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Convergence of Harder-Narasimhan polygons

Huayi Chen∗

June 18, 2007

Abstract

We establish in this article convergence results of normalized Harder-Narasimhan

polygons both in geometric and in arithmetic frameworks by introducing the Harder-

Narasimhan filtration indexed by R and the associated Borel probability measure.

1 Introduction

Let X be a projective variety of dimension ≥ 1 over a field k and L be an ample line bundle
on X . The Hilbert-Samuel theorem describing the asymptotic behaviour of rkH0(X,L⊗D)
(D → ∞) is an important result in commutative algebra and in algebraic geometry, which is
largely studied since Hilbert’s article [Hil90]. Although numerous variants and generalizations
of this theorem have been developed, many proofs have a common feature — the technic
of unscrewing (“dévissage” in French). Let us recall a variant of Hilbert-Samuel theorem in
relative geometric framework. Suppose that k is a field and C is a non-singular projective curve
over Spec k. We denote by K = k(C) the field of rational functions on C. Let π : X → C be
a projective and flat k-morphism and L be an invertible OX -module which is ample relatively
to π. We denote by d the relative dimension of X over C. The Riemann-Roch theorem implies
that

deg(π∗(L
⊗D)) =

c1(L)d+1

(d+ 1)!
Dd+1 +O(Dd) (D →∞).

Combining with the classical Hilbert-Samuel theorem

rk(π∗(L
⊗D)) = rkH0(XK , L

⊗D
K ) =

c1(LK)d

d!
Dd +O(Dd−1),

we obtain the asymptotic formula

lim
D→∞

µ(π∗(L
⊗D))

D
=

c1(L)d+1

(d+ 1)c1(LK)d
, (1)

where the slope µ of a non-zero locally free OC -module of finite type (in other words, non-zero
vector bundle on C) is by definition the quotient of its degree by its rank. For a non-zero vector
bundle E on C, there exists invariant which is much shaper than the slope. Namely, Harder and
Narasimhan have proved in [HN75] that there exists a non-zero subbundle Edes whose slope
is maximal among the slopes of non-zero subbundles of E and which contains all non-zero
subbundles of E having the maximal slope. The slope of Edes is denoted by µmax(E), called
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the maximal slope of E. We say that E is semistable if and only if E = Edes, or equivalently
µ(E) = µmax(E). By induction we obtain a sequence

0 = E0 ( E1 ( E2 ( · · · ( En = E

of saturated subbundles of E such that (Ei/Ei−1) = (E/Ei−1)des for any 1 ≤ i ≤ n. This
sequence is called the Harder-Narasimhan flag of E. Clearly each sub-quotient Ei/Ei−1

is semistable and we have µ(E1/E0) > µ(E2/E1) > · · · > µ(En/En−1). The last slope
µ(En/En−1) is called the minimal slope of E, denoted by µmin(E). Note that the Harder-
Narasimhan flag of Ei is just 0 = E0 ( E1 ( · · · ( Ei and therefore µmin(Ei) = µ(Ei/Ei−1).

Recall that the Harder-Narasimhan polygon of E is by definition the concave function P̃E
on the interval [0, rkE] whose graph is the convex hull of points (rkF, deg(F )), where F runs

over all subbundles of E. Therefore, the function P̃E takes zero value at origin; it is piecewise
linear and its slope on the interval [rkEi−1, rkEi] is µ(Ei/Ei−1). Let PE be the function

defined on [0, 1] whose graph is similar to that of P̃E , namely PE(t) = P̃E(t rkE)/ rkE, called
the normalized Harder-Narasimhan polygon of E. Notice that PE(1) = µ(E). Therefore (1)
can be reformulated as

lim
D→∞

Pπ∗(L⊗D)(1)

D
=

c1(L)d+1

(d+ 1)c1(LK)d
. (2)

It is then quite natural to study the convergence at other points in [0, 1]. Here the major diffi-

culty is that, unlike the degree function P̃E(1) rkE, for other points r ∈]0, rkE[, the function

E → P̃E(r) rkE need not be additive with respect to short exact sequences. Therefore the
unscrewing technic doesn’t work.

The original idea of this article is to use Borel probability measures on R to study Harder-
Narasimhan polygons. In Figure 1, the left graph presents the first order derivative of the

Figure 1: Derivative of the polygon and the corresponding distribution function
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ti = rkEi/ rkE for 0 ≤ i ≤ n. It is a step function on [0, 1]. The right graph presents
a decreasing step function on R valued in [0, 1] whose quasi-inverse corresponds to the left
graph. Furthermore, this function is the difference between the constant function 1 and a
probability distribution function and therefore corresponds to a Borel probability measure

νE =
n∑

i=1

(ti − ti−1)δµi
, where δx is the Dirac measure at the point x. If we place suitably the

subbundles in the Harder-Narasimhan flag of E on the right graph, we obtain a decreasing
R-filtration of the vector bundle E, which induces naturally by restricting to the generic fiber
a decreasing R-filtration FHN of the vector space EK , called the Harder-Narasimhan filtration
of EK . As we shall show later, the filtration FHN can be calculated explicitly from the vector
bundle E, namely

FHN
r EK =

∑

06=F⊂E
µmin(F )≥r

FK .

From this filtration, one can recover easily the probability measure

νE =
1

rkEK

∑

r∈R

(
rk(FHN

r EK)− lim
ε→0+

rk(FHN
r+εEK)

)
δr.

Furthermore, the function presented in the right graph is just r 7→ rk(FHN
r EK). By passing to

quasi-inverse (turning over the graph), we retrieve the first order derivative of the normalized
Harder-Narasimhan polygon. This procedure is quite general and it works for an arbitrary
(suitably) filtered finite dimensional vector space, where the word “suitably” means that the
filtration is separated, exhaustive and left continuous, which we shall explain later in this
article. Actually, we have natural mappings

{
(suitably) filtered finite
dimensional vector spaces

}
−→

{
Borel probability measures
on R which are linear com-
binations of Dirac measures

}
←→

{polygones
on [0, 1]

}
,

V 7−→ νV 7−→ PV

the last mapping being a bijection. If a probability measure ν corresponds to the polygon P ,
then we can verify that, for any real number ε > 0, the probability measure corresponding to
εP is the direct image Tεν of ν by the dilation mapping x 7→ εx.

Let us go back to the convergence of polygons. To verify that a sequence of polygons
converges uniformly, it suffice to prove that the corresponding sequence of measures converges
vaguely to a probability measure. We state the main theorem of this article.

Theorem 1.1 Let f : Z≥0 → R≥0 be a function such that lim
n→+∞

f(n)/n = 0 and B =
⊕

n≥0Bn be an integral graded K-algebra of finite type over K. Suppose that

i) for sufficiently large integer n, the vector space Bn 6= 0,

ii) for any positive integer n, Bn is equipped with an R-filtration F which is separated, ex-
haustive and left continuous, such that B is an f -quasi-filtered graded K-algebra,

iii) sup
(

supp νBn

)
= O(n).

For any integer n > 0, denote by νn = T 1
n
νBn

. Then the supports of νn are uniformly bounded

and the sequence of measures (νn)n≥1 converges vaguely to a Borel probability measure on R.
Therefore, the sequence of polygons ( 1

nPBn
) converges uniformly to a concave function on [0, 1].
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To apply the above theorem to the convergence of
( 1

D
Pπ∗(L⊗D)

)
D≥1

, we point out that the

graded algebra
⊕

D≥0H
0(XK , L

⊗D
K ), equipped with Harder-Narasimhan filtrations, verifies

the conditions in Theorem 1.1 for a suitable constant function f . The verification of this
fact is easy. However, the proof of the theorem requires quite subtle technical arguments on
almost super-additive sequences and on combinatorics of monomials, which will be presented
in Section 3 and in Section 5 respectively. The idea is to prove that the sequence of measures
(νn)n≥1 is “vaguely super-additive”, and then apply a variant of Fekete’s lemma to conclude
the vague convergence.

We are now able to state our geometric convergence theorem.

Theorem 1.2 With the notations above, the sequence of polygons
( 1

D
Pπ∗(L⊗D)

)
D≥1

converges

uniformly to a concave function on [0, 1].

The analogue of the formula (1) in Arakelov geometry was firstly proved by Gillet and
Soulé [GS92], using their arithmetic Riemann-Roch theorem. Since then, this subject has been
rediscussed by many authors such as Abbes and Bouche [AB95], Zhang [Zha95], Rumely, Lau
and Varley [RLV00] and Randriambololona [Ran06].

Let K be a number field and OK be its algebraic integer ring. We denote by Σ∞ the
set of all embedding of K in C. If X is a projective arithmetic variety (i.e. scheme of
finite type, projective and flat) over SpecOK , we call Hermitian vector bundle on X any pair
E = (E , (‖ · ‖σ)σ∈Σ∞

), where E is a locally free OX -module of finit type, and ‖ · ‖σ is a
continuous Hermitian metric on Eσ(C) such that the collection (‖ · ‖σ)σ∈Σ∞

is invariant under
the action of the complex conjugation. We call Hermitian line bundle on X any Hermitian
vector bundle L on X such that L is of rank one. Notice that a Hermitian vector bundle on
SpecOK is nothing but the pair E = (E, (‖ · ‖σ)σ∈Σ∞

), where E is a projective OK-module
of finite type, and ‖ · ‖σ is a Hermitian metric on Eσ := E ⊗OK,σ C such that the collection
(‖ ·‖σ)σ∈Σ∞

is invariant by the complex conjugation. If E is a Hermitian vector bundle of rank
r on SpecOK , we define its (normalized) Arakelov degree to be

d̂egn(E) :=
1

[K : Q]

(
log #

(
E/(OKs1 + · · ·+OKsr)

)
−

1

2

∑

σ∈Σ∞

log det(〈si, sj〉σ)
)
,

where (s1, · · · , sr) ∈ Er is an arbitrary element in Er which defines a base of EK over K
(see [Bos96], [Bos01], [CL02], [Bos04] and [BK07] for details). This is an analogue in Arakelov
geometry of the classical notion of degree of a vector bundle on a smooth projective curve.
Recall that the slope of a non-zero Hermitian vector bundle E on SpecOK is by definition

the quotient µ̂(E) := d̂egn(E)/ rk(E). We denote by µ̂max(E) the maximal value of slopes of
non-zero Hermitian subbundle of E, and by µ̂min(E) the minimal value of slopes of non-zero
Hermitian quotient bundle of E. Stuhler [Stu76] and Grayson [Gra76] have proved that there
exists a non-zero Hermitian subbundle Edes of E such that µ̂(Edes) = µ̂max(E) and that Edes

contains all Hermitian subbundle of E having the maximal slope. We obtain therefore a flag

0 = E0 ( E1 ( E2 ( · · · ( En = E

of E such that Ei/Ei−1 = (E/Ei−1)des for any integer 1 ≤ i ≤ n, and that

µ̂max(E) = µ̂(E1/E0) > µ̂(E2/E1) > · · · > µ̂(En/En−1) = µ̂min(E).

The Harder-Narasimhan polygon of E is by definition the concave function P̃E defined on

[0, rkE] whose graph is the convex hull of points of the form (rkF, d̂egn(F )), where F runs over
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all non-zero sub-OK-modules of E equipped with induced metrics. The normalized Harder-
Narasimhan polygon of E is the concave function PE defined on [0, 1] such that PE(t) =

P̃E(t rkE)/ rkE. Notice that we have PE(1) = µ̂(E). The measure theory approach in ge-
ometric case works without any modification in arithmetic case. Namely, to any non-zero
Hermitian vector bundle E on SpecOK , we associate a decreasing filtration FHN of EK , called
the Harder-Narasimhan filtration, such that

FHN
r EK =

∑

06=F⊂E
µ̂min(F )≥r

FK .

This filtration induces a Borel probability measure νE on R such that νE([r,+∞[) = rk(FHN
r EK)/ rkE.

Finally the normalized Harder-Narasimhan polygon PE is uniquely determined by νE .
Using Theorem 1.1, we obtain the following arithmetic convergence theorem.

Theorem 1.3 Let π : X → SpecOK be a projective arithmetic variety and L be a Hermitian
line bundle on X such that the graded algebra

⊕
D≥0H

0(XK ,L
⊗D
K ) is of finite type over K,

and that H0(XK ,L
⊗D
K ) 6= 0 for D ≫ 0. Then the sequence of polygons ( 1

DPπ∗(L
⊗D

)
)D≥1

converges uniformly to a concave function on [0, 1].

Contrary to the geometric case, the verification of the fact that the algebra
⊕

D≥0H
0(XK ,L

⊗D
K )

equipped with Harder-Narasimhan filtrations is an f -quasi-filtered graded algebra for a func-
tion f of logarithmic increasing speed at infinity is subtle, which depends on the author’s
recent work [Che07b] on an upper bound of the maximal slope of the tensor product of several
Hermitian vector bundles.

The article is organized as follows. In the second section, we introduce the notion of R-
filtrations of a vector space over a field and its various properties. We also explain how to
associate to each filtered vector space of finite rank a Borel measure on R, which is a proba-
bility measure if the vector space is non-zero. The third section is devoted to a generalization
of Fekete’s lemma on sub-additive sequences, which is useful in sequel. We present the main
object of this article — quasi-filtered graded algebras in the fourth section. Then in the fifth
section we establish the vague convergence of measures associated to a quasi-filtered symmetric
algebra. In the sixth section we explain how to construct the polygon associated to a Borel
probability measure which is a linear combination of Dirac measures. We show that the vague
convergence of probability measures implies the uniform convergence of associated polygons.
Combining the results obtained in previous sections, we establish in the seventh section the
uniform convergence of polygons associated to a general quasi-filtered graded algebra. In the
eighth and the ninth sections we apply the general result in the seventh section to relative
geometric framework and to Arakelov geometric framework respectively to obtain the corre-
sponding convergence of Harder-Narasimhan polygons. Finally in the tenth section, we propose
another approach, inspired by Faltings and Wüstholz [FW94], to calculate explicitly the limit of
the polygons. We conclude by providing an explicit example where the limit of the polygons is
a non-trivial quadratic curve on [0, 1]. In the appendix, we develop a variant of f -quasi-filtered
graded algebra — f -pseudo-filtered graded algebra, where we require less algebraic conditions.
With a stronger condition on the increment of f , we also obtain the convergence of polygons.
Although this approach has not been used in this article, it may have applications elsewhere
and therefore we include it as well.

Acknowledgement. The results presented in this article is part of the author’s doctoral
thesis supervised by J.-B. Bost. The author would like to thank him for having proposed the
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author to study the convergence of Harder-Narasimhan polygons, for his encouragement and
for discussions.

2 Filtrations of vector spaces

We present some basic definition and properties of filtrations of vector spaces. Although
the notion of filtrations in a general category has been discussed in [Che07a], we would like to
introduce it in an explicit way for the particular case of vector spaces.

We fix in this section a field K. A (decreasing) R-filtration of a vector space V is by
definition a collection F = (F(r))r∈R of K-vector subspaces of V such that F(r) ⊃ F(r′) if
r ≤ r′. We shall use the expression FrV to denote F(r), or simply Vr if there is no ambiguity

on the filtration F . An R-filtration F is said to be separated if V+∞ : =
⋂

r∈R

Vr = {0}, and to

be exhaustive if V−∞ : =
⋃

r∈R

Vr = V .

Let V be a vector space over K, F be an R-filtration of V . For any element x ∈ V , we
call index of x relatively to F the element sup{r ∈ R | x ∈ FrV } in R ∪ {±∞} (by convention
sup ∅ = −∞), denoted by λF (x), or simply λ(x) if there is no ambiguity on F . The mapping
λF : V → R ∪ {±∞} is called the index function of F .

Let x be an element in V . The set {r ∈ R | x ∈ FrV } is non-empty if and only if
λ(x) > −∞. In this case, it is either of the form ]−∞, λ(x)[ or of the form ]−∞, λ(x)]. The
following properties of the function λ are easy to verify:

1) λ(x) = +∞ if and only if x ∈ V+∞,

2) λ(x) = −∞ if and only if x ∈ V \ V−∞,

3) λ(x) > r if and only if x ∈
⋃

s>r

Vs,

4) λ(x) ≥ r if and only if x ∈
⋂

s<r

Vs.

We say that an R-filtration F of V is left continuous if and only if for any r ∈ R, FrV =⋂
s<r FsV . If F is an arbitrary filtration of V , then the filtration F l = (

⋂
s<r FsV )r∈R is a left

continuous filtration of V .
For any element x ∈ V and any r ∈ R ∪ {+∞}, the fact that x ∈ FrV implies λ(x) ≥ r.

The converse is true when F is left continuous.

Proposition 2.1 Let V be a vector space over K and F be a filtration of V . The following
assertions hold:

1) if a ∈ K× and if x ∈ V , then λ(ax) = λ(x),

2) if x and y are two elements of V , then λ(x + y) ≥ min(λ(x), λ(y)),

3) if x and y are two elements of V such that λ(x) 6= λ(y), then x + y 6= 0, and λ(x + y) =
min(λ(x), λ(y)),

4) if the rank of V is finite, then the image of λ is a finite subset of R∪ {±∞} whose cardinal
is bounded from above by rkK V + 1.

6



Proof. 1) For any a ∈ K×, x ∈ FrV if and only if ax ∈ FrV . So {r ∈ R | x ∈ FrV } = {r ∈
R | ax ∈ FrV }, which implies that λ(x) = λ(ax).

2) In fact, {t | x + y ∈ FtV } ⊃ {r | x ∈ FrV } ∩ {s | y ∈ FsV }. Therefore sup{t | x + y ∈
FtV } ≥ min(sup{r | x ∈ FrV }, sup{s | y ∈ FsV }).

3) If x+ y = 0, then x = −y. So λ(x) = λ(y) by 1), which leads to a contradiction. Hence
x + y 6= 0. We may suppose that λ(x) < λ(y). For any r ∈]λ(x), λ(y)[, we have y ∈ FrV but
x 6∈ FrV . Therefore x+ y 6∈ FrV , in other words, λ(x+ y) ≤ r. Since r is arbitrary, we obtain
λ(x + y) ≤ λ(x). Combining with 2), we get the equality.

4) Suppose that x1, · · · , xn are non-zero elements in V such that λ(x1) < λ(x2) < · · · <
λ(xn) < +∞. After 1) and 3), for any (ai)1≤i≤n ∈ K

n \ {0},

λ(a1x1 + · · ·+ anxn) = min{λ(xi) | ai 6= 0} < +∞,

which implies that a1x1 + · · ·+ anxn 6= 0. Therefore, x1, · · · , xn are linearly independent. So
n ≤ rkK V . 2

Using the index function λ, we give some numerical characterizations for filtrations of vector
spaces.

Proposition 2.2 Let V be a vector space over K equipped with an R-filtration F . Then

1) the filtration F is separated if and only if for any x ∈ V \ {0}, λ(x) < +∞,

2) the filtration F is exhaustive if and only if for any x ∈ V , λ(x) > −∞.

Proof. 1) If the filtration is separated, then for any non-zero element x of V , there exists
r ∈ R such that x 6∈ FrV , so λ(x) ≤ r. Conversely for any non-zero element x ∈ V such that
λ(x) < +∞, if λ(x) ∈ R, then x 6∈ Fλ(x)+1V , otherwise λ(x) = −∞ and by definition x 6∈ FrV
for every r ∈ R.

2) If the filtration is exhaustive, then for any element x of V , there exists r ∈ R such that
x ∈ FrV . Hence λ(x) ≥ r. Conversely for any element x ∈ V such that λ(x) > −∞, either we
have λ(x) ∈ R, and therefore x ∈ Fλ(x)−1V , or we have λ(x) = +∞ and x ∈ FrV for every
r ∈ R. 2

Proposition 2.3 Let V be a vector space over K and F be a filtration of V .

1) For any element x of V , we have λF (x) = λF l(x).

2) If F is separated (resp. exhaustive), then also is F l.

Proof. 1) Since FrV ⊂ F lrV , we have λF (x) ≤ λF l(x). On the other hand, if x ∈ F lrV , then
for any s < r, we have x ∈ FsV , so λF (x) ≥ r. Hence λF (x) ≥ λF l(x).

2) It’s an easy consequence of 1) and Proposition 2.2. 2

Consider now two vector spaces V and W over K. Let F be an R-filtration of V and G
be an R-filtration of W . We say that a linear mapping f : V → W is compatible with the
filtrations (F ,G) if for any r ∈ R, f(FrV ) ⊂ GrW .

We introduce some functorial construction of filtrations. Let f : V → W be a K-linear
mapping of vector spaces over K. If G is an R-filtration of W , then the inverse image of G
by f is by definition the filtration f∗G of V such that (f∗G)rV = f−1(GrW ). Clearly, if G is
left continuous, then also is f∗G. If F is an R-filtration of V , the weak direct image of F by

7



f is by definition the filtration f♭F of W such that (f♭F)rW = f(FrV ), and the strong direct
image of F by f is by definition the filtration f∗F = (f♭F)l. Clearly the homomorphism f is
compatible to filtrations (f∗G,G), (F , f♭F) and (F , f∗F).

Proposition 2.4 If a K-linear mapping f : V → W is compatible with the filtrations (F ,G),
then for any x ∈ V , one has λ(f(x)) ≥ λ(x). The converse is true if G is left continuous.

Proof. “=⇒”: By definition we know that {r ∈ R | x ∈ FrV } ⊂ {r ∈ R | f(x) ∈ GrW} for
any x ∈ V , therefore λ(x) ≤ λ(f(x)).

