated to a general quasi-filtered graded algebra. In the
eighth and the ninth sections we apply the general result in the seventh section to relative
geometric framework and to Arakelov geometric framework respectively to obtain the corre-
sponding convergence of Harder-Narasimhan polygons. Finally in the tenth section, we propose
another approach, inspired by Faltings and Wiistholz [FW94], to calculate explicitly the limit of
the polygons. We conclude by providing an explicit example where the limit of the polygons is
a non-trivial quadratic curve on [0, 1]. In the appendix, we develop a variant of f-quasi-filtered
graded algebra — f-pseudo-filtered graded algebra, where we require less algebraic conditions.
With a stronger condition on the increment of f, we also obtain the convergence of polygons.
Although this approach has not been used in this article, it may have applications elsewhere
and therefore we include it as well.

Acknowledgement. The results presented in this article is part of the author’s doctoral
thesis supervised by J.-B. Bost. The author would like to thank him for having proposed the



author to study the convergence of Harder-Narasimhan polygons, for his encouragement and
for discussions.

2 Filtrations of vector spaces

We present some basic definition and properties of filtrations of vector spaces. Although
the notion of filtrations in a general category has been discussed in [Che07al, we would like to
introduce it in an explicit way for the particular case of vector spaces.

We fix in this section a field K. A (decreasing) R-filtration of a vector space V is by
definition a collection F = (F(r))rer of K-vector subspaces of V' such that F(r) D F(r') if
r < r’. We shall use the expression F,.V to denote F(r), or simply V, if there is no ambiguity
on the filtration F. An R-filtration F is said to be separated if Vo : = ﬂ V. = {0}, and to

reR
be exhaustive if V_, : = U V. =V.

reR
Let V be a vector space over K, F be an R-filtration of V. For any element = € V', we

call indez of x relatively to F the element sup{r € R |z € F,.V} in RU {£o0} (by convention
sup ) = —o0), denoted by Ax(z), or simply A(z) if there is no ambiguity on F. The mapping
Ar: V= RU{zoo} is called the index function of F.

Let 2 be an element in V. The set {r € R | z € F.V} is non-empty if and only if
A(z) > —oo. In this case, it is either of the form | — 0o, A(x)[ or of the form ] — oo, A(x)]. The
following properties of the function A\ are easy to verify:

1) Az) = +o0 if and ounly if x € Vi,
2) Mz)=—ocifand only if z € V \ V_,
3) A(z) > rif and only if x € U Vs,

s>r

4) Mz) > rif and only if z € ﬂ Vs.
s<r
We say that an R-filtration F of V is left continuous if and only if for any r € R, F,.V =
Ns<p FsV. If F is an arbitrary filtration of V, then the filtration 7! = ((,_, FsV)rer is a left
continuous filtration of V.

For any element z € V and any r € RU {+o0}, the fact that x € F,.V implies A(z) > 7.
The converse is true when F is left continuous.

Proposition 2.1 Let V be a vector space over K and F be a filtration of V. The following
assertions hold:

1) ifae K* and if x € V, then A az) = A(x),
2) if © and y are two elements of V, then Az + y) > min(A(z), A(y)),

3) if  and y are two elements of V' such that A(x) # Ny), then x +y # 0, and Mz +y) =
min(A(z), A(y)),

4) if the rank of V' is finite, then the image of X is a finite subset of RU{+00} whose cardinal
is bounded from above by tkx V + 1.



Proof. 1) Forany a € K*, z € F.V ifand only if ax € F,.V. So {re R |z e F.V}={r e
R | ax € F,V'}, which implies that A(z) = A(ax).

2) In fact, {t |z +y e FV}ID{r|xe FVin{s|ye FV}. Therefore sup{t |z +y €
FiV} > min(sup{r | x € F,.V},sup{s |y € FsV}).

3) If x +y =0, then x = —y. So A(z) = A(y) by 1), which leads to a contradiction. Hence
x +y # 0. We may suppose that A(x) < A(y). For any r €]A(x), A(y)[, we have y € F,.V but
x & F.V. Therefore x +y ¢ F,.V, in other words, A\(x +y) < r. Since r is arbitrary, we obtain
Mz +y) < A(z). Combining with 2), we get the equality.

4) Suppose that 1, - ,z, are non-zero elements in V such that A(z1) < Alz2) < -+ <
Axy) < +00. After 1) and 3), for any (a;)1<i<n € K™\ {0},

Marzy + -+ + anxy) = min{A(z;) | a; # 0} < 400,

which implies that ajzy + - - - + apxy, # 0. Therefore, x1,--- , x, are linearly independent. So
n<rkgV. O

Using the index function A, we give some numerical characterizations for filtrations of vector
spaces.

Proposition 2.2 Let V be a vector space over K equipped with an R-filtration F. Then
1) the filtration F is separated if and only if for any x € V '\ {0}, A(z) < +o0,
2) the filtration F is exhaustive if and only if for any x € V, A(z) > —o0.

Proof. 1) If the filtration is separated, then for any non-zero element x of V', there exists
r € R such that z € F,.V, so A(z) < r. Conversely for any non-zero element 2 € V such that
Ax) < 400, if A(z) € R, then & € Fy(z)41V, otherwise A(z) = —oo and by definition = ¢ F,.V/
for every r € R.

2) If the filtration is exhaustive, then for any element x of V, there exists » € R such that
x € F,V. Hence A(z) > r. Conversely for any element € V' such that A(x) > —oo, either we
have A(x) € R, and therefore x € F)(;)_1V, or we have A(x) = +o0 and z € F,.V for every
reR. a

Proposition 2.3 Let V be a vector space over K and F be a filtration of V.
1) For any element x of V, we have Ar(x) = Ari(x).
2) If F is separated (resp. exhaustive), then also is F'.

Proof. 1) Since F,.V C FLV, we have Ax(z) < Az (x). On the other hand, if x € FLV, then
for any s < r, we have z € F5V, so Ag(z) > r. Hence Ag(z) > Ami(2).
2) It’s an easy consequence of 1) and Proposition 2.2. O

Consider now two vector spaces V and W over K. Let F be an R-filtration of V and G
be an R-filtration of W. We say that a linear mapping f : V — W is compatible with the
filtrations (F,G) if for any r € R, f(F, V) C G, W.

We introduce some functorial construction of filtrations. Let f : V' — W be a K-linear
mapping of vector spaces over K. If G is an R-filtration of W, then the inverse image of G
by f is by definition the filtration f*G of V such that (f*G),V = f~1(G,W). Clearly, if G is
left continuous, then also is f*G. If F is an R-filtration of V', the weak direct image of F by



f is by definition the filtration f,F of W such that (f,F),.W = f(F,.V), and the strong direct
image of F by f is by definition the filtration f.F = (f,F)!. Clearly the homomorphism f is
compatible to filtrations (f*G, G), (F, f,F) and (F, f.F).

Proposition 2.4 If a K-linear mapping f : V. — W is compatible with the filtrations (F,G),
then for any x € V', one has A(f(x)) > A(z). The converse is true if G is left continuous.

Proof. “=": By definition we know that {r e R |z € F,V} C {r e R| f(z) € G, W} for
any x € V, therefore A(z) < A(f(z)).

“=": For any r € R and any « € F,.V, we have A\(z) > r, and hence A(f(x)) > 7.
Therefore, f(x) € G.W since the filtration G is left continuous. O

Proposition 2.5 Let f : V' — V be an injective homomorphism and @ : V. — V" be a
surjective homomorphism of vector spaces over K. Suppose that F is an R-filtration of V.
Then:

1) if F is separated, also is f*F;
2) if F is separated and if the rank of V' is finite, the filtration m,F is also separated;
3) if F is ezhaustive, the filtrations f*F, mF and m.F are all exhaustive.

Proof. 1) As F is separated, ﬂ F-V ={0}. Since f is injectif, we have

reR
NG AV = (1 FEV) =1 () FEV) = 70 = {0},
reR reR reR

Therefore f*F is also separated.
2) If rk E < 400, then Ax takes only a finite number of values. Let rqg = sup (AF(E) \

{:l:oo}) < +00. For any real number r > ¢ and any x € F.V we have A\zg(z) > 7 > ro,

s0o Ar(z) = +oo, i.e.,, & = 0 since the filtration F is separated. Therefore, F.V = 0 and
(myF) V" =7(F.V)=0.
3) Since the filtration F is exhaustive, we have U F,.V = V. Therefore,
reR

UuraHwv =Jv nry) =vn(Jxv)=vav=v,

reR reR reR
Uma),v" = JrEwv)==(|J£EV) =r(v) = V"
reR reR reR

So the filtrations f*F and m,F are exhaustive. Finally, after Proposition 2.3 2), m,F = (m,F)
is exhaustive. a

The following proposition gives index description of functorial constructions of filtrations.

Proposition 2.6 Let V and W be two finite dimensional vector spaces over K, F be an R-
filtration of V', G be an R-filtration of W and ¢ : V. — W be a K-linear mapping.

1) Suppose that ¢ is injective. If F = p*G, then for any x € V, one has Ar(z) = Ag(p(x)).
The converse is true if both filtrations F and G are left continuous.



2) Suppose that ¢ is surjective. If G = @, F, then for any y € W, Ag(y) = sup Ax(x).
z€p~1H(y)
The converse is true if both filtrations F and G are left continuous.

Proof. 1) “=": Since F = ¢*G, a non-zero element x € V lies in V, if and only if p(x) € W,
hence A(z) =sup{r e R |z € W,.} =sup{r e R | p(z) € V;.} = A¢(2)).

“=": If x € V,, then A(p(z)) > A(z) > r. So p(x) € W, since the filtration G is left
continuous. On the other hand, if 0 # z € ¢~ 1(W,), then A(x) = A(¢(z)) > 7, so z € V, since
the filtration F of V is left continuous. Therefore V. = ¢~ 1(W,.).

2) “=": If © € V,, then ¢(x) € W,, so A(ep(x)) > A(z). Hence for any y € W\ {0},
Ay) > sup A(x). On the other hand, y € W, implies that Vi, N~ (y) # 0 for any s < 7.

z€e~1(y)
Therefore r < sup A(z), and hence A\(y) =sup{r e R |y € W,.} < sup A(z).
z€P~1(y) zep~(y)
“«<=”: For any non-zero element y of W, if y € W, then A(y) > r, so sup A(z) >r.

zee~1(y)
Therefore, for any s < r, there exists x € p~1(y) such that A\(z) > s. Since the filtration F is
left continuous, we have x € V. This implies y € ﬂ o(Vs).

s<r
On the other hand, if y is a non-zero element in ¢(Vs), then there exists x € V5 such that

y = p(x). So A(y) > A(z) > s. This implies that y € W since the filtration G is left continu-
ous. Therefore, ﬂ e(Vs) C ﬂ W, = W,. O
s<r s<r

In the following, we use Borel measures on R to study R-filtrations of vector spaces. For any
finite dimensional vector space over K, equipped with a separated and exhaustive filtration,
we shall associate a Borel probability measure on R to each base of the vector space, which
is a linear combination of Dirac measures. Furthermore, there exists a “maximal base” whose
associated measure captures full “numerical” information of the filtration. This technic will
play an import role in the sequel.

If v1 and vy are two bounded Borel measures on R, we say that 4 is on the right of vo and
we write 11 = Vo or vy < v if for any increasing and bounded function f, we have

/R fduy > /R fdws,

which is also equivalent to say that for any r € R, / Ly oopdrn > / Ljp oo drva. We say
R R
that 14 is strictly on the right of vo if 11 = vy but vo # 1.

Definition 2.7 Let V be a vector space of rank 0 < n < 400 over K, equipped with a
separated and exhaustive filtration F. If e = (e;)1<i<n is a base of V, we define a Borel

probability measure on R
1 n
VFe =~ 2(&(@),
=

called the probability associated to F relatively to e. If there is no ambiguity on the filtration,
we write also ve instead of vr . Notice that Proposition 2.3 implies that vre = vz .. We
say that a base e of V is mazximal if for any base € of V, we have ve = ve. Clearly a base e
is maximal for the filtration F if and only if it is maximal for the filtration F'.

Proposition 2.8 Suppose that the filtration F of V is left continuous. Then a base e =
(€i)1<i<n of V is mazimal if and only if card(e N'V,.) = rkV, for any real number r.



Proof. “=": Since e is a base of V| we have card(e NV,.) < rkV, for any r € R. Suppose
that there exists a real number r such that card(e N V,) < rkV,. Let V; be the sub-vector
space of V;. generated by e NV,.. We have clearly rk V! < rk V;.. Hence there exists ¢’ € V. \ V.
Since e is a base of V', there exists (a;)1<i<n € K" such that ¢/ = a1e1+---+ane,. Ase’ €V/,
there exists an integer 1 < ¢ < n such that e; € V,. and that a; # 0. Therefore

/ !
e = (61,"' y€i—1,€, €441, " ,€n)

is a base of V. Furthermore, as e; ¢ V,., we have \(e;) < r since the filtration is left continuous.
On the other hand, since ¢’ € V;., we have A(e’) > r. Let g be an increasing function such that
g(A(e;)) < g(A(€’)). Then we have

[ adver = [ adve = 1 (a0 — 9xe)) >0,

which is absurd since e is maximal.

“<=": For any real number r and any base €’ of V, we have card(e'NV,.) = n / Ly 4o dVer -
R

Hence for any real number r, we have / Ty 4oo[dver < / 1}, 4oo[dve. Therefore, ver < ve.
R R
O

Proposition 2.9 For any base € = (e1,--- ,e,)T of V, there exists an upper triangulated
matric A € My yn(K) with diag(A) = (1,---,1) such that Ae is a mazimal base of V.

Proof. We may suppose that the filtration F is left continuous: it suffices to replace it by F.
We shall prove the proposition by induction on the rank n of V. If n = 1, then

‘/T _ Va T S )\(el)a
r > Ae1).

Hence card(V; N {e1}) = rk V,. In other words, e is already a maximal base.

Suppose that n > 1. Let W be the quotient space V/Ke,, equipped with the strong direct
image filtration. Then € = ([e1],- - , [en—1])T is a base of W, where [e;] is the canonical image
of e; in W (1 <i <n—1). By the hypothesis of induction, there exists Ac Mn—1)x (n—1)(K)
with diag(A) = (1,---,1) such that @ = (a1, ,m_1) := A6 is a maximal base.

Let m : V. — W be the canonical projection. For any 1 <i < n — 1, choose ¢; € 77 ()

such that A(e}) = m%)g : A(z). This is always possible since the function A takes only a finite
xem (o4

number of values. Let € = (e},--- ,el,_1,e,)T. Notice that € can be written as Ae, where

A«
A =
(2 1)
is an upper triangulated matrix with diagonal diag(A4) = (1,---,1). Since @ is a maximal
base, card(W,.N @) = rk W, for any r € R. In addition, €} € V;. implies that a; = m(e}) € W,.
Hence
tk W, > rkn(V,) =rkV,, en & Vr,

card(e' NV,) >
tkW, +1>rkn(V,)+1=rkV,, e, €V,.

So we always have card(V, Ne’) = rkV,, and hence €’ is a maximal base. a
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Proposition 2.9 can also be proved in the following way: the set X of complete flags of
V is equipped with a transitive action of GL,,(K) and identifies with the homogeneous space
GL,(K)/B, where B is the subgroup of upper triangulated matrices. The proposition is then
a consequence of Bruhat’s decomposition for invertible matrices.

Remark 2.10 Proposition 2.9 implies actually that there always exists a maximal base of V.

Definition 2.11 If e is a maximal base of V, the measure vr o is called the (probability)
measure associated to F.

It is clear that the measure associated to F doesn’t depend on the choice of the maximal
base e, we shall denote it by vz v (or simply vy if there is no ambiguity on F). If V is the
zero space, then vy is by convention the zero measure.

Let V be a finite dimensional vector space over K. A left continuous R-filtration F of V'
is equivalent to the data of a flag V(© C V(1) C ... C V(") together with a strictly decreasing
real number sequence (a;)1<i<n, which describes the jumping points. We have

VO if r €lay, +oo],
FV = ve o ifp E]ai+1, ai], 1<t <n,
V) if r €] — 00, an).

The filtration F is separated (resp. exhaustive) if and only if V() = {0} (resp. V(™ = V).
When F is separated and exhaustive, the measure associated to F equals to

i rk V(@ — k=1 5
rkV air

i=1
Therefore, if V' is non-zero, then for any x € R, we have the equality

rk V,

1
rkV

= vy (] — oo, z[).