“⇐=”: For any r ∈ R and any x ∈ FrV , we have λ(x) ≥ r, and hence λ(f(x)) ≥ r.
Therefore, f(x) ∈ GrW since the filtration G is left continuous. 2

Proposition 2.5 Let f : V ′ → V be an injective homomorphism and π : V → V ′′ be a
surjective homomorphism of vector spaces over K. Suppose that F is an R-filtration of V .
Then:

1) if F is separated, also is f∗F ;

2) if F is separated and if the rank of V is finite, the filtration π♭F is also separated;

3) if F is exhaustive, the filtrations f∗F , π♭F and π∗F are all exhaustive.

Proof. 1) As F is separated,
⋂

r∈R

FrV = {0}. Since f is injectif, we have

⋂

r∈R

(f∗F)rV
′ =

⋂

r∈R

f−1(FrV ) = f−1
( ⋂

r∈R

FrV
)

= f−1({0}) = {0}.

Therefore f∗F is also separated.

2) If rkE < +∞, then λF takes only a finite number of values. Let r0 = sup
(
λF (E) \

{±∞}
)
< +∞. For any real number r > r0 and any x ∈ FrV we have λF (x) ≥ r > r0,

so λF (x) = +∞, i.e., x = 0 since the filtration F is separated. Therefore, FrV = 0 and
(π♭F)rV

′′ = π(FrV ) = 0.

3) Since the filtration F is exhaustive, we have
⋃

r∈R

FrV = V . Therefore,

⋃

r∈R

(f∗F)rV
′ =

⋃

r∈R

(V ′ ∩ FrV ) = V ′ ∩
( ⋃

r∈R

FrV
)

= V ′ ∩ V = V ′,

⋃

r∈R

(π♭F)rV
′′ =

⋃

r∈R

π(FrV ) = π
( ⋃

r∈R

FrV
)

= π(V ) = V ′′.

So the filtrations f∗F and π♭F are exhaustive. Finally, after Proposition 2.3 2), π∗F = (π♭F)l

is exhaustive. 2

The following proposition gives index description of functorial constructions of filtrations.

Proposition 2.6 Let V and W be two finite dimensional vector spaces over K, F be an R-
filtration of V , G be an R-filtration of W and ϕ : V →W be a K-linear mapping.

1) Suppose that ϕ is injective. If F = ϕ∗G, then for any x ∈ V , one has λF (x) = λG(ϕ(x)).
The converse is true if both filtrations F and G are left continuous.
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2) Suppose that ϕ is surjective. If G = ϕ∗F , then for any y ∈ W , λG(y) = sup
x∈ϕ−1(y)

λF (x).

The converse is true if both filtrations F and G are left continuous.

Proof. 1) “=⇒”: Since F = ϕ∗G, a non-zero element x ∈ V lies in Vλ if and only if ϕ(x) ∈Wλ,
hence λ(x) = sup{r ∈ R | x ∈ Wr} = sup{r ∈ R | ϕ(x) ∈ Vr} = λ(ϕ(x)).

“⇐=”: If x ∈ Vr, then λ(ϕ(x)) ≥ λ(x) ≥ r. So ϕ(x) ∈ Wr since the filtration G is left
continuous. On the other hand, if 0 6= x ∈ ϕ−1(Wr), then λ(x) = λ(ϕ(x)) ≥ r, so x ∈ Vr since
the filtration F of V is left continuous. Therefore Vr = ϕ−1(Wr).

2) “=⇒”: If x ∈ Vr, then ϕ(x) ∈ Wr, so λ(ϕ(x)) ≥ λ(x). Hence for any y ∈ W \ {0},
λ(y) ≥ sup

x∈ϕ−1(y)

λ(x). On the other hand, y ∈ Wr implies that Vs ∩ ϕ−1(y) 6= ∅ for any s < r.

Therefore r ≤ sup
x∈ϕ−1(y)

λ(x), and hence λ(y) = sup{r ∈ R | y ∈Wr} ≤ sup
x∈ϕ−1(y)

λ(x).

“⇐=”: For any non-zero element y of W , if y ∈ Wr, then λ(y) ≥ r, so sup
x∈ϕ−1(y)

λ(x) ≥ r.

Therefore, for any s < r, there exists x ∈ ϕ−1(y) such that λ(x) ≥ s. Since the filtration F is

left continuous, we have x ∈ Vs. This implies y ∈
⋂

s<r

ϕ(Vs).

On the other hand, if y is a non-zero element in ϕ(Vs), then there exists x ∈ Vs such that
y = ϕ(x). So λ(y) ≥ λ(x) ≥ s. This implies that y ∈ Ws since the filtration G is left continu-

ous. Therefore,
⋂

s<r

ϕ(Vs) ⊂
⋂

s<r

Ws = Wr. 2

In the following, we use Borel measures on R to study R-filtrations of vector spaces. For any
finite dimensional vector space over K, equipped with a separated and exhaustive filtration,
we shall associate a Borel probability measure on R to each base of the vector space, which
is a linear combination of Dirac measures. Furthermore, there exists a “maximal base” whose
associated measure captures full “numerical” information of the filtration. This technic will
play an import role in the sequel.

If ν1 and ν2 are two bounded Borel measures on R, we say that ν1 is on the right of ν2 and
we write ν1 ≻ ν2 or ν2 ≺ ν1 if for any increasing and bounded function f , we have

∫

R

fdν1 ≥

∫

R

fdν2,

which is also equivalent to say that for any r ∈ R,

∫

R

11[r,+∞[ dν1 ≥

∫

R

11[r,+∞[ dν2. We say

that ν1 is strictly on the right of ν2 if ν1 ≻ ν2 but ν2 6= ν1.

Definition 2.7 Let V be a vector space of rank 0 < n < +∞ over K, equipped with a
separated and exhaustive filtration F . If e = (ei)1≤i≤n is a base of V , we define a Borel
probability measure on R

νF ,e :=
1

n

n∑

i=1

δλ(ei),

called the probability associated to F relatively to e. If there is no ambiguity on the filtration,
we write also νe instead of νF ,e. Notice that Proposition 2.3 implies that νF ,e = νF l,e. We
say that a base e of V is maximal if for any base e′ of V , we have νe ≻ νe′ . Clearly a base e
is maximal for the filtration F if and only if it is maximal for the filtration F l.

Proposition 2.8 Suppose that the filtration F of V is left continuous. Then a base e =
(ei)1≤i≤n of V is maximal if and only if card(e ∩ Vr) = rkVr for any real number r.
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Proof. “=⇒”: Since e is a base of V , we have card(e ∩ Vr) ≤ rkVr for any r ∈ R. Suppose
that there exists a real number r such that card(e ∩ Vr) < rkVr. Let V ′

r be the sub-vector
space of Vr generated by e∩Vr. We have clearly rkV ′

r < rkVr. Hence there exists e′ ∈ Vr \V ′
r .

Since e is a base of V , there exists (ai)1≤i≤n ∈ Kn such that e′ = a1e1 + · · ·+anen. As e′ 6∈ V ′
r ,

there exists an integer 1 ≤ i ≤ n such that ei 6∈ Vr and that ai 6= 0. Therefore

e′ = (e1, · · · , ei−1, e
′, ei+1, · · · , en)

is a base of V . Furthermore, as ei 6∈ Vr, we have λ(ei) < r since the filtration is left continuous.
On the other hand, since e′ ∈ Vr, we have λ(e′) ≥ r. Let g be an increasing function such that
g(λ(ei)) < g(λ(e′)). Then we have

∫

R

gdνe′ −

∫

R

gdνe =
1

n

(
g(λ(e′))− g(λ(ei))

)
> 0,

which is absurd since e is maximal.

“⇐=”: For any real number r and any base e′ of V , we have card(e′∩Vr) = n

∫

R

11[r,+∞[ dνe′ .

Hence for any real number r, we have

∫

R

11[r,+∞[ dνe′ ≤

∫

R

11[r,+∞[ dνe. Therefore, νe′ ≺ νe.

2

Proposition 2.9 For any base e = (e1, · · · , en)T of V , there exists an upper triangulated
matrix A ∈Mn×n(K) with diag(A) = (1, · · · , 1) such that Ae is a maximal base of V .

Proof. We may suppose that the filtration F is left continuous: it suffices to replace it by F l.
We shall prove the proposition by induction on the rank n of V . If n = 1, then

Vr =

{
V, r ≤ λ(e1),

0, r > λ(e1).

Hence card(Vr ∩ {e1}) = rkVr. In other words, e is already a maximal base.
Suppose that n > 1. Let W be the quotient space V/Ken, equipped with the strong direct

image filtration. Then ẽ = ([e1], · · · , [en−1])
T is a base of W , where [ei] is the canonical image

of ei in W (1 ≤ i ≤ n− 1). By the hypothesis of induction, there exists Ã ∈M(n−1)×(n−1)(K)

with diag(Ã) = (1, · · · , 1) such that −→α = (α1, · · · , αn−1) := Ãẽ is a maximal base.
Let π : V → W be the canonical projection. For any 1 ≤ i ≤ n − 1, choose e′i ∈ π

−1(αi)
such that λ(e′i) = max

x∈π−1(αi)
λ(x). This is always possible since the function λ takes only a finite

number of values. Let e′ = (e′1, · · · , e
′
n−1, en)

T . Notice that e′ can be written as Ae, where

A =

(
Ã ∗
0 1

)

is an upper triangulated matrix with diagonal diag(A) = (1, · · · , 1). Since −→α is a maximal
base, card(Wr ∩

−→α ) = rkWr for any r ∈ R. In addition, e′i ∈ Vr implies that αi = π(e′i) ∈ Wr.
Hence

card(e′ ∩ Vr) ≥

{
rkWr ≥ rkπ(Vr) = rkVr, en 6∈ Vr,

rkWr + 1 ≥ rkπ(Vr) + 1 = rkVr, en ∈ Vr.

So we always have card(Vr ∩ e′) = rkVr, and hence e′ is a maximal base. 2
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Proposition 2.9 can also be proved in the following way: the set X of complete flags of
V is equipped with a transitive action of GLn(K) and identifies with the homogeneous space
GLn(K)/B, where B is the subgroup of upper triangulated matrices. The proposition is then
a consequence of Bruhat’s decomposition for invertible matrices.

Remark 2.10 Proposition 2.9 implies actually that there always exists a maximal base of V .

Definition 2.11 If e is a maximal base of V , the measure νF ,e is called the (probability)
measure associated to F .

It is clear that the measure associated to F doesn’t depend on the choice of the maximal
base e, we shall denote it by νF ,V (or simply νV if there is no ambiguity on F). If V is the
zero space, then νV is by convention the zero measure.

Let V be a finite dimensional vector space over K. A left continuous R-filtration F of V
is equivalent to the data of a flag V (0) ( V (1) ( · · · ( V (n) together with a strictly decreasing
real number sequence (ai)1≤i≤n, which describes the jumping points. We have

FrV =





V (0) if r ∈]a1,+∞[,

V (i) if r ∈]ai+1, ai], 1 ≤ i < n,

V (n) if r ∈]−∞, an].

The filtration F is separated (resp. exhaustive) if and only if V (0) = {0} (resp. V (n) = V ).
When F is separated and exhaustive, the measure associated to F equals to

n∑

i=1

rkV (i) − rkV (i−1)

rkV
δai
.

Therefore, if V is non-zero, then for any x ∈ R, we have the equality

1−
rkVx
rkV

= νV
(
]−∞, x[

)
.

The probability distribution function of νV is therefore

F (x) = 1− lim
y→x+

rkVy
rkV

.

Proposition 2.12 Let 0 // V ′
ϕ

// V
ψ

// V ′′ // 0 be a short exact sequence of fi-
nite dimensional vector spaces over K equipped with left continuous R-filtrations. Suppose that
the following conditions are verified:

i) the space V is non-zero and the filtration F of V is separated and exhaustive;

ii) the filtration of V ′ is the inverse image ϕ∗F ;

iii) the filtration of V ′′ is the strong direct image ψ∗F .

Then νV =
rkV ′

rkV
νV ′ +

rkV ′′

rkV
νV ′′ .
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Proof. If W is a finite dimensional vector space over K equipped with an R-filtration, the
filtration of W is separated and exhaustive if and only if the function λ : W \ {0} → R∪{±∞}
takes values in a bounded interval in R (see Proposition 2.1 4) and Proposition 2.2). Therefore,
after Proposition 2.5, if F is separated and exhaustive, then also are ϕ∗F and ψ∗F . So the
measures νV ′ and νV ′′ are well defined.

Let e′ = (e′i)1≤i≤n (resp. e′′ = (e′′j )1≤j≤m) be a maximal base of V ′ (resp. V ′′). Let

e = (ϕ(e′1), · · · , ϕ(e′n), en+1, · · · , en+m)

be a base of V such that, for any integer 1 ≤ j ≤ m, ψ(en+j) = e′′j and λ(en+j) = λ(e′′j ) (this
is always possible after Proposition 2.1 4) and Proposition 2.6 2)). By definition we know that

νe =
rkV ′

rkV
νe′ +

rkV ′′

rkV
νe′′ .

It suffices then to verify that e is a maximal base.
Let r be a real number. First we have

card({ϕ(e′1), · · ·ϕ(e′n)} ∩ Vr) = card(e′ ∩ V ′
r ) = rkV ′

r . (3)

On the other hand, since λ(e′′j ) = λ(en+j), e
′′
j ∈ V

′′
r if and only if en+j ∈ Vr. Therefore

card({en+1, · · · , en+m} ∩ Vr) = card(e′′ ∩ V ′′
r ) = rkV ′′

r . (4)

The sum of the inequalities (3) and (4) gives card(e ∩ Vr) = rk(V ′
r ) + rk(V ′′

r ) = rk(Vr), so e is
a maximal base. 2

3 Almost super-additive sequence

In this section we discuss a generalization of Fekete’s lemma (see [Fek23] page 233 for a
particular case) asserting that, for any sub-additive sequence (an)n≥1 of real numbers (that’s
to say, an+m ≤ an + am for any (m,n) ∈ Z2

>0), the limit lim
n→+∞

an/n exists in R ∪ {−∞}.

We shall show that the convergence of the sequence (an/n)n≥1 is still valid if the sequence
(an)n≥1 is sub-additive up to a small error term. These technical results are crucial to prove
the convergence theorems stated in the section of introduction.

Proposition 3.1 Let (an)n≥1 be a sequence in R≥0 and f : Z>0 → R be a function such that
lim
n→∞

f(n)/n = 0. If there exists an integer n0 > 0 such that, for any integer l ≥ 2 and any

(ni)1≤i≤l ∈ Zl≥n0
, we have an1+···+nl

≤ an1 + · · ·+ anl
+ f(n1) + · · ·+ f(nl), then the sequence

(an/n)n≥1 has a limit in R≥0.

Proof. If n, p and n ≤ l < 2n are three integers ≥ n0, we have

apn+l

pn+ l
≤
pan + al
pn+ l

+
pf(n) + f(l)

pn+ l
≤
an
n

+
al
pn

+
pf(n) + f(l)

pn+ l

≤
an
n

+
al
pn

+
|f(n)|

n
+
|f(l)|

pn
.

Since lim
p→∞

max
n≤i<2n

ai

pn
+

max
n≤i<2n

|f(i)|

pn
= 0, we obtain, for any integer n > 0, that

lim sup
m→∞

am
m
≤
an
n

+
|f(n)|

n
, (5)
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hence

lim sup
m→∞

am
m
≤ lim inf

n→∞

(
an
n

+
|f(n)|

n

)
≤ lim inf

n→∞

an
n

+ lim sup
n→∞

|f(n)|

n
= lim inf

n→∞

an
n
.

Therefore, the sequence (an/n)n≥1 has a limit, which is clearly ≥ 0, and is finite after (5). 2

Corollary 3.2 Let (an)n≥1 be a sequence of real numbers and f : Z>0 → R be a function such
that lim

n→∞
f(n)/n = 0. If the following two conditions are verified:

1) there exists an integer n0 > 0 such that, for any integer l ≥ 2 and any (ni)1≤i≤l ∈ Zl≥n0
,

we have an1+···+nl
≥ an1 + · · ·+ anl

− f(n1)− · · · − f(nl),

2) there exists a constant α > 0 such that an ≤ αn for any integer n ≥ 1,

then the sequence (an/n)n≥1 has a limit in R.

Proof. Consider the sequence (bn = αn − an)n≥1 of positive real numbers. If n1, · · · , nl are
integers ≥ n0 and n = n1 + · · ·+ nl, then

bn = αn− an = α

l∑

i=1

ni − an ≤ α
l∑

i=1

ni −
l∑

i=1

(
ani
− f(ni)

)

=

l∑

i=1

(
αni − ani

+ f(ni)
)

= bn1 + · · ·+ bnl
+ f(n1) + · · ·+ f(nl).

After Proposition 3.1, the sequence (bn/n)n≥1 has a limit in R. As bn/n = α − an/n, the
sequence (an/n)n≥1 also has a limit in R. 2

Corollary 3.3 Let (an)n≥1 be a sequence of real numbers and c1, c2 be two positive constants
such that

1) am+n ≥ am + an − c1 for any pair (m,n) of sufficiently large integers,

2) an ≤ c2n for any integer n ≥ 1,

then the sequence (an/n)n≥1 has a limit in R.

Proof. Let f be the constant function taking value c1. By induction we obtain the following
inequality for any finite sequence (ni)1≤i≤l of sufficiently large integers:

an1+···+nl
≥ an1 + · · ·+ anl

− f(n1)− · · · − f(nl),

After Corollary 3.2, the sequence (an/n)n≥1 converges in R. 2
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4 Quasi-filtered graded algebras

In this section we introduce the notion of quasi-filtered graded algebras. Such algebras
are fundamental objects in this article. We are particularly interested in the convergence of
measures associated to a quasi-filtered graded algebra (Sections 5 to 7). Later we shall show
that the graded algebras that we have mentioned in the section of introduction, equipped with
Harder-Narasimhan filtrations, are quasi-filtered graded algebras. The results presented in this
section is therefore a formalism which is useful to study the Harder-Narasimhan filtrations of
graded algebras.

LetK be a filed. Recall that a Z≥0-graded K-algebra is a direct sum B =
⊕

n≥0Bn of vector
spaces over K indexed by Z≥0 equipped with a commutative unitary K-algebra structure such
that BnBm ⊂ Bn+m for any (m,n) ∈ Z2

≥0. We call homogeneous element of degree n any
element in Bn. Clearly the unit element of B is homogeneous of degree 0. In the following,
we shall use the expression “graded K-algebra” to denote a Z≥0-graded K-algebra. If B is a
graded K-algebra, we call graded B-module any B-module M equipped with a decomposition
M =

⊕
n∈Z

Mn into direct sum of vector subspaces over K such that BnMm ⊂Mn+m for any
(n,m) ∈ Z≥0 × Z. The elements in Mm are called homogeneous element of degree m of M . If
x is a non-zero homogeneous element of M , we use d◦

M (x) or d◦(x) to denote the homogeneous
degree of x. For reference on graded algebras and graded modules, one can consult [Bou85].

Definition 4.1 Let B =
⊕

n≥0Bn be a graded K-algebra and f : Z≥0 → R≥0 be a function.
We say that the K-algebra B is f -quasi-filtered if each vector space Bn is equipped with an
R-filtration (Bn,s)s∈R satisfying the following condition:

there exists an integer n0 ≥ 0 such that, for any integer r > 0, any (ni)1≤i≤r ∈ Zr≥n0

and any (si)1≤i≤r ∈ Rr, we have

r∏

i=1

Bni,si
⊂ BN,S where N =

r∑

i=1

ni, S =

r∑

i=1

(
si − f(ni)

)
.

If B is an f -quasi-filtered graded K-algebra. We say that a graded B-module M =
⊕

n∈Z
Mn

is f -quasi-filtered if for any integer n, Mn is equipped with an R-filtration (Mn,s)s∈R satisfying
the following condition:

there exists an integer n0 ≥ 0 such that, for any integer r > 0, any (ni)1≤i≤r+1 ∈
Zr+1
≥n0

and any (si)1≤i≤r+1 ∈ Rr+1, we have

( r∏

i=1

Bni,si

)
Mnr+1,sr+1 ⊂MN,S where N =

r+1∑

i=1

ni, S =

r+1∑

i=1

(
si − f(ni)).

In particular, if f ≡ 0, we say that B is a filtered graded K-algebra, and M is a filtered graded
B-module.

We now give some numerical criteria for a graded algebra (or graded module) equipped
with R-filtrations to be quasi-filtered.

Proposition 4.2 Let B be a graded K-algebra and f : Z≥0 → R≥0 be a function. Suppose
that for each n ∈ Z≥0, Bn is equipped with an exhaustive and left continuous R-filtration. Then
the following conditions are equivalent:

1) the graded algebra B is f -quasi-filtered,
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2) there exists an integer n0 > 0 such that, for any integer r ≥ 2 and any non-zero homogeneous

elements a1, · · · , ar of degree ≥ n0 of B, if we write a =

r∏

i=1

ai, then

λ(a) ≥
r∑

i=1

(
λ(ai)− f(d◦(ai))

)
. (6)

Proof. The filtrations being exhaustive, the sum on the right side of (6) is well defined and
takes value in R ∪ {+∞}.

“1)=⇒2)”: Since the filtrations are left continuous, we have ai ∈ Fλ(ai)Bd◦(ai). Let

d =

r∑

i=1

d◦(ai) and η =

r∑

i=1

(
λ(ai)− f(d◦(ai))

)
.