The probability distribution function of vy is therefore

rkV,
Flz)y=1-1 Z.
(z) y—lgcl-i- rkV
Proposition 2.12 Let 0 Vi —s vy i v 0 be a short exact sequence of fi-

nite dimensional vector spaces over K equipped with left continuous R-filtrations. Suppose that
the following conditions are verified:

i) the space V is non-zero and the filtration F of V is separated and exhaustive;
i) the filtration of V' is the inverse image ©*F;
i) the filtration of V" is the strong direct image .JF.

rk V'’ n rk V"
VA IS v

Then vy =

11



Proof. If W is a finite dimensional vector space over K equipped with an R-filtration, the
filtration of W is separated and exhaustive if and only if the function A : W\ {0} - RU{+o0}
takes values in a bounded interval in R (see Proposition 2.1 4) and Proposition 2.2). Therefore,
after Proposition 2.5, if F is separated and exhaustive, then also are p*F and ¥.F. So the
measures vy and vy~ are well defined.

Let e = (€})1<i<n (vesp. € = (€])1<j<m) be a maximal base of V' (resp. V"). Let

€= ((p(ell)a e ,(,0(6;), Ent1, " aen-i-m)
be a base of V such that, for any integer 1 < j < m, ¥(en+;) = €] and Aen;) = A(e]) (this
is always possible after Proposition 2.1 4) and Proposition 2.6 2)). By definition we know that
rk V'’ rk V"

Ve = v e T v e
It suffices then to verify that e is a maximal base.
Let r be a real number. First we have

card({(eh), - - p(ey)} NV;) = card(e’ N V) =k V][, (3)

On the other hand, since A(€]) = A(en+;), €] € V;" if and only if e,4; € V;.. Therefore
card({en+1, s enim} NV;) = card(e” NV) =1k V. (4)
The sum of the inequalities (3) and (4) gives card(e N V;.) = rk(V)) + rk(V}/) = rk(V}.), so e is
a maximal base. O

3 Almost super-additive sequence

In this section we discuss a generalization of Fekete’s lemma (see [Fek23] page 233 for a
particular case) asserting that, for any sub-additive sequence (a,),>1 of real numbers (that’s
to say, antm < an + an, for any (m,n) € Z2,), the limit lilf an/n exists in R U {—o0}.

n—-+0o0

We shall show that the convergence of the sequence (a,/n)n>1 is still valid if the sequence
(an)n>1 is sub-additive up to a small error term. These technical results are crucial to prove
the convergence theorems stated in the section of introduction.

Proposition 3.1 Let (an)n>1 be a sequence in R>g and f: Zso — R be a function such that
lim f(n)/n = 0. If there exists an integer ng > 0 such that, for any integer | > 2 and any
n—oo

(ni)i<i<i € leno, we have apy4gpn, < Ay -+ an, + f(n1) 4+ -+ f(n1), then the sequence
(an/N)n>1 has a limit in R>q.

Proof. 1If n, pand n <1 < 2n are three integers > ng, we have

it _ panta  pf)+ SO _an @ pf() + Q)

pn+l = pn+l pn +1 - n+pn pn+1
a a n l
<@ O PO
n - pn n n
max a;  max |f(i)|
Since lim ==t 4 nEteER = 0, we obtain, for any integer n > 0, that
p—oo PN n

lim sup dm < o + M
m—oo M n n

: (5)

12



hence

Qn

m—oo M n—oo n n n—oo n n—oo n n—oo n

lim sup dm < lim inf <a_n + M) < lim inf n + lim sup M = liminf

Therefore, the sequence (ay, /n),>1 has a limit, which is clearly > 0, and is finite after (5). a

Corollary 3.2 Let (ay)n>1 be a sequence of real numbers and f : Zso — R be a function such
that lim f(n)/n = 0. If the following two conditions are verified:

l
>no’

1) there exists an integer ng > 0 such that, for any integer | > 2 and any (n;)i<i<i € Z
we have Gpy gy > Gpy + -+ apn, — f(n1) — - — f(),

2) there exists a constant « > 0 such that a,, < an for any integer n > 1,
then the sequence (an/n)p>1 has a limit in R.

Proof.  Consider the sequence (b, = an — ay)n>1 of positive real numbers. If ny,--- ,n; are
integers > ng and n = n1 + - - - + ng, then

l

l 1
bn:an—an:aZni—an SaZni—Z(am —f(nl))
i=1 i=1

i=1

= (0 = an, + F (1)) = buy -+ b+ F(r1) -+ F ().

i=1

After Proposition 3.1, the sequence (b,/n),>1 has a limit in R. As b,/n = a — a,/n, the
sequence (an/n)p>1 also has a limit in R. O

Corollary 3.3 Let (an)n>1 be a sequence of real numbers and c1, ca be two positive constants
such that

1) amin = am + an — c1 for any pair (m,n) of sufficiently large integers,
2) ay < can for any integer n > 1,
then the sequence (an/n)n>1 has a limit in R.

Proof. Let f be the constant function taking value ¢;. By induction we obtain the following
inequality for any finite sequence (n;)1<;<; of sufficiently large integers:

gty 2 Ay 0+ any, — f(nl) - f(nl);

After Corollary 3.2, the sequence (ay/n),>1 converges in R. a

13



4 Quasi-filtered graded algebras

In this section we introduce the notion of quasi-filtered graded algebras. Such algebras
are fundamental objects in this article. We are particularly interested in the convergence of
measures associated to a quasi-filtered graded algebra (Sections 5 to 7). Later we shall show
that the graded algebras that we have mentioned in the section of introduction, equipped with
Harder-Narasimhan filtrations, are quasi-filtered graded algebras. The results presented in this
section is therefore a formalism which is useful to study the Harder-Narasimhan filtrations of
graded algebras.

Let K be a filed. Recall that a Z>(-graded K-algebra is a direct sum B = @,,~., B, of vector
spaces over K indexed by Z>( equipped with a commutative unitary K-algebra structure such
that B, By, C Bpim for any (m,n) € Z2,. We call homogeneous element of degree n any
element in B,. Clearly the unit element of B is homogeneous of degree 0. In the following,
we shall use the expression “graded K-algebra” to denote a Z>p-graded K-algebra. If B is a
graded K-algebra, we call graded B-module any B-module M equipped with a decomposition
M = @nez M, into direct sum of vector subspaces over K such that B, M,, C M, for any
(n,m) € Z>¢ x Z. The elements in M, are called homogeneous element of degree m of M. If
x is a non-zero homogeneous element of M, we use d,(x) or d°(x) to denote the homogeneous
degree of x. For reference on graded algebras and graded modules, one can consult [Bou85].

Definition 4.1 Let B = @, ., By be a graded K-algebra and f : Z>o — R>( be a function.
We say that the K-algebra B is f-quasi-filtered if each vector space B, is equipped with an
R-filtration (B, s)scr satisfying the following condition:

T

there exists an integer ng > 0 such that, for any integerr > 0, any (n;)1<i<r € /.

and any (s;)1<i<r € R", we have

T T

HBni,sl- C Bn,s where N = ng, S= (sz — f(nz))
1

=1 1= =1

If B is an f-quasi-filtered graded K-algebra. We say that a graded B-module M =D, ., M,
is f-quasi-filtered if for any integer n, M, is equipped with an R-filtration (M, s)scr satisfying
the following condition:

there ezists an integer ng > 0 such that, for any integer v > 0, any (n;)1<i<r+1 €

1 1
Z;‘m and any (si)1<i<r+1 € R™, we have

r+1 r+1

(1:[37”,81.)]\4m+17sr+1 C Mn,s where N = Zni, S = Z (si — f(ny)).
i=1 i=1 i=1

In particular, if f =0, we say that B is a filtered graded K-algebra, and M is a filtered graded
B-module.

We now give some numerical criteria for a graded algebra (or graded module) equipped
with R-filtrations to be quasi-filtered.

Proposition 4.2 Let B be a graded K-algebra and f : Z>9 — R>o be a function. Suppose
that for each n € Z>o, By, is equipped with an exhaustive and left continuous R-filtration. Then
the following conditions are equivalent:

1) the graded algebra B is f-quasi-filtered,

14



2) there exists an integer ng > 0 such that, for any integer r > 2 and any non-zero homogeneous

ks
elements ay,--- ,a, of degree > ng of B, if we write a = H a;, then
i=1

A 2 3 (o) - ). ©)

Proof. The filtrations being exhaustive, the sum on the right side of (6) is well defined and
takes value in R U {+oc}.
“1)==-2)": Since the filtrations are left continuous, we have a; € Fx(4,)Bac(a,)- Let

T

d=3"d(a) and =Y (A(ai) - f(do(ai))).
i=1 i=1
Since B is f-quasi-filtered, we obtain a € F,Bq, so A(a) > 7.
“2)=1)”": Suppose that a1, - ,a, are homogeneous elements of degrees > ng of B. For

any integer 1 < ¢ < r let d; = d°(a;). Let a = Hai. If for any integer 1 < ¢ < r, we
i=1
have a; € Fi,Bg,, then we have A(a;) > t;. Therefore, A(a) > Z (ti - f(di)). Hence
i=1
a € ]:tl+---+trff(d1)7---7f(dr)Bd1+~~+dr- O

Using the numerical criterion established above, we obtain the following corollary.

Corollary 4.3 Let f : Z>o — Rxg be a function and B be an f-quasi-filtered graded K -algebra.
Suppose that for any integer n > 0, the filtration of B, is ezhaustive and left continuous.

1) Let A be a sub-K-algebra of B generated by homogeneous elements, equipped with induced
graduation. If for each n € Zx>q, the vector space A, is equipped with the inverse image
filtration, then A is an f-quasi-filtered graded K -algebra.

2) Let I be a homogeneous ideal of B and let C = B/1, equipped with the quotient graduation.
If for each n € Z>q, the vector space Cy, is equipped with the strong direct image filtration,
then C is an f-quasi-filtered graded K -algebra.

Proof. 1) After Proposition 2.5, the filtrations of A, are exhaustive. Furthermore, they are
left continuous. If a is a homogeneous element of A, then d9(a) = d%(a). On the other hand,
since the filtrations of A,, (n > 0) are inverse images filtrations, we obtain A4 (a) = Ag(a). So
for any integer r > 2 and any family (a;)1<i<, of homogeneous elements of degree > ng in A

kA
with a = H a;, we have
i=1
T

Mala) = 2a@) 2 Y (Aaa) = f(d30) = 3 (hala) — 105 00).

i=1

So the graded algebra A is f-quasi-filtered.

2) After Proposition 2.5, the filtrations of homogeneous components of C' are exhaustive.
Let 7 : B — C be the canonical homomorphism. Suppose that (a;)1<i<, is a family of homo-
geneous elements of degree > ng in C. For any 1 < i < r, let d; = d°(a;) and t; = Ao (a;).
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After Proposition 2.6 2), for any 1 < i < r, there exists a sequence (a§i))j21 in By, such that

(o (i)) = q; for any j > 1 and that the sequence ()\B( (@ )))jzl is increasing and converge to

t;. Let a = Hal and for any j > 1, let o; = Haj ), Clearly we have a = m(a;) for any

i=1
r

j > 1. Therefore, A\c(a) > Ap(a;). On the other hand, Ag(a;) > Z ()\B(ag-i)) - f(di)).
i=1
Hence A\¢(a) > Z ()\B( l)) f(di)). By passing to the limit when j — 400 we obtain
i=1

a) = Z(tz‘ = f(di)). m

The following assertions give numerical criteria for quasi-filtered graded modules, the proofs
are similar.

Proposition 4.4 Let f : Z~o — Rx>¢ be a function, B be an f-quasi-filtered graded K -algebra
and M be a graded B-module. Suppose that for any integer n, M, is equipped with an exhaustive
and left continuous R-filtration. Suppose in addition that for any integer n > 0, the filtration
of B, is exhaustive and left continuous. Then the following conditions are equivalent:

1) the graded B-module M s f-quasi-filtered;

2) there exists an integer ng > 0 such that, for any integer r > 1, any family (a;)1<i<r of non-
zero homogeneous elements of degree > ng of B and any non-zero homogeneous element x
of degree > ng of M, if we write y = (a1 - - - a,)x, then

) > Z( — F(d(a)) + @) - F(d°(@)).

Corollary 4.5 Let f : Z~o — Rxq be a function, B be an f-quasi-filtered graded K -algebra and
M be an f-quasi-filtered graded B-module. Suppose that for any integer n > 0, the filtrations
of By, and of M, are exhaustive and left continuous.

1) Let M’ be a graded sub-B-module. If each M), is equipped with the inverse image filtration,
then M’ is an f-quasi-filtered graded B-module.

2) Let M’ be a homogeneous sub-B-module of M and let M" = M/M'. If each M) is equipped
with the strong direct image filtration, then M" is an f-quasi-filtered graded B-module.

Corollary 4.6 Let f : Z~o — R>g be a function, B be an f-quasi-filtered graded K -algebra,
and M be an f-quasi-filtered graded B-module. Suppose that for any positive integer (resp. any
integer) n, the filtration of B, (resp. M,) is exhaustive and left continuous.

1) Let A be a sub-K -algebra of B generated by homogeneous elements, equipped with the induced
graduation. If each vector space A, is equipped with the inverse image filtration, then M is
an f-quasi-filtered graded A-module.

2) Let I be a homogeneous ideal of B contained in ann(M) and C = B/I which is equipped
with the quotient graduation. If each C, is equipped with the strong direct image filtration,
then M is an f-quasi-filtered graded C-module.
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5 Convergence for symmetric algebras

We now consider the symmetric algebra of a finite dimensional non-zero vector space, which
is equipped with certain suitable filtrations. Each homogeneous component of the symmetric
algebra contains a special base which consists of monomials. By introducing a combinatoric
equality on monomials (Theorem 5.1), we establish a convergence result (Corollary 5.3) for
quasi-filtered symmetric algebras. We shall show later in Section 7 that the general convergence
can be deduced from this result in the special case of quasi-filtered symmetric algebras.

For any pair of integers (n,d) such that n > 0 and d > 1, let A%d) be the subset of
Z‘io consisting of all decompositions of n into sum of d positive integers. We introduce the
lexicographic order on A%d): (a1, - ,aq) > (b1, -+ ,bg) if and only if there exists an integer
1 <¢ < d such that a; = b; for any 1 < j <14 and that a;+1 > b4 if i < d. The set A,(,d) is
totally ordered. On the other hand, for any integer > 2 and any n = (n;)1<i<r € Z%,, we
have a mapping from Ag{? XX AS’? to Agldl)Jr,,,Jrnr which sends (a;)1<i<r to a1+ -+ a, (the
addition being that in Z?%). This mapping is not injective in general but is always surjective.
Moreover, if (o;)1<i<r and (8;)1<i<, are two elements of A%dl) X -Agi) such that «; > §; for
any 1 <i <7, thenay +---+a, > 31 +---+ .

For any n € Z>(, we denote by F%d) the subset of Zigl consisting of elements (a;)1<i<d—1
such that 0 < a; +--- + aq—1 < n. We have a natural mapping p%d) : A%d) — F%d) defined
by the projection on the first d — 1 factors. The mapping p%d) is in fact a bijection and its
inverse is the mapping which sends (a;)1<i<g—1 to (a1, ,a4-1,m — a3 — -+ —aq—1). For any
n = (n;)1<i<r € Z%, we have the following commutative diagram

Jr
A o A — Al (7)

d d
pglfx...x;;;gl J/pgf;w

d d
I‘%l) X e X I‘%T) %'i‘ F|n|
where |n| = n; 4+ - -+ + n, and the operators “+” are defined by the addition structures in the
monoids Zio and Z‘igl respectively.

Theorem 5.1 Letr > 2 and d > 1 be two integers. For anyn = (ni)1gigr S ZTZO, there exists

a probability measure py, on A,({? X oo X A%‘? such that the direct image of pn by each of the

), e ,A%d) s equidistributed, and also is its direct image on A by the

" In|

o d
r projections on A%l
operator “+7.

Proof. The theorem is trivial when d = 1 because in this case, for any k € Z>o, A,(Cl) is the one
point set {k}. In the following, we suppose d > 2. By (7), it suffices to construct a probability

measure p, on Fnc? X o+ee X FSLdT such that the direct image of p, by each of the r projections
on Fg{?, e ,Ffw is an equidistributed measure, and also is the direct image on Fl(zf by the

operator “+”.

For any o = (a;)1<i<d—1 € Z‘é‘ol, we define |a] = a1 + -+ + ag—1. The set F%d) can be
written in the form I?) = {ac Zif)l la] <n}. If @ = (a;)1<i<d—1 is an element of chjla we
write ol = aq! X -+ X ag_1!.

Consider the algebra of formal series in rd variables R = Z [t, X ], where t = (¢1,- - , ),

X = (Xi;) 1<i<r, - fa = (a, - ,a4-1) € 24" and if 1 < i < r, we denote by X{ the
1<5<d-1 =
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product X“ cee X ij;’_ll. If n = (n;)i<i<r is an element in Z%,, we denote by t™ the

product t"1 <+ x t'. Let H(t,X) be the formal series
(a1 +-+a) (4 +n, — o+ + ) o
( X%,
> 2 TaTal Om el e H :

n=(n;)€ZL, (ai)e(z‘;l)r

[av;| <y

the coefficients of which are positive integers. If we perform the change of indices m; = n; — ||

and permute the summations by defining (31, ,84-1) = a1+ -+, and m = my+- - - +m,.,
we obtain the following equality in Z[t, X ]:

(alJr...Jrar)! r o o (m1+...+mr)!m
HeX)= Y e [y Y pren

ap!ap!

l. |
(ai)E(ZéBl)T j=1 m:(mi)GZTZO m M
d—1
Z H(thl,i+"'+trXr,i>ﬁi Z (14 +t)™
(Bezsyt =1 meLzo

==+ t) [0 - X+ 6 X))

This calculation also implies (cf. [H6r90] chap. II §2.4) that the Reinhardt’s absolute conver-
gence domain of H(t,X) in C™ is defined by the condition

S il < 1and Y Jt]1X4] < 1.
j=1 j=1

This observation enables us to substitute certain variables X; by the vector 1 = (1,---,1)
——
d—1 copies

without examining convergence problems. By the change of variables m; = n; — |oy| for

2 <14 < r, we obtain
H(t,X)|x,= =X, =1

Z t?l Z Xfél Z (041 44 Oér)! (nl +mo + -+ My — |Oél H tm]+|a1|

arlan! n1 — |a1])!'ma!-
n12>0 i |<my ((li)IZQG(Zd 1yr=1 r ( | |)

(mi)1:2ezzo

DI UD SIS LD SRR Ht‘”‘”

d L al! .« .
n120 lai|<na (ai)f_p€(Z5, )t

Z (n1+m2+...+mr |041 Htmj

(7’Ll — |a1|)!m2! .

(mi)7, 2€Z>o

For any a € Z>¢, we have

Z albl ==t

>0
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hence we get

)3 (a1+ +04r Ht"‘ﬂ'

(ai)j_p€(@yh)—t

Ly lmbete) rera) f

| e | ... |
(ai){:26(2;31y71 041-(042 + + Oér)- 9. Q! i
(a1 + «)! (ag —|— -+ ar oy |
Zd—l arlal! 7 Zd 1yr—1 H
O‘GZZO (ai)i—a€(Z5,7)

[P +OtT_Ot

=y el = (Lt )l

aqlal
aczd?
and
Z (n1+m2+"'+mr*|0¢1|)!ﬁtmy‘
(n1 — |aa|)tma! -+ m,! 1177
(mi)}, 2€Z>0 7=
. (n1+mo+ -+ my —|oa])! (m2 + - +mT)!1:[t’.”j
v (=)l ma + -+ m)l mal-m ’
(mi){_, €25,
M
_ Z (n1 — [aa| + M)! Z (ma + -+ mr)! Htm]
(ny — |y |)!M! mo! - -m,!
MZ0 (mi)i_, €255 =2
mat-tme=M
(n o]+ M _ _
=2 o LMy o )M = (L= (4 -+ 1)) I,
7’L1 |Oél 'M'
M>0
Therefore
H(t,X)|xy=mx, =1 = Z 7 (1 — (to + - —ni1—d Z X
n1>0 la1[<ni

Z tn(n1+ +n7“+d71) Z Xi)q'

(n1 +d—1)ng!---n,!

n:(ni)EZTZO |y |<ny
Similarly, for any 1 < j <r, we have
H(ta X)|X1:“': j—1=Xjp1==Xp=1
_ Z ¢n (ni+---+n,+d—1)! Z pel
l. —1)!
amhezs, nil-omj_il(nj +d— 1! n,! o Toms

On the other hand,
H(t, X)|x,==x,=v
_ Z ¢n Z (ar+-+a)(ni+-+n. — o+ +a)

= ar!lan! (n1*|0é1|)'(nrf|a7“|)'

n=(ni)€Z%,  (a;)e@dyH"
lai|<n;
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By the change of variables m; = n; — || for any 1 <4 < r, we obtain

H(t, X)[x,=.=x,=v

(a1+ +05r oy | (my + - +my)!
— A Ya1+ ta. tm
I e I y

(ai)e(Z'éBl)T Jj=1 m=(m;)€ZL,
:Z(t1+"'+tr)N Z Y’Y(t1+"'+tr)‘7|:Z(t1+"'+tr)1\/l Z Y7,
N>0 791 M>0 [v|<M

ye >0

where we have performed the change of variables v = a1 + -+ + . and M = N + |v| in the
last equality. Therefore, we have

. |
H(taX)|X1:m:XT:Y = Z Mt?l cooghr Z Ve (10)

ni!---n,!
n=(ni)€Z%, ! " [v|<n1+-+n,

Finally,

H(ta(]la"']l)):(17(t1+"'+t7“))7d

N+d71 Nl
:Z > ot

N> n:(ni)ezgo (11)
ni+-+n,=N

Z (nl—i—---—i—nT—i-d—l)!tn
ny!--nl(d—1)! '

n=(n;)€LL,

For any n = (n;) € Z%, let

P

n+--+n.+d—1)! aq!- - apl (n1 — o)t (ny — |ay])!

(ai)e@dyhT
|oz1\§ni

The definition of H(t,X) and the equalities (9), (10) and (11) implies that py, verifies the
required conditions. O

We introduce some operators on the space of Borel measures on R which we shall use later.
We denote by C.(R) the space of continuous functions with compact support on R. Recall
that a Radon measure on R is nothing but a positive linear form on C.(R). Note that all
bounded Borel measures on R are Radon measures. We denote by .#, the convex cone of
Radon measures on R (in the space of all linear forms on C.(R)) and by .#; the sub-space of
Borel probability measures on R. Note that .#; is a convex subset of .Z .

If ¢ is a real number, we denote by ¢. : R — R the mapping which sends = to z + ¢. It
induces an automorphism of convex cone 7. : 44+ — A4 which sends v € .#4 to the direct
image of v by ¢.. Thus we define an action of R on .#, which keeps .# invariant, and which
preserves the order > between Borel measures.

If € is a strictly positive real number, we denote by 7. : R — R the dilation mapping which
sends € R to ex. This mapping induces by direct image an automorphism of the convex cone
T, : My — M which keeps ./ invariant and also preserves the order .

We now consider a vector space V of finite dimension d over a field K. For any integer
n >0, let B, = S™V be the n'® symmetric power of V, equipped with a separated, exhaustive
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and left continuous R-filtration. We shall use Theorem 5.1 to establish the almost super-
additivity of the measures associated to B, (n > 1) under the condition that the graded
algebra B = @nzo B, is quasi-filtered.

Choose a base e = (e;)1<i<a of V. We then have a mapping ¢, : A%d) — B,, which sends

a=(a, - ,0q) toe* :=ef"---e5?. The image of AP by ¢, is a base of B,,. There exists,
for each n € N, a maximal base u™ = (Ua) yep@ Of By such that (see Proposition 2.9 infra)
uaeea—i—ZKeﬁ. (12)

B<a

If n = (ni)i<i<r € Zyand N =ny + -+ +n,, for any v € AS\?), let ugn) be an element in

{ﬁuai Q; € A%‘?, iai = ’y}.
i=1

i=1

such that
M) = e, M)
e tan=y

From (12), we deduce
u%n) ce’ + ZK@‘S.
o<y
Hence u™ := (ugn))’yesz) is a base of By.

Proposition 5.2 Let f : Z>9 — Rx>¢ be a function, c be a positive real number and g : R — R
be a concave increasing c-Lipschitz function. Suppose that the graded algebra B = @, By is
f-quasi-filtered. If for any integer n > 0, denote by -

In:/gd(TiVBn)a
R n

ks
>ng?

then for any integer r > 2 and any n = (n;) € Z by writing N =ny + - -+ + n,, we have

NIy > i (niIni - cf(nl))
i=1

Proof. For any integer n > 0, denote by &, the equidistributed measure on A%d), by pn a

measure on A%dl) X - X Ag{? satisfying the conditions of Theorem 5.1, and by u(® the base of
By constructed as above. Then by Definition 2.11,

tv> [[oa(Tygmen) = [ o (F08) deve

Ly, m
= —\ d n Jo Q).
/A&LdfxmxA;?g <N (ua1+~~~+ar)) pn(a1 o)

(n)

Since g is an increasing function, by definition of u~ ’, we have

1
In = <A a; " Ua d n Sre Q).
Y= /Aﬁldl)x---xA;@g<N (tay - r)> pn(c )
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Since B is an f-quasi-filtered graded algebra and since g is increasing, we obtain

In > /Aidl)x”'XAﬂdj g (% Z ()\('U/ai) - f(m))) dpn(ar,- -, ).

i=1

Since the function g is c-Lipschitz, then

1 < C <
> =5 ) =< o ).
Iz /A;él)x...mggg [g (N v )‘(u”‘l)> N = f(m)] Apnles, o)

Then the concavity of g implies that

T

g Aua,) ¢\
> - Mk Sadls V4 — .
Iy > /A;?XWXM? [Z N9< . )] dpn(as, -+, o) N;f(m)

=1

Finally, since the direct image of p, by the r projections are equidistributed, we obtain that

A ]

Corollary 5.3 With the notations of Proposition 5.2, if the sequence (Ip,)n>0 is bounded from

above (for example if g is bounded from above, or if there exists a € R such that supp(vg, ) C

| — oo, na) for any sufficiently large integer n) and if hIJIrl fn)/n = 0, then the sequence
n—-1+:0oo

(In)n>0 has a limit when n — +o0.

Proof. It is a consequence of Proposition 5.2 and Corollary 3.2. ]

6 Polygon associated to a Borel measure

We explain in this section how to associate to a Borel probability measure on R a concave
function on [0, 1] which takes zero value at the origin. Furthermore, if the measure is a lin-
ear combination of Dirac measures, then the associated concave function is piecewise linear,
therefore is a polygon on [0, 1].

If f:R —[0,1] is a right continuous decreasing function such that

lim f(z)=1, and lim f(z)=0,

r——00 Tr——+00

we define the quasi-inverse of f the function f* :)0,1[— R which sends any ¢ €]0,1] to
sup{x | f(z) > t}. The following properties of f* are easy to verify.

Proposition 6.1 Let f : R — [0,1] be a right continuous decreasing function such that
lim f(z)=1 and 1ir_{_1 f(z) =0. Then

1) for any t €]0,1[ and any y € R, f(y) >t if and only if y < f*(t);

2) f* is a right continuous decreasing function;

22



3) sup f*(t) = inf{x € R | f(z) = 0} and inf f*(t) = sup{x € R | f(z) = 1} (by
t€]0,1] t€]0,1[
convention inf ) = +oo and supf) = —c0).

Proposition 6.2 Let v be a Borel probability measure on R which is a linear combination
of Dirac measures. If we denote by f : R — [0,1] the function f(z) = v(Jz,+o0[), then the
t

function on [0,1] defined by P(Z/)(t)::/ f*(s)ds is a polygon on [0,1].

0
Proof. Since v is a linear combination of Dirac measures, the function f is decreasing, right
continuous, and piecewise constant. Furthermore, f(z) = 0 (resp. f(z)=1) when z is suf-
ficiently positive (resp. negative). Therefore, f* is decreasing, right continuous, piecewise

constant and bounded. As P(v) is the primitive function of f*, which takes zero value at the
origin, we obtain that P(v) is a polygon. m]

Actually, P(v) is just the Legendre transformation of the concave function z — foz f(y)dy
(see [Hor94] 11.2.2), which is called the polygon associated to the Borel probability measure v.

We can calculate explicitly P(v). Suppose that v is of the form Z(ti — ti—1)dq,, where
= 1

ap >--->ap,and 0 =ty < --- <t, = 1. Then f(z) = Nj_oc q,[( +Ztﬂal+1a x), and

hence f*(t) = ao Mo, ((t Z a; Wy, 4,1(t). Therefore,

Zaz i —tic1) Fai(t —tio1), telfti1,t), 1<j<n.

If V is a non-zero vector space of finite rank over K and F is a separated and exhaustive
filtration of V. We call polygon associated to the filtration F the polygon P(vs ) on [0,1],
denoted by Pr v (or simply Py if there is no ambiguity on the filtration).

Suppose in addition that the filtration F is left continuous. Then F corresponds to a flag

0=VOcyDc...cym_vy

and a strictly decreasing sequence (a;)1<i<n. We have shown that its associated probability

kv @ k-1
measure is vy = Z (r 1 )5ai- Therefore we have, for any integer 1 < j <n

— rkV rkV
q k VD 1k VG
an anyte{ KV 1kV }

kV  tkV rkV

1

=1

For a general Borel probability measure v, similarly to Proposition 6.2, we can also define a
concave function P(v). If 4 and vy are two Borel probability measures on R such that vy > vs,
then P(v1) > P(v2). Furthermore, for any real number a, P(7,v)(t) = P(v)(t) + at and for
any strictly positive number ¢, P(T.v) = eP(v).

In the following, we explain that the vague convergence of Borel probability measures im-
plies the uniform convergence of associated polygons. With this observation, to prove the
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convergence of polygons, it suffice to establish the vague convergence of corresponding proba-
bility measures. We begin by presenting some properties of Borel probability measures.

Lemma 6.3 For any function f € C.(R), we have
lim [|f o v14e = fllsup =0, lim |[f o e — fllsup = 0.
e—0 e—0

Proof.  Suppose that supp(f) C [-K, K] (K > 0). For any number —1/2 < ¢ < 1/2,

Hf0’71+a_f|‘sup: sSup |f($+5$)_f(‘r)|
—2K<z<2K
Since f is uniformly continuous, lim  sup  |f(x + ez) — f(x)| = 0, so we have lim || f o
e=0 oK <x<2K e—0
Yi+e — fllsup = 0. The other assertion is just the definition of uniform continuity of f. ad

Definition 6.4 If (v,),>1 is a sequence of Radon measures on R and if v is a Radon measure
on R, we say that (v,)n>1 converges vaguely to v if for any function f € C.(R), the sequence
(fg fdvn)n>1 converges to [, fdv.

Proposition 6.5 Let (vp)n>1 be a sequence of Radon measures on R, v be a Radon measure
on R, and (an)n>1 be a sequence of real numbers in | — 1, +o0[ which converges to 0. Suppose
that the total masses of (Vn)n>1 are uniformly bounded. Then the following conditions are
equivalents:

1) the sequence (vp)n>1 converges vaguely to v;
2) the sequence (T14q, Vn)n>1 converges vaguely to v;
3) the sequence (Tq, Vn)n>1 converges vaguely to v.

Proof. Since 7, ! = 7_,, and lerlan = T4a,)-1 = T1— _an_, it suffices to verify “1)= 2)”

n 1t+an
and “1)==-3)”, which are immediate consequences of Lemma 6.3. o

Lemma 6.6 Let (v,)n>1 be a sequence of Borel probability measures on R which converges
vaguely to a measure v. If the supports of (vn)n>1 are uniformly bounded, then v is also a
probability measure.

Proof. Suppose U supp(vy) C [m, M]. If ¢ is a continuous function with compact support
n>1
which takes values in [0, 1] and such that @[, a1 = 1. We have / edv = lim [ edy, = 1.
R n—oo Jr

Since ¢ is arbitrary, we obtain v(R) = 1. O

Proposition 6.7 Let (v,)n>1 be a sequence of Borel probability measures on R which converges
vaguely to a measure v. Suppose that the supports of v, are uniformly bounded. Let F,, (resp.
F) be the distribution function of v, (resp. v). Then there exists a numerable subset Z of R
such that, for any point x € R\ Z, the sequence (F,(z))n>1 converges to F(x).
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Proof. After Lemma 6.6, v is a probability measure. Let Z be the set of x € R such that
v({z}) # 0. Since v is of total mass 1, the set Z is numerable. If r is a point in R\ Z, the set
of discontinuous points of the function 1;_. ,j(z) is {r}, which is u-negligible. After [Bou65]
IV.5 Proposition 22, the sequence (F,(z))n>1 converges to F(z). O

Proposition 6.8 Let (fn)n>1 be a sequence of right continuous decreasing functions valued in
[0,1] such that

i) supinf{z € R | f,(x) =0} < 400, ugf1 sup{z € R| fn(z) =1} > —o0;
n>1 n>

ii) there exists a numerable subset Z of R such that, for any x € R\Z, the sequence (fn,(x))n>1
converges.