Since B is f -quasi-filtered, we obtain a ∈ FηBd, so λ(a) ≥ η.
“2)=⇒1)”: Suppose that a1, · · · , ar are homogeneous elements of degrees ≥ n0 of B. For

any integer 1 ≤ i ≤ r let di = d◦(ai). Let a =

r∏

i=1

ai. If for any integer 1 ≤ i ≤ r, we

have ai ∈ FtiBdi
, then we have λ(ai) ≥ ti. Therefore, λ(a) ≥

r∑

i=1

(
ti − f(di)

)
. Hence

a ∈ Ft1+···+tr−f(d1)−···−f(dr)Bd1+···+dr
. 2

Using the numerical criterion established above, we obtain the following corollary.

Corollary 4.3 Let f : Z≥0 → R≥0 be a function and B be an f -quasi-filtered graded K-algebra.
Suppose that for any integer n ≥ 0, the filtration of Bn is exhaustive and left continuous.

1) Let A be a sub-K-algebra of B generated by homogeneous elements, equipped with induced
graduation. If for each n ∈ Z≥0, the vector space An is equipped with the inverse image
filtration, then A is an f -quasi-filtered graded K-algebra.

2) Let I be a homogeneous ideal of B and let C = B/I, equipped with the quotient graduation.
If for each n ∈ Z≥0, the vector space Cn is equipped with the strong direct image filtration,
then C is an f -quasi-filtered graded K-algebra.

Proof. 1) After Proposition 2.5, the filtrations of An are exhaustive. Furthermore, they are
left continuous. If a is a homogeneous element of A, then d◦

A(a) = d◦
B(a). On the other hand,

since the filtrations of An (n ≥ 0) are inverse images filtrations, we obtain λA(a) = λB(a). So
for any integer r ≥ 2 and any family (ai)1≤i≤r of homogeneous elements of degree ≥ n0 in A

with a =

r∏

i=1

ai, we have

λA(a) = λB(a) ≥
r∑

i=1

(
λB(ai)− f(d◦

B(ai))
)

=
r∑

i=1

(
λA(ai)− f(d◦

A(ai))
)
.

So the graded algebra A is f -quasi-filtered.
2) After Proposition 2.5, the filtrations of homogeneous components of C are exhaustive.

Let π : B → C be the canonical homomorphism. Suppose that (ai)1≤i≤r is a family of homo-
geneous elements of degree ≥ n0 in C. For any 1 ≤ i ≤ r, let di = d◦(ai) and ti = λC(ai).

15



After Proposition 2.6 2), for any 1 ≤ i ≤ r, there exists a sequence (α
(i)
j )j≥1 in Bdi

such that

π(α
(i)
j ) = ai for any j ≥ 1 and that the sequence (λB(α

(i)
j ))j≥1 is increasing and converge to

ti. Let a =

r∏

i=1

ai and for any j ≥ 1, let αj =

r∏

i=1

α
(i)
j . Clearly we have a = π(αj) for any

j ≥ 1. Therefore, λC(a) ≥ λB(αj). On the other hand, λB(αj) ≥
r∑

i=1

(
λB(α

(i)
j ) − f(di)

)
.

Hence λC(a) ≥
r∑

i=1

(
λB(α

(i)
j ) − f(di)

)
. By passing to the limit when j → +∞ we obtain

λC(a) ≥
r∑

i=1

(ti − f(di)). 2

The following assertions give numerical criteria for quasi-filtered graded modules, the proofs
are similar.

Proposition 4.4 Let f : Z>0 → R≥0 be a function, B be an f -quasi-filtered graded K-algebra
and M be a graded B-module. Suppose that for any integer n, Mn is equipped with an exhaustive
and left continuous R-filtration. Suppose in addition that for any integer n ≥ 0, the filtration
of Bn is exhaustive and left continuous. Then the following conditions are equivalent:

1) the graded B-module M is f -quasi-filtered;

2) there exists an integer n0 ≥ 0 such that, for any integer r ≥ 1, any family (ai)1≤i≤r of non-
zero homogeneous elements of degree ≥ n0 of B and any non-zero homogeneous element x
of degree ≥ n0 of M , if we write y = (a1 · · · ar)x, then

λ(y) ≥
r∑

i=1

(
λ(ai)− f(d◦(ai))

)
+ λ(x) − f(d◦(x)).

Corollary 4.5 Let f : Z>0 → R≥0 be a function, B be an f -quasi-filtered graded K-algebra and
M be an f -quasi-filtered graded B-module. Suppose that for any integer n ≥ 0, the filtrations
of Bn and of Mn are exhaustive and left continuous.

1) Let M ′ be a graded sub-B-module. If each M ′
n is equipped with the inverse image filtration,

then M ′ is an f -quasi-filtered graded B-module.

2) Let M ′ be a homogeneous sub-B-module of M and let M ′′ = M/M ′. If each M ′′
n is equipped

with the strong direct image filtration, then M ′′ is an f -quasi-filtered graded B-module.

Corollary 4.6 Let f : Z>0 → R≥0 be a function, B be an f -quasi-filtered graded K-algebra,
and M be an f -quasi-filtered graded B-module. Suppose that for any positive integer (resp. any
integer) n, the filtration of Bn (resp. Mn) is exhaustive and left continuous.

1) Let A be a sub-K-algebra of B generated by homogeneous elements, equipped with the induced
graduation. If each vector space An is equipped with the inverse image filtration, then M is
an f -quasi-filtered graded A-module.

2) Let I be a homogeneous ideal of B contained in ann(M) and C = B/I which is equipped
with the quotient graduation. If each Cn is equipped with the strong direct image filtration,
then M is an f -quasi-filtered graded C-module.
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5 Convergence for symmetric algebras

We now consider the symmetric algebra of a finite dimensional non-zero vector space, which
is equipped with certain suitable filtrations. Each homogeneous component of the symmetric
algebra contains a special base which consists of monomials. By introducing a combinatoric
equality on monomials (Theorem 5.1), we establish a convergence result (Corollary 5.3) for
quasi-filtered symmetric algebras. We shall show later in Section 7 that the general convergence
can be deduced from this result in the special case of quasi-filtered symmetric algebras.

For any pair of integers (n, d) such that n ≥ 0 and d ≥ 1, let ∆
(d)
n be the subset of

Zd≥0 consisting of all decompositions of n into sum of d positive integers. We introduce the

lexicographic order on ∆
(d)
n : (a1, · · · , ad) ≥ (b1, · · · , bd) if and only if there exists an integer

1 ≤ i ≤ d such that aj = bj for any 1 ≤ j ≤ i and that ai+1 > bi+1 if i < d. The set ∆
(d)
n is

totally ordered. On the other hand, for any integer r ≥ 2 and any n = (ni)1≤i≤r ∈ Zr≥0, we

have a mapping from ∆
(d)
n1 ×· · ·×∆

(d)
nr to ∆

(d)
n1+···+nr

which sends (αi)1≤i≤r to α1 + · · ·+αr (the
addition being that in Zd). This mapping is not injective in general but is always surjective.

Moreover, if (αi)1≤i≤r and (βi)1≤i≤r are two elements of ∆
(d)
n1 × · · ·∆

(d)
nr such that αi ≥ βi for

any 1 ≤ i ≤ r, then α1 + · · ·+ αr ≥ β1 + · · ·+ βr.

For any n ∈ Z≥0, we denote by Γ
(d)
n the subset of Zd−1

≥0 consisting of elements (ai)1≤i≤d−1

such that 0 ≤ a1 + · · · + ad−1 ≤ n. We have a natural mapping p
(d)
n : ∆

(d)
n → Γ

(d)
n defined

by the projection on the first d − 1 factors. The mapping p
(d)
n is in fact a bijection and its

inverse is the mapping which sends (ai)1≤i≤d−1 to (a1, · · · , ad−1, n− a1 − · · · − ad−1). For any
n = (ni)1≤i≤r ∈ Zr≥0, we have the following commutative diagram

∆
(d)
n1 × · · · ×∆

(d)
nr

p(d)
n1

×···×p(d)
nr

��

+
// ∆

(d)
|n|

p
(d)
N

��

Γ
(d)
n1 × · · · × Γ

(d)
nr +

// Γ
(d)
|n|

(7)

where |n| = n1 + · · ·+ nr and the operators “+” are defined by the addition structures in the
monoids Zd≥0 and Zd−1

≥0 respectively.

Theorem 5.1 Let r ≥ 2 and d ≥ 1 be two integers. For any n = (ni)1≤i≤r ∈ Zr≥0, there exists

a probability measure ρn on ∆
(d)
n1 × · · · ×∆

(d)
nr such that the direct image of ρn by each of the

r projections on ∆
(d)
n1 , · · · ,∆

(d)
nr is equidistributed, and also is its direct image on ∆

(d)
|n| by the

operator “+”.

Proof. The theorem is trivial when d = 1 because in this case, for any k ∈ Z≥0, ∆
(1)
k is the one

point set {k}. In the following, we suppose d ≥ 2. By (7), it suffices to construct a probability

measure ρn on Γ
(d)
n1 × · · · × Γ

(d)
nr such that the direct image of ρn by each of the r projections

on Γ
(d)
n1 , · · · ,Γ

d
nr

is an equidistributed measure, and also is the direct image on Γ
(d)
|n| by the

operator “+”.

For any α = (ai)1≤i≤d−1 ∈ Zd−1
≥0 , we define |α| = a1 + · · · + ad−1. The set Γ

(d)
n can be

written in the form Γ
(d)
n = {α ∈ Zd−1

≥0

∣∣∣ |α| ≤ n}. If α = (ai)1≤i≤d−1 is an element of Zd−1
≥0 , we

write α! = a1!× · · · × ad−1!.
Consider the algebra of formal series in rd variables R = Z [[ t,X ]], where t = (t1, · · · , tr),

X = (Xi,j) 1≤i≤r,
1≤j≤d−1

. If α = (a1, · · · , ad−1) ∈ Zd−1
≥0 and if 1 ≤ i ≤ r, we denote by Xα

i the
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product Xa1

i,1 × · · · × X
ad−1

i,d−1. If n = (ni)1≤i≤r is an element in Zr≥0, we denote by tn the
product tn1

1 × · · · × t
nr
r . Let H(t,X) be the formal series

∑

n=(ni)∈Zr
≥0

tn
∑

(αi)∈(Zd−1
≥0

)r

|αi|≤ni

(α1 + · · ·+ αr)!

α1! · · ·αr!

(n1 + · · ·+ nr − |α1 + · · ·+ αr|)!

(n1 − |α1|)! · · · (nr − |αr|)!

r∏

j=1

X
αj

j ,

the coefficients of which are positive integers. If we perform the change of indices mi = ni−|αi|
and permute the summations by defining (β1, · · · , βd−1) = α1+ · · ·+αr and m = m1+ · · ·+mr,
we obtain the following equality in Z [[ t,X ]]:

H(t,X) =
∑

(αi)∈(Zd−1
≥0

)r

(α1 + · · ·+ αr)!

α1! · · ·αr!

r∏

j=1

t
|αj |
j X

αj

j

∑

m=(mi)∈Zr
≥0

(m1 + · · ·+mr)!

m1! · · ·mr!
tm

=
∑

(βi)∈Z
d−1
≥0

d−1∏

i=1

(t1X1,i + · · ·+ trXr,i)
βi

∑

m∈Z≥0

(t1 + · · ·+ tr)
m

= (1− (t1 + · · ·+ tr))
−1

d−1∏

i=1

(1 − (t1X1,i + · · ·+ trXr,i))
−1.

This calculation also implies (cf. [Hör90] chap. II §2.4) that the Reinhardt’s absolute conver-
gence domain of H(t,X) in Crd is defined by the condition

r∑

j=1

|tj | < 1 and

r∑

j=1

|tj ||Xj,i| < 1.

This observation enables us to substitute certain variables Xi by the vector 11 = ( 1, · · · , 1︸ ︷︷ ︸
d−1 copies

)

without examining convergence problems. By the change of variables mi = ni − |αi| for
2 ≤ i ≤ r, we obtain

H(t,X)|X2=···=Xr=11

=
∑

n1≥0

tn1
1

∑

|α1|≤n1

Xα1
1

∑

(αi)
r
i=2∈(Zd−1

≥0
)r−1

(mi)
r
i=2∈Z

r−1
≥0

(α1 + · · ·+ αr)!

α1! · · ·αr!

(n1 +m2 + · · ·+mr − |α1|)!

(n1 − |α1|)!m2! · · ·mr!

r∏

j=2

t
mj+|αj |
j

=
∑

n1≥0

tn1
1

∑

|α1|≤n1

Xα1
1

∑

(αi)r
i=2∈(Zd−1

≥0
)r−1

(α1 + · · ·+ αr)!

α1! · · ·αr!

r∏

j=2

t
|αj |
j

∑

(mi)r
i=2∈Z

r−1
≥0

(n1 +m2 + · · ·+mr − |α1|)!

(n1 − |α1|)!m2! · · ·mr!

r∏

j=2

t
mj

j .

For any a ∈ Z≥0, we have
∑

b≥0

(a+ b)!

a!b!
tb = (1 − t)−a−1,
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hence we get

∑

(αi)r
i=2∈(Zd−1

≥0
)r−1

(α1 + · · ·+ αr)!

α1! · · ·αr!

r∏

j=2

t
|αj |
j

=
∑

(αi)r
i=2∈(Zd−1

≥0
)r−1

(α1 + · · ·+ αr)!

α1!(α2 + · · ·+ αr)!

(α2 + · · ·+ αr)!

α2! · · ·αr!

r∏

j=2

t
|αj |
j

=
∑

α∈Z
d−1
≥0

(α1 + α)!

α1!α!

∑

(αi)
r
i=2∈(Zd−1

≥0
)r−1

α2+···+αr=α

(α2 + · · ·+ αr)!

α2! · · ·αr!

r∏

j=2

t
|αj |
j

=
∑

α∈Z
d−1
≥0

(α1 + α)!

α1!α!
(t2 + · · ·+ tr)

|α| = (1− (t2 + · · ·+ tr))
−|α1|−d+1,

and

∑

(mi)r
i=2∈Z

r−1
≥0

(n1 +m2 + · · ·+mr − |α1|)!

(n1 − |α1|)!m2! · · ·mr!

r∏

j=2

t
mj

j

=
∑

(mi)r
i=2∈Z

r−1
≥0

(n1 +m2 + · · ·+mr − |α1|)!

(n1 − |α1|)!(m2 + · · ·+mr)!

(m2 + · · ·+mr)!

m2! · · ·mr!

r∏

j=2

t
mj

j

=
∑

M≥0

(n1 − |α1|+M)!

(n1 − |α1|)!M !

∑

(mi)
r
i=2∈Z

r−1
≥0

m2+···+mr=M

(m2 + · · ·+mr)!

m2! · · ·mr!

r∏

j=2

t
mj

j

=
∑

M≥0

(n1 − |α1|+M)!

(n1 − |α1|)!M !
(t2 + · · ·+ tr)

M = (1− (t2 + · · ·+ tr))
−n1+|α1|−1.

Therefore

H(t,X)|X2=···=Xr=11 =
∑

n1≥0

tn1
1 (1− (t2 + · · ·+ tr))

−n1−d
∑

|α1|≤n1

Xα1
1

=
∑

n=(ni)∈Zr
≥0

tn
(n1 + · · ·+ nr + d− 1)!

(n1 + d− 1)!n2! · · ·nr!

∑

|α1|≤n1

Xα1
1 .

(8)

Similarly, for any 1 ≤ j ≤ r, we have

H(t,X)|X1=···=Xj−1=Xj+1=···=Xr=11

=
∑

n=(ni)∈Zr
≥0

tn
(n1 + · · ·+ nr + d− 1)!

n1! · · ·nj−1!(nj + d− 1)!nj+1! · · ·nr!

∑

|αj |≤nj

X
αj

j . (9)

On the other hand,

H(t,X)|X1=···=Xr=Y

=
∑

n=(ni)∈Zr
≥0

tn
∑

(αi)∈(Zd−1
≥0

)r

|αi|≤ni

(α1 + · · ·+ αr)!

α1! · · ·αr!

(n1 + · · ·+ nr − |α1 + · · ·+ αr|)!

(n1 − |α1|)! · · · (nr − |αr|)!
Y α1+···+αr .

19



By the change of variables mi = ni − |αi| for any 1 ≤ i ≤ r, we obtain

H(t,X)|X1=···=Xr=Y

=
∑

(αi)∈(Zd−1
≥0

)r

(
(α1 + · · ·+ αr)!

α1! · · ·αr!

r∏

j=1

t
|αj |
j

)
Y α1+···+αr

∑

m=(mi)∈Zr
≥0

(m1 + · · ·+mr)!

m1! · · ·mr!
tm

=
∑

N≥0

(t1 + · · ·+ tr)
N

∑

γ∈Z
d−1
≥0

Y γ(t1 + · · ·+ tr)
|γ| =

∑

M≥0

(t1 + · · ·+ tr)
M
∑

|γ|≤M

Y γ ,

where we have performed the change of variables γ = α1 + · · · + αr and M = N + |γ| in the
last equality. Therefore, we have

H(t,X)|X1=···=Xr=Y =
∑

n=(ni)∈Zr
≥0

(n1 + · · ·+ nr)!

n1! · · ·nr!
tn1

1 · · · t
nr
r

∑

|γ|≤n1+···+nr

Y γ . (10)

Finally,

H(t, (11, · · · 11)) = (1 − (t1 + · · ·+ tr))
−d

=
∑

N≥0

(N + d− 1)!

N !(d− 1)!

∑

n=(ni)∈Z
r
≥0

n1+···+nr=N

N !

n1! · · ·nr!
tn

=
∑

n=(ni)∈Zr
≥0

(n1 + · · ·+ nr + d− 1)!

n1! · · ·nr!(d− 1)!
tn.

(11)

For any n = (ni) ∈ Zr≥0, let

ρn =
(d− 1)!n1! · · ·nr!

(n1 + · · ·+ nr + d− 1)!

∑

(αi)∈(Zd−1
≥0

)r

|αi|≤ni

(
(α1 + · · ·+ αr)!

α1! · · ·αr!

(n1 + · · ·+ nr − |α1 + · · ·+ αr|)!

(n1 − |α1|)! · · · (nr − |αr|)!

)
δ(α1,··· ,αr).

The definition of H(t,X) and the equalities (9), (10) and (11) implies that ρn verifies the
required conditions. 2

We introduce some operators on the space of Borel measures on R which we shall use later.
We denote by Cc(R) the space of continuous functions with compact support on R. Recall
that a Radon measure on R is nothing but a positive linear form on Cc(R). Note that all
bounded Borel measures on R are Radon measures. We denote by M+ the convex cone of
Radon measures on R (in the space of all linear forms on Cc(R)) and by M1 the sub-space of
Borel probability measures on R. Note that M1 is a convex subset of M+.

If c is a real number, we denote by ϕc : R → R the mapping which sends x to x + c. It
induces an automorphism of convex cone τc : M+ → M+ which sends ν ∈ M+ to the direct
image of ν by ϕc. Thus we define an action of R on M+ which keeps M1 invariant, and which
preserves the order ≻ between Borel measures.

If ε is a strictly positive real number, we denote by γε : R→ R the dilation mapping which
sends x ∈ R to εx. This mapping induces by direct image an automorphism of the convex cone
Tε : M+ →M+ which keeps M1 invariant and also preserves the order ≻.

We now consider a vector space V of finite dimension d over a field K. For any integer
n ≥ 0, let Bn = SnV be the nth symmetric power of V , equipped with a separated, exhaustive
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and left continuous R-filtration. We shall use Theorem 5.1 to establish the almost super-
additivity of the measures associated to Bn (n ≥ 1) under the condition that the graded
algebra B =

⊕
n≥0Bn is quasi-filtered.

Choose a base e = (ei)1≤i≤d of V . We then have a mapping ϕn : ∆
(d)
n → Bn which sends

α = (α1, · · · , αd) to eα := eα1
1 · · · e

αd

d . The image of ∆
(d)
n by ϕn is a base of Bn. There exists,

for each n ∈ N, a maximal base u(n) = (uα)
α∈∆

(d)
n

of Bn such that (see Proposition 2.9 infra)

uα ∈ e
α +

∑

β<α

Keβ. (12)

If n = (ni)1≤i≤r ∈ Zr≥0 and N = n1 + · · ·+ nr, for any γ ∈ ∆
(d)
N , let u

(n)
γ be an element in

{
r∏

i=1

uαi

∣∣∣∣∣ αi ∈ ∆(d)
ni
,

r∑

i=1

αi = γ

}
.

such that
λ(u(n)

γ ) = max
αi∈∆(d)

ni
α1+···+αr=γ

λ(uα1 · · ·uαr
).

From (12), we deduce

u(n)
γ ∈ eγ +

∑

δ<γ

Keδ.

Hence u(n) := (u
(n)
γ )

γ∈∆
(d)
N

is a base of BN .

Proposition 5.2 Let f : Z≥0 → R≥0 be a function, c be a positive real number and g : R→ R

be a concave increasing c-Lipschitz function. Suppose that the graded algebra B =
⊕

n≥0Bn is
f -quasi-filtered. If for any integer n ≥ 0, denote by

In =

∫

R

g d
(
T 1

n
νBn

)
,

then for any integer r ≥ 2 and any n = (ni) ∈ Zr≥n0
, by writing N = n1 + · · ·+ nr, we have

NIN ≥
r∑

i=1

(
niIni

− cf(ni)
)
.