Let f : R — [0,1] be a right continuous function such that f(x) = 1iIJ1;1 fn(x) for anyx € R\ Z.
Then

1) the function f is decreasing;

2) if we write A := limJirnf inf{x € R| fn(z) =0}, B :=limsupsup{z € R | f,(z) = 1}, then

n—-+4oo

At =0, fll—co,B = 15

3) there exists a numerable subset Z' of |0, 1[ such that (f}(t))n>1 converges to f*(t) for any
t €]0,1\2";

4) the function sequence (fot fi(s)ds)n>0 converges uniformly to f(f f*(s)ds.

Proof. 1) and 2) are easy to verify.

3) After the condition i), the function f; is well defined for any n > 1. After 2), the
function f* is well defined. If ¢ is a number in ]0,1[ and if y = f*(¢), then there exists a a
strictly increasing sequence (Zm)m>1 C R\ Z which converges to y. Since z,,, < y, we have
f(zm) > t. Since x,,, € R\ Z, there exists N(m) € Z>¢ such that f,(zp) >t (i.e., Ty < f(t))
for any n > N(m), which implies that BT}r&f FE() > ().

For any integer n > 1, let Z/, be the set of all ¢ €]0, 1] such that f,1({t}) has an interior
point. Clearly Z/ is a numerable set. Let Z” be the set of t €]0, 1] such that f=1({t}) has
an interior point. Let Z’ be the union of all Z/ and Z”. Tt is also a numerable subset of
10,1][. Let t be a point in J0,1[\Z" and y = f*(t). We take a strictly decreasing sequence
(m)m>1 C R\ Z which converges to y. Since y ¢ Z”, we have f(z,,) < t. Therefore, there
exists N(m) € Zsg such that, for any n > N(m), fn(zm) <t and a fortiori x,, > f:(t). We
then have limsup f:(t) < f*(t).

n—-+0o0o
4) After Proposition 6.1 3), the condition i) implies that the functions f; are uniformly
bounded. On the other hand, f; — f converges almost everywhere to the zero function. After
the Lebesgue’s dominate convergence theorem, we obtain that

| s [ s

converges to 0 when n — +o0. a

< /0 1F5(s) — F(s)ds
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7 Convergence of polygons of a quasi-filtered graded al-
gebra

We establish in this section the convergence of polygons of a quasi-filtered graded algebra.
By using the results obtained in Section 4, we show that the measures associated to a quasi-
filtered graded algebra converge vaguely to a Borel probability measure on R, and therefore,
the associated polygons converge uniformly to a concave function on [0, 1].

We first recall some facts about Poincaré series of a graded module, which we shall use
later. Let A be an Artinian ring, B be a graded A-algebra of finite type and genenrated by
B, and M be a non-zero graded B-module of finite type. For any n € Z, M, is an A-module
of finite type, therefore of finite length. We denote by Hjs the Poincaré series associated to
M, ie., Hy(X) = >, cplena(M,)X™ € Z[X]. The theory of Poincaré series affirms (cf.
[Bou83]) that there exists an integer r > 0 such that Hps(X) can be written in the form

Hy(X)=a(X)1—-X)"+a—1(X)(1 - X))+ +ao(X), (13)
where ag, - -+ ,a, are elements in Z[X, X 1], a, being non-zero and having positive coefficients
if M is non-zero. Moreover, the values r and a,(1) don’t depend on the choice of (ag, - ,a).

In fact, r identifies with the dimension of M. We write ¢(M) = a,(1). Clearly we have

lena(M,) = n"t+o(n"h)

when n — 400, and there exists a polynom Qs with coefficients in Q such that Qu(n) =
leny (M,,) for sufficiently large integer n. If M is the zero B-module, by convention we define
dim(M) = —o0 and ¢(M) = 0.

If o M’ M M 0 is a short exact sequence of graded B-modules
of finite type, we have Hy; = Hppr + Hppr. Therefore, dim M = max(dim M’ dim M") and

C(M) = C(M/) ]l{dim M’>dim M”} +C(M”) n{dim M’ >dim 1\/[/} . (14)

Definition 7.1 Let K be a field, B be a graded K-algebra of finite type which is generated by
B; and M be a graded B-module of finite type and of dimension d > 0. Suppose that for each
integer n > 0, M, is equipped with a separated, exhaustive and left continuous R-filtration.
We say that M satisfies the vague convergence condition and we write CV (M) if the sequence
of Radon measures (T% VM, )n>1 converges vaguely. Finally, if N is a graded B-module which
is of dimension 0 or is zero, then by convention N satisfies the vague convergence condition (in
fact, for any sufficiently large integer n, we have N,, = 0, so T% vy, is the zero measure).

Although not explicitly stated, in Section 4, we have essentially proved the vague conver-
gence of measures associated to a quasi-filtered symmetric algebra. We now state this result
as follows.

Proposition 7.2 Let f : Z>o — R>g be a function such that lim f(n)/n = 0 and V be

n—-4o0o
a vector space of dimension 0 < d < +oo over K. For any integer n > 0 let B, = S™V.
Suppose that each vector space By, is equipped with a separated, exhaustive and left continuous
R-filtration such that the graded algebra B = @, -, By, is f-quasi-filtered. Then B satisfies the

vague convergence condition.

Proof. For any integer n > 1, denote by v, = T1vp,. Let G be the set of Borel functions g
on R such that, for any n € Z>g, g is integrable with respect to v,, and such that ( [ gdvy)n>0
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converges. Corollary 5.3 implies that G contains all increasing, bounded from above, concave
and Lipschitz functions. Cleary G is a vector space over R. Suppose that f is a function in
C&°(R). Let I = [a,b] be an interval containing the support of f. Notice that f’ and f” are
also smooth functions and the supports of f’ and of f” are contained in I. Therefore, f’ and
f"" are bounded functions. Let C = || f'||sup and C" = || f”'||sup/2. Let h be the function

C'b—a)2z—a—-b)+C(x—b), x<a,
h(z) =< —C"(b— )%+ C(x — b), a<az<b,
0, x > b.

It’s a concave, increasing and (2C’(b— a) + C')-Lipschitz function which is bounded from above
by 0. Hence h € G. On the other hand, h + f is also a concave function since h” = —2C"
on I. Tt is also increasing because h'(z) > 0 on R and h'(z) > C on I. Furthermore, it is
(2C" (b — a) + 2C')-Lipschitz and bounded from above by || f|lsup. Therefore, we have h+ f € G.
We then deduce f € G. Finally, since C§°(R) is dense in the normed space (C¢(R), || - ||sup),
we obtain C.(R) C G.

Let S : C.(R) — R be the opeartor which associates to each continous function g with
compact support the limit of the sequence ([ gdvy)n>1. It’s a linear operator. Furthermore,
if g is a positive function in C.(R), then [ gdv, > 0 for any n € Z>g. Therefore, we have
S(g) > 0. After Riesz’s representation theorem, there exists a unique Radon measure v on R
such that S(g) = [ gdv. By definition the sequence (v, ),>1 converges vaguely to v. ]

In the following, we shall establish the vague convergence (Theorem 7.5) for a general quasi-
filtered graded algebra of finite type over a field. We begin by introducing two technical lemmas
(7.3 and 7.4), which are useful to prove Theorem 7.5.

Lemma 7.3 Let B be a graded K-algebra of finite type which is generated by By,

0 M~ T g 0

be a short exact sequence of graded B-modules of finite type. We denote by d' = dim M’,
d=dimM and d’ = dim M". Suppose that for any integer n > 0 (resp. n), B, (resp. M,)
s equipped with a separated, exhaustive and left continuous R-filtration. Suppose furthermore
that for each integer n > 0, M/ (resp. M) is equipped with the inverse image filtration (resp.
strong direct image filtration), then

1) ifd > d", then CV(M') <= CV(M);
2) if d’ > d', then CV(M") <= CV(M);
3) if d =d", then CV(M') and CV(M") = CV(M).

Proof. Let o =c¢(M'), a = c¢(M), and o = ¢(M"). If dim M’ = 0, then for sufficiently large
n, we have M,, = M/, so CV(M") <= CV(M). Hence the proposition is true when dim M’ =
0. Similarly it is also true when dim M” = 0. In the following we suppose min(d’,d”) > 1. We
then have d = max(d’,d"). For any integer n > 0, let

/ "
v, = T%l/]\/];l, Vp = T% VM, v, = T% VM;L/
and

/ ! 11 1"
r, =tkM,, r,=1kM,, r,=1kM,.
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/
n?

For sufficiently large integer n, r/,, r,, and r/ are strictly positive. Moreover, by Proposition
2

/

r r
2.12, v, = 2v), + 2. The measures v, v, and v,/ are of bounded total masses, and we
r r

n’

n mn
have the following estimations:

/! 11
« 4 — d— [0 4’ — 4" —
T Po(n® T, = @ —n" Po(n® ), = 4

1) If d' > d”, then lim 7} /r, =1, lim 7//r, =0, so0 (v,),>1 converges vaguely if and
n—-+4oo n—-+o0o -

only if (1/,)n>1 converges vaguely, and if it is the case, they have the same limit.
2) Tt is similar to 1).
3)If d’ =d', then « = o + o, and

. " o 4 o
n—+0or, &+« n—toor, &+«

r

If (v},)n>1 converges vaguely to v/ and if (1/)/),>1 converges vaguely to v”, then (vy,),>1 con-
! "
1

a /
verges vaguely to o v+ o V. O

Lemma 7.4 Let V and V' be two vector spaces of finite rank over K, equipped with separated,
ezhaustive and left continuous R-filtrations, ¢ : V. — V' be an isomorphism of vector spaces
over K and ¢ be a real number. If N(z) < Mp(x))+c for any element x € V, then vy < T.vyr.

Proof. Let e = (e;)1<i<n be a maximal base of V. Then € = (¢(e;))1<i<n is a base of V',
1 & 1 &
Hence Tovy: = Tever = — Z; ON(p(en)+e = o ;5A(ei> = Ve =

We now present the general convergence theorem. As we have already proved the special
case of symmetric algebras, it is quite natural to expect that the general case follows by using
the method of unscrewing. However, as we shall see in Remark 7.7, the theorem cannot be
generalized to quasi-filtered graded modules. Even for modules generated by one homogeneous
element, the convergence of associated probability measures fails in general. Therefore, the first
step of unscrewing doesn’t work. In fact, the major difference between filtration and grading is
that, in a graded algebra, the homogeneous degree of the product of two homogeneous elements
equals to the sum of homogeneous degrees, as for (quasi-)filtrated algebra, we only give a lower
bound for the index of the product, which doesn’t prevent the product going “far away” in the
filtration. More precisely, the graded algebra associated to a filtered algebra of finite type over
K need not be of finite type over K in general.

The proof of the theorem below uses the Noether’s normalization theorem, which provides
a subalgebra isomorphic to a symmetric algebra over which the algebra is finite. It is this
finiteness which prevents the product of two element from going too “far away”.

Theorem 7.5 Let f : Z>9 — Rxq be a function such that liIJIrl f(n)/n = 0 and B =

D,,~0 Bn be an integral graded K-algebra of finite type over K, which is generated by By as
K-algebra. Suppose that

i) d =dim B is strictly positive,
it) for any positive integer n, B, is equipped with an R-filtration F which is separated, ex-

haustive and left continuous, such that B is an f-quasi-filtered graded K -algebra,
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A
itt) limsup sup ﬁ < 400
n—+oo 0#a€B,

For any integer n > 0, we denote by v,, = T1vp,. Then

Aa
1) lim min AMa) exists in R,
n—+ooa€EB, N
2) the supports of vy, (n > 1) are uniformly bounded and the sequence of measures (vy)>1
converges vaguely to a Borel probability measure on R.

Proof. For any integer n > 1, let

AP —  sup A(a) and A™™ = min A(a).
0#£a€By, a€B,

The support of v, is contained in [AM® /n, \8% /n]. Since 0 < d < +o0, for any integer n > 0,
B,, is a non-zero vector space of finite rank, so Ap"" € R since the filtration of B,, is exhaustive.
On the other hand, there exists an element a,, in B,, such that A" = A(a,,). Let

Wp ={b1-- by | b; € By for any 1 <i < n}.

Since B is generated by B, B, is generated as vector space over K (even as commutative
group) by W,,. After Proposition 2.1 2), we may suppose a,, € W,,. Clearly a,, is non-zero for
any integer n > 1. If n = (n;)1<i<, is a multi-index in ZZ, and if N = n; + --- + n,, we can
write ay as the product of r elements ¢y, - - , ¢, where ¢; € By, \ {0}. Therefore,

3 = Man) = Y (e — ) = 30 (5 — 1) (15)

1=

The condition iii) implies that lim sup \™" /n < +00, so the sequence (A /n),,>1 has a limit in
n—-+oo
R (by Corollary 3.2) and therefore is bounded from below. On the other hand, the condition iii)
shows that the sequence (AM**/n),>1 is bounded from above. Hence the supports of measures
vp, (n > 1) are uniformly bounded.
We now prove the second assertion of the theorem. After Lemma 6.6, it suffices to verify

CV(B).

Step 1: some simplifications.

First, after possible extension of fields, we may suppose that K is infinite.

Let ¢ be a real constant. We consider the filtration F¢ of B such that FyB,, = F;—cnBy. In
other words, for any element a € B,,, we have the equality Arc(a) = Ar(a)+cn. If (n;)1<i<r €
7% is an multi-index and if for any ¢, a; is an element in B,,,, in writing N =n; + -+ + n,,
a=ai---ar, we have

Ape(a) = Ar(a )+cN>Z(Af ai) ~ F(n0)) + chl—Z(Afc(ai)—f(ni)),

i=1

in other words, B is f-quasi-filtered for the filtration F°. On the other hand, if we denote
by v~ the probability measure associated to B, for the filtration ¢, we have v = Tenvp,

Therefore T vp = =T1TenvB, = Tch vp, . Hence B satisfies the Vague convergence condltlon
for the filtration F if and only if it is the case for the filtration F¢. After the proof of the first
assertion we obtain A™® = O(n). Since f(n) = o(n), we have A" — f(n) = O(n). In replacing
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the filtration F by F°¢, where ¢ € Ry is sufficiently large, we reduce the problem to the case
where A% — f(n) > 0 for any n > 1. In particular, for any homogeneous element a of B of
homogeneous degree n, we have A(a) — f(n) > 0.

Step 2: Since K is an infinite field, by Noether’s normalization (cf. [Eis95] Theorem 13.3),

there exist d elements x1,--- , x4 in By such that
1) the homomorphism from the polynomial algebra K[y, -- ,T4] to B, which sends T; to x;,
is an isomorphism of graded K-algebras from K71, -- ,Ty] to its image,

2) if we denote by A this image, i.e., the sub-K-algebra of B generated by z1,--- , 24, then B
is a graded A-module of finite type.

The sub-K-algebra A, equipped with the inverse image filtrations, is an f-quasi-filtered graded
K-algebra. Moreover, B is an f-quasi-filtered graded A-module. Proposition 7.2 shows that
we have CV(A).

Let a be a non-zero homogeneous element of A. We equip Aa with the inverse image
filtration. Since dim A/Aa < dim A, we have CV(A4a) after Lemma 7.3. Furthermore, the
sequences (T% va, )n>1 and (T% V(Aa), )n>1 of probability measures on R converge vaguely to
the same probability measure on R.

If z is a homogeneous element of degree m > 0 in B, then there exists a unitary polynomial
P € A[X] of degree p > 1 such that P(x) = 0. We may suppose that P is minimal and is
written in the form

P(X)=X?+ap 1 XP  + - +aq.