Proof. For any integer n ≥ 0, denote by ξn the equidistributed measure on ∆
(d)
n , by ρn a

measure on ∆
(d)
n1 × · · · ×∆

(d)
nr satisfying the conditions of Theorem 5.1, and by u(n) the base of

BN constructed as above. Then by Definition 2.11,

IN ≥

∫

R

g d
(
T 1

N
ν
u

(n)

)
=

∫

∆
(d)
N

g

(
1

N
λ(u(n)

γ )

)
dξN (γ)

=

∫

∆
(d)
n1

×···×∆
(d)
nr

g

(
1

N
λ(u

(n)
α1+···+αr

)

)
dρn(α1, · · · , αr).

Since g is an increasing function, by definition of u
(n)
γ , we have

IN ≥

∫

∆
(d)
n1

×···×∆
(d)
nr

g

(
1

N
λ(uα1 · · ·uαr

)

)
dρn(α1, · · · , αn).
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Since B is an f -quasi-filtered graded algebra and since g is increasing, we obtain

IN ≥

∫

∆
(d)
n1

×···×∆
(d)
nr

g

(
1

N

r∑

i=1

(
λ(uαi

)− f(ni)
))

dρn(α1, · · · , αr).

Since the function g is c-Lipschitz, then

IN ≥

∫

∆
(d)
n1

×···×∆
(d)
nr

[
g

(
1

N

r∑

i=1

λ(uαi
)

)
−

c

N

r∑

i=1

f(ni)

]
dρn(α1, · · · , αr).

Then the concavity of g implies that

IN ≥

∫

∆
(d)
n1

×···×∆
(d)
nr

[
r∑

i=1

ni
N
g

(
λ(uαi

)

ni

)]
dρn(α1, · · · , αr)−

c

N

r∑

i=1

f(ni)

Finally, since the direct image of ρn by the r projections are equidistributed, we obtain that

IN ≥
r∑

i=1

ni
N
Ini
−

c

N

r∑

i=1

f(ni).

2

Corollary 5.3 With the notations of Proposition 5.2, if the sequence (In)n≥0 is bounded from
above (for example if g is bounded from above, or if there exists a ∈ R such that supp(νBn

) ⊂
] − ∞, na] for any sufficiently large integer n) and if lim

n→+∞
f(n)/n = 0, then the sequence

(In)n≥0 has a limit when n→ +∞.

Proof. It is a consequence of Proposition 5.2 and Corollary 3.2. 2

6 Polygon associated to a Borel measure

We explain in this section how to associate to a Borel probability measure on R a concave
function on [0, 1] which takes zero value at the origin. Furthermore, if the measure is a lin-
ear combination of Dirac measures, then the associated concave function is piecewise linear,
therefore is a polygon on [0, 1].

If f : R→ [0, 1] is a right continuous decreasing function such that

lim
x→−∞

f(x) = 1, and lim
x→+∞

f(x) = 0,

we define the quasi-inverse of f the function f∗ :]0, 1[→ R which sends any t ∈]0, 1[ to
sup{x | f(x) > t}. The following properties of f∗ are easy to verify.

Proposition 6.1 Let f : R → [0, 1] be a right continuous decreasing function such that
lim

x→−∞
f(x) = 1 and lim

x→+∞
f(x) = 0. Then

1) for any t ∈]0, 1[ and any y ∈ R, f(y) > t if and only if y < f∗(t);

2) f∗ is a right continuous decreasing function;

22



3) sup
t∈]0,1[

f∗(t) = inf{x ∈ R | f(x) = 0} and inf
t∈]0,1[

f∗(t) = sup{x ∈ R | f(x) = 1} (by

convention inf ∅ = +∞ and sup ∅ = −∞).

Proposition 6.2 Let ν be a Borel probability measure on R which is a linear combination
of Dirac measures. If we denote by f : R → [0, 1] the function f(x) = ν

(
]x,+∞[

)
, then the

function on [0, 1] defined by P (ν)(t):=

∫ t

0

f∗(s)ds is a polygon on [0, 1].

Proof. Since ν is a linear combination of Dirac measures, the function f is decreasing, right
continuous, and piecewise constant. Furthermore, f(x) = 0 (resp. f(x)=1) when x is suf-
ficiently positive (resp. negative). Therefore, f∗ is decreasing, right continuous, piecewise
constant and bounded. As P (ν) is the primitive function of f∗, which takes zero value at the
origin, we obtain that P (ν) is a polygon. 2

Actually, P (ν) is just the Legendre transformation of the concave function x 7→
∫ x
0
f(y)dy

(see [Hör94] II.2.2), which is called the polygon associated to the Borel probability measure ν.

We can calculate explicitly P (ν). Suppose that ν is of the form

n∑

i=1

(ti − ti−1)δai
, where

a1 > · · · > an, and 0 = t0 < · · · < tn = 1. Then f(x) = 11]−∞,an[(x) +

n−1∑

i=1

ti 11[ai+1,ai[(x), and

hence f∗(t) = a0 11]0,t1[(t) +

n∑

i=2

ai 11[ti−1,ti[(t). Therefore,

P (ν)(t) =

j−1∑

i=1

ai(ti − ti−1) + aj(t− tj−1), t ∈ [tj−1, tj ], 1 ≤ j ≤ n.

If V is a non-zero vector space of finite rank over K and F is a separated and exhaustive
filtration of V . We call polygon associated to the filtration F the polygon P (νF ,V ) on [0, 1],
denoted by PF ,V (or simply PV if there is no ambiguity on the filtration).

Suppose in addition that the filtration F is left continuous. Then F corresponds to a flag

0 = V (0) ( V (1) ( · · · ( V (n) = V

and a strictly decreasing sequence (ai)1≤i≤n. We have shown that its associated probability

measure is νF ,V =

n∑

i=1

(rkV (i)

rkV
−

rkV (i−1)

rkV

)
δai

. Therefore we have, for any integer 1 ≤ j ≤ n

and any t ∈
[ rkV (j−1)

rkV
,
rkV (j)

rkV

]
,

PF ,V (t) =

j−1∑

i=1

ai

(rkV (i)

rkV
−

rkV (i−1)

rkV

)
+ aj

(
t−

rkV (j−1)

rkV

)
.

For a general Borel probability measure ν, similarly to Proposition 6.2, we can also define a
concave function P (ν). If ν1 and ν2 are two Borel probability measures on R such that ν1 ≻ ν2,
then P (ν1) ≥ P (ν2). Furthermore, for any real number a, P (τaν)(t) = P (ν)(t) + at and for
any strictly positive number ε, P (Tεν) = εP (ν).

In the following, we explain that the vague convergence of Borel probability measures im-
plies the uniform convergence of associated polygons. With this observation, to prove the
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convergence of polygons, it suffice to establish the vague convergence of corresponding proba-
bility measures. We begin by presenting some properties of Borel probability measures.

Lemma 6.3 For any function f ∈ Cc(R), we have

lim
ε→0
‖f ◦ γ1+ε − f‖sup = 0, lim

ε→0
‖f ◦ ϕε − f‖sup = 0.

Proof. Suppose that supp(f) ⊂ [−K,K] (K > 0). For any number −1/2 < ε < 1/2,

‖f ◦ γ1+ε − f‖sup = sup
−2K≤x≤2K

|f(x+ εx)− f(x)|.

Since f is uniformly continuous, lim
ε→0

sup
−2K≤x≤2K

|f(x + εx) − f(x)| = 0, so we have lim
ε→0
‖f ◦

γ1+ε − f‖sup = 0. The other assertion is just the definition of uniform continuity of f . 2

Definition 6.4 If (νn)n≥1 is a sequence of Radon measures on R and if ν is a Radon measure
on R, we say that (νn)n≥1 converges vaguely to ν if for any function f ∈ Cc(R), the sequence
(
∫

R
fdνn)n≥1 converges to

∫
R
fdν.

Proposition 6.5 Let (νn)n≥1 be a sequence of Radon measures on R, ν be a Radon measure
on R, and (an)n≥1 be a sequence of real numbers in ]− 1,+∞[ which converges to 0. Suppose
that the total masses of (νn)n≥1 are uniformly bounded. Then the following conditions are
equivalents:

1) the sequence (νn)n≥1 converges vaguely to ν;

2) the sequence (T1+an
νn)n≥1 converges vaguely to ν;

3) the sequence (τan
νn)n≥1 converges vaguely to ν.

Proof. Since τ−1
an

= τ−an
and T−1

1+an
= T(1+an)−1 = T1− an

1+an
, it suffices to verify “1)=⇒ 2)”

and “1)=⇒3)”, which are immediate consequences of Lemma 6.3. 2

Lemma 6.6 Let (νn)n≥1 be a sequence of Borel probability measures on R which converges
vaguely to a measure ν. If the supports of (νn)n≥1 are uniformly bounded, then ν is also a
probability measure.

Proof. Suppose
⋃

n≥1

supp(νn) ⊂ [m,M ]. If ϕ is a continuous function with compact support

which takes values in [0, 1] and such that ϕ|[m,M ] = 1. We have

∫

R

ϕdν = lim
n→∞

∫

R

ϕdνn = 1.

Since ϕ is arbitrary, we obtain ν(R) = 1. 2

Proposition 6.7 Let (νn)n≥1 be a sequence of Borel probability measures on R which converges
vaguely to a measure ν. Suppose that the supports of νn are uniformly bounded. Let Fn (resp.
F ) be the distribution function of νn (resp. ν). Then there exists a numerable subset Z of R

such that, for any point x ∈ R \ Z, the sequence (Fn(x))n≥1 converges to F (x).
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Proof. After Lemma 6.6, ν is a probability measure. Let Z be the set of x ∈ R such that
ν({x}) 6= 0. Since ν is of total mass 1, the set Z is numerable. If r is a point in R \ Z, the set
of discontinuous points of the function 11]−∞,r](x) is {r}, which is µ-negligible. After [Bou65]
IV.5 Proposition 22, the sequence (Fn(x))n≥1 converges to F (x). 2

Proposition 6.8 Let (fn)n≥1 be a sequence of right continuous decreasing functions valued in
[0, 1] such that

i) sup
n≥1

inf{x ∈ R | fn(x) = 0} < +∞, inf
n≥1

sup{x ∈ R | fn(x) = 1} > −∞;

ii) there exists a numerable subset Z of R such that, for any x ∈ R\Z, the sequence (fn(x))n≥1

converges.

Let f : R→ [0, 1] be a right continuous function such that f(x) = lim
n→+∞

fn(x) for any x ∈ R\Z.

Then

1) the function f is decreasing;

2) if we write A := lim inf
n→+∞

inf{x ∈ R | fn(x) = 0}, B := lim sup
n→+∞

sup{x ∈ R | fn(x) = 1}, then

f |]A,+∞[ ≡ 0, f |]−∞,B[ ≡ 1;

3) there exists a numerable subset Z ′ of ]0, 1[ such that (f∗
n(t))n≥1 converges to f∗(t) for any

t ∈]0, 1[\Z ′;

4) the function sequence (
∫ t
0
f∗
n(s)ds)n≥0 converges uniformly to

∫ t
0
f∗(s)ds.

Proof. 1) and 2) are easy to verify.
3) After the condition i), the function f∗

n is well defined for any n ≥ 1. After 2), the
function f∗ is well defined. If t is a number in ]0, 1[ and if y = f∗(t), then there exists a a
strictly increasing sequence (xm)m≥1 ⊂ R \ Z which converges to y. Since xm < y, we have
f(xm) > t. Since xm ∈ R\Z, there exists N(m) ∈ Z≥0 such that fn(xm) > t (i.e., xm < f∗

n(t))
for any n > N(m), which implies that lim inf

n→+∞
f∗
n(t) ≥ f∗(t).

For any integer n ≥ 1, let Z ′
n be the set of all t ∈]0, 1[ such that f−1

n ({t}) has an interior
point. Clearly Z ′

n is a numerable set. Let Z ′′ be the set of t ∈]0, 1[ such that f−1({t}) has
an interior point. Let Z ′ be the union of all Z ′

n and Z ′′. It is also a numerable subset of
]0, 1[. Let t be a point in ]0, 1[\Z ′ and y = f∗(t). We take a strictly decreasing sequence
(xm)m≥1 ⊂ R \ Z which converges to y. Since y 6∈ Z ′′, we have f(xm) < t. Therefore, there
exists N(m) ∈ Z>0 such that, for any n > N(m), fn(xm) < t and a fortiori xm ≥ f∗

n(t). We
then have lim sup

n→+∞
f∗
n(t) ≤ f∗(t).

4) After Proposition 6.1 3), the condition i) implies that the functions f∗
n are uniformly

bounded. On the other hand, f∗
n − f converges almost everywhere to the zero function. After

the Lebesgue’s dominate convergence theorem, we obtain that

∣∣∣∣
∫ t

0

f∗
n(s)ds−

∫ t

0

f∗(s)ds

∣∣∣∣ ≤
∫ 1

0

|f∗
n(s)− f∗(s)|ds

converges to 0 when n→ +∞. 2
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7 Convergence of polygons of a quasi-filtered graded al-

gebra

We establish in this section the convergence of polygons of a quasi-filtered graded algebra.
By using the results obtained in Section 4, we show that the measures associated to a quasi-
filtered graded algebra converge vaguely to a Borel probability measure on R, and therefore,
the associated polygons converge uniformly to a concave function on [0, 1].

We first recall some facts about Poincaré series of a graded module, which we shall use
later. Let A be an Artinian ring, B be a graded A-algebra of finite type and genenrated by
B1, and M be a non-zero graded B-module of finite type. For any n ∈ Z, Mn is an A-module
of finite type, therefore of finite length. We denote by HM the Poincaré series associated to
M , i.e., HM (X) =

∑
n∈Z

lenA(Mn)X
n ∈ Z [[X ]]. The theory of Poincaré series affirms (cf.

[Bou83]) that there exists an integer r ≥ 0 such that HM (X) can be written in the form

HM (X) = ar(X)(1−X)−r + ar−1(X)(1−X)−r+1 + · · ·+ a0(X), (13)

where a0, · · · , ar are elements in Z[X,X−1], ar being non-zero and having positive coefficients
if M is non-zero. Moreover, the values r and ar(1) don’t depend on the choice of (a0, · · · , ar).
In fact, r identifies with the dimension of M . We write c(M) = ar(1). Clearly we have

lenA(Mn) =
c(M)

(r − 1)!
nr−1 + o(nr−1)

when n → +∞, and there exists a polynom QM with coefficients in Q such that QM (n) =
lenA(Mn) for sufficiently large integer n. If M is the zero B-module, by convention we define
dim(M) = −∞ and c(M) = 0.

If 0 // M ′ // M // M ′′ // 0 is a short exact sequence of graded B-modules
of finite type, we have HM = HM ′ +HM ′′ . Therefore, dimM = max(dimM ′, dimM ′′) and

c(M) = c(M ′) 11{dimM ′≥dimM ′′} +c(M ′′) 11{dimM ′′≥dimM ′} . (14)

Definition 7.1 Let K be a field, B be a graded K-algebra of finite type which is generated by
B1 and M be a graded B-module of finite type and of dimension d > 0. Suppose that for each
integer n ≥ 0, Mn is equipped with a separated, exhaustive and left continuous R-filtration.
We say that M satisfies the vague convergence condition and we write CV(M) if the sequence
of Radon measures (T 1

n
νMn

)n≥1 converges vaguely. Finally, if N is a graded B-module which

is of dimension 0 or is zero, then by convention N satisfies the vague convergence condition (in
fact, for any sufficiently large integer n, we have Nn = 0, so T 1

n
νNn

is the zero measure).

Although not explicitly stated, in Section 4, we have essentially proved the vague conver-
gence of measures associated to a quasi-filtered symmetric algebra. We now state this result
as follows.

Proposition 7.2 Let f : Z≥0 → R≥0 be a function such that lim
n→+∞

f(n)/n = 0 and V be

a vector space of dimension 0 < d < +∞ over K. For any integer n ≥ 0 let Bn = SnV .
Suppose that each vector space Bn is equipped with a separated, exhaustive and left continuous
R-filtration such that the graded algebra B =

⊕
n≥0Bn is f -quasi-filtered. Then B satisfies the

vague convergence condition.

Proof. For any integer n ≥ 1, denote by νn = T 1
n
νBn

. Let G be the set of Borel functions g

on R such that, for any n ∈ Z≥0, g is integrable with respect to νn and such that (
∫
gdνn)n≥0
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converges. Corollary 5.3 implies that G contains all increasing, bounded from above, concave
and Lipschitz functions. Cleary G is a vector space over R. Suppose that f is a function in
C∞

0 (R). Let I = [a, b] be an interval containing the support of f . Notice that f ′ and f ′′ are
also smooth functions and the supports of f ′ and of f ′′ are contained in I. Therefore, f ′ and
f ′′ are bounded functions. Let C = ‖f ′‖sup and C′ = ‖f ′′‖sup/2. Let h be the function

h(x) =





C′(b− a)(2x− a− b) + C(x− b), x ≤ a,

−C′(b− x)2 + C(x − b), a < x ≤ b,

0, x > b.

It’s a concave, increasing and (2C′(b−a)+C)-Lipschitz function which is bounded from above
by 0. Hence h ∈ G. On the other hand, h + f is also a concave function since h′′ = −2C′

on I. It is also increasing because h′(x) ≥ 0 on R and h′(x) ≥ C on I. Furthermore, it is
(2C′(b−a)+2C)-Lipschitz and bounded from above by ‖f‖sup. Therefore, we have h+ f ∈ G.
We then deduce f ∈ G. Finally, since C∞

0 (R) is dense in the normed space (Cc(R), ‖ · ‖sup),
we obtain Cc(R) ⊂ G.

Let S : Cc(R) → R be the opeartor which associates to each continous function g with
compact support the limit of the sequence (

∫
gdνn)n≥1. It’s a linear operator. Furthermore,

if g is a positive function in Cc(R), then
∫
gdνn ≥ 0 for any n ∈ Z≥0. Therefore, we have

S(g) ≥ 0. After Riesz’s representation theorem, there exists a unique Radon measure ν on R

such that S(g) =
∫
gdν. By definition the sequence (νn)n≥1 converges vaguely to ν. 2

In the following, we shall establish the vague convergence (Theorem 7.5) for a general quasi-
filtered graded algebra of finite type over a field. We begin by introducing two technical lemmas
(7.3 and 7.4), which are useful to prove Theorem 7.5.

Lemma 7.3 Let B be a graded K-algebra of finite type which is generated by B1,

0 // M ′
φ

// M
π

// M ′′ // 0

be a short exact sequence of graded B-modules of finite type. We denote by d′ = dimM ′,
d = dimM and d′′ = dimM ′′. Suppose that for any integer n ≥ 0 (resp. n), Bn (resp. Mn)
is equipped with a separated, exhaustive and left continuous R-filtration. Suppose furthermore
that for each integer n ≥ 0, M ′

n (resp. M ′′
n) is equipped with the inverse image filtration (resp.

strong direct image filtration), then

1) if d′ > d′′, then CV(M ′)⇐⇒ CV(M);

2) if d′′ > d′, then CV(M ′′)⇐⇒ CV(M);

3) if d′ = d′′, then CV(M ′) and CV(M ′′) =⇒ CV(M).

Proof. Let α′ = c(M ′), α = c(M), and α′′ = c(M ′′). If dimM ′ = 0, then for sufficiently large
n, we haveMn = M ′′

n , so CV(M ′′)⇐⇒ CV(M). Hence the proposition is true when dimM ′ =
0. Similarly it is also true when dimM ′′ = 0. In the following we suppose min(d′, d′′) ≥ 1. We
then have d = max(d′, d′′). For any integer n ≥ 0, let

ν′n = T 1
n
νM ′

n
, νn = T 1

n
νMn

, ν′′n = T 1
n
νM ′′

n

and
r′n = rkM ′

n, rn = rkMn, r′′n = rkM ′′
n .
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For sufficiently large integer n, r′n, rn and r′′n are strictly positive. Moreover, by Proposition

2.12, νn =
r′n
rn
ν′n +

r′′n
rn
ν′′n. The measures ν′n, νn and ν′′n are of bounded total masses, and we

have the following estimations:

r′n =
α′

(d′ − 1)!
nd

′−1 + o(nd
′−1), r′′n =

α′′

(d′′ − 1)!
nd

′′−1 + o(nd
′′−1), rn = r′n + r′′n.

1) If d′ > d′′, then lim
n→+∞

r′n/rn = 1, lim
n→+∞

r′′n/rn = 0, so (νn)n≥1 converges vaguely if and

only if (ν′n)n≥1 converges vaguely, and if it is the case, they have the same limit.
2) It is similar to 1).
3) If d′′ = d′, then α = α′ + α′′, and

lim
n→+∞

r′n
rn

=
α′

α′ + α′′
, lim

n→+∞

r′′n
rn

=
α′′

α′ + α′′
.

If (ν′n)n≥1 converges vaguely to ν′ and if (ν′′n)n≥1 converges vaguely to ν′′, then (νn)n≥1 con-

verges vaguely to
α′

α′ + α′′
ν′ +

α′′

α′ + α′′
ν′′. 2

Lemma 7.4 Let V and V ′ be two vector spaces of finite rank over K, equipped with separated,
exhaustive and left continuous R-filtrations, ϕ : V → V ′ be an isomorphism of vector spaces
over K and c be a real number. If λ(x) ≤ λ(ϕ(x))+ c for any element x ∈ V , then νV ≺ τcνV ′ .

Proof. Let e = (ei)1≤i≤n be a maximal base of V . Then e′ = (ϕ(ei))1≤i≤n is a base of V ′.

Hence τcνV ′ ≻ τcνe′ =
1

n

n∑

i=1

δλ(ϕ(ei))+c ≻
1

n

n∑

i=1

δλ(ei) = νE . 2

We now present the general convergence theorem. As we have already proved the special
case of symmetric algebras, it is quite natural to expect that the general case follows by using
the method of unscrewing. However, as we shall see in Remark 7.7, the theorem cannot be
generalized to quasi-filtered graded modules. Even for modules generated by one homogeneous
element, the convergence of associated probability measures fails in general. Therefore, the first
step of unscrewing doesn’t work. In fact, the major difference between filtration and grading is
that, in a graded algebra, the homogeneous degree of the product of two homogeneous elements
equals to the sum of homogeneous degrees, as for (quasi-)filtrated algebra, we only give a lower
bound for the index of the product, which doesn’t prevent the product going “far away” in the
filtration. More precisely, the graded algebra associated to a filtered algebra of finite type over
K need not be of finite type over K in general.

The proof of the theorem below uses the Noether’s normalization theorem, which provides
a subalgebra isomorphic to a symmetric algebra over which the algebra is finite. It is this
finiteness which prevents the product of two element from going too “far away”.

Theorem 7.5 Let f : Z≥0 → R≥0 be a function such that lim
n→+∞

f(n)/n = 0 and B =
⊕

n≥0Bn be an integral graded K-algebra of finite type over K, which is generated by B1 as
K-algebra. Suppose that

i) d = dimB is strictly positive,

ii) for any positive integer n, Bn is equipped with an R-filtration F which is separated, ex-
haustive and left continuous, such that B is an f -quasi-filtered graded K-algebra,
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iii) lim sup
n→+∞

sup
06=a∈Bn

λ(a)

n
< +∞.

For any integer n > 0, we denote by νn = T 1
n
νBn

. Then

1) lim
n→+∞

min
a∈Bn

λ(a)

n
exists in R,

2) the supports of νn (n ≥ 1) are uniformly bounded and the sequence of measures (νn)≥1

converges vaguely to a Borel probability measure on R.

Proof. For any integer n ≥ 1, let

λmax
n = sup

06=a∈Bn

λ(a) and λmin
n = min

a∈Bn

λ(a).

The support of νn is contained in [λmin
n /n, λmax

n /n]. Since 0 < d < +∞, for any integer n > 0,
Bn is a non-zero vector space of finite rank, so λmin

n ∈ R since the filtration of Bn is exhaustive.
On the other hand, there exists an element an in Bn such that λmin

n = λ(an). Let

Wn = {b1 · · · bn | bi ∈ B1 for any 1 ≤ i ≤ n}.

Since B is generated by B1, Bn is generated as vector space over K (even as commutative
group) by Wn. After Proposition 2.1 2), we may suppose an ∈ Wn. Clearly an is non-zero for
any integer n > 1. If n = (ni)1≤i≤r is a multi-index in Zr>0 and if N = n1 + · · ·+ nr, we can
write aN as the product of r elements c1, · · · , cr, where ci ∈ Bni

\ {0}. Therefore,

λmin
N = λ(aN ) ≥

r∑

i=1

(
λ(ci)− f(ni)

)
≥

r∑

i=1

(
λmin
ni
− f(ni)

)
. (15)

The condition iii) implies that lim sup
n→+∞

λmin
n /n < +∞, so the sequence (λmin

n /n)n≥1 has a limit in

R (by Corollary 3.2) and therefore is bounded from below. On the other hand, the condition iii)
shows that the sequence (λmax

n /n)n≥1 is bounded from above. Hence the supports of measures
νn (n ≥ 1) are uniformly bounded.

We now prove the second assertion of the theorem. After Lemma 6.6, it suffices to verify
CV(B).

Step 1: some simplifications.
First, after possible extension of fields, we may suppose that K is infinite.
Let c be a real constant. We consider the filtration Fc of B such that FctBn = Ft−cnBn. In

other words, for any element a ∈ Bn, we have the equality λFc(a) = λF (a)+cn. If (ni)1≤i≤r ∈
Zr>0 is an multi-index and if for any i, ai is an element in Bni

, in writing N = n1 + · · ·+ nr,
a = a1 · · ·ar, we have

λFc(a) = λF (a) + cN ≥
r∑

i=1

(
λF (ai)− f(ni)

)
+

r∑

i=1

cni =

r∑

i=1

(
λFc(ai)− f(ni)

)
,

in other words, B is f -quasi-filtered for the filtration Fc. On the other hand, if we denote
by νcBn

the probability measure associated to Bn for the filtration Fc, we have νcBn
= τcnνBn

.
Therefore, T 1

n
νcBn

= T 1
n
τcnνBn

= τcT 1
n
νBn

. Hence B satisfies the vague convergence condition
for the filtration F if and only if it is the case for the filtration Fc. After the proof of the first
assertion we obtain λmin

n = O(n). Since f(n) = o(n), we have λmin
n −f(n) = O(n). In replacing
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the filtration F by Fc, where c ∈ R>0 is sufficiently large, we reduce the problem to the case
where λmin

n − f(n) ≥ 0 for any n ≥ 1. In particular, for any homogeneous element a of B of
homogeneous degree n, we have λ(a)− f(n) ≥ 0.

Step 2: Since K is an infinite field, by Noether’s normalization (cf. [Eis95] Theorem 13.3),
there exist d elements x1, · · · , xd in B1 such that

1) the homomorphism from the polynomial algebra K[T1, · · · , Td] to B, which sends Ti to xi,
is an isomorphism of graded K-algebras from K[T1, · · · , Td] to its image,

2) if we denote by A this image, i.e., the sub-K-algebra of B generated by x1, · · · , xd, then B
is a graded A-module of finite type.

The sub-K-algebra A, equipped with the inverse image filtrations, is an f -quasi-filtered graded
K-algebra. Moreover, B is an f -quasi-filtered graded A-module. Proposition 7.2 shows that
we have CV(A).

Let a be a non-zero homogeneous element of A. We equip Aa with the inverse image
filtration. Since dimA/Aa < dimA, we have CV(Aa) after Lemma 7.3. Furthermore, the
sequences (T 1

n
νAn

)n≥1 and (T 1
n
ν(Aa)n

)n≥1 of probability measures on R converge vaguely to
the same probability measure on R.

If x is a homogeneous element of degree m > 0 in B, then there exists a unitary polynomial
P ∈ A[X ] of degree p ≥ 1 such that P (x) = 0. We may suppose that P is minimal and is
written in the form

P (X) = Xp + ap−1X
p−1 + · · ·+ a0.

Since P is minimal and since B is an integral ring, a0 is non-zero. For any integer 0 ≤ i < p,
let ãi be the component of degree (p− i)m of ai. If we write

P̃ (X) = Xp + ãp−1X
p−1 + · · ·+ ã0,

then we still have P̃ (x) = 0 since x is homogeneous of degree m. Therefore we can suppose that
ai is homogeneous of degree (p− i)m for any 0 ≤ i < p. Let y = xp−1 + ap−1x

p−2 + · · ·+ a1,
which is homogeneous of degree (p−1)m. Moreover we have xy+a0 = 0. If u is a homogeneous
element of degree n of A, then

λ(ua0) = λ(uxy) ≥ λ(ux)− f(n+m) + λ(y)− f((p− 1)m) ≥ λ(ux) − f(n+m). (16)

We then deduce that λ(ux) ≤ λ(ua0) + f(n+m). On the other hand,

λ(ux) ≥ λ(u) + λ(x) − f(m)− f(n) ≥ λ(u)− f(n). (17)

Let M = Aa0 and M ′ = Ax. The algebra B being integral, for any integer n ≥ 1, the mapping
ux 7→ ua0 (u ∈ An) from M ′

n+m to Mn+mp is an isomorphism of vector spaces over K. After
(16) and Lemma 7.4, we have νM ′

n+m
≺ τf(n+m)νMn+mp

. On the other hand, the mapping

u 7→ ux (u ∈ An) from An to M ′
n+m is an isomorphism of vector spaces over K. After (17) and

Lemma 7.4, we obtain νAn
≺ τf(n)νM ′

n+m
, or equivalently τ−f(n)νAn

≺ νM ′
n+m

. So we have the
estimation

τ−f(n)νAn
≺ νM ′

n+m
≺ τf(n+m)νMn+mp

,

and hence
T 1

n+m
τ−f(n)νAn

≺ T 1
n+m

νM ′
n+m
≺ T 1

n+m
τf(n+m)νMn+mp

,

or equivalently

τ−f(n)/(n+m)T n
n+m

T 1
n
νAn
≺ T 1

n+m
νM ′

n+m
≺ τf(n+m)/(n+m)Tn+mp

n+m
T 1

n+mp
νMn+mp

. (18)
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As proved above, the sequences (T 1
n
νAn

)n≥1 and (T 1
n
νMn

)n≥1 converge vaguely to the same

limit ν. After Proposition 6.5 and the estimation (18), we conclude that the sequence (T 1
n
νM ′

n
)n≥1

converges vaguely to ν.

Step 3: Since B is a finite algebra over A, the algebra L ⊗A B is of finite rank over L, where
L is the quotient field of A. The A-module B is generated by homogeneous elements, hence
there exist homogeneous elements x1, · · · , xs of B forming a base of L⊗AB over L. If we write
H = Ax1 + · · ·+Axs, then H is a free sub-A-module of base (x1, · · · , xs) of B. Let H ′ = B/H .
We have an exact sequence:

0 // H
ψ

// B
π

// H ′ // 0 .

Since 1⊗ ψ : L⊗A H → L ⊗A B is an isomorphism, we have L⊗A H ′ = 0, so H ′ is a torsion
A-module. Then dimAH

′ < dimA = dimAH = dimAB. After the step 2 we have CV(Axi)
for any 1 ≤ i ≤ s. After Lemma 7.3, we obtain CV(H) and hence CV(B). 2

Remark 7.6 In Theorem 7.5, if we suppose that the vector spaceBn is non-zero for sufficiently
large n (this condition is notably satisfied when B1 6= 0), then the condition that B is generated
by B1 is not necessary. In fact, after [GD61] II, 2.1.6, there exists an integer d > 0 such

that B(d) =
⊕

n≥0Bnd is a B0-algebra generated by B
(d)
1 = Bd. Moreover, if we denote by

g : Z≥0 → R≥0 the mapping such that g(n) = f(nd), then B(d) is a g-quasi-filtered K-algebra.
After Theorem 7.5, the algebra B(d) satisfies the vague convergence condition. Hence by an
argument similar to the second step of the proof of Theorem 7.5, for any non-zero homogeneous
element x of B, B(d)x satisfies the vague convergence condition, and the sequence of probability
measures associated to B(d)x converges to the limit of that associated to B(d). We suppose
that Bn 6= 0 for any n ≥ m0. Then for any integer m0 ≤ k < m0 + d, the B(d)-module
B(d,k) =

⊕
n≥0Bnd+k is non-zero. By an argument similar to the third step of the proof

of Theorem 7.5 using the fact that B(d) is an integral ring, we conclude that B(d,k) satisfies
the vague convergence condition, and that the limit of the sequence of probability measures
associated to B(d,k) coincides with that of probability measures associated to B(d). Finally,
combining all these measure sequences, Proposition 6.5 shows that the sequence of probability
measures associated to B converges vaguely.

Remark 7.7 1) Theorem 7.5 is not true in general for a quasi-filtered graded module. In
fact, let B be the algebra K[X ] of polynomials in one variable, equipped with the usual
graduation and with the filtration F such that

FtBn =

{
Bn, t ≤ 0,

0, t > 0.

Clearly B is a quasi-filtered graded K-algebra. Let M be a free graded B-module generated
by one homogeneous element of degree 0. If ϕ : Z≥0 → R is an increasing function, we can
define a filtration Fϕ of M such that

Fϕt Mn =

{
Mn, t ≤ ϕ(n),

0, t > ϕ(n).

Then M is a quasi-filtered graded B-module, and for any integer n ≥ 0, νMn
= δϕ(n).

Notice that the condition CV(M) is equivalent to the assertion that lim
n→+∞

ϕ(n)/n exists
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in R∪{+∞}. If ϕ : Z≥0 → R is an increasing function such that the sequence (ϕ(n)/n)n≥1

has more than one accumulation point — for example, if ϕ(n) = 2⌊log2 n⌋, then CV(M) is
no longer satisfied. This counter-example shows that it is not possible to prove Theorem
7.5 by using the classical version of unscrewing.

2) Theorem 7.5 is not true in general for a quasi-filtered graded algebra which is not integral.
In fact, if B is a quasi-filtered algebra over K and if M is a quasi-filtered graded B-module.
We suppose that CV(B) is satisfied, but the condition CV(M) is not satisfied (after 1),
this is always possible). If we denote by C the nilpotent extension of B by M (see [Mat89]
chap. 9 §25), then C is a filtered graded algebra over K, which is of finite type. But the
condition CV(C) is not satisfied.

Corollary 7.8 With the notations of Theorem 7.5, if for any n ∈ N, we denote by Pn the
polygon associated to the probability measure νn, then the sequence of polygons (Pn)n≥1 con-
verges uniformly to a concave function on [0, 1]. If Bn 6= 0 for sufficiently large n, the same
result remains true if we remove the condition that B is generated as K-algebra by B1.

8 Convergence of Harder-Narasimhan polygons: relative

geometric case

Using the results established in the previous section, notably Theorem 7.5 and Remark 7.6,
we obtain in Theorem 8.7 the convergence of normalized Harder-Narasimhan polygons for an
algebra in vector bundles on a non-singular projective curve.

Let k be a field, C be a non-singular projective curve of genus g over k, η be the generic
point of C and K be the field of rational functions on C. As explained in the introduction, we
shall associate to each non-zero vector bundle E on C an R-filtration of EK which is separated,
exhaustive and left continuous. Let

0 = E0 ( E1 ( E2 ( · · · ( En = E

be the Harder-Narasimhan flag of E, which induces a flag

0 = E0,K ( E1,K ( E2,K ( · · · ( En,K = EK

of the vector space EK . Furthermore, if we write µi = µ(Ei/Ei−1) for 1 ≤ i ≤ n, then the
sequence of rational numbers (µi)1≤i≤n is strictly decreasing.

Therefore, we obtain a filtration FHN of EK such that

FHN
s EK =





0, if s > µ1,

Ei,K , if µi+1 < s ≤ µi, 1 ≤ i ≤ n,

EK if s ≤ µn,

called the Harder-Narasimhan filtration of EK . Note that the normalized Harder-Narasimhan
polygon of E identifies with the polygon associated to the Harder-Narasimhan filtration of EK .

We recall that if ϕ : F → G is a non-zero homomorphism of vector bundles on C, then the
inequality µmin(F ) ≤ µ(ϕ(F )) ≤ µmax(G) holds. We obtain therefore the following proposition.

Proposition 8.1 Let ϕ : F → E be a homomorphism of vector bundles on C. For any real
number s, the image ϕK(FK) is contained in FHN

s EK if µmin(F ) ≥ s.

32



Proof. The case where ϕ = 0 is trivial. We assume hence ϕ 6= 0. First, for any real num-
ber s ∈ R, FHN

s EK ∈ {E0,K , · · · , En,K}. Since the vector bundles Ei are saturated in E,
ϕK(FK) ⊂ Ei,K if and only if ϕ(F ) ⊂ Ei. Therefore, if i is the smallest index such that
ϕK(FK) ⊂ Ei,K , which is always ≥ 1 because ϕ 6= 0, then µmin(F ) ≤ µmax(Ei/Ei−1) = µi

since the composed homomorphism F
ϕ

// Ei // Ei/Ei−1 is non-zero. Therefore we have

s ≤ µi, so ϕK(FK) ⊂ Ei,K ⊂ F
HN
s EK . 2

Proposition 8.1 implies in particular that, for any subbundle F ⊂ E such that µmin(F ) ≥ s,
FK is contained in FHN

s EK . Therefore we have

FHN
s EK =

∑

06=F⊂E
µmin(F )≥s

FK .

Corollary 8.2 Let ϕ : F → E be a homomorphism of vector bundles on C. For any real
number s, the K-linear mapping ϕK sends FHN

s FK into FHN
s EK . In other words, the homo-

morphism ϕK is compatible with Harder-Narasimhan filtrations.

Proof. Let Fs be the saturated subbundle of F such that Fs,K = FHN
s FK . By the definition

of Harder-Narasimhan filtrations, we know that µmin(Fs) ≥ s once FHN
s FK is non-zero. There-

fore, the canonical mapping from FHN
s FK to EK factorizes through FHN

s EK . 2

In the following, we shall introduce some easy estimations for the maximal and the minimal
slope of the tensor product of vector bundles on C, which will be useful in Proposition 8.6.

Lemma 8.3 Let E be a non-zero vector bundle on C. If H0(C,E) reduces to zero, then
µmax(E) ≤ g − 1.

Proof. As H0(C,E) = 0, for any subbundle F of E, we have H0(C,F ) = 0. After Riemann-
Roch theorem, we have rkkH

0(C,F )−rkkH
1(C,F ) = deg(F )+rk(F )(g−1). If H0(C,F ) = 0,

then deg(F ) + rk(F )(1 − g) ≤ 0, i.e. µ(F ) ≤ g − 1. 2

Let b(C) = min{deg(H) | H ∈ Pic(C), H is ample}. It is a strictly positif integer, and the
set of values {deg(H) | H ∈ Pic(C)} is exactly b(C)Z. We define a(C) = b(C) + g.

Proposition 8.4 For any non-zero vector bundle E on C, there exists a line subbundle L of
E such that deg(L) ≥ µmax(E)− a(C).

Proof. Let M be a line bundle of degree b(C) on C. We write r = ⌈(g − µmax(E))/b(C)⌉.
Thus

g − µmax(E)

b(C)
≤ r <

g − µmax(E) + b(C)

b(C)
.

Therefore µmax(E ⊗M⊗r) = µmax(E) + rb(C) ≥ g. After Lemma 8.3, we obtain H0(C,E ⊗
M⊗r) 6= 0. So there exists an injective homomorphism from OC to E ⊗M⊗r. Let L = M∨⊗r.
Then L is a subbundle of E. On the other hand, we have deg(L) = −r deg(M) = −rb(C) >
µmax(E)− g − b(C). Since a(C) = b(C) + g, we obtain deg(L) ≥ µmax(E) − a(C). 2

Proposition 8.5 If E1 and E2 are two non-zero vector bundles on C, then

1) µmax(E1 ⊗ E2) < µmax(E1) + µmax(E2) + a(C);
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2) µmin(E1 ⊗ E2) > µmin(E1) + µmin(E2)− a(C).

Proof. 1) First we prove that if µmax(E1) + µmax(E2) < 0, then µmax(E1 ⊗ E2) < g. In fact,
if µmax(E1 ⊗ E2) ≥ g, then H0(C,E1 ⊗ E2) 6= 0 (see Lemma 8.3). Therefore, there exists a
non-zero homomorphism from E∨

1 to E2, which implies that

µmax(E2) ≥ µmin(E
∨
1 ) = −µmax(E1),

i.e., µmax(E1) + µmax(E2) ≥ 0. To prove 1), we take a line bundle L on C such that −b(C) ≤
µmax(E1) + µmax(E2) + deg(L) < 0. We then have µmax(E1 ⊗ L) + µmax(E2) < 0 and hence,
after the result established above, µmax(E1 ⊗ L⊗ E2) < g. Therefore,

µmax(E1⊗E2) < g−deg(L) ≤ µmax(E1)+µmax(E2)+g+b(C) = µmax(E1)+µmax(E2)+a(C).

2) In fact,

µmin(E1 ⊗ E2) = −µmax((E1 ⊗ E2)
∨) = −µmax(E

∨
1 ⊗ E

∨
2 )

> −
(
µmax(E

∨
1 ) + µmax(E

∨
2 ) + a(C)

)
= µmin(E1) + µmin(E2)− a(C).

2

From Proposition 8.5, we obtain by induction that if (Ei)1≤i≤r is a family of non-zero vector
bundles on C, we have the estimation

µmin(E1 ⊗ · · · ⊗Er) ≥
r∑

i=1

µmin(Ei)− a(C)(r − 1) ≥
r∑

i=1

µmin(Ei)− a(C)r.

Actually, if the field k is of characteristic 0, then we have even the equality µmin(E1⊗· · ·⊗Er) =
µmin(E1)+ · · ·+µmin(Er). This is a consequence of Ramanan and Ramanathan’s result [RR84]
asserting that the tensor product of two semistable vector bundles on C is semistable.

Proposition 8.6 Let f : Z≥0 → R≥0 be the constant function which sends any n ∈ Z≥0 to
a(C). Let B =

⊕
n≥0 Bn be a graded quasi-coherent OC-algebra. Suppose that for any integer

n ≥ 0, Bn is a vector bundle over C, and we denote by Bn = Bn,K . Then B =
⊕

n≥0Bn,
equipped with Harder-Narasimhan filtrations, is an f -quasi-filtered graded K-algebra.