Since P is minimal and since B is an integral ring, a¢ is non-zero. For any integer 0 < i < p,
let @; be the component of degree (p —i)m of a;. If we write

IS(X) =XP 4G, 1 XP 4+ 4G,

then we still have ]S(z) = 0 since z is homogeneous of degree m. Therefore we can suppose that
a; is homogeneous of degree (p —i)m for any 0 < i < p. Let y = 2P~ + ap_12P72 + - + ay,
which is homogeneous of degree (p—1)m. Moreover we have zy+ag = 0. If u is a homogeneous
element of degree n of A, then

Auag) = Muzy) = Auz) — f(n+m) + My) — f((p —1)m) = Auz) = f(n+m).  (16)
We then deduce that A(uz) < A(uag) + f(n+ m). On the other hand,
Auz) = Au) + A(@) — f(m) = f(n) = A(u) = f(n). (17)

Let M = Aap and M’ = Ax. The algebra B being integral, for any integer n > 1, the mapping
ux — uag (u € Ay) from M] . to M, pm, is an isomorphism of vector spaces over K. After
(16) and Lemma 7.4, we have var, < Tf(ntm)VMyym,- On the other hand, the mapping
u— ux (u € A,) from A, to M, . is an isomorphism of vector spaces over K. After (17) and
Lemma 7.4, we obtain v4, < Tf(n)VM,,, > OF equivalently 7_,yva, < UM, So we have the
estimation
T*f(n)VAn = VML+m = Tf(ner)VMnerpa

and hence

TmTff(n)VAn < Tﬁvalwm < TnimTf(”er)VM"*mP’

or equivalently

g/ eam) Tz Tova, <T v =< Ttm)/m) Tome Tt vty (18)

n+m n+mp

m
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As proved above, the sequences (T'1v4, )n>1 and (T1vag, )n>1 converge vaguely to the same
limit v. After Proposition 6.5 and the estimation (18), we conclude that the sequence (T1 v Jn>1
converges vaguely to v. '

Step 3: Since B is a finite algebra over A, the algebra L ® 4 B is of finite rank over L, where
L is the quotient field of A. The A-module B is generated by homogeneous elements, hence
there exist homogeneous elements x1, - - - , x5 of B forming a base of L® 4 B over L. If we write
H = Az +-- -+ Az, then H is a free sub-A-module of base (21, -+ ,x5) of B. Let H = B/H.
We have an exact sequence:

0 H—Yep—"upp 0.

Since 1® 1 : L®s H— L ®4 B is an isomorphism, we have L ® 4 H' = 0, so H' is a torsion
A-module. Then dimg H' < dim A = dimy H = dimy B. After the step 2 we have CV (Ax;)
for any 1 < i <s. After Lemma 7.3, we obtain CV(H) and hence CV (B). a

Remark 7.6 In Theorem 7.5, if we suppose that the vector space B,, is non-zero for sufficiently
large n (this condition is notably satisfied when By # 0), then the condition that B is generated
by B; is not necessary. In fact, after [GD61] II, 2.1.6, there exists an integer d > 0 such
that B(4) = D,,>¢ Bna is a Byp-algebra generated by B§d) = By. Moreover, if we denote by
g : Z>o — Rsq the mapping such that g(n) = f(nd), then B(Y) is a g-quasi-filtered K-algebra.
After Theorem 7.5, the algebra B(®) satisfies the vague convergence condition. Hence by an
argument similar to the second step of the proof of Theorem 7.5, for any non-zero homogeneous
element z of B, B9z satisfies the vague convergence condition, and the sequence of probability
measures associated to B(¥z converges to the limit of that associated to B(¥. We suppose
that B,, # 0 for any n > mg. Then for any integer mo < k < mq + d, the B(¥-module
Bk — D,,~0 Bnat+r is non-zero. By an argument similar to the third step of the proof

of Theorem 7.5 using the fact that B(¥) is an integral ring, we conclude that B(®*) satisfies
the vague convergence condition, and that the limit of the sequence of probability measures
associated to B(®*) coincides with that of probability measures associated to B(¥). Finally,
combining all these measure sequences, Proposition 6.5 shows that the sequence of probability
measures associated to B converges vaguely.

Remark 7.7 1) Theorem 7.5 is not true in general for a quasi-filtered graded module. In
fact, let B be the algebra K[X] of polynomials in one variable, equipped with the usual
graduation and with the filtration F such that

B,, t<0,
F,B, =
0, t>0.

Clearly B is a quasi-filtered graded K-algebra. Let M be a free graded B-module generated
by one homogeneous element of degree 0. If ¢ : Z>9 — R is an increasing function, we can
define a filtration F¥ of M such that

M,, t<¢(n),

FEM, =
! {0, t> p(n).

Then M is a quasi-filtered graded B-module, and for any integer n > 0, va,, = dpn)-
Notice that the condition CV (M) is equivalent to the assertion that lierrl p(n)/n exists
n—-1+:0oo
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in RU{+o0}. If ¢ : Z>¢p — R is an increasing function such that the sequence (p(n)/n)p>1
has more than one accumulation point — for example, if ¢(n) = 21°82"] then CV (M) is
no longer satisfied. This counter-example shows that it is not possible to prove Theorem
7.5 by using the classical version of unscrewing.

2) Theorem 7.5 is not true in general for a quasi-filtered graded algebra which is not integral.
In fact, if B is a quasi-filtered algebra over K and if M is a quasi-filtered graded B-module.
We suppose that CV(B) is satisfied, but the condition CV (M) is not satisfied (after 1),
this is always possible). If we denote by C' the nilpotent extension of B by M (see [Mat89]
chap. 9 §25), then C is a filtered graded algebra over K, which is of finite type. But the
condition CV(C) is not satisfied.

Corollary 7.8 With the notations of Theorem 7.5, if for any n € N, we denote by P, the
polygon associated to the probability measure vy, then the sequence of polygons (Pp)n>1 con-
verges uniformly to a concave function on [0,1]. If B, # 0 for sufficiently large n, the same
result remains true if we remove the condition that B is generated as K -algebra by By.

8 Convergence of Harder-Narasimhan polygons: relative
geometric case

Using the results established in the previous section, notably Theorem 7.5 and Remark 7.6,
we obtain in Theorem 8.7 the convergence of normalized Harder-Narasimhan polygons for an
algebra in vector bundles on a non-singular projective curve.

Let k be a field, C' be a non-singular projective curve of genus g over k, n be the generic
point of C' and K be the field of rational functions on C. As explained in the introduction, we
shall associate to each non-zero vector bundle F on C' an R-filtration of Ex which is separated,
exhaustive and left continuous. Let

O=FECE1CEC - CE,=F
be the Harder-Narasimhan flag of F, which induces a flag
0=FEyk CEIxk Sl C--C B,k =Fk

of the vector space Fk. Furthermore, if we write u; = u(E;/F;—1) for 1 < i < n, then the
sequence of rational numbers (1;)1<i<s, is strictly decreasing.
Therefore, we obtain a filtration FON of Ex such that

0, if s > p1,
FiNEg = Eix, ifpiyr <s<p;, 1<i<n,
FEyx if s < pp,
called the Harder-Narasimhan filtration of Ex. Note that the normalized Harder-Narasimhan
polygon of F identifies with the polygon associated to the Harder-Narasimhan filtration of E .

We recall that if ¢ : FF — G is a non-zero homomorphism of vector bundles on C, then the
inequality fimin(F) < p(@(F)) < pimax(G) holds. We obtain therefore the following proposition.

Proposition 8.1 Let ¢ : FF — E be a homomorphism of vector bundles on C. For any real
number s, the image ¢ (Fr) is contained in FNEr if pioin(F) > s.
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Proof. The case where ¢ = 0 is trivial. We assume hence ¢ # 0. First, for any real num-
ber s € R, }“SHNEK € {Eox, - ,EnKk}. Since the vector bundles F; are saturated in F,
vk (Frx) C E; i if and only if ¢(F) C E;. Therefore, if 7 is the smallest index such that
vk (Frx) C E; i, which is always > 1 because ¢ # 0, then pmin(F) < pimax(Ei/Ei—1) =

since the composed homomorphism [ 7. E;, —— FE;/E;_1 isnon-zero. Therefore we have
s < 4, SO QDK(FK)CELKC]'—ENEK. O

Proposition 8.1 implies in particular that, for any subbundle F' C E such that ppin(F) > s,
Fi is contained in f?NEK. Therefore we have

FiNEx= Y Fx.
0#£FCE
Hmin (F)>s

Corollary 8.2 Let ¢ : F — E be a homomorphism of vector bundles on C. For any real
number s, the K -linear mapping o sends FLNFy into FINEg. In other words, the homo-
morphism px is compatible with Harder-Narasimhan filtrations.

Proof. Let F be the saturated subbundle of F' such that Fy g = fS}INF k. By the definition
of Harder-Narasimhan filtrations, we know that pimin(Fs) > s once FIN Fy is non-zero. There-
fore, the canonical mapping from FINFy to Ex factorizes through FINE. O

In the following, we shall introduce some easy estimations for the maximal and the minimal
slope of the tensor product of vector bundles on C', which will be useful in Proposition 8.6.

Lemma 8.3 Let E be a non-zero vector bundle on C. If H°(C,E) reduces to zero, then
fimax(E) < g — 1.

Proof. As H°(C,E) = 0, for any subbundle F of E, we have H°(C, F') = 0. After Riemann-
Roch theorem, we have rky HO(C, F)—rky, H'(C, F) = deg(F)+rk(F)(g—1). If H*(C, F) =0,
then deg(F') +rk(F)(1 —g) <0, ie u(F)<g-—1. O

Let b(C) = min{deg(H) | H € Pic(C), H is ample}. It is a strictly positif integer, and the
set of values {deg(H) | H € Pic(C)} is exactly b(C)Z. We define a(C) = b(C) + g.

Proposition 8.4 For any non-zero vector bundle E on C, there exists a line subbundle L of
E such that deg(L) > pimax(E) — a(C).

Proof. Let M be a line bundle of degree b(C) on C. We write r = [(g — pmax(E))/b(C)].

Thus 5 5 o
g_MmaX( ) <r< g_ﬂmaX( )+b( )

b(C) b(C)
Therefore pimax(E @ M®") = pimax(E) + rb(C) > g. After Lemma 8.3, we obtain H°(C,E ®
M®T) # 0. So there exists an injective homomorphism from O¢ to E @ M®". Let L = MV®".
Then L is a subbundle of E. On the other hand, we have deg(L) = —rdeg(M) = —rb(C) >
tmax(E) — g — b(C). Since a(C) = b(C) + g, we obtain deg(L) > pimax(E) — a(C). a

Proposition 8.5 If Fy and Ey are two non-zero vector bundles on C, then

1) ,umax(El ® EQ) < ,Umax(El) + ,Umax(E2) + a(C);
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2) pimin(E1 ® E2) > pimin(E1) + pmin(E2) — a(C).

Proof. 1) First we prove that if gmax(F1) + tmax(F2) < 0, then pimax(F1 ® E2) < g. In fact,
if pimax(E1 ® E2) > g, then H°(C, Ey ® E3) # 0 (see Lemma 8.3). Therefore, there exists a
non-zero homomorphism from Ei/ to Fs, which implies that

,Umax(E2> Z ,umin(Ei/) = *,umax(El>;

i.e., max(E1) + tmax(F2) > 0. To prove 1), we take a line bundle L on C such that —b(C) <
tmax (F1) + tmax(E2) + deg(L) < 0. We then have pmax(E1 ® L) + timax(F2) < 0 and hence,
after the result established above, pimax(E1 ® L ® E2) < g. Therefore,

,umax(El ®E2> < 9— deg(L) S Mmax(El) +Mmax(E2> +g+b(c> = ,Umax(E1> +,umax(E2) +G(C)
2) In fact,

fonin (B1 ® E2) = —fimax((E1 ® E2)") = —pimax(EY ® Ey)
> = (e (BY) + tanax (BY) + (C)) = ptmin(B1) + pimin (E2) = a(C).

O

From Proposition 8.5, we obtain by induction that if (E;)1<i<, is a family of non-zero vector
bundles on C, we have the estimation

fnin(B1 @ - @ E,) > Zumin(Ei) —a(C)(r—1) > Zumin(Ei) —a(C)r.

Actually, if the field & is of characteristic 0, then we have even the equality pimin(F1®---QFE,) =
tmin(F1)+ - -+ pmin(Er). This is a consequence of Ramanan and Ramanathan’s result [RR84]
asserting that the tensor product of two semistable vector bundles on C' is semistable.

Proposition 8.6 Let f : Z>9 — Rx>( be the constant function which sends any n € Z>q to
a(C). Let B =@,,~q%n be a graded quasi-coherent Oc-algebra. Suppose that for any integer
n > 0, %, is a vector bundle over C, and we denote by B,, = %Bp k. Then B = @n>0 B,
equipped with Harder-Narasimhan filtrations, is an f-quasi-filtered graded K -algebra.

Proof. For any integer n > 0 and any real number s, let %, s be the saturated subbundle of
Py, such that B, s k = f?NBn. Since £ is an O¢-algebra, for any integer » > 2 and any ele-
ment (n;)1<i<r € Z%, we have a natural homomorphism ¢ from %, ®- - -®@ %, to By, where
N =ny + - +n,. If (t;)1<i<r is a family of real numbers, the homomorphism ¢ induces by
restriction a homomorphism % from %, +, ® - -+ ® By, +, to Bxn. By the definition of Harder-
Narasimhan filtration we obtain that if 2, ¢, is non-zero, then pimin(Bn, +;,) > t;. Therefore, by
using the convention fimin (0) = +00, we have fimin(Bn, 1, @+ @B, t,) > t1+- -+t —a(C)r.
After Corollary 8.2, ¥k is compatible with Harder-Narasimhan filtrations, so ¢k factorizes
through F; 1. 4s —a(c)rBn. Therefore, B is a quasi-filtered graded K-algebra. O

Theorem 8.7 Let B = @,,~,Pn be a quasi-coherent graded Oc-algebra. Suppose that the
following conditions are verified:

i) Py is a vector bundle on C for any integer n > 0;
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it) there exists a constant a > 0 such that pimax(%n) < an for any integer n > 1;

iti) B is an integral ring which is of finite type over K and %, is non-zero for sufficiently
large integer n.

For any integer n > 1, we denote by P, the Harder-Narasimhan polygon of B,. Then
1) the sequence of numbers (%,U/min('%n))nzl has a limit in R.

2) the sequence (L P,)n>1 converges uniformly on [0,1].
Proof. Let f be the constant function Z>o with value a(C). After Proposition 8.6, we obtain
that Zx equipped with Harder-Narasimhan filtrations is an f-quasi-filtered graded K-algebra.

The theorem is then proved by using Theorem 7.5 (see also Remark 7.6) and Corollary 7.8. o

Let m: X — C be a projective and flat morphism from an algebraic variety X to C and L
be a line bundle on X. We shall apply Theorem 8.7 to the special case where % is the direct
sum of the direct images by the morphism 7 of tensor powers of L.

Lemma 8.8 There exists a constant € such that, for any integer n > 0,
fma (7 (L2™)) < em.

Proof. The variety X is projective over Speck. We can hence choose an ample line bundle
Z on X.

Let d = dim X. Observe that m,(c1 ()% ) = (degy, Xk)[C] in the Chow group CH;(C).
Suppose that M is a line bundle on C' and that ¢ : M — 7.(£®") is an injective homomor-
phism. We denote by @ : 7*M — £®" the homomorphism of Ox-modules corresponding
to ¢ by adjunction, which identifies with a non-identically zero section of 7*MY @ £,

whose divisor divg is effective. Then degy (01 (X)d_l[div(@]) > 0. On the other hand,
[div @] = —7*c1 (M) + ney (L) in CHY(X). Hence

degy (e2(:2)" ' div(§)]) = deg ((=n"ea(M) + nes(D)er (£)")
= —dege (1 (M) (@(2)"7)) +ndegx (e (L)er (2)'7).

demy (e (L)en(£)))
dego. Xk
Proposition 8.4, we deduce the upper bound of pimax(m«(Z®")) by a linear function on n. o

Therefore, degq (M) <

. Finally, using the comparison established in

Theorem 8.9 Suppose that H°(Xg, L") # 0 for sufficiently large integer n and that the
graded algebra @B, -, HO(X g, L") is of finite type over K (this condition is satisfied no-
tably when Lk is ample). For any integer n > 1, let P, be the Harder-Narasimhan polygon
of m.(L®™). Then the sequence of numbers (= pmin(m(L?™)))p>1 has a limit in R and the

sequence of polygons (%Pn)nZI converges uniformly on [0, 1].

Proof. After Lemma 8.8, pimax(m«(L®™)) = O(n) (n — +00). Therefore, the algebra & :=
@D,,>0 7 (L") verifies the conditions in Theorem 8.7. O

The convergence of polygons (%Pn) suggests that the sequence of (normalized) maximal
slopes (£ pimax (74 (L®™)))n>1 converges. However, this is not a formal consequence of Theorem
8.9. In Proposition 8.11, we shall justify the convergence of this sequence by using the same
generalization of Fekete’s lemma for almost super-additive sequences.
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Lemma 8.10 Let Fy and E2 be two vector bundles on X. If m.(E1) and m.(E2) are non-zero,
then

,U/max(ﬂ-* (El ® EQ)) Z ,U/max(ﬂ-*El) + Mmax(ﬂ-*EQ) - 20/(0);

where a(C) is the constant in Proposition 8.4.