Proof. For any integer n ≥ 0 and any real number s, let Bn,s be the saturated subbundle of
Bn such that Bn,s,K = FHN

s Bn. Since B is an OC -algebra, for any integer r ≥ 2 and any ele-
ment (ni)1≤i≤r ∈ Zr≥0, we have a natural homomorphism ϕ from Bn1⊗· · ·⊗Bnr

to BN , where
N = n1 + · · · + nr. If (ti)1≤i≤r is a family of real numbers, the homomorphism ϕ induces by
restriction a homomorphism ψ from Bn1,t1 ⊗ · · · ⊗Bnr ,tr to BN . By the definition of Harder-
Narasimhan filtration we obtain that if Bni,ti is non-zero, then µmin(Bni,ti) ≥ ti. Therefore, by
using the convention µmin(0) = +∞, we have µmin(Bn1,t1⊗· · ·⊗Bnr,tr) ≥ t1+ · · ·+tr−a(C)r.
After Corollary 8.2, ψK is compatible with Harder-Narasimhan filtrations, so ψK factorizes
through Ft1+···+tr−a(C)rBN . Therefore, B is a quasi-filtered graded K-algebra. 2

Theorem 8.7 Let B =
⊕

n≥0 Bn be a quasi-coherent graded OC-algebra. Suppose that the
following conditions are verified:

i) Bn is a vector bundle on C for any integer n ≥ 0;
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ii) there exists a constant a > 0 such that µmax(Bn) ≤ an for any integer n ≥ 1;

iii) BK is an integral ring which is of finite type over K and Bn is non-zero for sufficiently
large integer n.

For any integer n ≥ 1, we denote by Pn the Harder-Narasimhan polygon of Bn. Then

1) the sequence of numbers ( 1
nµmin(Bn))n≥1 has a limit in R.

2) the sequence ( 1
nPn)n≥1 converges uniformly on [0, 1].

Proof. Let f be the constant function Z≥0 with value a(C). After Proposition 8.6, we obtain
that BK equipped with Harder-Narasimhan filtrations is an f -quasi-filtered graded K-algebra.
The theorem is then proved by using Theorem 7.5 (see also Remark 7.6) and Corollary 7.8. 2

Let π : X → C be a projective and flat morphism from an algebraic variety X to C and L
be a line bundle on X . We shall apply Theorem 8.7 to the special case where B is the direct
sum of the direct images by the morphism π of tensor powers of L.

Lemma 8.8 There exists a constant ε such that, for any integer n > 0,

µmax(π∗(L
⊗n)) ≤ εn.

Proof. The variety X is projective over Spec k. We can hence choose an ample line bundle
L on X .

Let d = dimX . Observe that π∗(c1(L )d−1) = (degLK
XK)[C] in the Chow group CH1(C).

Suppose that M is a line bundle on C and that ϕ : M → π∗(L
⊗n) is an injective homomor-

phism. We denote by ϕ̃ : π∗M → L ⊗n the homomorphism of OX -modules corresponding
to ϕ by adjunction, which identifies with a non-identically zero section of π∗M∨ ⊗ L ⊗n,

whose divisor div ϕ̃ is effective. Then degX

(
c1(L )d−1[div(ϕ̃)]

)
≥ 0. On the other hand,

[div ϕ̃] = −π∗c1(M) + nc1(L) in CH1(X). Hence

degX

(
c1(L )d−1[div(ϕ̃)]

)
= degX

(
(−π∗c1(M) + nc1(L))c1(L )d−1

)

= − degC

(
c1(M)π∗(c1(L )d−1)

)
+ n degX(c1(L)c1(L )d−1).

Therefore, degC(M) ≤ n
degX(c1(L)c1(L )d−1)

degLK
XK

. Finally, using the comparison established in

Proposition 8.4, we deduce the upper bound of µmax(π∗(L
⊗n)) by a linear function on n. 2

Theorem 8.9 Suppose that H0(XK , L
⊗n
K ) 6= 0 for sufficiently large integer n and that the

graded algebra
⊕

n≥0H
0(XK , L

⊗n
K ) is of finite type over K (this condition is satisfied no-

tably when LK is ample). For any integer n ≥ 1, let Pn be the Harder-Narasimhan polygon
of π∗(L

⊗n). Then the sequence of numbers ( 1
nµmin(π∗(L

⊗n)))n≥1 has a limit in R and the
sequence of polygons ( 1

nPn)n≥1 converges uniformly on [0, 1].

Proof. After Lemma 8.8, µmax(π∗(L
⊗n)) = O(n) (n → +∞). Therefore, the algebra B :=⊕

n≥0 π∗(L
⊗n) verifies the conditions in Theorem 8.7. 2

The convergence of polygons ( 1
nPn) suggests that the sequence of (normalized) maximal

slopes ( 1
nµmax(π∗(L

⊗n)))n≥1 converges. However, this is not a formal consequence of Theorem
8.9. In Proposition 8.11, we shall justify the convergence of this sequence by using the same
generalization of Fekete’s lemma for almost super-additive sequences.
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Lemma 8.10 Let E1 and E2 be two vector bundles on X. If π∗(E1) and π∗(E2) are non-zero,
then

µmax(π∗(E1 ⊗ E2)) ≥ µmax(π∗E1) + µmax(π∗E2)− 2a(C),

where a(C) is the constant in Proposition 8.4.

Proof. Since π∗(E1) and π∗(E2) are non-zero, also is π∗(E1⊗E2). After Proposition 8.4, there
exist two line bundles M1 and M2 on C and two injective homomorphisms M1 → π∗(E1) and
M2 → π∗(E2) such that degM1 ≥ µmax(π∗E1)−a(C) and degM2 ≥ µmax(π∗E2)−a(C). Since
both M∨

1 ⊗π∗(E1) and M∨
2 ⊗π∗(E2) have global sections which do not vanish everywhere on C,

then both π∗(M1)
∨⊗E1 and π∗(M2)

∨⊗E2 have global sections which do not vanish everywhere
on X . Therefore, H0(X,π∗(M1⊗M2)

∨⊗ (E1⊗E2)) = H0(C, (M1⊗M2)
∨⊗π∗(E1⊗E2)) 6= 0.

So we have 0 ≤ µmax((M1 ⊗M2)
∨ ⊗ π∗(E1 ⊗ E2)), and hence µmax(π∗(E1 ⊗ E2)) ≥ degM1 +

degM2 ≥ µmax(π∗(E1)) + µmax(π∗(E2))− 2a(C). 2

Proposition 8.11 Let π : X → C be a projective and flat morphism from an algebraic variety
X to C and L be a line bundle on X verifying the conditions of Theorem 8.9. Then the sequence
( 1
nµmax(π∗(L

⊗n)))n≥1 has a limit in R.

Proof. Denote by an = µmax(π∗(L
⊗n)) for any integer n ≥ 1. After Lemma 8.8, there exists

a constant ε > 0 such that an ≤ εn for sufficiently large n. On the other hand, Lemma 8.10
shows that am+n ≥ am+an−2a(C) for all integers m and n. After Corollary 3.3, the sequence
(an/n)n≥1 has a limit in R. 2

9 Convergence of Harder-Narasimhan polygons: arith-

metic case

In this section, we establish the analogue of the results in the previous section in Arakelov
geometry. Let K be a number field and OK be its integer ring. We denote by Σf the set of all
finite places of K, which coincides with the set of all closed points in SpecOK . Let Σ∞ be the
set of all embeddings of K into C. Suppose that E is a projective OK-module of finite type,
then for any finite place p of K, the structure of OK-module on E induces an ultranorm on
EKp

:= E ⊗OK
Kp.

We have explained that to any non-zero Hermitian vector bundle E on SpecOK , we can
associated a flag 0 = E0 ( E1 ( · · · ( En = E of E such that Ei/Ei−1 is semistable for any
integer 1 ≤ i ≤ n and that

µ̂(E1/E0) > µ̂(E2/E1) > · · · > µ̂(En/En−1).

If we write µi = µ̂(Ei/Ei−1) for 1 ≤ i ≤ n, then the sequence of real numbers (µi)1≤i≤n is
strictly decreasing. Furthermore, the flag of E above induces a flag 0 = E0,K ( E1,K ( · · · (
En,K = EK of the vector space EK . We obtain therefore a filtration FHN of EK such that

FHN
s EK =





0, if s > µ1,

Ei,K , if µi+1 < s ≤ µi, 1 ≤ i ≤ n,

EK , if s ≤ µn,

called the Harder-Narasimhan filtration of EK . Notice that the normalized Harder-Narasimhan
polygon of E coincides with the polygon associated to the Harder-Narasimhan filtration of EK .
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Let F and G be two non-zero Hermitian vector bundles on SpecOK and ϕ : FK → GK be
a linear mapping. For any place p ∈ Σf , ϕ induces a linear mapping ϕp : FKp

→ GKp
. For

any embedding σ ∈ Σ∞, ϕ induces a linear mapping ϕσ : Fσ → Gσ. We define the height of ϕ
to be

h(ϕ) =
1

[K : Q]

( ∑

p∈Σf

log ‖ϕp‖+
∑

σ∈Σ∞

log ‖ϕσ‖
)
.

Notice that if ϕ comes from an OK-linear homomorphism φ, i.e. ϕ = φK , then for any p ∈ Σf ,
log ‖ϕp‖ ≤ 0. We recall the slope inequalities:

1) if ϕ is injective, then µ̂max(F ) ≤ µ̂max(G) + h(ϕ);

2) if ϕ is surjective, then µ̂min(F ) ≤ µ̂min(G) + h(ϕ);

3) if ϕ is non-zero, then µ̂min(F ) ≤ µ̂max(G) + h(ϕ).

For the proof of the first inequality, one can consult [Bos01]. The second inequality is obtained
by applying the first one on ϕ∨ : G∨

K → F∨
K . Finally if we apply the first two inequalities on

the two homomorphisms in the decomposition FK ։ ϕ(FK) →֒ GK respectively, we obtain
the third inequality. Using the seconde slope inequality, we obtain the following proposition.

Proposition 9.1 Let F and E be two Hermitian vector bundles. If ϕ : FK → EK is a K-
linear homomorphism, then for any real number s ≤ µ̂min(F ) − h(ϕ), the image ϕ(FK) is
contained in FHN

s EK .

Proof. The case where ϕ = 0 is trivial. Suppose that ϕ 6= 0. Let i be the smallest index
such that ϕ(FK) ⊂ Ei,K , which is always ≥ 1 since ϕ 6= 0. Consider the composed ho-

momorphism ψ : FK
ϕ

// Ei,K // (Ei/Ei−1 )K , which is non-zero. By slope inequality,

s ≤ µ̂min(F ) ≤ µ̂max(Ei/Ei−1) + h(ψ) ≤ µi + h(ϕ), or equivalently s− h(ϕ) ≤ µi. Therefore
ϕK(FK) ⊂ Ei,K ⊂ FHN

s−h(ϕ)EK . 2

Proposition 9.1 implies that, for any Hermitian subbundle F of E such that µ̂min(F ) ≥ s,
FK is contained in FHN

s EK (the height of the inclusion mapping FK → EK is bounded from
above by 0). Therefore we obtain the relation

FHN
s EK =

∑

06=F⊂E
µ̂min(F )≥s

FK .

Corollary 9.2 Let F and E be two Hermitian vector bundles on SpecOK and ϕ : FK → EK
be a K-linear mapping. Then for any real number s, ϕ sends FHN

s FK into FHN
s−h(ϕ)EK .

Proof. Let Fs be the saturated subbundle of F such that Fs,K = FHN
s FK . By the definition

of Harder-Narasimhan filtrations we know that µ̂min(Fs) ≥ s if FHN
s FK is non-zero. Therefore,

the canonical mapping from FHN
s FK to EK factorizes through FHN

s−h(ϕ)EK . 2

In Corollary 9.2, if the homomorphism ϕ is an isomorphism, then τh(ϕ)νFHN,EK
≻ νFHN,FK

.
Therefore, for any t ∈ [0, 1], PF (t) ≤ PE(t) + h(ϕ)t. In particular, if E is a non-zero vector
bundle on SpecOK and if h = (‖ ·‖σ)σ∈Σ∞

and h′ = (‖ ·‖′σ)σ∈Σ∞
are two Hermitian structures

on E, then for any t ∈ [0, 1],

∣∣P(E,h)(t)− P(E,h′)(t)
∣∣ ≤ t

[K : Q]

∑

σ∈Σ∞

sup
06=x∈Eσ,C

∣∣∣ log ‖x‖σ − log ‖x‖′σ

∣∣∣ (19)
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Let (Bn)n≥0 be a collection of non-zero Hermitian vector bundles on SpecOK . For any
integer n ≥ 0 and any s ∈ R, we denote by Bn,s the saturated subbundle of Bn such that
Bn,s := Bn,s,K = FHN

s Bn,K . Suppose that B =
⊕

n≥0 Bn,K is equipped with a structure
of commutative Z≥0-graded algebra over K. For any integer r ≥ 2 and any element n =
(ni)1≤i≤r ∈ Nr, we have a homomorphism ϕn from Bn1 ⊗ · · · ⊗ Bnr

to B|n| defined by the
structure of algebra. After [Che07b], if (si)1≤i≤r is an element in Rr, we obtain, by using the
convention µ̂min(0) = +∞,

µ̂min(Bn1,s1 ⊗· · ·⊗Bnr ,sr
) ≥

r∑

i=1

µ̂min(Bni,si
)−

r∑

i=1

log(rk(Bni,si
)) ≥

r∑

i=1

(
si− log(rk(Bni

))
)
.

If E is a Hermitian vector subbundle of B|n| such that EK coincides with the image of Bn1,s1⊗
· · · ⊗Bnr ,sr

in B|n|, after the slope inequality, we have

µ̂min(E) ≥ µ̂min(Bn1,s1 ⊗ · · · ⊗Bnr ,sr
)− h(ϕn) ≥

r∑

i=1

(
si − log(rk(Bni

))
)
− h(ϕn).

Suppose that g : Z≥0 → R≥0 is a function such that h(ϕn) ≤ g(n1)+· · ·+g(nr) for ni sufficiently
large. For any integer n ≥ 1, let f(n) = g(n) + log(rk(Bn)). Then B is an f -quasi-filtered
graded K-algebra.

Theorem 9.3 For any integer n ≥ 0, denote by Pn the Harder-Narasimhan polygon of Bn.
Suppose that lim

n→+∞
f(n)/n = 0 and that the sequence (µ̂max(Bn)/n)n≥1 is bounded. If B is

an integral K-algebra of finite type and if Bn 6= 0 for sufficiently large n, then the sequence
(µ̂min(Bn)/n)n≥1 has a limit in R and the function sequence (Pn/n)n≥1 converges uniformly
on [0, 1].

Proof. In fact, Pn coincides with the polygon associated to the filtered space Bn. The theorem
results therefore from Theorem 7.5 (see also Remark 7.6) and Corollary 7.8. 2

In the following, we shall establish the analogue of Theorem 8.9 in Arakelov geometry. Let
π : X → SpecOK be a scheme of finite type and flat over SpecOK such that XK is proper.
Let L be a Hermitian line bundle on X . For any integer D ≥ 0, let ED be the projective
OK-module π∗(L

⊗D). Suppose that ED 6= 0 for sufficiently large D and that the algebra
B :=

⊕
D≥0ED,K is of finite type over K. Clearly B is integral. We denote by ‖ · ‖σ,sup the

norm on ED,σ such that ‖s‖σ,sup = supx∈Xσ(C) ‖sx‖σ for any s ∈ ED,σ = H0(Xσ,C,L
⊗D
σ,C ). In

general this is not a Hermitian norm. For any integer D ≥ 0 and any σ ∈ Σ∞, we choose a
Hermitian norm ‖ · ‖σ on ED,σ such that

sup
06=s∈ED,σ

∣∣∣ log ‖s‖σ − log ‖s‖σ,sup

∣∣∣ = O(logD) (D → +∞). (20)

This is always possible by Gromov’s inequality in smooth metric case (see [GS92] Lemma 30),
or by John’s or Löwner’s ellipsoid argument in general case (see [Gau07], [Tho96]). Suppose in
addition that the collection hD = (‖ · ‖σ)σ∈Σ∞

is invariant by the complex conjugation. Then
ED = (ED, hD) becomes a Hermitian vector bundle on SpecOK . For any integer r ≥ 2 and any
element n = (ni)1≤i≤r ∈ Nr, let ϕn be the canonical homomorphism from En1,K ⊗ · · ·⊗Enr,K

to E|n|,K . For any integer D ≥ 1 and any σ ∈ ΣD, we denote by

AD,σ = sup
06=s∈ED,σ

∣∣∣ log ‖s‖σ − log ‖s‖σ,sup

∣∣∣.
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From (20) we know that there exists an integer n0 ≥ 2 and a real number ε > 0 such that
AD,σ ≤ ε logD for any D ≥ n0 and any σ ∈ Σ∞.

Lemma 9.4 We have the following inequality

h(ϕn) ≤
1

[K : Q]

∑

σ∈Σ∞

A|n|,σ +
r∑

i=1

(
Ani,σ +

1

2
log(rk(Eni

))
)
. (21)

Proof. Since ϕn comes from a homomorphism of OK-modules, ‖ϕn‖p ≤ 1 for any finite place
p of K. Consider now an embedding σ ∈ Σ∞. If (si)1≤i≤r ∈ En1,σ × · · · ×Enr,σ, then

log ‖s1 · · · sr‖σ ≤ log ‖s1 · · · sr‖σ,sup +A|n|,σ ≤
r∑

i=1

log ‖si‖σ,sup +A|n|,σ

≤
r∑

i=1

(
log ‖si‖σ +Ani,σ

)
+A|n|,σ = log ‖s1 ⊗ · · · ⊗ sr‖σ +A|n|,σ +

r∑

i=1

Ani,σ.

Since En1,σ ⊗ · · · ⊗ Enr ,σ contains an orthogonal base which consists of rk(En1) · · · rk(Enr
)

elements of the forme s1 ⊗ · · · ⊗ sr, using Cauchy-Schwarz inequality, we obtain

log ‖ϕn‖σ ≤ A|n|,σ +

r∑

i=1

(
Ani,σ +

1

2
log(rk(Eni

))
)
.

Therefore, (21) holds. 2

Remark 9.5 Lemma 9.4 implies that

h(ϕn) ≤
r∑

i=1

(
2ε logni +

1

2
log(rk(Eni

))
)
, for any n ∈ Nr≥n0

.

Therefore, if we define f(n) = 2ε logn +
3

2
log(rk(En)), then the graded algebra B equipped

with Harder-Narasimhan filtrations is f -quasi-filtered. Notice that the function f satisfies
lim
n→∞

f(n)/n = 0.

We recall a result in [BK07], which is a reformulation of Minkowski’s first theorem in
Arakelov geometry.

Proposition 9.6 ([BK07]) Let E = (E, (‖ · ‖σ)σ∈Σ∞
) be a non-zero Hermitian vector bundle

on SpecOK . The following inequality holds:

µ̂max(E)−
1

2
log([K : Q] rkE)−

log |∆K |

2[K : Q]
≤ −

1

2
log sup

06=s∈E

( ∑

σ∈Σ∞

‖s‖2σ

)
≤ µ̂max(E)−

1

2
log[K : Q].

(22)

Lemma 9.7 There exists a constant C such that µ̂max(ED) ≤ CD for any sufficiently large
integer D.
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Proof. Let L be a Hermitian line bundle on X which is arithmetically ample and such that
c1(L) > 0. Suppose that s is a section of L ⊗D on X , then div s is an effective divisor of X .
Therefore, we have

hL(div s) = ĉ1(L)d · ĉ1(L
⊗D

) +

∫

X (C)

log ‖s‖c1(L)d ≥ 0.

On the other hand, since c1(L) > 0, we obtain

∫

X (C)

log ‖s‖c1(L)d ≤ max
σ∈Σ∞

log ‖s‖σ,sup

∫

X (C)

c1(L)d.

Therefore, by defining C1 = ĉ1(L)d · ĉ1(L )

(∫

X (C)

c1(L)d

)−1

, we have −maxσ log ‖s‖σ,sup ≤

C1D, which implies − log ‖s‖σ ≤ − log ‖s‖σ,sup + AD,σ ≤ C1D + ε logD for any σ ∈ Σ∞. We
then obtain after Proposition 9.6 that

µ̂max(ED) ≤ − sup
06=s∈ED

1

2
log
( ∑

σ∈Σ∞

‖s‖2σ

)
+

1

2
log([K : Q] rkED) +

log |∆K |

2[K : Q]

≤ C1D + ε logD +
1

2
log(rkED) +

log |∆K |

2[K : Q]
= O(D).

2

Theorem 9.8 For any sufficiently large integer D, we denote by PD the normalized Harder-
Narasimhan polygon of ED. Then the sequence (µ̂min(ED)/D)D≥1 has a limit in R and the
sequence of polygons (PD/D)D≥1 converges uniformly to a concave function on [0, 1].

Proof. Notice that PD coincides with the polygon associated to the Harder-Narasimhan fil-
tration of ED,K . Therefore, the theorem follows from Theorem 9.3. 2

Remark 9.9 The limit of polygons in Theorem 9.8 does not depend on the choice of Hermitian
metrics ‖ · ‖σ. Suppose that for any integer D ≥ 0 and any σ ∈ Σ∞, we choose another
Hermitian metric ‖ · ‖∗σ on ED,σ such that the collection h∗D := (‖ · ‖∗σ)σ∈Σ∞

is invariant under
complex conjugation and such that

A∗
D,σ := sup

06=s∈ED,σ

∣∣∣ log ‖s‖∗σ − log ‖s‖σ,sup

∣∣∣ = O(logD).