Proof.  Since 7, (E1) and 7, (FE2) are non-zero, also is 7. (E1 ® E3). After Proposition 8.4, there
exist two line bundles M; and M3 on C and two injective homomorphisms M; — 7.(E7) and
My — m.(E>) such that deg M1 > pimax (7« E1) —a(C) and deg Mo > pimax (7 E2) —a(C). Since
both MY @7.(F1) and My ®m.(E2) have global sections which do not vanish everywhere on C,
then both 7* (M 1)V®F; and 7* (Mg)v ® Fs have global sections which do not vanish everywhere
on X. Therefore, HO(X, 7*(M; ® M3)V @ (E1 ® E3)) = H(C, (M; ® M)V @7.(E1 ® E)) # 0.
So we have 0 < pimax (M ® M3)Y ®@ 7. (E1 ® E»)), and hence pimax (7« (F1 ® Fs)) > deg My +
deg M2 2 pimax(m(E1)) + pmax (s (E2)) — 2a(C). U

Proposition 8.11 Let w: X — C be a projective and flat morphism from an algebraic variety
X to C and L be a line bundle on X verifying the conditions of Theorem 8.9. Then the sequence
(£ timax (7 (LE™)))n>1 has a limit in R.

Proof. Denote by a,, = pimax(m«(L®")) for any integer n > 1. After Lemma 8.8, there exists
a constant € > 0 such that a,, < en for sufficiently large n. On the other hand, Lemma 8.10
shows that amyn > am +an, —2a(C) for all integers m and n. After Corollary 3.3, the sequence
(@n/n)p>1 has a limit in R. O

9 Convergence of Harder-Narasimhan polygons: arith-
metic case

In this section, we establish the analogue of the results in the previous section in Arakelov
geometry. Let K be a number field and Ok be its integer ring. We denote by X ¢ the set of all
finite places of K, which coincides with the set of all closed points in Spec Ok . Let Y be the
set of all embeddings of K into C. Suppose that E is a projective Ox-module of finite type,
then for any finite place p of K, the structure of Ox-module on E induces an ultranorm on
Ek, = E Qo Ky.

We have explained that to any non-zero Hermitian vector bundle E on Spec O, we can
associated a flag 0 = Ey C E; € --- C E, = F of E such that Fi/Fz—,l is semistable for any
integer 1 <¢ < n and that

i(E1/Eo) > i(E2/E1) > -+ > [i(En/Ep-1).

If we write p; = fi(E;/Ei—1) for 1 < i < n, then the sequence of real numbers (u;)1<;<n is
strictly decreasing. Furthermore, the flag of £ above induces a flag 0 = Eg x C E1,x & -+ C
E, .k = Ex of the vector space Ex. We obtain therefore a filtration FHN of Ef such that

0, if s > p,
FiNEx = Eig, if piyr <s<p, 1<i<n,
Fyx, ifs< pn,

called the Harder-Narasimhan filtration of Ex. Notice that the normalized Harder-Narasimhan
polygon of E coincides with the polygon associated to the Harder-Narasimhan filtration of Ex.
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Let F and G be two non-zero Hermitian vector bundles on Spec Ox and ¢ : Fx — Gk be
a linear mapping. For any place p € ¥, ¢ induces a linear mapping ¢, : Fx, — Gk,. For
any embedding o € ¥, ¢ induces a linear mapping ¢, : F, — G,. We define the height of ¢

to be
1
he) = g (2 oelienll+ 3 Toglleall)

peEX) 0EY

Notice that if ¢ comes from an Og-linear homomorphism ¢, i.e. ¢ = ¢x, then for any p € Xy,
log [l¢p |l < 0. We recall the slope inequalities:

1) if ¢ is injective, then fimax(F) < fimax(G) + h(p);

2) if ¢ is surjective, then fimin(F) < fimin(G) + h();

3) if ¢ is non-zero, then fimin(F) < fimax(G) + h().

For the proof of the first inequality, one can consult [Bos01]. The second inequality is obtained
by applying the first one on ¢¥ : G}, — F). Finally if we apply the first two inequalities on
the two homomorphisms in the decomposition Fx — ¢(Fk) — G respectively, we obtain
the third inequality. Using the seconde slope inequality, we obtain the following proposition.

Proposition 9.1 Let F and E be two Hermitian vector bundles. If ¢ : Fx — Eg is a K-

linear homomorphism, then for any real number s < [min(F) — h(p), the image o(Fk) is
contained in szNEK.

Proof. The case where ¢ = 0 is trivial. Suppose that ¢ # 0. Let ¢ be the smallest index
such that ¢(Fx) C E; i, which is always > 1 since ¢ # 0. Consider the composed ho-

momorphism v : F L Eix (E;/E;—1 )k, which is non-zero. By slope inequality,
8 < fmin(F) < fmax(Ei/Ei—1) + h(¥) < pi + h(), or equivalently s — h(p) < u;. Therefore
SDK(FK) CEi,K C]:;{l\;z(ap)EK' O

Proposition 9.1 implies that, for any Hermitian subbundle F' of E such that fimin(F) > s,
Fi is contained in ]-"ENEK (the height of the inclusion mapping Fx — Fk is bounded from
above by 0). Therefore we obtain the relation

FiNEx = Y Fx.
0AFCE
fimin (F)>s

Corollary 9.2 Let F and E be two Hermitian vector bundles on Spec Ok and ¢ : Fx — Ex
be a K -linear mapping. Then for any real number s, ¢ sends FINFy into }“E\L((P)EK.

Proof. Let F§ be the saturated subbundle of F' such that Fy g = f?NF k. By the definition
of Harder-Narasimhan filtrations we know that fimin(Fs) > s if N Fg is non-zero. Therefore,
the canonical mapping from F, SHNF x to Ex factorizes through ]-"E\L( w)E K- O

In Corollary 9.2, if the homomorphism ¢ is an isomorphism, then 7, VFu~ g, = Vrax gy .
Therefore, for any t € [0,1], Pr(t) < Pg(t) + h(p)t. In particular, if £ is a non-zero vector
bundle on Spec Ok and if h = (|| - ||o)oex., and b’ = (]| - ||, )oex., are two Hermitian structures
on E, then for any ¢ € [0, 1],

log [|z[|s — log [|z|I5 (19)

t
Pent) = Pep(t)| < ——F sup
| (= (= | (K : Q] o_gw 0#c€Eq ¢
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Let ($n)n>0 be a collection of non-zero Hermitian vector bundles on Spec O . For any
integer n > 0 and any s € R, we denote by %, s the saturated subbundle of %,, such that
Buns = Bnsx = FINB, k. Suppose that B = D,,>0 Pn.x is equipped with a structure
of commutative Z>g-graded algebra over K. For any integer » > 2 and any element n =
(ni)i<i<r € N7, we have a homomorphism ¢, from B, ® --- ® B, to B}y defined by the
structure of algebra. After [Che07b], if (s;)1<i<r is an element in R”, we obtain, by using the
convention fimin(0) = +o0,

ﬁmin(@m,a Q- ®@WW757‘) > Z ﬁmin(gm,sz') - Z log(rk(By, s,)) > Z (Si - IOg(rk(Bm)))'
i=1 =1

i=1

If E is a Hermitian vector subbundle of @Inl such that Ex coincides with the image of B, 5, ®
@ By, s, in B}y, after the slope inequality, we have

finin(B) = fimin(Bry o1 @+ © By s,) = hlon) 2 Y (31 = 10g(tk(Bo,)) = hlen).

i=1

Suppose that g : Z>o — R>q is a function such that h(pn) < g(n1)+- - -+g(n,) for n; sufficiently
large. For any integer n > 1, let f(n) = g(n) + log(rk(B,)). Then B is an f-quasi-filtered
graded K-algebra.

Theorem 9.3 For any integer n > 0, denote by P, the Harder-Narasimhan polygon of B.
Suppose that 1i1_£1 f(n)/m = 0 and that the sequence (limax(%Bn)/n)n>1 is bounded. If B is

an integral K-algebra of finite type and if B, # 0 for sufficiently large n, then the sequence
(Hmin(Bn)/n)n>1 has a limit in R and the function sequence (P, /n)n,>1 converges uniformly
on [0,1].

Proof. 1In fact, P, coincides with the polygon associated to the filtered space B,. The theorem
results therefore from Theorem 7.5 (see also Remark 7.6) and Corollary 7.8. O

In the following, we shall establish the analogue of Theorem 8.9 in Arakelov geometry. Let
m: Z — Spec Ok be a scheme of finite type and flat over Spec Ok such that 2% is proper.
Let .Z be a Hermitian line bundle on 2°. For any integer D > 0, let Ep be the projective
Ox-module 7,(£®?). Suppose that Ep # 0 for sufficiently large D and that the algebra
B := @~ Ep i is of finite type over K. Clearly B is integral. We denote by || - |[5,sup the
norm on Ep , such that ||s[/o,sup = sup,c o, (c) [[$2]lo for any s € Ep , = HO(%QC,XSQ?). In
general this is not a Hermitian norm. For any integer D > 0 and any o € ¥, we choose a
Hermitian norm || - ||, on Ep , such that

sup | log||s]lo —log|[s]losup| = O(log D) (D — +00). (20)
O#SEEDYO-

This is always possible by Gromov’s inequality in smooth metric case (see [GS92] Lemma 30),
or by John’s or Léwner’s ellipsoid argument in general case (see [Gau07], [Tho96]). Suppose in
addition that the collection hp = (|| - ||¢)oex., is invariant by the complex conjugation. Then
Ep = (Ep, hp) becomes a Hermitian vector bundle on Spec Ok For any integer 7 > 2 and any
element n = (n;)1<i<r € N”, let ¢ be the canonical homomorphism from E,, k ® -+ ® E,,. k
t0 Ejn|,x- For any integer D > 1 and any o € Xp, we denote by

Apo = sup |log|slls —log|slosup|-
0#s€ED,»
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From (20) we know that there exists an integer ng > 2 and a real number € > 0 such that
Ap,s <elogD for any D > ng and any o € ¥

Lemma 9.4 We have the following inequality

h(sorosm Z il +Z( noo + 3 oa(k(B,,) ). (21)

Proof. Since ¢y comes from a homomorphism of Og-modules, ||¢nlly < 1 for any finite place
p of K. Consider now an embedding o € Y. If (si)1<i<r € Enyo0 X -+ X Ep_ o, then

r
1Og ||51 T SrHa < 1Og ||51 T S’I‘HO’,Sup + A|n|,0 < ZlOg ||Si||o',sup + A\n\,a’
=1

<> (108 l15illo + Ano ) + Ao =10gll51 @+ @ 5,llo + Ao+ D Anp
=1 =1

Since Ep, , ® -+ ® E,, » contains an orthogonal base which consists of rk(E,, ) - -tk(E,,)
elements of the forme s; ® - - - ® s,-, using Cauchy-Schwarz inequality, we obtain

a 1
108 lpnlls < Apnp.o + D (Anior + 5 log(k(En,)) ).
i=1

Therefore, (21) holds. d

Remark 9.5 Lemma 9.4 implies that

- 1
h(pn) < Z (25 logn; + B 1og(rk(Em))), for any n € N%,, .

=1

Therefore, if we define f(n) = 2elogn + glog(rk(En)), then the graded algebra B equipped

with Harder-Narasimhan filtrations is f-quasi-filtered. Notice that the function f satisfies

ILm f(n)/n=0.

We recall a result in [BKO7], which is a reformulation of Minkowski’s first theorem in
Arakelov geometry.

Proposition 9.6 ([BKO07]) Let E = (E, (|| ‘||o)oex..) be a non-zero Hermitian vector bundle
on Spec Ok . The following inequality holds:

log |Ak|

e (B) = los([K : Q) xk ) 12220

< —glog swp (3 Jsll) < o (B) 5 loglEC - Q]

0EY

(22)

Lemma 9.7 There erists a constant C such that fimax(Ep) < CD for any sufficiently large
integer D.
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Proof.  Let L be a Hermitian line bundle on 2" which is arithmetically ample and such that
c1(L) > 0. Suppose that s is a section of Z®P on 2", then div s is an effective divisor of 2.
Therefore, we have

hp(divs) = (D) 2(Z°7) +/ log [|sfjex () > 0.
2(C)
On the other hand, since c¢; (L) > 0, we obtain

/ log [|slle1 ()" < max 1og []a.sup / a1 (T)".
Z(C) €Y 2 (C)

-1
Therefore, by defining Cy = ¢,(L)¢ - ¢, (Z) ¢ (f)d> , we have — max, 1og||s|s,sup <
2(C)

C1D, which implies —log||s|lc < —1og ||s]|s,sup + AD,c < C1D +€log D for any o € L,. We
then obtain after Proposition 9.6 that

o 1 1 log |Ak|
max(Fp) < — sup =lo sg + =log(|K : Q|tk Ep) + ———
inax(Fp) < = sup 5 g(UEZEJ I3) + 3 log([K: Qlxk Bp) + 5=
1 log |A
< C1D +elog D + ; log(rk Ep) + % = O(D).

Theorem 9.8 For any sufficiently large integer D, we denote by Pp the normalized Harder-
Narasimhan polygon of Ep. Then the sequence (fimin(Ep)/D)p>1 has a limit in R and the
sequence of polygons (Pp/D)p>1 converges uniformly to a concave function on [0, 1].

Proof. Notice that Pp coincides with the polygon associated to the Harder-Narasimhan fil-
tration of Ep g. Therefore, the theorem follows from Theorem 9.3. O

Remark 9.9 The limit of polygons in Theorem 9.8 does not depend on the choice of Hermitian
metrics || - ||o. Suppose that for any integer D > 0 and any o € Y, we choose another
Hermitian metric || - ||% on Ep , such that the collection b}, := (|| - ||%)sex., is invariant under
complex conjugation and such that

Apgi= sup  |logllslls —10g]|sllo.cup| = Ollog D).

O7£5€ED,U

We denote by Pj, the normalized Harder-Narasimhan polygon of (Ep,h},). After (19), we
have

1
Py(t) — Pp(t)] < ——— (AD70+A* U).
P50~ o0 < gy 30 b,
Since Dhl}rl Ap.s/D = Dlir}rl AD »/D = 0, we know that the two sequences (P},/D)p>1 and

(Pp/D)p>1 converge to the same limit. Similarly the slope inequality implies that

1
li =y Amin E ) _Amin E ) T ‘: .
M & | fimin(Ep, hp) = fimin(Ep, hp)| =0
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We establish now (Proposition 9.11) the analogue of Proposition 8.11 in Arakelov geometry.

Lemma 9.10 For any integer v > 2 and any element n = (n;)1<i<r € N, . we have

T

fimax(En) > Y fimax(Bn,) - 25210%- -3 (% log([K : Q|tk E,,,) + %). (23)

=1 i=1

Proof. Suppose that for any integer 1 <4 < r, s; is a non-zero element in E,,,. Then for any
0 € Yo,

T
st selle < llsa -+ srllowsup exp(Ajnio) < T Isillosup exp(Apny.0)
i=1
T

T
< exp(Ang0) [T (Isillo exp(An,.0) ) < nfns 05 T lsillo
i=1

i=1
Therefore,
5 fseslz < (1) £ Sl < (I1) (1T S s2)
0EY i=1 o€ J=1 i=1 j=lo€eX
and ——1og( Z IIs1 - sT||(2,) > QEZlognl i log( Z (AL )

cEY i=1 cEY

After Proposition 9.6, we obtain

s (Blar) > —g 108 (3 llsr-s2) 2ezlogm > btog (3 Jsi)

0EX =1 0EX
>2T:ﬁ ax(En,) 25210gn Z(llog([K'Q]rkE )+M)
= e max nZ 1 e 2 . ng 2[KQ] .
O
Proposition 9.11 The sequence (%ﬁmaX(ED))D21 has a limit in R.
Proof. This is a direct consequence of Lemma 9.10 and Corollary 3.2. O

From the slope inequality we know immediately that the limits in Proposition 9.11 do not
depend on the choice of Hermitian metrics || - |-

10 Calculation of the limit of polygons for a bigraded
algebra

We present in this section an explicit calculation of the limit of polygons in the case where
the bigraded algebra associated to the quasi-filtered graded algebra is of finite type. The

method used in this section is inspired by an article of Faltings and Wiistholz [FW94], which
applies the theory of Poincaré series in two variables.
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Definition 10.1 Let A be a commutative ring. We call bigraded A-algebra any N2-graded
commutative A-algebra. If B is a bigraded A-algebra, we call bigraded B-module any B-
module M equipped with a Z2?-graduation in A-modules such that, for any (n,d) € N? and
any (n',d’) € Z?, we have By, g¢Mp/.ar C Mytp atar- We call homogeneous sub-B-module of M

any sub-B-module M’ of M such that M’ = @ M' N M, 4. M’ is therefore canonically
(n,d)ez?
equipped with a structure of graded B-module. In particular, if B is a bigraded A-algebra,
then B is canonically equipped with a structure of bigraded B-module. The homogeneous
sub-B-modules of B are called homogeneous ideals of B.
If B is a bigraded A-algebra and if M is a bigraded B-module, for any (n, d) € Z?, we denote
by M (n,d) the graded B-module such that M (n,d), ¢ = My ara for any (n',d’) € Z2.