We denote by P ∗
D the normalized Harder-Narasimhan polygon of (ED, h

∗
D). After (19), we

have

|P ∗
D(t)− PD(t)| ≤

1

[K : Q]

∑

σ∈Σ∞

(
AD,σ +A∗

D,σ

)
.

Since lim
D→+∞

AD,σ/D = lim
D→+∞

A∗
D,σ/D = 0, we know that the two sequences (P ∗

D/D)D≥1 and

(PD/D)D≥1 converge to the same limit. Similarly the slope inequality implies that

lim
D→+∞

1

D

∣∣∣µ̂min(ED, hD)− µ̂min(ED, h
∗
D)
∣∣∣ = 0.
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We establish now (Proposition 9.11) the analogue of Proposition 8.11 in Arakelov geometry.

Lemma 9.10 For any integer r ≥ 2 and any element n = (ni)1≤i≤r ∈ Nr≥n0
, we have

µ̂max(E|n|) ≥
r∑

i=1

µ̂max(Eni
)− 2ε

r∑

i=1

logni −
r∑

i=1

(1

2
log([K : Q] rkEni

) +
log |∆K |

2[K : Q]

)
. (23)

Proof. Suppose that for any integer 1 ≤ i ≤ r, si is a non-zero element in Eni
. Then for any

σ ∈ Σ∞,

‖s1 · · · sr‖σ ≤ ‖s1 · · · sr‖σ,sup exp(A|n|,σ) ≤
r∏

i=1

‖si‖σ,sup exp(A|n|,σ)

≤ exp(A|n|,σ)
r∏

i=1

(
‖si‖σ exp(Ani,σ)

)
≤ |n|εnε1 · · ·n

ε
r

r∏

i=1

‖si‖σ.

Therefore,

∑

σ∈Σ∞

‖s1 · · · sr‖
2
σ ≤ |n|

2ε
( r∏

i=1

n2ε
i

) ∑

σ∈Σ∞

r∑

j=1

‖sj‖
2
σ ≤

( r∏

i=1

n4ε
i

)( r∏

j=1

∑

σ∈Σ∞

‖sj‖
2
σ

)
,

and −
1

2
log
( ∑

σ∈Σ∞

‖s1 · · · sr‖
2
σ

)
≥ −2ε

r∑

i=1

logni −
r∑

i=1

1

2
log
( ∑

σ∈Σ∞

‖si‖
2
σ

)
.

After Proposition 9.6, we obtain

µ̂max(E|n|) ≥ −
1

2
log
( ∑

σ∈Σ∞

‖s1 · · · sr‖
2
σ

)
≥ −2ε

r∑

i=1

logni −
r∑

i=1

1

2
log
( ∑

σ∈Σ∞

‖si‖
2
σ

)

≥
r∑

i=1

µ̂max(Eni
)− 2ε

r∑

i=1

logni −
r∑

i=1

(1

2
log([K : Q] rkEni

) +
log |∆K |

2[K : Q]

)
.

2

Proposition 9.11 The sequence ( 1
D µ̂max(ED))D≥1 has a limit in R.

Proof. This is a direct consequence of Lemma 9.10 and Corollary 3.2. 2

From the slope inequality we know immediately that the limits in Proposition 9.11 do not
depend on the choice of Hermitian metrics ‖ · ‖σ.

10 Calculation of the limit of polygons for a bigraded

algebra

We present in this section an explicit calculation of the limit of polygons in the case where
the bigraded algebra associated to the quasi-filtered graded algebra is of finite type. The
method used in this section is inspired by an article of Faltings and Wüstholz [FW94], which
applies the theory of Poincaré series in two variables.
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Definition 10.1 Let A be a commutative ring. We call bigraded A-algebra any N2-graded
commutative A-algebra. If B is a bigraded A-algebra, we call bigraded B-module any B-
module M equipped with a Z2-graduation in A-modules such that, for any (n, d) ∈ N2 and
any (n′, d′) ∈ Z2, we have Bn,dMn′,d′ ⊂Mn+n′,d+d′. We call homogeneous sub-B-module of M

any sub-B-module M ′ of M such that M ′ =
⊕

(n,d)∈Z2

M ′ ∩Mn,d. M
′ is therefore canonically

equipped with a structure of graded B-module. In particular, if B is a bigraded A-algebra,
then B is canonically equipped with a structure of bigraded B-module. The homogeneous
sub-B-modules of B are called homogeneous ideals of B.

If B is a bigraded A-algebra and if M is a bigraded B-module, for any (n, d) ∈ Z2, we denote
by M(n, d) the graded B-module such that M(n, d)n′,d′ = Mn+n′,d+d′ for any (n′, d′) ∈ Z2.

Let f be a mapping from {1, · · · , n} to N2. The ring A[T1, · · · , Tn] of polynomials is
canonically equipped with an N2-graduation such that Ti is homogeneous of bidegree f(i). We
obtain hence a bigraded A-algebra, denote by A[f ].

If B is a bigraded A-algebra of finite type, then B is generated by a finite number of homoge-
neous elements x1, · · · , xm. We suppose that xi is of bidegree (ni, di). Let f : {1, · · · ,m} → N2

be the function which sends i to (ni, di). Then the surjective homomorphism of A-algebras
from A[f ] ∼= A[T1, · · · , Tm] to B which sends Ti to xi is compatible with N2-graduations. It is
therefore a homomorphism of bigraded algebras. In this case, any bigraded B-module M can
be considered as a bigraded A[f ]-module, which is of finite type if M is a B-module of finite
type.

Definition 10.2 Let f = (f1, f2) be a mapping from {1, · · · ,m} to N2 and M be a bigraded
A[f ]-module of finite type whose homogeneous component are all A-modules of finite length.
We call Poincaré series of M the element PM ∈ Z [[X,Y ]][X−1, Y −1] defined by the formula

PM =
∑

(n,d)∈Z2

lenA(Mn,d)X
nY d. We write QM = PM

m∏

i=1

(1−Xf1(i)Y f2(i)).

Proposition 10.3 We have QM ∈ Z[X,Y,X−1, Y −1].

Proof. By replacingA with A/ annA(M), we reduce the problem to the case where annA(M) =
0. Since M is an A[f ]-module of finite type, there exist integers a < b such that M is generated

as A[f ]-module by M ′ =
⊕

(n,d)∈[a,b]2∩Z2

Mn,d. Since M ′ is an A-module of finite length, and

since annA(M ′) = annA(M) = 0, the ring A is Artinian, so is Notherian.
We deduce by induction on m. If m = 0, then A[f ] = A. Since M is an A-module of finite

type, we have PM ∈ Z[X,Y,X−1, Y −1]. Suppose that the proposition has been proved for
1, · · · ,m− 1. Let f ′ be the restriction of f on {1, · · · ,m− 1}. We write (nm, dm) = f(m). The
mapping Tm : M(−nm,−dm) −→M is a homomorphism of bigraded A[f ]-modules. Let N be
its kernel (considered as homogeneous sub-A[f ]-module of M). We have an exact sequence

0 // N(−nm,−dm) // M(−nm,−dm) // M // M/TmM // 0 .

Therefore, PM −XnmY dmPM = PM/TmM −X
nmY dmPN . Since M/TmM and N are A[f ′] =

A[f ]/(Tm)-modules of finite type, by induction hypothesis, we obtain

QM = QM/TmM −X
nmY dmQN ∈ Z[X,Y,X−1, Y −1].

2
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Remark 10.4 Let f = (f1, f2) : {1, · · · ,m} → N2 be a mapping such that f1 ≡ 1 and M be a
bigraded A[f ]-module of finite type, whose homogeneous components are A-modules of finite
length. The algebra A[f ], equipped with the first graduation, is the usually graded algebra of
polynomials in m variables. We can also consider the first graduation of M for which the nth

homogeneous component of M is
⊕

d∈Z
Mn,d. This homogeneous component is an A-module

of finite length since there exist only a finite number of integers d such that Mn,d 6= 0. With
this graduation, M is a graded module of finite type over the polynomial algebra A[T1, · · · , Tm]
(with the usual grading). If we denote by HM the Poncaré series associated to M (for the first
grading), we have HM (X) = PM (X, 1). The notions dimM and c(M) are hence defined, as in
Section 7.

The following theorem is an analogue in the two variables case of the formula (13) for
Poincaré series.

Theorem 10.5 With the notations of Remark 10.4, the series PM is written in the forme

PM (X,Y ) =
h∑

r=0

∑

α⊂{1,··· ,m}
#α=r

Iα(X,Y )
∏

i∈α

(1 −XY f2(i))−1,

where

1) Iα ∈ Z[X,Y,X−1, Y −1],

2) if #α = h, the coefficients of Iα are positive,

3) if M 6= 0, there exists at least an subset α ⊂ {1, · · · ,m} of cardinal h such that Iα 6= 0.

Remark 10.6 With the notations of Theorem 10.5, we have

HM (X) =

h∑

r=0

( ∑

α⊂{1,··· ,m}
#α=r

Iα(X, 1)

)
(1−X)−r.

Therefore, if M is non-zero, then dimM = h and c(M) =
∑

α⊂{1,··· ,m}
#α=h

Iα(1, 1).

To simplify the proof of Theorem 10.5, we introduce the following notation. If M is a
bigraded A[f ]-module satisfying the assertion of Theorem 10.5, we say that M verifies the the
condition P, noted by P(M). The assertion of Theorem 10.5 then becomes:

For any A[f ]-module M, we have P(M).

For any integer m > 0, let Θm be the set {(i, j) ∈ Z2 | 0 ≤ i ≤ m, j > 0} ∪ {(−∞, 0)}. We
equip it with the lexicographic relation “≤” as follows:

(i, j) ≤ (i′, j′) if and only if i < i′ or if i = i′, j ≤ j′.

We verify easily that it is an order relation on Θm and that the set Θm is totally ordered
for this relation. We use the expression (i, j) < (i′, j′) to present the condition (i, j) ≤
(i′, j′) but (i, j) 6= (i′, j′).
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Lemma 10.7 Let 0 // M ′ // M // M ′′ // 0 be a short exact sequence of bi-
graded A[f ]-module. Suppose that M ′

n,d and M ′′
n,d are A-modules of finite length for any

(n, d) ∈ Z2. Then Mn,d are A-modules of finite length, and

1) dimM = max(dimM ′, dimM ′′),

2)

c(M) =





c(M ′) + c(M ′′), dimM ′ = dimM ′′,

c(M ′), dimM ′ > dimM ′′,

c(M ′′), dimM ′′ > dimM ′.

3) P(M ′) and P(M ′′) =⇒ P(M).

Proof. In fact, we have PM = PM ′ +PM ′′ and HM = HM ′ +HM ′′ . By definition we know that
1) and 2) are true. Finally, 3) is a consequence of 1) and of the fact that PM = PM ′+PM ′′ . 2

Proof of Theorem 10.5. By the same argument as that for the proof of Proposition 10.3,
we can suppose that A is an Artinian ring. We shall prove the theorem by induction on m.
First we prove that the theorem is true in the case where dimM ≤ 0. If M is of dimension
≤ 0, then the Poincaré series HM (X) = PM (X, 1) of M is an element of Z[X,X−1], and
PM ∈ Z[X,Y,X−1, Y −1]. Hence we have P(M). Since dimM ≤ m, the theorem is true when
m = 0. Suppose that the theorem is true for bigraded modules of an A-algebra of polynomials
in j variables (0 ≤ j < m). Let f = (f1, f2) : {1, · · · ,m} → N2 be a mapping such that f1 ≡ 1
and let M be a bigraded A[f ] = A[T1, · · · , Tm]-module of finite type such that M(n,d) is of
finite length over A for any (n, d) ∈ Z2. Suppose that f2(m) = d.

We begin another procedure of induction on (dimM, c(M)). We have already proved P(M)
for dimM ≤ 0. Suppose that we have proved P(M) for (dimM, c(M)) < (r, s), where 0 < r ≤
m, s > 0. In the following, we shall prove P(M) in the case where (dimM, c(M)) = (r, s).
Consider the homothetic transformation Tm : M(−1,−d) −→ M , which is a homomorphism
of bigraded A[f ]-modules. We denote by f ′ the restriction of f on {1, · · · ,m − 1}. Let N1

be the kernel of Tm (considered as homogeneous sub-A[f ]-module). It is a bigraded A[f ′]-
module of finite type. After the induction hypothesis, we have P(N1). Let M1 = M/N1. After
Lemma 10.7 3), to prove P(M), it suffices to prove P(M1). If dimN1 = dimM , then either
dimM1 < dimM , or dimM1 = dimM and c(M1) = c(M)− c(N1) < c(M). So we always have
(dimM1, c(M1)) < (dimM, c(M)). After the induction hypothesis, we have P(M1). Otherwise
we have dimN1 < dimM and (dimM1, c(M1)) = (dimM, c(M)). If P(M) is not true, by
iterating the procedure above, we obtain an increasing sequence of homogeneous submodules

N1 ⊂ N2 ⊂ · · ·Nj ⊂ Nj+1 ⊂ · · · (24)

of M such that (we define M0 = M)

i) Nj = KerT jm,

ii) dimNj < dimM ,

iii) Mj := M/Nj don’t satisfy the condition P, and (dimMj , c(Mj)) = (dimM, c(M)).

Since A[f ] is a Noetherian ring, the sequence (24) is stationary. In other words, there exists
j ∈ N such that Mj = Mj+1. Since Mj+1 identifies canonically with the image of Mj by the
homothetic transformation Tm,we have the exact sequence

0 // Mj(−1,−d)
Tm

// Mj // Mj/TmMj
// 0 .
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We write N ′ = Mj/TmMj . It is actually an A[f ′]-module of finite type. After induction
hypothesis, we have P(N ′). Finally, since (1−XY d)PMj

(X,Y ) = PN ′(X,Y ), we have P(Mj),
which is absurd. Hence we have P(M).

�

Let P be the formal series in Z [[X,Y ]][X−1, Y −1] with positive coefficients. Then P is

written in the forme P (X,Y ) =
∑

(n,d)∈Z2

an,d(P )XnY d. For any n ∈ N, we write Sn(P ) =

∑
d∈Z

an,d(P ) and denote by νn,P the Borel measure on R defined by

νn,P =
∑

d∈Z

an,d(P )

Sn(P )
δd/n.

If Sn(P ) = 0, then νn,P is by convention the zero measure.

Remark 10.8 We keep the notations of Theorem 10.5 in supposing that A is a field. If for
any integer n, we equip the space Mn,• :=

⊕
d∈Z

Mn,d with the R-filtration F defined by
FλMn,• =

⊕
d≥λMn,d, then the measure νn,P identifies with T 1

n
νMn,•

. This observation is
crucial because it enables us to use the Poincaré series to study measures of a bigraded algebra
over a field.

Proposition 10.9 If P is a series in Z [[X,Y ]] of the forme P (X,Y ) =

m∏

i=1

(1 − XY di)−1,

then

1) the Borel measures νn,P converge vaguely to a Borel measure νP when n→ +∞;

2) the sequence of functions
(
Fn,P : x 7−→ 1 −

∫

R

11]−∞,x] dνn,P

)
n≥1

converges simply to

FP : x 7−→ 1−

∫

R

11]−∞,x] dνP .

Proof. 1) We have

P (X,Y ) =
m∏

i=1

(∑

n≥0

XnY ndi

)
=

∑

(n,d)∈N×Z

( ∑

(u1,··· ,um)∈N
m

u1+···+um=n,
u1d1+···+umdm=d

1

)
XnY d

= 1 +
∑

(n,d)∈Z
2

n>0

( ∑

(µ1,··· ,µm)∈ 1
n

N
m

µ1+···+µm=1,
µ1d1+···+µmdm=d/n

1

)
XnY d.

On the other hand, Sn(P ) =
∑

(µ1,··· ,µm)∈ 1
n

N
m

µ1+···+µm=1

1. Let ∆m be the simplex {(µ1, · · · , µm) ∈

Rm+ | µ1 + · · · + µm = 1}, ϕ : ∆m → R be the mapping which sends (µ1, · · · , µm) to
µ1d1 + · · · + µmdm. For any integer n > 0, let ηn,P be the measure on ∆m defined by

ηn,P =
∑

µ∈ 1
n

Nm∩∆m

1

Sn(P )
δµ. We observe that νn,P is the direct image of ηn,P by ϕ. Therefore,
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νn,P is supported by ϕ(∆m). Hence for any continuous function f : R → R, f is integrable

with respect to the measure νn,P . Furthermore, we have

∫

R

fdνn,P =

∫

∆m

(f ◦ ϕ)dηn,P , which

is the nth Riemann sum of the function f ◦ ϕ : ∆m → R. So the sequence
(∫

R

fdνn,P

)
n≥1

converges to

∫

∆m

f ◦ϕdη =

∫

R

fdϕ∗η where η is the Lebesgue measure on ∆m. We then obtain

that the measures νn,P converge vaguely to the measure νP = ϕ∗η.
2) The mapping ϕ can be extended to an affine mapping Φ from {(µ1, · · · , µm) ∈ Rm | µ1 +

· · ·+ µm = 1} to R by simply defining Φ(µ1, · · · , µm) = µ1d1 + · · ·µmdm. If d1 = d2 = · · · =
dm = d, then P (X,Y ) = (1−XY d)−m. Therefore, for any n ≥ 1, νn,P = νP = δd. The asser-
tion is then evident. Otherwise the image of Φ is the whole set R and for any point x ∈ Imϕ,
ϕ−1(x) is a negligible subset of ∆m for the Lebesgue measure. Therefore, the one point set
{x} is negligible for the measure λP . After [Bou65] IV.5 Proposition 22, since x is the only dis-

continuous point of the function 11]−∞,x], we obtain that the sequence
(∫

R

11]−∞,x] dνn,P

)

n≥1

converges to

∫

R

11]−∞,x] dνP . 2

Proposition 10.10 Suppose that Q is a non-zero series in Z[X,Y,X−1, Y −1] with positive

coefficients, and P ∈ Z [[X,Y ]][X−1, Y −1] is of the form P (X,Y ) = Q(X,Y )
m∏

i=1

(1−XY di)−1.

1) The Borel measures νn,P converge vaguely to a Borel measure νP when n→ +∞.

2) Define the functions

(
Fn,P : x 7−→ 1−

∫

R

11]−∞,x] dνn,P

)
n≥1

and FP : x 7−→ 1−

∫

R

11]−∞,x] dνP .

i) If d1 = · · · = dm = d, then for any x 6= d, the sequence (Fn,P (x))n≥1 converges to
FP (x).

ii) If di’s are not identical, then the sequence of functions (Fn,P )n≥1 converges simply to
FP .

Furthermore, if we denote by P ′ the series P ′(X,Y ) =
m∏

i=1

(1−XY di)−1, then we have νP = νP ′ ,

and hence FP = FP ′ .

Proof. 1) Suppose that Q is of the form Q(X,Y ) =
∑

|n′|≤e

∑

|d′|≤r

cn′,d′X
n′

Y d
′

where cn′,d′ ≥ 0.

Since P = P ′Q, we obtain an,d(P ) =
∑

|n′|≤e

∑

|d′|≤r

cn′,d′ an−n′,d−d′(P
′) and

Sn(P ) =
∑

d∈Z

an,d(P ) =
∑

d∈Z

∑

|n′|≤e

∑

|d′|≤r

cn′,d′ an−n′,d−d′(P
′)

=
∑

|n′|≤e

∑

|d′|≤r

∑

d∈R

cn′,d′ an−n′,d−d′(P
′) =

∑

|n′|≤e

∑

|d′|≤r

cn′,d′ Sn−n′(P ′).
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Denote by Cn′ =
∑

|d′|≤r

cn′,d′ , then we have Sn(P ) =
∑

|n′|≤e

Cn′Sn−n′(P ′). If g : R → R is a

continuous function with compact support, then
∫

R

g dνn,P =
∑

d∈Z

an,d(P )

Sn(P )
g(d/n) =

1

Sn(P )

∑

d∈Z

∑

|n′|≤e

∑

|d′|≤r

cn′,d′ an−n′,d−d′(P
′) g(d/n).

Notice that

1

Sn(P )

∑

|n′|≤e

∑

|d′|≤r

∑

d∈Z

cn′,d′ an−n′,d−d′(P
′) g

(
d− d′

n− n′

)

=
1

Sn(P )

∑

|n′|≤e

∑

|d′|≤r

cn′,d′Sn−n′(P ′)

∫

R

g dνn−n′,P ′ =
1

Sn(P )

∑

|n′|≤e

Cn′Sn−n′(P ′)

∫

R

g dνn−n′,P ′

converges to
∫

R
g dνP ′ since νn,P ′ converges vaguely to νP ′ when n→∞. Finally, the function

g is uniformly continuous on R. For any number δ > 0, there exists a number ε > 0 such
that, for all x, y ∈ R such that |x − y| < ε, we have |g(x) − g(y)| < δ. On the other hand,

since P ′ =
m∏

i=1

(1 − XY di)−1, if |d| > |n| max
1≤i≤m

|di|, we have an,d(P
′) = 0. Hence for all

integers d, n such that |d| > max
1≤i≤m

|di|(|n|+ e)+ r, we have an−n′,d−d′(P
′) = 0 for any |n′| ≤ e

and any |d′| ≤ r. Therefore, for all integers n > e, d ∈ Z, |n′| ≤ e and |d′| ≤ r such that
an−n′,d−d′(P

′) 6= 0, we always have
∣∣∣∣
d

n
−
d− d′

n− n′

∣∣∣∣ =

∣∣∣∣
d′n− dn′

n(n− n′)

∣∣∣∣ ≤
r

n− n′
+ max

1≤i≤m
|di|

e(n+ e+ r)

n(n− n′)
.