Let f be a mapping from {1,---,n} to N2. The ring A[T},---,T,] of polynomials is
canonically equipped with an N2-graduation such that T; is homogeneous of bidegree f(i). We
obtain hence a bigraded A-algebra, denote by A[f].

If B is a bigraded A-algebra of finite type, then B is generated by a finite number of homoge-

neous elements x1, - - - , Z,,. We suppose that z; is of bidegree (n;,d;). Let f : {1,--- ,m} — N?
be the function which sends i to (n;,d;). Then the surjective homomorphism of A-algebras
from A[f] = A[Th,---,T),] to B which sends T} to x; is compatible with N%-graduations. It is

therefore a homomorphism of bigraded algebras. In this case, any bigraded B-module M can
be considered as a bigraded A[f]-module, which is of finite type if M is a B-module of finite

type.

Definition 10.2 Let f = (f1, f2) be a mapping from {1,---,m} to N? and M be a bigraded
A[f]-module of finite type whose homogeneous component are all A-modules of finite length.
We call Poincaré series of M the element Py € Z [ X,Y J[X !, Y 1] defined by the formula

Py= Y lena(M,a)X Y% We write Qo = Py [ J(1 = X1 0y /2()),
(n,d)€z? i=1

Proposition 10.3 We have Qy € Z[X,Y, X 1 Y 1]

Proof. By replacing A with A/ anny4 (M), we reduce the problem to the case where ann4 (M) =

0. Since M is an A[f]-module of finite type, there exist integers a < b such that M is generated

as A[f]-module by M’ = @ M, 4. Since M’ is an A-module of finite length, and
(n,d)€la,b]?NZ?

since ann4 (M’) = anna (M) = 0, the ring A is Artinian, so is Notherian.

We deduce by induction on m. If m = 0, then A[f] = A. Since M is an A-module of finite
type, we have Py € Z[X,Y, X 1 Y~1]. Suppose that the proposition has been proved for
1,---,m—1. Let £’ be the restriction of f on {1,---,m —1}. We write (nm,dn) = £f(m). The
mapping Ty, : M(—ny, —dy,) — M is a homomorphism of bigraded A[f]-modules. Let N be
its kernel (considered as homogeneous sub-A[f]-module of M). We have an exact sequence

0 — N(=nm, —dp) —= M (=1, —dp) —>= M — M /Ty M —0 .

Therefore, Py — XY Py = Pyyyp, i — XY Py, Since M/T,, M and N are A[f'] =
A[f]/(T,,)-modules of finite type, by induction hypothesis, we obtain

Qum = Quyr,om — XY QN € ZIX, Y, X1 Y.
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Remark 10.4 Let f = (f1, f2) : {1,---,m} — N? be a mapping such that f; = 1 and M be a
bigraded A[f]-module of finite type, whose homogeneous components are A-modules of finite
length. The algebra A[f], equipped with the first graduation, is the usually graded algebra of
polynomials in m variables. We can also consider the first graduation of M for which the n*®
homogeneous component of M is ;.5 My 4. This homogeneous component is an A-module
of finite length since there exist only a finite number of integers d such that M, 4 # 0. With
this graduation, M is a graded module of finite type over the polynomial algebra A[Ty, -+, T,]
(with the usual grading). If we denote by Hjs the Poncaré series associated to M (for the first
grading), we have Hp;(X) = Py(X,1). The notions dim M and ¢(M) are hence defined, as in
Section 7.

The following theorem is an analogue in the two variables case of the formula (13) for
Poincaré series.

Theorem 10.5 With the notations of Remark 10.4, the series Py is written in the forme

h
Pu(X,Y)=>" Y  L&Y)[J0-xy~O)"t
r=0acC{l,--,m} i€
#a=r
where
1) I, € Z|X,Y, X 1 Y],
2) if #a = h, the coefficients of I, are positive,

3) if M # 0, there exists at least an subset a C {1,--- ,m} of cardinal h such that I, # 0.

Remark 10.6 With the notations of Theorem 10.5, we have

h
HM(X)Z< > Ia(X,1)>(1X)_T.

r=0 \ac{l,-,m}
#a=r
Therefore, if M is non-zero, then dim M = h and ¢(M) = Z I,(1,1).
ac{l, - ,m}
#a=h

To simplify the proof of Theorem 10.5, we introduce the following notation. If M is a
bigraded A[f]-module satisfying the assertion of Theorem 10.5, we say that M verifies the the
condition P, noted by P(M). The assertion of Theorem 10.5 then becomes:

For any A[f]-module M, we have P(M).

For any integer m > 0, let ©,, be the set {(i,j) € Z*> |0 <i<m, j > 0}U{(—00,0)}. We
equip it with the lexicographic relation “<” as follows:

(i,7) < (¢, 4") if and only if i < i’ orifi =14, j <j'.

We verify easily that it is an order relation on ©,, and that the set ©,, is totally ordered
for this relation. We use the expression (i,7) < (i’,5’) to present the condition (i,j) <

(i, 5") but (i,5) # (@', 5").
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Lemma 10.7 Let 0 M’ M M 0 be a short exact sequence of bi-
graded A[f]-module. Suppose that lez,d and M:;d are A-modules of finite length for any
(n,d) € Z2. Then M, q are A-modules of finite length, and

1) dim M = max(dim M’, dim M""),
2)

c(M") + (M), dim M’ = dim M",
(M) =4 (M), dim M’ > dim M",
(M"), dim M” > dim M’

3) P(M') and P(M") = P(M).

Proof. 1In fact, we have Py; = Py + Prgr and Hyy = Hpp + Hpypo. By definition we know that
1) and 2) are true. Finally, 3) is a consequence of 1) and of the fact that Pyy = Payr+Payr. O

Proof of Theorem 10.5. By the same argument as that for the proof of Proposition 10.3,
we can suppose that A is an Artinian ring. We shall prove the theorem by induction on m.
First we prove that the theorem is true in the case where dim M < 0. If M is of dimension
< 0, then the Poincaré series Hp(X) = Pp(X,1) of M is an element of Z[X, X 1], and
Py € Z|X,Y, X1, Y~!. Hence we have P(M). Since dim M < m, the theorem is true when
m = 0. Suppose that the theorem is true for bigraded modules of an A-algebra of polynomials
in j variables (0 < j < m). Let f = (f1, f2) : {1,--- ,m} — N? be a mapping such that f; =1
and let M be a bigraded A[f] = A[T1,--- ,T,,]-module of finite type such that M, 4 is of
finite length over A for any (n,d) € Z2. Suppose that fa(m) = d.

We begin another procedure of induction on (dim M, ¢(M)). We have already proved P(M)
for dim M < 0. Suppose that we have proved P(M) for (dim M, c(M)) < (r,s), where 0 < r <
m, s > 0. In the following, we shall prove P(M) in the case where (dim M, c¢(M)) = (r,s).
Consider the homothetic transformation T}, : M(—1,—d) — M, which is a homomorphism
of bigraded A[f]-modules. We denote by f’ the restriction of f on {1,---,m — 1}. Let Ny
be the kernel of T, (considered as homogeneous sub-A[f]-module). It is a bigraded A[f’]-
module of finite type. After the induction hypothesis, we have P(N7). Let M; = M/N;. After
Lemma 10.7 3), to prove P(M), it suffices to prove P(My). If dim N; = dim M, then either
dim M; < dim M, or dim My = dim M and ¢(M;) = ¢(M) —¢(N1) < ¢(M). So we always have
(dim My, e(M7)) < (dim M, ¢(M)). After the induction hypothesis, we have P(M7). Otherwise
we have dim Ny < dim M and (dim My, c(M;)) = (dim M, c(M)). If P(M) is not true, by
iterating the procedure above, we obtain an increasing sequence of homogeneous submodules

NiCNyC---N; CNjp1 C--- (24)
of M such that (we define My = M)
i) N; =KerTy,
ii) dim N; < dim M,
iii) M; := M/N; don’t satisfy the condition P, and (dim M;, c¢(M;)) = (dim M, ¢(M)).

Since A[f] is a Noetherian ring, the sequence (24) is stationary. In other words, there exists
j € N such that M; = M. Since M;,; identifies canonically with the image of M; by the
homothetic transformation 7T;,,we have the exact sequence

0 — M;(~1, —d) — == M; —> M; /T M; —>0 .
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We write N' = M;/T,,M;. It is actually an A[f’]-module of finite type. After induction
hypothesis, we have P(N'). Finally, since (1 — XY %)Py, (X,Y) = Py/(X,Y), we have P(}M;),
which is absurd. Hence we have P(M).

(]

Let P be the formal series in Z [ X,Y J[X~!, Y 1] with positive coefficients. Then P is
written in the forme P(X,Y) = Z ana(P)X"Y? For any n € N, we write S,(P) =
(n,d)ez?
> dez @n,a(P) and denote by v, p the Borel measure on R defined by

o anyd(P)

Vn,P - Sn(P) 5d/77,'
deZ

If S, (P) =0, then v, p is by convention the zero measure.

Remark 10.8 We keep the notations of Theorem 10.5 in supposing that A is a field. If for
any integer n, we equip the space M, o := @ ey Mn,q with the R-filtration F defined by
FaMy.e = @d>k M,, 4, then the measure v, p identifies with T% VM, .- This observation is
crucial because it enables us to use the Poincaré series to study measures of a bigraded algebra
over a field.

Proposition 10.9 If P is a series in Z[X,Y ] of the forme P(X,Y) = H(l — XydH—1,

i=1
then

1) the Borel measures vy p converge vaguely to a Borel measure vp when n — +o00;

2) the sequence of functions (F.mp cro— 1 —/

1) oo 0] an,P) converges simply to
R n>1

Fp:x+—1-— / 1)—co,z) dvp.
R

Proof. 1) We have

P(X,Y) = ﬁ (Z X"Y"di) S < 3 1) xnyd
i=1 n>0 (n,d)ENXZ (w1, um )EN™

U1+t =,
urdi+-Fumdn=d

=1+ Z ( o Z 1>X"Yd.

(n,d)ez? ol )ERNT
n>0 p1teFpm =1,
p1di+ o+ pmdm=d/n

On the other hand, S,(P) = Z 1. Let A, be the simplex {(u1,- -, um) €
(M5 st ) €N
p1+Fpm=1
RY | pr+ -4 pm = 1}, ¢ : Ay — R be the mapping which sends (p1,--- , pm) to
pidy + -+ + pmdy,. For any integer n > 0, let 7, p be the measure on A,, defined by
N, P = Z méu. We observe that v, p is the direct image of 7, p by ¢. Therefore,

pELN™NA,,
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Un,p is supported by ¢(A,,). Hence for any continuous function f : R — R, f is integrable

with respect to the measure v, p. Furthermore, we have / fdvp.p = (f o )dny,, p, which
R A

is the n'" Riemann sum of the function f oy : A,, — R. So the sequence (/ fdl/»mp)
R

n>1
converges to / fopdn = / fdp.n where 7 is the Lebesgue measure on A,,,. We then obtain
A R

that the measures v, p converge vaguely to the measure vp = ..

2) The mapping ¢ can be extended to an affine mapping ® from {(u1,- -+, ftm) € R™ | p1 +
<o+t = 1} to R by simply defining ®(pq, -+, o) = pads + -+ pondpn. fdy =do = -+ =
dm = d, then P(X,Y) = (1 — XY)~™. Therefore, for any n > 1, v,, p = vp = J4. The asser-
tion is then evident. Otherwise the image of ® is the whole set R and for any point x € Im ¢,
¢~ Y(z) is a negligible subset of A,, for the Lebesgue measure. Therefore, the one point set
{z} is negligible for the measure Ap. After [Bou65] IV.5 Proposition 22, since z is the only dis-

continuous point of the function 1;_, ,, we obtain that the sequence (/ 1o, dl/n7p>
R n>1

converges to / 1)— 6,21 dvp- O
R

Proposition 10.10 Suppose that Q is a non-zero series in Z[X,Y, X1 Y =1 with positive

coefficients, and P € Z[ X, Y |[X 1, Y 1] is of the form P(X,Y) = Q(X,Y) H(l — Xydi=1,

i=1
1) The Borel measures vy, p converge vaguely to a Borel measure vp when n — +00.

2) Define the functions

(F.mp rx— 1 — / 1o a] an,P) and Fp:xr—1-— / 1o,z dvp.
R R

n>1
i) If dy = -+ = dy, = d, then for any © # d, the sequence (F, p(x))n>1 converges to
FP(SC)
i) If d;’s are not identical, then the sequence of functions (F, p)n>1 converges simply to
Fp.

Furthermore, if we denote by P’ the series P'(X,Y) = H(leYdi)fl, then we have vp = vpr,
i=1
and hence Fp = Fp/.

Proof. 1) Suppose that @ is of the form Q(X,Y) = Z Z cn/7d/X”/Yd/ where ¢,/ ¢ > 0.

[n/|<e|d’|<r
Since P = P/Q, we obtain anﬁd(P) = E E Cn',d' On—n’ d—d’ (P/) and

[n’|<eld’|<r

/

Su(P) = ana(P)=>_>" > cwaann.aa(P)
dez. deL |n'[<e || <r

/ /
= § § E Cn/,d’ an—n’,d—d’(P ) = § E Cn’,d’ Sn—n’(P )
|n/[<e |d'[<r deR /] <e |/ |<r
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Denote by Cry = Y cprar, then we have Sp(P) = Y CpSn_w(P). Ifg:R - Risa

ld’|<r In/|<e
continuous function with compact support, then
An. d P
/gdyn,P: - ( >g(d Cn!,d’ On—n',d— d’( I)g(d/n)
R dez Sn(P) deZ / ]
In/|<e|d'|<r

Notice that

o
nP Z Z ch/d/an n’,d— d/(P)g<:f_fL,)

In/|<e|d'|<r d€Z

Z Z En/ d/ n—n' )/Rgdl/nfn/yP/ =

In/|<el|d'|<r |n’\<e

95)

n’

CQ

n—n'’ )/gdl/nfn/,P/
R

converges to fR g dvps since v, p converges vaguely to vps when n — oo. Finally, the function

g is uniformly continuous on R. For any number § > 0, there exists a number € > 0 such

that, for all z,y € R such that |z — y| < &, we have |g(z) — g(y)| < §. On the other hand,
m

n(P

since P’ = H(l — XY4)=L i |d| > |n| max |d;|, we have a, q(P’) = 0. Hence for all
i=1 ==

integers d,n such that |d| > max |d;|(|n] 4+ €) + r, we have ap—ns q—a/(P') = 0 for any |n/| <e

and any |d’| < r. Therefore, for all integers n > e, d € Z, |n/| < e and |d’| < r such that

Ap—n’,d—a (P’) # 0, we always have

d d-d

n n-—n

d'n —dn’

n(n —n')

<" 4 e g nEetr)
n—n'  1<i<m n(n —n')

Therefore, there exists an integer N > 0 such that, for all integers n > N, d € Z, |n/| < e and
d d-d

|d'| € r, we have either a,_yn/ g—a(P") =0, or < e. Hence we have

n—n'

}/gdnp Y Y Y n,ddmg(j‘iﬁ)}

\n/|<e\d/|<rdEZ
d d—d
SnP Z chn’d/an n’,d— d/(P)g(E)_g(nn,)‘
Z Z ch’d’an n',d— d’(P):6

In'|<e|d'|<r d€Z
In'|<e|d’'|<r d€Z

IN
95)

n(P

We then deduce the vague convergence of v, p to vp:.

2)Ifdy =+ =d, =d, then vp = d4. So for any x # d, the set of discontinuous points
of 1)_ 4, i.e., {}, is negligible for the measure vp. Hence Jz 1)_ o ) vy, p converges to
fR Ij_ o) dvp. If di’s are not identical, then any discrete subset of R is negligible for the
measure vp, so the sequence of functions (F), p),>1 converges simply to the function Fp. |

Remark 10.11 With the notations of Proposition 10.10, the limit measure vp depends only
on the vector (dy,--- ,dm) € N™ (or simply the equivalence class of (dy,--- ,dy,) in N™/&,,,
the quotient of N™ by the symmetric group &,,). In the following, we denote by v (4, ... 4,,)
this measure. Actually, when m > 0, it is a probability measure. When m = 0, vy is the zero
measure.
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The following theorem is an immediate consequence of Proposition 10.10.

Theorem 10.12 Let (dy,- -+ ,d;) € Z7 and P(X,Y) Z Z L(x, V) [Ja-xvyd)~

r=0 aC{1,- [1<TeY
carda 7‘

be a series in Z[ X,Y |[ X1, Y 1] where

a) the coefficients of P are positive,

b) I, € Z|X,Y, X 1Y,

¢) for any o C {1,--- ;m} of cardinal h, the coefficients of I, are positive,

d) there exists at least one a C {1,--- ,m} of cardinal h such that I, # 0.

Then

1) the Borel measures v, p converge vaguely to a Borel measure vp when n — +00,

2) there exists a finite subset Q of R such that the sequence of functions

(Fmp rx— 1 — / JINTEPNSS dl/mp)
R n>1

converges pointwise on R\ Q to the function Fp :x+— 1 — / 1y o,o) drp.
R

Furthermore, if for any o = {iy < -+ < ip}, we write do, = (d;,, -+ ,d;, ), then the limit mea-
I,(1,1
sure vp equals to Z a(S’ )uda where S = Z I,(1,1). So vp is a probability
acC{l,--,m} ac{l,,m}

card a=h card a=h
measure when h > 0. If h =0, then vp is the zero measure.

The results obtained above, notably Theorem 10.5 and Theorem 10.12, imply immediately
the following theorem.

Theorem 10.13 Let K be a field, f = (f1,f2) : {1,---,m} — N? be a mapping such that
fi =1 and M be a finite generated bigraded K [f]-module. If for any integer n > 1, we denote
by vy, the Borel measure associated to the vector space My o := @ ycy Mn,a which is equipped
with the filtration induced by the second grading, then the sequence of Borel measures T1ivy,
converges vaguely to a Borel measure v on R. If furthermore M, o is non-zero for suﬁ?cie%tly
large n, then the limit measure v is a probability measure, and the polygons associated to T% Un

converge uniformly to a concave curve defined on [0, 1].

Remark 10.14 Let K be a field and B be an N-filtered graded K-algebra (that is to say, the
jumping set is contained in N) which is of finite type over K and is generated as K-algebra
by Bi. We can introduce a bigraded K-algebra B by defining Emd = FaBn/Fa+1Bn. Notice
that the filtered vector spaces Em. (whose filtration is induced by the second grading) and B,,
have the same associated measure. Therefore, if B is an algebra of finite type over K which
is generated by Bi,., then the previous theorem shows that the normalized polygons of B,
converge uniformly. However, this condition is not satisfied in general. We can for example
consider the algebra B = K[X] of polynomials, equipped with the usual graduation and the
filtration such that A(X™) = n — 1 for any n > 1. Then B is a filtered graded algebra since
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AMX" ™)y =n4+m—1>n—14+m—1=X\X")+ AX™). On the other hand, the bigraded
algebra B identifies with the algebra K[Ty,---,T,, -], where the bidegree of T}, is (n,n — 1),
modulo the homogeneous ideal generated by all elements of the form 7;,7T,,. This is not an
algebra of finite type over K.

Finally, we shall give an example of the limit of normalized Harder-Narasimhan polygons
in relative geometric framework. Let k be a field, and C be a smooth projective curve over
k. We denote by K the field of rational functions on C. Let (F;)1<i<m be a finite family of
locally free Oc-modules of finite type which are semistable. We suppose in addition that for
any family (n;)1<i<m of positive integers, the Oc-module S™E; @ - - - ® S™m E,, is semistable.
This condition is satisfied notably when one of the following conditions is satisfied:

1) the O¢-modules Ey, --- , E,, are all of rank 1;

2) C is the projective space P!;

4

)
)
3) C is an elliptic curve over k (see [Ati57]);
) k is of characteristic 0.

Let E be the direct sum E = F1 & -+ - @ F,. Let £ be the symmetric algebra of F, which
is a graded O¢-algebra. For any integer n > 1, we have

n!
eadl!»--dm!

#,=5"E= P (SdlEl ® - ® Sdem)

(di)i1<i<m€N™
di o Fdm=n

Denote by B the graded algebra over K such that B,, = %, k. For any integer 1 < i < m, we
denote by r; the rank of F; and by u; the slope of E;, and we choose a base u; = (ui,j)lgigrj
of E; k. We writeu=u; II---IIu, and r =y + -+ + 1y, the rank of E. The algebra B
identifies hence with the algebra of polynomials K[u]. If o : u — R is a mapping, denote by
|| the sum 377", 3700 a(uj;). For any integer n > 1, we denote by v, = T1 v, and we have

Z n! rk(SHE; ® -+ ® S E,,)

5, = Sdyyis o
v Al dp) rk(S"E) dupin oo

(di)1<i<m€N™
di+-+dm=n

- Z L S ;
o‘z:1|1—>N rk(SPE) it i 2 «luis)-

1 . . .
Therefore, v, = ; Zl W 52211 i ST Bluiy). Denote by A the simplex of dimension
u—-—-N
1Bl=1
r — 1 in R" (counsidered as the function space of u in R) defined by the relation

A:={z:u—Rxo| |z| =1}

and by ® : A — R the mapping which sends (v : u — R) € R" to 3 ;% p1; 335 @(uqy). This is
a continuous function. For any integer n > 1, let A be the subset of A of functions valued
in n7!N. Then v, is the direct image by ®|, ) of the equidistributed probability measure w,,
on A By abuse of language, we still use the expression wy, to denote the direct image of w;,
by the inclusion mapping from A(™ in A. Then v,, = ®,(w,). Since the sequence of measures
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(wn)n>1 converges vaguely to the uniform measure on A, the limit v of the measure sequence
(Vn)n>1 exists and equals to the direct image of the uniform measure on A by the mapping ®.
Therefore the uniform limit of polygons associated to v, exists and equals to the “polygon” (it
is in fact a concave function) associated to the limit measure v.

Example 10.15 Let E be the direct sum of two invertible modules L, and L,. We write
w1 = deg(L1) and po = deg(L2), and we suppose that u; < pe. In this case, A = {(x,1 —
r) | 0 < x < 1} C R? is parametered by [0,1]. The mapping ® : A — R sends (z,1 — x) to
12 + po(1l — x). Therefore, the limit measure v is the equidistributed probability measure
on [p1,p2]. Let f be the function defined by f(t) = E“[l{,~4]. Then we have f(z) =

1
((ug —x)y — (1 — z)+) The quasi-inverse of f is therefore f*(t) = pit + po(1 — t).
M2 — 1
Finally, the limit of normalized Harder-Narasimhan polygons of S™F is given by the quadratic
curve
H2 — H1 o
poT — =1,

which is non-trivial in general.
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A Pseudo-filtered graded algebra

In this section, we propose another generalization of filtered graded algebras which is weaker
than the notion of f-quasi-filtered graded algebras. By imposing a condition on f which is
stronger than hr—f f(n)/m =0, we also obtain the vague convergence of measures associated

n—-10oo

to filtrations and hence the uniform convergence of polygons.

Definition A.1 Let B =D, -, By be a graded K-algebra and f : Z~o — R>¢ be a function.
We say that B is an f-pseudo-filtered graded K-algebra if each B,, is equipped with a decreasing
R-filtration such that, for all sufficiently large integers n, m, we have

Bn,sBm,t C Bner,ertff(n)ff(m)-

If B is an f-pseudo-filtered graded K-algebra, we say that a graded B-module M = P, ., My
is f-pseudo-filtered if for any integer n, M, is equipped with a decreasing R-filtration such
that, for all sufficiently large integers n, m, we have

Bn,st,t C Mn+m,s+t—f(n)—f(m)'

Remark A.2 Note that B is an f-pseudo-filtered graded B-module. If f = 0, then B is
a filtered graded K-algebra and M is a filtered graded B-module. If g is another function
dominating f, then B is a g-pseudo-filtered graded K-algebra and M is a g-pseudo-filtered
graded B-module.

Some results which are analogues to those in Section 4 can be stated and verified without
difficulty for pseudo-filtered graded algebras and for pseudo-filtered graded modules, notably
the corollaries 4.3, 4.5 and 4.6 where we only need to replace “quasi-filtered” by “pseudo-
filtered” in the statement of the results.

Let f : Z>0 — R>( be a decreasing function, V' be a vector space of rank 0 < d < 400 over
K, and B be the symmetric algebra generated by V', equipped with the usual graduation. We
suppose that for any positive integer n, B,, is equipped with an R-filtration which is separated,
exhaustive and left continuous such that B is an f-pseudo-filtered graded K-algebra. Let
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g be an increasing function which is concave and c-Lipschitz. For any integer n > 0, let
I, = fR gdT1vp, . Then for all sufficiently large integers m and n, we have

Im+n _/gd(T 1 Vy(m, n)) /A:flng <m+ A( )) d§m+n(’7)
_ 1 (m,n)
B /Aw) AW g (ern)‘(“aw )) dp(m,n) (e, B)

1
/Au)xA(d) (F)\(uauﬁ)) dpim.m (@ )

Y

Z/A<d>m<d>9< (ua)+A(u§1)+7{( )_f(m))df)(m,n)(a,ﬁ)
- A(d)xA(d) {g< uin:;\m(um) (f(gii(m))]dp(mm(a,ﬂ)
- I, [m_cf(n)+f(m).

n+m n+m m+mn

(25)

If the sequence (I,,),>0 is bounded from above and if ., f(2%)/2% < 400, then (I,,)n>0
converges, which implies that the sequence of measures (T% vp, )n>1 converges vaguely. In
other words, B satisfies the vague convergence condition. The convergence of (I,,),>¢ is based
on Corollary A.5, which we shall present as below.

Lemma A.3 If f : Z~o — Rx¢ is an increasing function such that 3~ f(2%)/2% < 400,
then a -
lim 27° 24) =
Jim ;f( )

Proof. For any integer a > 0, let S, =) . 29)/2¢. By Abel’s summation formula,
i>a

D)= (S = 8i1)2 =80 — Sar12”+ Y 82

i=0 i=0 i=1
Since hm Sa =0, we have 27> > | S 5;27~1 converges to 0 when o — +o00, which implies
the 1emma ]

Proposition A.4 Let (by,)n>1 be a sequence of positive real numbers and f : Zso — R>¢ be
an increasing function such that )" <, f(2%)/2% < 4o00. If there exists an integer ng > 0 such
that, for any pair (m,n) of integers > ngy, we have byym < by + by + f(m) + f(n), then the
sequence (bp/n)p>1 has a limit in R>g.

Proof. First let us treat the case where ny = 1. Since f is an increasing function we obtain
that for any (m,n) € Z2,

bntn < bp + by + 2f(m +n). (26)
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For any integer o > 0, let S, = Zf )/2%. then hIJIrl Sq = 0. If 28 < n < 20+ is an
i>a
integer, we have, for any a € N,

byon < 2%, + » 207127 n) < 2%, + Y 20T (201, (27)

i=1 i=1
Suppose that p = Zf:o €;2°, where ¢; € {0,1} forany 0 <i < kand e, = 1. If 0 < r < n is
another integer, we have after (26) the following inequality:

k k %
buptr < bup + by + 2f(np+ 1) < eibyin + b 423 eif (D 2n) +2f (np+1) - (28)
i=0 i=0 j=0

After (27), we have

bupr < Zezzzb +by +Zezzzz+l Tf20) + Z e f(27) 42 (252 (29)
=1 j=1

1=0
Therefore,
b pb b P
np+r n r —k—p i+1—j proB+j
< +2 2 2
np+r_np+r+np+7“ ;jzl f )
k
+ 9—k—=pB+1 Z f(2i+ﬁ+2) + 2—k—ﬁ+1f(2k+ﬁ+2)_
i=0
Since
ko E ok k
9—k—0 ZZQerlfgf(Qﬁﬂ) — 9~k ZZf(Qﬂﬂ)Qerl J Z Qﬂﬂ 92-j—08 _ =454,
i=1 j=1 j=11i=j j=1

we obtain that

k+B+3

banrr pbn b _k—
< 48 g k=l 2
nP—I—T_np—i—?“Jrnp—f-rJr it ; iy

After Lemma A.3, we have

bm bn, by
limsup — < liminf ( + 45| 10g, nJ+1) = lim inf —

m—-+oo M n—+00 n—+too N

Therefore, the sequence (b,,/n),>1 converges.

For the general case, by applying the above result on the subsequence (by,x)r>1 and the
function g(k) = f(nok), we obtain that the sequence (bn,r/k)r>1 has a limit in R>g. On the
other hand, if ng <1 < 2ng is an integer, then for any integer k£ > 1, we have the inequality

brg(kt2) — b2ng—1 — f(nok +1) — f(2n0 — 1) < bugk+i < bugr + b+ f(nok) + f(1).  (30)
If we divide (30) by nok + [, we obtain, by passing to the limit k — +o0,

1 bnok+l i bnok
k—+o0 nok +1 k—-+oo nok ’

Since [ is arbitrary, the proposition is proved. O
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Corollary A.5 Let (an)n>1 be a sequence of real numbers, f : Zso — R>q be an increasing
function and ¢ > 0 be a constant. Suppose that

1) for sufficiently large integers n,m, Gpym > an + am — f(n) — f(m),
2) a, < cn for any integer n > 1,

8) Dm0 [(29)/2% < +o0.
Then the sequence (an/n)n>1 has a limit in R.

Proof.  Consider the sequence (b, = c¢n — ay)n>1 of positive real numbers. If n and m are two
sufficiently large integers, we have

bptm =c(n+m) — apym < cn+cem—ap — am + f(n)+ f(m) =b, + by + f(n) + f(m).

After Proposition A.4, the sequence (b, /n),>1 has a limit in R. Since an/n = ¢ — b, /n, the
sequence (ap/n),>1 also has a limit in R. m|

We establish finally the vague convergence for normalized measures associated to a pseudo-
filtered graded algebra.

Theorem A.6 Let f : Z>o — R>q be an increasing function such thaty <o f(2%)/2% < +00,
B be an integral graded K -algebra of finite type over K, which is generated by By. Suppose
that

i) d =dim B is strictly positive,

it) for any positive integer n, B, is equipped with an R-filtration F which is separated, ex-
haustive and left continuous such that B is an f-pseudo-filtered graded K -algebra,
A
1) limsup sup ﬂ < +00.
n—+oo 0#a€B, N
If for any integer n > 0, we write v, = T1vp,, then the supports of v, (n > 1) are uniformly

bounded and the sequence of measures (vp)>1 converges vaguely to a Borel probability measure
on R.

Proof. We apply the proof of Theorem 7.5 in making some modifications. First we replace
the inequality (15) by ARt = \min 4 \min _ f(n) — f(m) for all sufficiently large integers m, n.
After Corollary A.5, the sequence (A" /n),,>1 converges, so is bounded from below.

For the first step, since >_ -, f(2%)/2% < +o0, we have hIJIrl f(29)/2% = 0. As f is an
increasing function, liIE f(n)/n = 0. Therefore, the first step of the proof of Theorem 7.5

remains valid. Moreover, the third step is a formal argument for the vague convergence con-
dition, and therefore works without problem. It remains to verify that for any homogeneous
element x of B, the graded A-module Az, equipped with the inverse image filtration, satisfies
the vague convergence condition. This corresponds to the second step of the proof of Theorem
7.5. Finally, no modification to the second step is necessary since in inequalities (16) and (17),
involves only the product of two homogeneous elements in B. O

Corollary A.7 With the notations of Theorem A.6, the polygons associated to probability
measures v, converge uniformly to a concave function on [0,1].
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Remark A.8 Instead of supposing that B is generated by Bj, if we suppose that B,, is non-
zero for sufficiently large n, Theorem A.6 remains true, we have also the uniform convergence
of polygons.
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