Therefore, there exists an integer N > 0 such that, for all integers n > N , d ∈ Z, |n′| ≤ e and

|d′| ∈ r, we have either an−n′,d−d′(P
′) = 0, or

∣∣∣ d
n
−
d− d′

n− n′

∣∣∣ < ε. Hence we have

∣∣∣∣∣

∫

R

g dνn,P −
1

Sn(P )

∑

|n′|≤e

∑

|d′|≤r

∑

d∈Z

cn′,d′ an−n′,d−d′(P
′) g

(
d− d′

n− n′

) ∣∣∣∣∣

≤
1

Sn(P )

∑

|n′|≤e

∑

|d′|≤r

∑

d∈Z

cn′,d′ an−n′,d−d′(P
′)

∣∣∣∣g
(
d

n

)
− g

(
d− d′

n− n′

)∣∣∣∣

≤
δ

Sn(P )

∑

|n′|≤e

∑

|d′|≤r

∑

d∈Z

cn′,d′ an−n′,d−d′(P
′) = δ.

We then deduce the vague convergence of νn,P to νP ′ .
2) If d1 = · · · = dm = d, then νP = δd. So for any x 6= d, the set of discontinuous points

of 11]−∞,x], i.e., {x}, is negligible for the measure νP . Hence
∫

R
11]−∞,x] dνn,P converges to∫

R
11]−∞,x] dνP . If di’s are not identical, then any discrete subset of R is negligible for the

measure νP , so the sequence of functions (Fn,P )n≥1 converges simply to the function FP . 2

Remark 10.11 With the notations of Proposition 10.10, the limit measure νP depends only
on the vector (d1, · · · , dm) ∈ Nm (or simply the equivalence class of (d1, · · · , dm) in Nm/Sm,
the quotient of Nm by the symmetric group Sm). In the following, we denote by ν(d1,··· ,dm)

this measure. Actually, when m > 0, it is a probability measure. When m = 0, ν∅ is the zero
measure.
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The following theorem is an immediate consequence of Proposition 10.10.

Theorem 10.12 Let (d1, · · · , dm) ∈ Zm+ and P (X,Y ) =

h∑

r=0

∑

α⊂{1,··· ,m}
cardα=r

Iα(X,Y )
∏

i∈α

(1−XY di)−1

be a series in Z [[X,Y ]][X−1, Y −1] where

a) the coefficients of P are positive,

b) Iα ∈ Z[X,Y,X−1, Y −1],

c) for any α ⊂ {1, · · · ,m} of cardinal h, the coefficients of Iα are positive,

d) there exists at least one α ⊂ {1, · · · ,m} of cardinal h such that Iα 6= 0.

Then

1) the Borel measures νn,P converge vaguely to a Borel measure νP when n→ +∞,

2) there exists a finite subset Ω of R such that the sequence of functions

(
Fn,P : x 7−→ 1−

∫

R

11]−∞,x] dνn,P

)
n≥1

converges pointwise on R \ Ω to the function FP : x 7−→ 1−

∫

R

11]−∞,x] dνP .

Furthermore, if for any α = {i1 < · · · < ih}, we write dα = (di1 , · · · , dih), then the limit mea-

sure νP equals to
∑

α⊂{1,··· ,m}
cardα=h

Iα(1, 1)

S
νdα

where S =
∑

α⊂{1,··· ,m}
cardα=h

Iα(1, 1). So νP is a probability

measure when h > 0. If h = 0, then νP is the zero measure.

The results obtained above, notably Theorem 10.5 and Theorem 10.12, imply immediately
the following theorem.

Theorem 10.13 Let K be a field, f = (f1, f2) : {1, · · · ,m} → N2 be a mapping such that
f1 ≡ 1 and M be a finite generated bigraded K[f ]-module. If for any integer n ≥ 1, we denote
by νn the Borel measure associated to the vector space Mn,• :=

⊕
d∈Z

Mn,d which is equipped
with the filtration induced by the second grading, then the sequence of Borel measures T 1

n
νn

converges vaguely to a Borel measure ν on R. If furthermore Mn,• is non-zero for sufficiently
large n, then the limit measure ν is a probability measure, and the polygons associated to T 1

n
νn

converge uniformly to a concave curve defined on [0, 1].

Remark 10.14 Let K be a field and B be an N-filtered graded K-algebra (that is to say, the
jumping set is contained in N) which is of finite type over K and is generated as K-algebra

by B1. We can introduce a bigraded K-algebra B̃ by defining B̃n,d = FdBn/Fd+1Bn. Notice

that the filtered vector spaces B̃n,• (whose filtration is induced by the second grading) and Bn
have the same associated measure. Therefore, if B̃ is an algebra of finite type over K which
is generated by B̃1,•, then the previous theorem shows that the normalized polygons of Bn
converge uniformly. However, this condition is not satisfied in general. We can for example
consider the algebra B = K[X ] of polynomials, equipped with the usual graduation and the
filtration such that λ(Xn) = n − 1 for any n ≥ 1. Then B is a filtered graded algebra since
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λ(Xn+m) = n+m− 1 > n− 1 +m− 1 = λ(Xn) + λ(Xm). On the other hand, the bigraded

algebra B̃ identifies with the algebra K[T1, · · · , Tn, · · · ], where the bidegree of Tn is (n, n− 1),
modulo the homogeneous ideal generated by all elements of the form TnTm. This is not an
algebra of finite type over K.

Finally, we shall give an example of the limit of normalized Harder-Narasimhan polygons
in relative geometric framework. Let k be a field, and C be a smooth projective curve over
k. We denote by K the field of rational functions on C. Let (Ei)1≤i≤m be a finite family of
locally free OC -modules of finite type which are semistable. We suppose in addition that for
any family (ni)1≤i≤m of positive integers, the OC -module Sn1E1⊗ · · · ⊗SnmEm is semistable.
This condition is satisfied notably when one of the following conditions is satisfied:

1) the OC -modules E1, · · · , Em are all of rank 1;

2) C is the projective space P1;

3) C is an elliptic curve over k (see [Ati57]);

4) k is of characteristic 0.

Let E be the direct sum E = E1 ⊕ · · · ⊕Em. Let B be the symmetric algebra of E, which
is a graded OC -algebra. For any integer n ≥ 1, we have

Bn = SnE =
⊕

(di)1≤i≤m∈N
m

d1+···+dm=n

(
Sd1E1 ⊗ · · · ⊗ S

dmEm

)⊕ n!
d1!···dm!

.

Denote by B the graded algebra over K such that Bn = Bn,K . For any integer 1 ≤ i ≤ m, we
denote by ri the rank of Ei and by µi the slope of Ei, and we choose a base ui = (ui,j)1≤i≤rj

of Ei,K . We write u = u1 ∐ · · · ∐ um and r = r1 + · · · + rm the rank of E. The algebra B
identifies hence with the algebra of polynomials K[u]. If α : u → R is a mapping, denote by
|α| the sum

∑m
i=1

∑ri

j=1 α(uij). For any integer n ≥ 1, we denote by νn = T 1
n
νBn

and we have

νBn
=

∑

(di)1≤i≤m∈N
m

d1+···+dm=n

n!

d1! · · · dm!

rk(Sd1E1 ⊗ · · · ⊗ SdmEm)

rk(SnE)
δd1µ1+···+dmµm

=
∑

α:u→N
|α|=n

1

rk(SnE)
δ∑m

i=1 µi

∑ri
j=1 α(uij).

Therefore, νn =
∑

β:u→ 1
n

N

|β|=1

1

rk(SnE)
δ∑m

i=1 µi

∑ ri
j=1 β(uij).

Denote by ∆ the simplex of dimension

r − 1 in Rr (considered as the function space of u in R) defined by the relation

∆ := {x : u→ R≥0 | |x| = 1}.

and by Φ : ∆→ R the mapping which sends (x : u→ R) ∈ Rr to
∑m

i=1 µi
∑ri

j=1 x(uij). This is

a continuous function. For any integer n ≥ 1, let ∆(n) be the subset of ∆ of functions valued
in n−1N. Then νn is the direct image by Φ|∆(n) of the equidistributed probability measure wn
on ∆(n). By abuse of language, we still use the expression wn to denote the direct image of wn
by the inclusion mapping from ∆(n) in ∆. Then νn = Φ∗(wn). Since the sequence of measures
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(wn)n≥1 converges vaguely to the uniform measure on ∆, the limit ν of the measure sequence
(νn)n≥1 exists and equals to the direct image of the uniform measure on ∆ by the mapping Φ.
Therefore the uniform limit of polygons associated to νn exists and equals to the “polygon” (it
is in fact a concave function) associated to the limit measure ν.

Example 10.15 Let E be the direct sum of two invertible modules L1 and L2. We write
µ1 = deg(L1) and µ2 = deg(L2), and we suppose that µ1 < µ2. In this case, ∆ = {(x, 1 −
x) | 0 ≤ x ≤ 1} ⊂ R2 is parametered by [0, 1]. The mapping Φ : ∆ → R sends (x, 1 − x) to
µ1x + µ2(1 − x). Therefore, the limit measure ν is the equidistributed probability measure
on [µ1, µ2]. Let f be the function defined by f(t) = Eν [11{x>t}]. Then we have f(x) =

1

µ2 − µ1

(
(µ2 − x)+ − (µ1 − x)+

)
. The quasi-inverse of f is therefore f∗(t) = µ1t+ µ2(1− t).

Finally, the limit of normalized Harder-Narasimhan polygons of SnE is given by the quadratic
curve

µ2x−
µ2 − µ1

2
x2,

which is non-trivial in general.
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886, viii, 175–209, 2002. Séminaire Bourbaki, Vol. 2000/2001.

[Eis95] David Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathemat-
ics. Springer-Verlag, New York, 1995. With a view toward algebraic geometry.
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wandte Mathematik, 590:67–88, 2006.

[RLV00] Robert Rumely, Chi Fong Lau, and Robert Varley. Existence of the sectional capacity.
Mem. Amer. Math. Soc., 145(690):viii+130, 2000.

[RR84] S. Ramanan and A. Ramanathan. Some remarks on the instability flag. The Tohoku
Mathematical Journal. Second Series, 36(2):269–291, 1984.

[Stu76] U. Stuhler. Eine bemerkung zur reduktionstheorie quadratischen formen. Archiv.
der Math., 27:604–610, 1976.

[Tho96] A. C. Thompson. Minkowski geometry, volume 63 of Encyclopedia of Mathematics
and its Applications. Cambridge University Press, Cambridge, 1996.

[Zha95] Shouwu Zhang. Positive line bundles on arithmetic varieties. Journal of the American
Mathematical Society, 8(1):187–221, January 1995.

A Pseudo-filtered graded algebra

In this section, we propose another generalization of filtered graded algebras which is weaker
than the notion of f -quasi-filtered graded algebras. By imposing a condition on f which is
stronger than lim

n→+∞
f(n)/n = 0, we also obtain the vague convergence of measures associated

to filtrations and hence the uniform convergence of polygons.

Definition A.1 Let B =
⊕

n≥0Bn be a graded K-algebra and f : Z>0 → R≥0 be a function.
We say that B is an f -pseudo-filtered graded K-algebra if each Bn is equipped with a decreasing
R-filtration such that, for all sufficiently large integers n,m, we have

Bn,sBm,t ⊂ Bn+m,s+t−f(n)−f(m).

If B is an f -pseudo-filtered graded K-algebra, we say that a graded B-module M =
⊕

n∈Z
Mn

is f -pseudo-filtered if for any integer n, Mn is equipped with a decreasing R-filtration such
that, for all sufficiently large integers n,m, we have

Bn,sMm,t ⊂Mn+m,s+t−f(n)−f(m).

Remark A.2 Note that B is an f -pseudo-filtered graded B-module. If f ≡ 0, then B is
a filtered graded K-algebra and M is a filtered graded B-module. If g is another function
dominating f , then B is a g-pseudo-filtered graded K-algebra and M is a g-pseudo-filtered
graded B-module.

Some results which are analogues to those in Section 4 can be stated and verified without
difficulty for pseudo-filtered graded algebras and for pseudo-filtered graded modules, notably
the corollaries 4.3, 4.5 and 4.6 where we only need to replace “quasi-filtered” by “pseudo-
filtered” in the statement of the results.

Let f : Z≥0 → R≥0 be a decreasing function, V be a vector space of rank 0 < d < +∞ over
K, and B be the symmetric algebra generated by V , equipped with the usual graduation. We
suppose that for any positive integer n, Bn is equipped with an R-filtration which is separated,
exhaustive and left continuous such that B is an f -pseudo-filtered graded K-algebra. Let
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g be an increasing function which is concave and c-Lipschitz. For any integer n ≥ 0, let
In =

∫
R
g dT 1

n
νBn

. Then for all sufficiently large integers m and n, we have

Im+n ≥

∫

R

g d
(
T 1

m+n
ν
u

(m,n)

)
=

∫

∆
(d)
m+n

g

(
1

m+ n
λ(u(m,n)

γ )

)
dξm+n(γ)

=

∫

∆
(d)
m ×∆

(d)
n

g

(
1

m+ n
λ(u

(m,n)
α+β )

)
dρ(m,n)(α, β)

≥

∫

∆
(d)
m ×∆

(d)
n

g

(
1

m+ n
λ(uαuβ)

)
dρ(m,n)(α, β)

≥

∫

∆
(d)
m ×∆

(d)
n

g

(
λ(uα) + λ(uβ)− f(n)− f(m)

m+ n

)
dρ(m,n)(α, β)

≥

∫

∆
(d)
m ×∆

(d)
n

[
g

(
λ(uα) + λ(uβ)

m+ n

)
−
c(f(n) + f(m))

m+ n

]
dρ(m,n)(α, β)

≥

∫

∆
(d)
m ×∆

(d)
n

[
n

m+ n
g

(
λ(uα)

n

)
+

m

n+m
g

(
λ(uβ)

m

)]
dρ(m,n)(α, β) −

c(f(n) + f(m))

m+ n

=
n

n+m
In +

m

n+m
Im − c

f(n) + f(m)

m+ n
.

(25)

If the sequence (In)n≥0 is bounded from above and if
∑
α≥0 f(2α)/2α < +∞, then (In)n≥0

converges, which implies that the sequence of measures (T 1
n
νBn

)n≥1 converges vaguely. In

other words, B satisfies the vague convergence condition. The convergence of (In)n≥0 is based
on Corollary A.5, which we shall present as below.

Lemma A.3 If f : Z>0 → R≥0 is an increasing function such that
∑

α≥1 f(2α)/2α < +∞,
then

lim
α→+∞

2−α
α∑

i=0

f(2i) = 0.

Proof. For any integer α ≥ 0, let Sα =
∑

i≥α f(2i)/2i. By Abel’s summation formula,

α∑

i=0

f(2i) =

α∑

i=0

(Si − Si+1)2
i = S0 − Sα+12

α +

α∑

i=1

Si2
i−1.

Since lim
α→+∞

Sα = 0, we have 2−α
∑α
i=1 Si2

i−1 converges to 0 when α → +∞, which implies

the lemma. 2

Proposition A.4 Let (bn)n≥1 be a sequence of positive real numbers and f : Z>0 → R≥0 be
an increasing function such that

∑
α≥1 f(2α)/2α < +∞. If there exists an integer n0 > 0 such

that, for any pair (m,n) of integers ≥ n0, we have bn+m ≤ bm + bn + f(m) + f(n), then the
sequence (bn/n)n≥1 has a limit in R≥0.

Proof. First let us treat the case where n0 = 1. Since f is an increasing function we obtain
that for any (m,n) ∈ Z2

>0,
bm+n ≤ bn + bm + 2f(m+ n). (26)
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For any integer α ≥ 0, let Sα =
∑

i≥α

f(2i)/2i. then lim
α→+∞

Sα = 0. If 2β ≤ n < 2β+1 is an

integer, we have, for any α ∈ N,

b2αn ≤ 2αbn +

α∑

i=1

2α+1−if(2i−1n) ≤ 2αbn +

α∑

i=1

2α+1−if(2β+i). (27)

Suppose that p =
∑k

i=0 ǫi2
i, where ǫi ∈ {0, 1} for any 0 ≤ i < k and ǫk = 1. If 0 ≤ r < n is

another integer, we have after (26) the following inequality:

bnp+r ≤ bnp + br + 2f(np+ r) ≤
k∑

i=0

ǫib2in + br + 2

k∑

i=0

ǫif
( i∑

j=0

ǫj2
jn
)

+ 2f(np+ r) (28)

After (27), we have

bnp+r ≤
k∑

i=0

ǫi2
ibn + br +

k∑

i=1

ǫi

i∑

j=1

2i+1−jf(2β+j) + 2

k∑

i=0

ǫif(2i+β+2) + 2f(2k+β+2). (29)

Therefore,

bnp+r
np+ r

≤
pbn

np+ r
+

br
np+ r

+ 2−k−β
k∑

i=1

i∑

j=1

2i+1−jf(2β+j)

+ 2−k−β+1
k∑

i=0

f(2i+β+2) + 2−k−β+1f(2k+β+2).

Since

2−k−β
k∑

i=1

i∑

j=1

2i+1−jf(2β+j) = 2−k−β
k∑

j=1

k∑

i=j

f(2β+j)2i+1−j ≤
k∑

j=1

f(2β+j)22−j−β = 4Sβ+1,

we obtain that

bnp+r
np+ r

≤
pbn

np+ r
+

br
np+ r

+ 4Sβ+1 + 2−k−β+1

k+β+3∑

i=0

f(2i).

After Lemma A.3, we have

lim sup
m→+∞

bm
m
≤ lim inf

n→+∞

(bn
n

+ 4S⌊log2 n⌋+1

)
= lim inf

n→+∞

bn
n
.

Therefore, the sequence (bn/n)n≥1 converges.
For the general case, by applying the above result on the subsequence (bn0k)k≥1 and the

function g(k) = f(n0k), we obtain that the sequence (bn0k/k)k≥1 has a limit in R≥0. On the
other hand, if n0 ≤ l < 2n0 is an integer, then for any integer k ≥ 1, we have the inequality

bn0(k+2) − b2n0−l − f(n0k + l)− f(2n0 − l) ≤ bn0k+l ≤ bn0k + bl + f(n0k) + f(l). (30)

If we divide (30) by n0k + l, we obtain, by passing to the limit k → +∞,

lim
k→+∞

bn0k+l

n0k + l
= lim
k→+∞

bn0k

n0k
.

Since l is arbitrary, the proposition is proved. 2
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Corollary A.5 Let (an)n≥1 be a sequence of real numbers, f : Z>0 → R≥0 be an increasing
function and c > 0 be a constant. Suppose that

1) for sufficiently large integers n,m, an+m ≥ an + am − f(n)− f(m),

2) an ≤ cn for any integer n ≥ 1,

3)
∑

α≥0 f(2α)/2α < +∞.

Then the sequence (an/n)n≥1 has a limit in R.

Proof. Consider the sequence (bn = cn− an)n≥1 of positive real numbers. If n and m are two
sufficiently large integers, we have

bn+m = c(n+m)− an+m ≤ cn+ cm− an − am + f(n) + f(m) = bn + bm + f(n) + f(m).

After Proposition A.4, the sequence (bn/n)n≥1 has a limit in R. Since an/n = c − bn/n, the
sequence (an/n)n≥1 also has a limit in R. 2

We establish finally the vague convergence for normalized measures associated to a pseudo-
filtered graded algebra.

Theorem A.6 Let f : Z≥0 → R≥0 be an increasing function such that
∑

α≥0 f(2α)/2α < +∞,
B be an integral graded K-algebra of finite type over K, which is generated by B1. Suppose
that

i) d = dimB is strictly positive,

ii) for any positive integer n, Bn is equipped with an R-filtration F which is separated, ex-
haustive and left continuous such that B is an f -pseudo-filtered graded K-algebra,

iii) lim sup
n→+∞

sup
06=a∈Bn

λ(a)

n
< +∞.

If for any integer n > 0, we write νn = T 1
n
νBn

, then the supports of νn (n ≥ 1) are uniformly

bounded and the sequence of measures (νn)≥1 converges vaguely to a Borel probability measure
on R.

Proof. We apply the proof of Theorem 7.5 in making some modifications. First we replace
the inequality (15) by λmin

m+n = λmin
n +λmin

m −f(n)−f(m) for all sufficiently large integers m,n.
After Corollary A.5, the sequence (λmin

n /n)n≥1 converges, so is bounded from below.
For the first step, since

∑
α≥0 f(2α)/2α < +∞, we have lim

α→+∞
f(2α)/2α = 0. As f is an

increasing function, lim
n→+∞

f(n)/n = 0. Therefore, the first step of the proof of Theorem 7.5

remains valid. Moreover, the third step is a formal argument for the vague convergence con-
dition, and therefore works without problem. It remains to verify that for any homogeneous
element x of B, the graded A-module Ax, equipped with the inverse image filtration, satisfies
the vague convergence condition. This corresponds to the second step of the proof of Theorem
7.5. Finally, no modification to the second step is necessary since in inequalities (16) and (17),
involves only the product of two homogeneous elements in B. 2

Corollary A.7 With the notations of Theorem A.6, the polygons associated to probability
measures νn converge uniformly to a concave function on [0, 1].
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Remark A.8 Instead of supposing that B is generated by B1, if we suppose that Bn is non-
zero for sufficiently large n, Theorem A.6 remains true, we have also the uniform convergence
of polygons.
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